TargetLowering.h revision abdbc57abb2e2d0df4145d7abb06883a33512684
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/InlineAsm.h"
26#include "llvm/CodeGen/SelectionDAGNodes.h"
27#include "llvm/CodeGen/RuntimeLibcalls.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/CodeGen/DebugLoc.h"
34#include "llvm/Target/TargetMachine.h"
35#include <climits>
36#include <map>
37#include <vector>
38
39namespace llvm {
40  class AllocaInst;
41  class CallInst;
42  class Function;
43  class FastISel;
44  class MachineBasicBlock;
45  class MachineFunction;
46  class MachineFrameInfo;
47  class MachineInstr;
48  class MachineModuleInfo;
49  class DwarfWriter;
50  class SDNode;
51  class SDValue;
52  class SelectionDAG;
53  class TargetData;
54  class TargetMachine;
55  class TargetRegisterClass;
56  class TargetSubtarget;
57  class Value;
58
59  // FIXME: should this be here?
60  namespace TLSModel {
61    enum Model {
62      GeneralDynamic,
63      LocalDynamic,
64      InitialExec,
65      LocalExec
66    };
67  }
68  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
69
70
71//===----------------------------------------------------------------------===//
72/// TargetLowering - This class defines information used to lower LLVM code to
73/// legal SelectionDAG operators that the target instruction selector can accept
74/// natively.
75///
76/// This class also defines callbacks that targets must implement to lower
77/// target-specific constructs to SelectionDAG operators.
78///
79class TargetLowering {
80public:
81  /// LegalizeAction - This enum indicates whether operations are valid for a
82  /// target, and if not, what action should be used to make them valid.
83  enum LegalizeAction {
84    Legal,      // The target natively supports this operation.
85    Promote,    // This operation should be executed in a larger type.
86    Expand,     // Try to expand this to other ops, otherwise use a libcall.
87    Custom      // Use the LowerOperation hook to implement custom lowering.
88  };
89
90  enum OutOfRangeShiftAmount {
91    Undefined,  // Oversized shift amounts are undefined (default).
92    Mask,       // Shift amounts are auto masked (anded) to value size.
93    Extend      // Oversized shift pulls in zeros or sign bits.
94  };
95
96  enum BooleanContent { // How the target represents true/false values.
97    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
98    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
99    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
100  };
101
102  enum SchedPreference {
103    SchedulingForLatency,          // Scheduling for shortest total latency.
104    SchedulingForRegPressure       // Scheduling for lowest register pressure.
105  };
106
107  explicit TargetLowering(TargetMachine &TM);
108  virtual ~TargetLowering();
109
110  TargetMachine &getTargetMachine() const { return TM; }
111  const TargetData *getTargetData() const { return TD; }
112
113  bool isBigEndian() const { return !IsLittleEndian; }
114  bool isLittleEndian() const { return IsLittleEndian; }
115  MVT getPointerTy() const { return PointerTy; }
116  MVT getShiftAmountTy() const { return ShiftAmountTy; }
117  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
118
119  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
120  /// codegen.
121  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
122
123  /// isSelectExpensive - Return true if the select operation is expensive for
124  /// this target.
125  bool isSelectExpensive() const { return SelectIsExpensive; }
126
127  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
128  /// a sequence of several shifts, adds, and multiplies for this target.
129  bool isIntDivCheap() const { return IntDivIsCheap; }
130
131  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
132  /// srl/add/sra.
133  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
134
135  /// getSetCCResultType - Return the ValueType of the result of SETCC
136  /// operations.  Also used to obtain the target's preferred type for
137  /// the condition operand of SELECT and BRCOND nodes.  In the case of
138  /// BRCOND the argument passed is MVT::Other since there are no other
139  /// operands to get a type hint from.
140  virtual MVT getSetCCResultType(MVT VT) const;
141
142  /// getBooleanContents - For targets without i1 registers, this gives the
143  /// nature of the high-bits of boolean values held in types wider than i1.
144  /// "Boolean values" are special true/false values produced by nodes like
145  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
146  /// Not to be confused with general values promoted from i1.
147  BooleanContent getBooleanContents() const { return BooleanContents;}
148
149  /// getSchedulingPreference - Return target scheduling preference.
150  SchedPreference getSchedulingPreference() const {
151    return SchedPreferenceInfo;
152  }
153
154  /// getRegClassFor - Return the register class that should be used for the
155  /// specified value type.  This may only be called on legal types.
156  TargetRegisterClass *getRegClassFor(MVT VT) const {
157    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
158    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT()];
159    assert(RC && "This value type is not natively supported!");
160    return RC;
161  }
162
163  /// isTypeLegal - Return true if the target has native support for the
164  /// specified value type.  This means that it has a register that directly
165  /// holds it without promotions or expansions.
