TargetLowering.h revision a8fbee6f09f06ae224d855e07093c5e70b3fb694
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/Type.h"
26#include "llvm/CodeGen/ValueTypes.h"
27#include <vector>
28
29namespace llvm {
30  class Value;
31  class Function;
32  class TargetMachine;
33  class TargetData;
34  class TargetRegisterClass;
35  class SDNode;
36  class SDOperand;
37  class SelectionDAG;
38
39//===----------------------------------------------------------------------===//
40/// TargetLowering - This class defines information used to lower LLVM code to
41/// legal SelectionDAG operators that the target instruction selector can accept
42/// natively.
43///
44/// This class also defines callbacks that targets must implement to lower
45/// target-specific constructs to SelectionDAG operators.
46///
47class TargetLowering {
48public:
49  /// LegalizeAction - This enum indicates whether operations are valid for a
50  /// target, and if not, what action should be used to make them valid.
51  enum LegalizeAction {
52    Legal,      // The target natively supports this operation.
53    Promote,    // This operation should be executed in a larger type.
54    Expand,     // Try to expand this to other ops, otherwise use a libcall.
55    Custom,     // Use the LowerOperation hook to implement custom lowering.
56  };
57
58  enum OutOfRangeShiftAmount {
59    Undefined,  // Oversized shift amounts are undefined (default).
60    Mask,       // Shift amounts are auto masked (anded) to value size.
61    Extend,     // Oversized shift pulls in zeros or sign bits.
62  };
63
64  enum SetCCResultValue {
65    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
66    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
67    ZeroOrNegativeOneSetCCResult,  // SetCC returns a sign extended result.
68  };
69
70  TargetLowering(TargetMachine &TM);
71  virtual ~TargetLowering();
72
73  TargetMachine &getTargetMachine() const { return TM; }
74  const TargetData &getTargetData() const { return TD; }
75
76  bool isLittleEndian() const { return IsLittleEndian; }
77  MVT::ValueType getPointerTy() const { return PointerTy; }
78  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
79  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
80
81  /// isSetCCExpensive - Return true if the setcc operation is expensive for
82  /// this target.
83  bool isSetCCExpensive() const { return SetCCIsExpensive; }
84
85  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
86  ///
87  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
88
89  /// getSetCCResultContents - For targets without boolean registers, this flag
90  /// returns information about the contents of the high-bits in the setcc
91  /// result register.
92  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
93
94  /// getRegClassFor - Return the register class that should be used for the
95  /// specified value type.  This may only be called on legal types.
96  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
97    TargetRegisterClass *RC = RegClassForVT[VT];
98    assert(RC && "This value type is not natively supported!");
99    return RC;
100  }
101
102  /// isTypeLegal - Return true if the target has native support for the
103  /// specified value type.  This means that it has a register that directly
104  /// holds it without promotions or expansions.
105  bool isTypeLegal(MVT::ValueType VT) const {
106    return RegClassForVT[VT] != 0;
107  }
108
109  /// getTypeAction - Return how we should legalize values of this type, either
110  /// it is already legal (return 'Legal') or we need to promote it to a larger
111  /// type (return 'Promote'), or we need to expand it into multiple registers
112  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
113  LegalizeAction getTypeAction(MVT::ValueType VT) const {
114    return (LegalizeAction)((ValueTypeActions >> (2*VT)) & 3);
115  }
116  unsigned getValueTypeActions() const { return ValueTypeActions; }
117
118  /// getTypeToTransformTo - For types supported by the target, this is an
119  /// identity function.  For types that must be promoted to larger types, this
120  /// returns the larger type to promote to.  For types that are larger than the
121  /// largest integer register, this contains one step in the expansion to get
122  /// to the smaller register.
123  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
124    return TransformToType[VT];
125  }
126
127  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
128  legal_fpimm_iterator legal_fpimm_begin() const {
129    return LegalFPImmediates.begin();
130  }
131  legal_fpimm_iterator legal_fpimm_end() const {
132    return LegalFPImmediates.end();
133  }
134
135  /// getOperationAction - Return how this operation should be treated: either
136  /// it is legal, needs to be promoted to a larger size, needs to be
137  /// expanded to some other code sequence, or the target has a custom expander
138  /// for it.
139  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
140    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
141  }
142
143  /// isOperationLegal - Return true if the specified operation is legal on this
144  /// target.