166  bool isTypeLegal(MVT VT) const {
167    assert(!VT.isSimple() ||
168           (unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
169    return VT.isSimple() && RegClassForVT[VT.getSimpleVT()] != 0;
170  }
171
172  class ValueTypeActionImpl {
173    /// ValueTypeActions - This is a bitvector that contains two bits for each
174    /// value type, where the two bits correspond to the LegalizeAction enum.
175    /// This can be queried with "getTypeAction(VT)".
176    uint32_t ValueTypeActions[2];
177  public:
178    ValueTypeActionImpl() {
179      ValueTypeActions[0] = ValueTypeActions[1] = 0;
180    }
181    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
182      ValueTypeActions[0] = RHS.ValueTypeActions[0];
183      ValueTypeActions[1] = RHS.ValueTypeActions[1];
184    }
185
186    LegalizeAction getTypeAction(MVT VT) const {
187      if (VT.isExtended()) {
188        if (VT.isVector()) {
189          return VT.isPow2VectorType() ? Expand : Promote;
190        }
191        if (VT.isInteger())
192          // First promote to a power-of-two size, then expand if necessary.
193          return VT == VT.getRoundIntegerType() ? Expand : Promote;
194        assert(0 && "Unsupported extended type!");
195        return Legal;
196      }
197      unsigned I = VT.getSimpleVT();
198      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
199      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
200    }
201    void setTypeAction(MVT VT, LegalizeAction Action) {
202      unsigned I = VT.getSimpleVT();
203      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
204      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
205    }
206  };
207
208  const ValueTypeActionImpl &getValueTypeActions() const {
209    return ValueTypeActions;
210  }
211
212  /// getTypeAction - Return how we should legalize values of this type, either
213  /// it is already legal (return 'Legal') or we need to promote it to a larger
214  /// type (return 'Promote'), or we need to expand it into multiple registers
215  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
216  LegalizeAction getTypeAction(MVT VT) const {
217    return ValueTypeActions.getTypeAction(VT);
218  }
219
220  /// getTypeToTransformTo - For types supported by the target, this is an
221  /// identity function.  For types that must be promoted to larger types, this
222  /// returns the larger type to promote to.  For integer types that are larger
223  /// than the largest integer register, this contains one step in the expansion
224  /// to get to the smaller register. For illegal floating point types, this
225  /// returns the integer type to transform to.
226  MVT getTypeToTransformTo(MVT VT) const {
227    if (VT.isSimple()) {
228      assert((unsigned)VT.getSimpleVT() < array_lengthof(TransformToType));
229      MVT NVT = TransformToType[VT.getSimpleVT()];
230      assert(getTypeAction(NVT) != Promote &&
231             "Promote may not follow Expand or Promote");
232      return NVT;
233    }
234
235    if (VT.isVector()) {
236      MVT NVT = VT.getPow2VectorType();
237      if (NVT == VT) {
238        // Vector length is a power of 2 - split to half the size.
239        unsigned NumElts = VT.getVectorNumElements();
240        MVT EltVT = VT.getVectorElementType();
241        return (NumElts == 1) ? EltVT : MVT::getVectorVT(EltVT, NumElts / 2);
242      }
243      // Promote to a power of two size, avoiding multi-step promotion.
244      return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
245    } else if (VT.isInteger()) {
246      MVT NVT = VT.getRoundIntegerType();
247      if (NVT == VT)
248        // Size is a power of two - expand to half the size.
249        return MVT::getIntegerVT(VT.getSizeInBits() / 2);
250      else
251        // Promote to a power of two size, avoiding multi-step promotion.
252        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
253    }
254    assert(0 && "Unsupported extended type!");
255    return MVT(); // Not reached
256  }
257
258  /// getTypeToExpandTo - For types supported by the target, this is an
259  /// identity function.  For types that must be expanded (i.e. integer types
260  /// that are larger than the largest integer register or illegal floating
261  /// point types), this returns the largest legal type it will be expanded to.
262  MVT getTypeToExpandTo(MVT VT) const {
263    assert(!VT.isVector());
264    while (true) {
265      switch (getTypeAction(VT)) {
266      case Legal:
267        return VT;
268      case Expand:
269        VT = getTypeToTransformTo(VT);
270        break;
271      default:
272        assert(false && "Type is not legal nor is it to be expanded!");
273        return VT;
274      }
275    }
276    return VT;
277  }
278
279  /// getVectorTypeBreakdown - Vector types are broken down into some number of
280  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
281  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
282  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
283  ///
284  /// This method returns the number of registers needed, and the VT for each
285  /// register.  It also returns the VT and quantity of the intermediate values
286  /// before they are promoted/expanded.
287  ///
288  unsigned getVectorTypeBreakdown(MVT VT,
289                                  MVT &IntermediateVT,
290                                  unsigned &NumIntermediates,
291                                  MVT &RegisterVT) const;
292
293  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
294  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
295  /// this is the case, it returns true and store the intrinsic
296  /// information into the IntrinsicInfo that was passed to the function.
297  typedef struct IntrinsicInfo {
298    unsigned     opc;         // target opcode
299    MVT          memVT;       // memory VT
300    const Value* ptrVal;      // value representing memory location
301    int          offset;      // offset off of ptrVal
302    unsigned     align;       // alignment
303    bool         vol;         // is volatile?
304    bool         readMem;     // reads memory?
305    bool         writeMem;    // writes memory?
306  } IntrinisicInfo;
307
308  virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
309                                  CallInst &I, unsigned Intrinsic) {
310    return false;
311  }
312
313  /// getWidenVectorType: given a vector type, returns the type to widen to
314  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
315  /// If there is no vector type that we want to widen to, returns MVT::Other
316  /// When and were to widen is target dependent based on the cost of
317  /// scalarizing vs using the wider vector type.
318  virtual MVT getWidenVectorType(MVT VT) const;
319
320  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
321  legal_fpimm_iterator legal_fpimm_begin() const {
322    return LegalFPImmediates.begin();
323  }
324  legal_fpimm_iterator legal_fpimm_end() const {
325    return LegalFPImmediates.end();
326  }
327
328  /// isShuffleMaskLegal - Targets can use this to indicate that they only
329  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
330  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
331  /// are assumed to be legal.
332  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
333                                  MVT VT) const {
334    return true;
335  }
336
337  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
338  /// used by Targets can use this to indicate if there is a suitable
339  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
340  /// pool entry.
341  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
342                                      MVT VT) const {
343    return false;
344  }
345
346  /// getOperationAction - Return how this operation should be treated: either
347  /// it is legal, needs to be promoted to a larger size, needs to be
348  /// expanded to some other code sequence, or the target has a custom expander
349  /// for it.
350  LegalizeAction getOperationAction(unsigned Op, MVT VT) const {
351    if (VT.isExtended()) return Expand;
352    assert(Op < array_lengthof(OpActions) &&
353           (unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
354           "Table isn't big enough!");
355    return (LegalizeAction)((OpActions[Op] >> (2*VT.getSimpleVT())) & 3);
356  }
357
358  /// isOperationLegalOrCustom - Return true if the specified operation is
359  /// legal on this target or can be made legal with custom lowering. This
360  /// is used to help guide high-level lowering decisions.
361  bool isOperationLegalOrCustom(unsigned Op, MVT VT) const {
362    return (VT == MVT::Other || isTypeLegal(VT)) &&
363      (getOperationAction(Op, VT) == Legal ||
364       getOperationAction(Op, VT) == Custom);
365  }
366
367  /// isOperationLegal - Return true if the specified operation is legal on this
368  /// target.
369  bool isOperationLegal(unsigned Op, MVT VT) const {
370    return (VT == MVT::Other || isTypeLegal(VT)) &&
371           getOperationAction(Op, VT) == Legal;
372  }
373
374  /// getLoadExtAction - Return how this load with extension should be treated:
375  /// either it is legal, needs to be promoted to a larger size, needs to be
376  /// expanded to some other code sequence, or the target has a custom expander
377  /// for it.
378  LegalizeAction getLoadExtAction(unsigned LType, MVT VT) const {
379    assert(LType < array_lengthof(LoadExtActions) &&
380           (unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
381           "Table isn't big enough!");
382    return (LegalizeAction)((LoadExtActions[LType] >> (2*VT.getSimpleVT())) & 3);
383  }
384
385  /// isLoadExtLegal - Return true if the specified load with extension is legal
386  /// on this target.
387  bool isLoadExtLegal(unsigned LType, MVT VT) const {
388    return VT.isSimple() &&
389      (getLoadExtAction(LType, VT) == Legal ||
390       getLoadExtAction(LType, VT) == Custom);
391  }
392
393  /// getTruncStoreAction - Return how this store with truncation should be
394  /// treated: either it is legal, needs to be promoted to a larger size, needs
395  /// to be expanded to some other code sequence, or the target has a custom
396  /// expander for it.
397  LegalizeAction getTruncStoreAction(MVT ValVT,
398                                     MVT MemVT) const {
399    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
400           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
401           "Table isn't big enough!");
402    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT()] >>
403                             (2*MemVT.getSimpleVT())) & 3);
404  }
405
406  /// isTruncStoreLegal - Return true if the specified store with truncation is
407  /// legal on this target.
408  bool isTruncStoreLegal(MVT ValVT, MVT MemVT) const {
409    return isTypeLegal(ValVT) && MemVT.isSimple() &&
410      (getTruncStoreAction(ValVT, MemVT) == Legal ||
411       getTruncStoreAction(ValVT, MemVT) == Custom);
412  }
413
414  /// getIndexedLoadAction - Return how the indexed load should be treated:
415  /// either it is legal, needs to be promoted to a larger size, needs to be
416  /// expanded to some other code sequence, or the target has a custom expander
417  /// for it.