145  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
146    return getOperationAction(Op, VT) == Legal;
147  }
148
149  /// getTypeToPromoteTo - If the action for this operation is to promote, this
150  /// method returns the ValueType to promote to.
151  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
152    assert(getOperationAction(Op, VT) == Promote &&
153           "This operation isn't promoted!");
154    MVT::ValueType NVT = VT;
155    do {
156      NVT = (MVT::ValueType)(NVT+1);
157      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
158             "Didn't find type to promote to!");
159    } while (!isTypeLegal(NVT) ||
160              getOperationAction(Op, NVT) == Promote);
161    return NVT;
162  }
163
164  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
165  /// This is fixed by the LLVM operations except for the pointer size.
166  MVT::ValueType getValueType(const Type *Ty) const {
167    switch (Ty->getTypeID()) {
168    default: assert(0 && "Unknown type!");
169    case Type::VoidTyID:    return MVT::isVoid;
170    case Type::BoolTyID:    return MVT::i1;
171    case Type::UByteTyID:
172    case Type::SByteTyID:   return MVT::i8;
173    case Type::ShortTyID:
174    case Type::UShortTyID:  return MVT::i16;
175    case Type::IntTyID:
176    case Type::UIntTyID:    return MVT::i32;
177    case Type::LongTyID:
178    case Type::ULongTyID:   return MVT::i64;
179    case Type::FloatTyID:   return MVT::f32;
180    case Type::DoubleTyID:  return MVT::f64;
181    case Type::PointerTyID: return PointerTy;
182    }
183  }
184
185  /// getNumElements - Return the number of registers that this ValueType will
186  /// eventually require.  This is always one for all non-integer types, is
187  /// one for any types promoted to live in larger registers, but may be more
188  /// than one for types (like i64) that are split into pieces.
189  unsigned getNumElements(MVT::ValueType VT) const {
190    return NumElementsForVT[VT];
191  }
192
193  /// This function returns the maximum number of store operations permitted
194  /// to replace a call to llvm.memset. The value is set by the target at the
195  /// performance threshold for such a replacement.
196  /// @brief Get maximum # of store operations permitted for llvm.memset
197  unsigned getMaxStoresPerMemSet() const { return maxStoresPerMemSet; }
198
199  /// This function returns the maximum number of store operations permitted
200  /// to replace a call to llvm.memcpy. The value is set by the target at the
201  /// performance threshold for such a replacement.
202  /// @brief Get maximum # of store operations permitted for llvm.memcpy
203  unsigned getMaxStoresPerMemCpy() const { return maxStoresPerMemCpy; }
204
205  /// This function returns the maximum number of store operations permitted
206  /// to replace a call to llvm.memmove. The value is set by the target at the
207  /// performance threshold for such a replacement.
208  /// @brief Get maximum # of store operations permitted for llvm.memmove
209  unsigned getMaxStoresPerMemMove() const { return maxStoresPerMemMove; }
210
211  /// This function returns true if the target allows unaligned stores. This is
212  /// used in situations where an array copy/move/set is converted to a sequence
213  /// of store operations. It ensures that such replacements don't generate
214  /// code that causes an alignment error (trap) on the target machine.
215  /// @brief Determine if the target supports unaligned stores.
216  bool allowsUnalignedStores() const { return allowUnalignedStores; }
217
218  //===--------------------------------------------------------------------===//
219  // TargetLowering Configuration Methods - These methods should be invoked by
220  // the derived class constructor to configure this object for the target.
221  //
222
223protected:
224
225  /// setShiftAmountType - Describe the type that should be used for shift
226  /// amounts.  This type defaults to the pointer type.
227  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
228
229  /// setSetCCResultType - Describe the type that shoudl be used as the result
230  /// of a setcc operation.  This defaults to the pointer type.
231  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
232
233  /// setSetCCResultContents - Specify how the target extends the result of a
234  /// setcc operation in a register.
235  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
236
237  /// setShiftAmountFlavor - Describe how the target handles out of range shift
238  /// amounts.
239  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
240    ShiftAmtHandling = OORSA;
241  }
242
243  /// setSetCCIxExpensive - This is a short term hack for targets that codegen
244  /// setcc as a conditional branch.  This encourages the code generator to fold
245  /// setcc operations into other operations if possible.