418  LegalizeAction
419  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
420    assert(IdxMode < array_lengthof(IndexedModeActions[0]) &&
421           (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0][0])*4 &&
422           "Table isn't big enough!");
423    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >>
424                             (2*VT.getSimpleVT())) & 3);
425  }
426
427  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
428  /// on this target.
429  bool isIndexedLoadLegal(unsigned IdxMode, MVT VT) const {
430    return VT.isSimple() &&
431      (getIndexedLoadAction(IdxMode, VT) == Legal ||
432       getIndexedLoadAction(IdxMode, VT) == Custom);
433  }
434
435  /// getIndexedStoreAction - Return how the indexed store should be treated:
436  /// either it is legal, needs to be promoted to a larger size, needs to be
437  /// expanded to some other code sequence, or the target has a custom expander
438  /// for it.
439  LegalizeAction
440  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
441    assert(IdxMode < array_lengthof(IndexedModeActions[1]) &&
442           (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
443           "Table isn't big enough!");
444    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >>
445                             (2*VT.getSimpleVT())) & 3);
446  }
447
448  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
449  /// on this target.
450  bool isIndexedStoreLegal(unsigned IdxMode, MVT VT) const {
451    return VT.isSimple() &&
452      (getIndexedStoreAction(IdxMode, VT) == Legal ||
453       getIndexedStoreAction(IdxMode, VT) == Custom);
454  }
455
456  /// getConvertAction - Return how the conversion should be treated:
457  /// either it is legal, needs to be promoted to a larger size, needs to be
458  /// expanded to some other code sequence, or the target has a custom expander
459  /// for it.
460  LegalizeAction
461  getConvertAction(MVT FromVT, MVT ToVT) const {
462    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
463           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
464           "Table isn't big enough!");
465    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT()] >>
466                             (2*ToVT.getSimpleVT())) & 3);
467  }
468
469  /// isConvertLegal - Return true if the specified conversion is legal
470  /// on this target.
471  bool isConvertLegal(MVT FromVT, MVT ToVT) const {
472    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
473      (getConvertAction(FromVT, ToVT) == Legal ||
474       getConvertAction(FromVT, ToVT) == Custom);
475  }
476
477  /// getCondCodeAction - Return how the condition code should be treated:
478  /// either it is legal, needs to be expanded to some other code sequence,
479  /// or the target has a custom expander for it.
480  LegalizeAction
481  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
482    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
483           (unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
484           "Table isn't big enough!");
485    LegalizeAction Action = (LegalizeAction)
486      ((CondCodeActions[CC] >> (2*VT.getSimpleVT())) & 3);
487    assert(Action != Promote && "Can't promote condition code!");
488    return Action;
489  }
490
491  /// isCondCodeLegal - Return true if the specified condition code is legal
492  /// on this target.
493  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
494    return getCondCodeAction(CC, VT) == Legal ||
495           getCondCodeAction(CC, VT) == Custom;
496  }
497
498
499  /// getTypeToPromoteTo - If the action for this operation is to promote, this
500  /// method returns the ValueType to promote to.
501  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
502    assert(getOperationAction(Op, VT) == Promote &&
503           "This operation isn't promoted!");
504
505    // See if this has an explicit type specified.
506    std::map<std::pair<unsigned, MVT::SimpleValueType>,
507             MVT::SimpleValueType>::const_iterator PTTI =
508      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT()));
509    if (PTTI != PromoteToType.end()) return PTTI->second;
510
511    assert((VT.isInteger() || VT.isFloatingPoint()) &&
512           "Cannot autopromote this type, add it with AddPromotedToType.");
513
514    MVT NVT = VT;
515    do {
516      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT()+1);
517      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
518             "Didn't find type to promote to!");
519    } while (!isTypeLegal(NVT) ||
520              getOperationAction(Op, NVT) == Promote);
521    return NVT;
522  }
523
524  /// getValueType - Return the MVT corresponding to this LLVM type.
525  /// This is fixed by the LLVM operations except for the pointer size.  If
526  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
527  /// counterpart (e.g. structs), otherwise it will assert.
528  MVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
529    MVT VT = MVT::getMVT(Ty, AllowUnknown);
530    return VT == MVT::iPTR ? PointerTy : VT;
531  }
532
533  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
534  /// function arguments in the caller parameter area.  This is the actual
535  /// alignment, not its logarithm.
536  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
537
538  /// getRegisterType - Return the type of registers that this ValueType will
539  /// eventually require.
540  MVT getRegisterType(MVT VT) const {
541    if (VT.isSimple()) {
542      assert((unsigned)VT.getSimpleVT() < array_lengthof(RegisterTypeForVT));
543      return RegisterTypeForVT[VT.getSimpleVT()];
544    }
545    if (VT.isVector()) {
546      MVT VT1, RegisterVT;
547      unsigned NumIntermediates;
548      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
549      return RegisterVT;
550    }
551    if (VT.isInteger()) {
552      return getRegisterType(getTypeToTransformTo(VT));
553    }
554    assert(0 && "Unsupported extended type!");
555    return MVT(); // Not reached
556  }
557
558  /// getNumRegisters - Return the number of registers that this ValueType will
559  /// eventually require.  This is one for any types promoted to live in larger
560  /// registers, but may be more than one for types (like i64) that are split
561  /// into pieces.  For types like i140, which are first promoted then expanded,
562  /// it is the number of registers needed to hold all the bits of the original
563  /// type.  For an i140 on a 32 bit machine this means 5 registers.
564  unsigned getNumRegisters(MVT VT) const {
565    if (VT.isSimple()) {
566      assert((unsigned)VT.getSimpleVT() < array_lengthof(NumRegistersForVT));
567      return NumRegistersForVT[VT.getSimpleVT()];
568    }
569    if (VT.isVector()) {
570      MVT VT1, VT2;
571      unsigned NumIntermediates;
572      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
573    }
574    if (VT.isInteger()) {
575      unsigned BitWidth = VT.getSizeInBits();
576      unsigned RegWidth = getRegisterType(VT).getSizeInBits();
577      return (BitWidth + RegWidth - 1) / RegWidth;
578    }
579    assert(0 && "Unsupported extended type!");
580    return 0; // Not reached
581  }
582
583  /// ShouldShrinkFPConstant - If true, then instruction selection should
584  /// seek to shrink the FP constant of the specified type to a smaller type
585  /// in order to save space and / or reduce runtime.
586  virtual bool ShouldShrinkFPConstant(MVT VT) const { return true; }
587
588  /// hasTargetDAGCombine - If true, the target has custom DAG combine
589  /// transformations that it can perform for the specified node.
590  bool hasTargetDAGCombine(ISD::NodeType NT) const {
591    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
592    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
593  }
594
595  /// This function returns the maximum number of store operations permitted
596  /// to replace a call to llvm.memset. The value is set by the target at the
597  /// performance threshold for such a replacement.
598  /// @brief Get maximum # of store operations permitted for llvm.memset
599  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
600
601  /// This function returns the maximum number of store operations permitted
602  /// to replace a call to llvm.memcpy. The value is set by the target at the
603  /// performance threshold for such a replacement.
604  /// @brief Get maximum # of store operations permitted for llvm.memcpy
605  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
606
607  /// This function returns the maximum number of store operations permitted
608  /// to replace a call to llvm.memmove. The value is set by the target at the
609  /// performance threshold for such a replacement.
610  /// @brief Get maximum # of store operations permitted for llvm.memmove
611  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
612
613  /// This function returns true if the target allows unaligned memory accesses.
614  /// This is used, for example, in situations where an array copy/move/set is
615  /// converted to a sequence of store operations. It's use helps to ensure that
616  /// such replacements don't generate code that causes an alignment error
617  /// (trap) on the target machine.
618  /// @brief Determine if the target supports unaligned memory accesses.
619  bool allowsUnalignedMemoryAccesses() const {
620    return allowUnalignedMemoryAccesses;
621  }
622
623  /// This function returns true if the target would benefit from code placement
624  /// optimization.
625  /// @brief Determine if the target should perform code placement optimization.
626  bool shouldOptimizeCodePlacement() const {
627    return benefitFromCodePlacementOpt;
628  }
629
630  /// getOptimalMemOpType - Returns the target specific optimal type for load
631  /// and store operations as a result of memset, memcpy, and memmove lowering.
632  /// It returns MVT::iAny if SelectionDAG should be responsible for
633  /// determining it.
634  virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
635                                  bool isSrcConst, bool isSrcStr) const {
636    return MVT::iAny;
637  }
638
639  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
640  /// to implement llvm.setjmp.
641  bool usesUnderscoreSetJmp() const {
642    return UseUnderscoreSetJmp;
643  }
644
645  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
646  /// to implement llvm.longjmp.
647  bool usesUnderscoreLongJmp() const {
648    return UseUnderscoreLongJmp;
649  }
650
651  /// getStackPointerRegisterToSaveRestore - If a physical register, this
652  /// specifies the register that llvm.savestack/llvm.restorestack should save
653  /// and restore.
654  unsigned getStackPointerRegisterToSaveRestore() const {
655    return StackPointerRegisterToSaveRestore;
656  }
657
658  /// getExceptionAddressRegister - If a physical register, this returns
659  /// the register that receives the exception address on entry to a landing
660  /// pad.
661  unsigned getExceptionAddressRegister() const {
662    return ExceptionPointerRegister;
663  }
664
665  /// getExceptionSelectorRegister - If a physical register, this returns
666  /// the register that receives the exception typeid on entry to a landing
667  /// pad.