246  void setSetCCIsExpensive() { SetCCIsExpensive = true; }
247
248  /// addRegisterClass - Add the specified register class as an available
249  /// regclass for the specified value type.  This indicates the selector can
250  /// handle values of that class natively.
251  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
252    AvailableRegClasses.push_back(std::make_pair(VT, RC));
253    RegClassForVT[VT] = RC;
254  }
255
256  /// computeRegisterProperties - Once all of the register classes are added,
257  /// this allows us to compute derived properties we expose.
258  void computeRegisterProperties();
259
260  /// setOperationAction - Indicate that the specified operation does not work
261  /// with the specified type and indicate what to do about it.
262  void setOperationAction(unsigned Op, MVT::ValueType VT,
263                          LegalizeAction Action) {
264    assert(VT < 16 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
265           "Table isn't big enough!");
266    OpActions[Op] |= Action << VT*2;
267  }
268
269  /// addLegalFPImmediate - Indicate that this target can instruction select
270  /// the specified FP immediate natively.
271  void addLegalFPImmediate(double Imm) {
272    LegalFPImmediates.push_back(Imm);
273  }
274
275public:
276
277  //===--------------------------------------------------------------------===//
278  // Lowering methods - These methods must be implemented by targets so that
279  // the SelectionDAGLowering code knows how to lower these.
280  //
281
282  /// LowerArguments - This hook must be implemented to indicate how we should
283  /// lower the arguments for the specified function, into the specified DAG.
284  virtual std::vector<SDOperand>
285  LowerArguments(Function &F, SelectionDAG &DAG) = 0;
286
287  /// LowerCallTo - This hook lowers an abstract call to a function into an
288  /// actual call.  This returns a pair of operands.  The first element is the
289  /// return value for the function (if RetTy is not VoidTy).  The second
290  /// element is the outgoing token chain.
291  typedef std::vector<std::pair<SDOperand, const Type*> > ArgListTy;
292  virtual std::pair<SDOperand, SDOperand>
293  LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
294              unsigned CallingConv, bool isTailCall, SDOperand Callee,
295              ArgListTy &Args, SelectionDAG &DAG) = 0;
296
297  /// LowerVAStart - This lowers the llvm.va_start intrinsic.  If not
298  /// implemented, this method prints a message and aborts.  This method should
299  /// return the modified chain value.  Note that VAListPtr* correspond to the
300  /// llvm.va_start operand.
301  virtual SDOperand LowerVAStart(SDOperand Chain, SDOperand VAListP,
302                                 Value *VAListV, SelectionDAG &DAG);
303
304  /// LowerVAEnd - This lowers llvm.va_end and returns the resultant chain.  If
305  /// not implemented, this defaults to a noop.
306  virtual SDOperand LowerVAEnd(SDOperand Chain, SDOperand LP, Value *LV,
307                               SelectionDAG &DAG);
308
309  /// LowerVACopy - This lowers llvm.va_copy and returns the resultant chain.
310  /// If not implemented, this defaults to loading a pointer from the input and
311  /// storing it to the output.
312  virtual SDOperand LowerVACopy(SDOperand Chain, SDOperand SrcP, Value *SrcV,
313                                SDOperand DestP, Value *DestV,
314                                SelectionDAG &DAG);
315
316  /// LowerVAArg - This lowers the vaarg instruction.  If not implemented, this
317  /// prints a message and aborts.
318  virtual std::pair<SDOperand,SDOperand>
319  LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
320             const Type *ArgTy, SelectionDAG &DAG);
321
322  /// LowerFrameReturnAddress - This hook lowers a call to llvm.returnaddress or
323  /// llvm.frameaddress (depending on the value of the first argument).  The
324  /// return values are the result pointer and the resultant token chain.  If
325  /// not implemented, both of these intrinsics will return null.
326  virtual std::pair<SDOperand, SDOperand>
327  LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
328                          SelectionDAG &DAG);
329
330  /// LowerOperation - For operations that are unsupported by the target, and
331  /// which are registered to use 'custom' lowering.  This callback is invoked.
332  /// If the target has no operations that require custom lowering, it need not
333  /// implement this.  The default implementation of this aborts.
334  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
335
336  //===--------------------------------------------------------------------===//
337  // Scheduler hooks
338  //
339
340  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
341  // mark instructions with the 'usesCustomDAGSChedInserter' flag.  These
342  // instructions are special in various ways, which require special support to
343  // insert.  The specified MachineInstr is created but not inserted into any
344  // basic blocks, and the scheduler passes ownership of it to this method.