668  unsigned getExceptionSelectorRegister() const {
669    return ExceptionSelectorRegister;
670  }
671
672  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
673  /// set, the default is 200)
674  unsigned getJumpBufSize() const {
675    return JumpBufSize;
676  }
677
678  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
679  /// (if never set, the default is 0)
680  unsigned getJumpBufAlignment() const {
681    return JumpBufAlignment;
682  }
683
684  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
685  /// limit. Any block whose size is greater should not be predicated.
686  unsigned getIfCvtBlockSizeLimit() const {
687    return IfCvtBlockSizeLimit;
688  }
689
690  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
691  /// block to be considered for duplication. Any block whose size is greater
692  /// should not be duplicated to facilitate its predication.
693  unsigned getIfCvtDupBlockSizeLimit() const {
694    return IfCvtDupBlockSizeLimit;
695  }
696
697  /// getPrefLoopAlignment - return the preferred loop alignment.
698  ///
699  unsigned getPrefLoopAlignment() const {
700    return PrefLoopAlignment;
701  }
702
703  /// getPreIndexedAddressParts - returns true by value, base pointer and
704  /// offset pointer and addressing mode by reference if the node's address
705  /// can be legally represented as pre-indexed load / store address.
706  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
707                                         SDValue &Offset,
708                                         ISD::MemIndexedMode &AM,
709                                         SelectionDAG &DAG) const {
710    return false;
711  }
712
713  /// getPostIndexedAddressParts - returns true by value, base pointer and
714  /// offset pointer and addressing mode by reference if this node can be
715  /// combined with a load / store to form a post-indexed load / store.
716  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
717                                          SDValue &Base, SDValue &Offset,
718                                          ISD::MemIndexedMode &AM,
719                                          SelectionDAG &DAG) const {
720    return false;
721  }
722
723  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
724  /// jumptable.
725  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
726                                             SelectionDAG &DAG) const;
727
728  /// isOffsetFoldingLegal - Return true if folding a constant offset
729  /// with the given GlobalAddress is legal.  It is frequently not legal in
730  /// PIC relocation models.
731  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
732
733  //===--------------------------------------------------------------------===//
734  // TargetLowering Optimization Methods
735  //
736
737  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
738  /// SDValues for returning information from TargetLowering to its clients
739  /// that want to combine
740  struct TargetLoweringOpt {
741    SelectionDAG &DAG;
742    SDValue Old;
743    SDValue New;
744
745    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
746
747    bool CombineTo(SDValue O, SDValue N) {
748      Old = O;
749      New = N;
750      return true;
751    }
752
753    /// ShrinkDemandedConstant - Check to see if the specified operand of the
754    /// specified instruction is a constant integer.  If so, check to see if
755    /// there are any bits set in the constant that are not demanded.  If so,
756    /// shrink the constant and return true.
757    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
758
759    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
760    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
761    /// cast, but it could be generalized for targets with other types of
762    /// implicit widening casts.
763    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
764                          DebugLoc dl);
765  };
766
767  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
768  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
769  /// use this information to simplify Op, create a new simplified DAG node and
770  /// return true, returning the original and new nodes in Old and New.
771  /// Otherwise, analyze the expression and return a mask of KnownOne and
772  /// KnownZero bits for the expression (used to simplify the caller).
773  /// The KnownZero/One bits may only be accurate for those bits in the
774  /// DemandedMask.
775  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
776                            APInt &KnownZero, APInt &KnownOne,
777                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
778
779  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
780  /// Mask are known to be either zero or one and return them in the
781  /// KnownZero/KnownOne bitsets.
782  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
783                                              const APInt &Mask,
784                                              APInt &KnownZero,
785                                              APInt &KnownOne,
786                                              const SelectionDAG &DAG,
787                                              unsigned Depth = 0) const;
788
789  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
790  /// targets that want to expose additional information about sign bits to the
791  /// DAG Combiner.
792  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
793                                                   unsigned Depth = 0) const;
794
795  struct DAGCombinerInfo {
796    void *DC;  // The DAG Combiner object.
797    bool BeforeLegalize;
798    bool CalledByLegalizer;
799  public:
800    SelectionDAG &DAG;
801
802    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
803      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
804
805    bool isBeforeLegalize() const { return BeforeLegalize; }
806    bool isCalledByLegalizer() const { return CalledByLegalizer; }
807
808    void AddToWorklist(SDNode *N);
809    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
810                      bool AddTo = true);
811    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
812    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
813
814    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
815  };
816
817  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
818  /// and cc. If it is unable to simplify it, return a null SDValue.
819  SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
820                          ISD::CondCode Cond, bool foldBooleans,
821                          DAGCombinerInfo &DCI, DebugLoc dl) const;
822
823  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
824  /// node is a GlobalAddress + offset.
825  virtual bool
826  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
827
828  /// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
829  /// loading 'Bytes' bytes from a location that is 'Dist' units away from the
830  /// location that the 'Base' load is loading from.
831  bool isConsecutiveLoad(SDNode *LD, SDNode *Base, unsigned Bytes, int Dist,
832                         const MachineFrameInfo *MFI) const;
833
834  /// PerformDAGCombine - This method will be invoked for all target nodes and
835  /// for any target-independent nodes that the target has registered with
836  /// invoke it for.
837  ///
838  /// The semantics are as follows:
839  /// Return Value:
840  ///   SDValue.Val == 0   - No change was made
841  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
842  ///   otherwise          - N should be replaced by the returned Operand.
843  ///
844  /// In addition, methods provided by DAGCombinerInfo may be used to perform
845  /// more complex transformations.
846  ///
847  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
848
849  //===--------------------------------------------------------------------===//
850  // TargetLowering Configuration Methods - These methods should be invoked by
851  // the derived class constructor to configure this object for the target.
852  //
853
854protected:
855  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
856  /// GOT for PC-relative code.
857  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
858
859  /// setShiftAmountType - Describe the type that should be used for shift
860  /// amounts.  This type defaults to the pointer type.
861  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
862
863  /// setBooleanContents - Specify how the target extends the result of a
864  /// boolean value from i1 to a wider type.  See getBooleanContents.
865  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
866
867  /// setSchedulingPreference - Specify the target scheduling preference.
868  void setSchedulingPreference(SchedPreference Pref) {
869    SchedPreferenceInfo = Pref;
870  }
871
872  /// setShiftAmountFlavor - Describe how the target handles out of range shift
873  /// amounts.
874  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
875    ShiftAmtHandling = OORSA;
876  }
877
878  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
879  /// use _setjmp to implement llvm.setjmp or the non _ version.
880  /// Defaults to false.
881  void setUseUnderscoreSetJmp(bool Val) {
882    UseUnderscoreSetJmp = Val;
883  }
884
885  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
886  /// use _longjmp to implement llvm.longjmp or the non _ version.
887  /// Defaults to false.
888  void setUseUnderscoreLongJmp(bool Val) {
889    UseUnderscoreLongJmp = Val;
890  }
891
892  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
893  /// specifies the register that llvm.savestack/llvm.restorestack should save
894  /// and restore.
895  void setStackPointerRegisterToSaveRestore(unsigned R) {
896    StackPointerRegisterToSaveRestore = R;
897  }
898
899  /// setExceptionPointerRegister - If set to a physical register, this sets
900  /// the register that receives the exception address on entry to a landing
901  /// pad.
902  void setExceptionPointerRegister(unsigned R) {
903    ExceptionPointerRegister = R;
904  }
905
906  /// setExceptionSelectorRegister - If set to a physical register, this sets
907  /// the register that receives the exception typeid on entry to a landing
908  /// pad.
909  void setExceptionSelectorRegister(unsigned R) {
910    ExceptionSelectorRegister = R;
911  }
912
913  /// SelectIsExpensive - Tells the code generator not to expand operations
914  /// into sequences that use the select operations if possible.
915  void setSelectIsExpensive() { SelectIsExpensive = true; }
916
917  /// setIntDivIsCheap - Tells the code generator that integer divide is
918  /// expensive, and if possible, should be replaced by an alternate sequence
919  /// of instructions not containing an integer divide.
920  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
921
922  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
923  /// srl/add/sra for a signed divide by power of two, and let the target handle
924  /// it.
925  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
926
927  /// addRegisterClass - Add the specified register class as an available
928  /// regclass for the specified value type.  This indicates the selector can
929  /// handle values of that class natively.
930  void addRegisterClass(MVT VT, TargetRegisterClass *RC) {
931    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
932    AvailableRegClasses.push_back(std::make_pair(VT, RC));
933    RegClassForVT[VT.getSimpleVT()] = RC;
934  }
935
936  /// computeRegisterProperties - Once all of the register classes are added,
937  /// this allows us to compute derived properties we expose.
938  void computeRegisterProperties();
939
940  /// setOperationAction - Indicate that the specified operation does not work
941  /// with the specified type and indicate what to do about it.
942  void setOperationAction(unsigned Op, MVT VT,
943                          LegalizeAction Action) {
944    assert((unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
945           Op < array_lengthof(OpActions) && "Table isn't big enough!");
946    OpActions[Op] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
947    OpActions[Op] |= (uint64_t)Action << VT.getSimpleVT()*2;
948  }
949
950  /// setLoadExtAction - Indicate that the specified load with extension does
951  /// not work with the with specified type and indicate what to do about it.
952  void setLoadExtAction(unsigned ExtType, MVT VT,
953                      LegalizeAction Action) {
954    assert((unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
955           ExtType < array_lengthof(LoadExtActions) &&
956           "Table isn't big enough!");
957    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
958    LoadExtActions[ExtType] |= (uint64_t)Action << VT.getSimpleVT()*2;
959  }
960
961  /// setTruncStoreAction - Indicate that the specified truncating store does
962  /// not work with the with specified type and indicate what to do about it.