345  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
346                                                     MachineBasicBlock *MBB);
347
348private:
349  TargetMachine &TM;
350  const TargetData &TD;
351
352  /// IsLittleEndian - True if this is a little endian target.
353  ///
354  bool IsLittleEndian;
355
356  /// PointerTy - The type to use for pointers, usually i32 or i64.
357  ///
358  MVT::ValueType PointerTy;
359
360  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
361  /// PointerTy is.
362  MVT::ValueType ShiftAmountTy;
363
364  OutOfRangeShiftAmount ShiftAmtHandling;
365
366  /// SetCCIsExpensive - This is a short term hack for targets that codegen
367  /// setcc as a conditional branch.  This encourages the code generator to fold
368  /// setcc operations into other operations if possible.
369  bool SetCCIsExpensive;
370
371  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
372  /// PointerTy.
373  MVT::ValueType SetCCResultTy;
374
375  /// SetCCResultContents - Information about the contents of the high-bits in
376  /// the result of a setcc comparison operation.
377  SetCCResultValue SetCCResultContents;
378
379  /// RegClassForVT - This indicates the default register class to use for
380  /// each ValueType the target supports natively.
381  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
382  unsigned char NumElementsForVT[MVT::LAST_VALUETYPE];
383
384  /// ValueTypeActions - This is a bitvector that contains two bits for each
385  /// value type, where the two bits correspond to the LegalizeAction enum.
386  /// This can be queried with "getTypeAction(VT)".
387  unsigned ValueTypeActions;
388
389  /// TransformToType - For any value types we are promoting or expanding, this
390  /// contains the value type that we are changing to.  For Expanded types, this
391  /// contains one step of the expand (e.g. i64 -> i32), even if there are
392  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
393  /// by the system, this holds the same type (e.g. i32 -> i32).
394  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
395
396  /// OpActions - For each operation and each value type, keep a LegalizeAction
397  /// that indicates how instruction selection should deal with the operation.
398  /// Most operations are Legal (aka, supported natively by the target), but
399  /// operations that are not should be described.  Note that operations on
400  /// non-legal value types are not described here.
401  unsigned OpActions[128];
402
403  std::vector<double> LegalFPImmediates;
404
405  std::vector<std::pair<MVT::ValueType,
406                        TargetRegisterClass*> > AvailableRegClasses;
407
408protected:
409  /// When lowering %llvm.memset this field specifies the maximum number of
410  /// store operations that may be substituted for the call to memset. Targets
411  /// must set this value based on the cost threshold for that target. Targets
412  /// should assume that the memset will be done using as many of the largest
413  /// store operations first, followed by smaller ones, if necessary, per
414  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
415  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
416  /// store.  This only applies to setting a constant array of a constant size.
417  /// @brief Specify maximum number of store instructions per memset call.
418  unsigned maxStoresPerMemSet;
419
420  /// When lowering %llvm.memcpy this field specifies the maximum number of
421  /// store operations that may be substituted for a call to memcpy. Targets
422  /// must set this value based on the cost threshold for that target. Targets
423  /// should assume that the memcpy will be done using as many of the largest
424  /// store operations first, followed by smaller ones, if necessary, per
425  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
426  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
427  /// and one 1-byte store. This only applies to copying a constant array of
428  /// constant size.
429  /// @brief Specify maximum bytes of store instructions per memcpy call.
430  unsigned maxStoresPerMemCpy;
431
432  /// When lowering %llvm.memmove this field specifies the maximum number of
433  /// store instructions that may be substituted for a call to memmove. Targets
434  /// must set this value based on the cost threshold for that target. Targets
435  /// should assume that the memmove will be done using as many of the largest
436  /// store operations first, followed by smaller ones, if necessary, per
437  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
438  /// with 8-bit alignment would result in nine 1-byte stores.  This only
439  /// applies to copying a constant array of constant size.
440  /// @brief Specify maximum bytes of store instructions per memmove call.
441  unsigned maxStoresPerMemMove;
442
443  /// This field specifies whether the target machine permits unaligned stores.
444  /// This is used to determine the size of store operations for copying
445  /// small arrays and other similar tasks.
446  /// @brief Indicate whether the target machine permits unaligned stores.
447  bool allowUnalignedStores;
448};
449} // end llvm namespace
450
451#endif
452