963  void setTruncStoreAction(MVT ValVT, MVT MemVT,
964                           LegalizeAction Action) {
965    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
966           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
967           "Table isn't big enough!");
968    TruncStoreActions[ValVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
969                                                MemVT.getSimpleVT()*2);
970    TruncStoreActions[ValVT.getSimpleVT()] |= (uint64_t)Action <<
971      MemVT.getSimpleVT()*2;
972  }
973
974  /// setIndexedLoadAction - Indicate that the specified indexed load does or
975  /// does not work with the with specified type and indicate what to do abort
976  /// it. NOTE: All indexed mode loads are initialized to Expand in
977  /// TargetLowering.cpp
978  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
979                            LegalizeAction Action) {
980    assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0])*4 &&
981           IdxMode < array_lengthof(IndexedModeActions[0]) &&
982           "Table isn't big enough!");
983    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
984    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
985  }
986
987  /// setIndexedStoreAction - Indicate that the specified indexed store does or
988  /// does not work with the with specified type and indicate what to do about
989  /// it. NOTE: All indexed mode stores are initialized to Expand in
990  /// TargetLowering.cpp
991  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
992                             LegalizeAction Action) {
993    assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
994           IdxMode < array_lengthof(IndexedModeActions[1]) &&
995           "Table isn't big enough!");
996    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
997    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
998  }
999
1000  /// setConvertAction - Indicate that the specified conversion does or does
1001  /// not work with the with specified type and indicate what to do about it.
1002  void setConvertAction(MVT FromVT, MVT ToVT,
1003                        LegalizeAction Action) {
1004    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
1005           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
1006           "Table isn't big enough!");
1007    ConvertActions[FromVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
1008                                              ToVT.getSimpleVT()*2);
1009    ConvertActions[FromVT.getSimpleVT()] |= (uint64_t)Action <<
1010      ToVT.getSimpleVT()*2;
1011  }
1012
1013  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1014  /// supported on the target and indicate what to do about it.
1015  void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) {
1016    assert((unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
1017           (unsigned)CC < array_lengthof(CondCodeActions) &&
1018           "Table isn't big enough!");
1019    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
1020    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.getSimpleVT()*2;
1021  }
1022
1023  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1024  /// promotion code defaults to trying a larger integer/fp until it can find
1025  /// one that works.  If that default is insufficient, this method can be used
1026  /// by the target to override the default.
1027  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1028    PromoteToType[std::make_pair(Opc, OrigVT.getSimpleVT())] =
1029      DestVT.getSimpleVT();
1030  }
1031
1032  /// addLegalFPImmediate - Indicate that this target can instruction select
1033  /// the specified FP immediate natively.
1034  void addLegalFPImmediate(const APFloat& Imm) {
1035    LegalFPImmediates.push_back(Imm);
1036  }
1037
1038  /// setTargetDAGCombine - Targets should invoke this method for each target
1039  /// independent node that they want to provide a custom DAG combiner for by
1040  /// implementing the PerformDAGCombine virtual method.
1041  void setTargetDAGCombine(ISD::NodeType NT) {
1042    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1043    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1044  }
1045
1046  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1047  /// bytes); default is 200
1048  void setJumpBufSize(unsigned Size) {
1049    JumpBufSize = Size;
1050  }
1051
1052  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1053  /// alignment (in bytes); default is 0
1054  void setJumpBufAlignment(unsigned Align) {
1055    JumpBufAlignment = Align;
1056  }
1057
1058  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1059  /// limit (in number of instructions); default is 2.
1060  void setIfCvtBlockSizeLimit(unsigned Limit) {
1061    IfCvtBlockSizeLimit = Limit;
1062  }
1063
1064  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1065  /// of instructions) to be considered for code duplication during
1066  /// if-conversion; default is 2.
1067  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1068    IfCvtDupBlockSizeLimit = Limit;
1069  }
1070
1071  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1072  /// alignment is zero, it means the target does not care about loop alignment.
1073  void setPrefLoopAlignment(unsigned Align) {
1074    PrefLoopAlignment = Align;
1075  }
1076
1077public:
1078
1079  virtual const TargetSubtarget *getSubtarget() {
1080    assert(0 && "Not Implemented");
1081    return NULL;    // this is here to silence compiler errors
1082  }
1083  //===--------------------------------------------------------------------===//
1084  // Lowering methods - These methods must be implemented by targets so that
1085  // the SelectionDAGLowering code knows how to lower these.
1086  //
1087
1088  /// LowerArguments - This hook must be implemented to indicate how we should
1089  /// lower the arguments for the specified function, into the specified DAG.
1090  virtual void
1091  LowerArguments(Function &F, SelectionDAG &DAG,
1092                 SmallVectorImpl<SDValue>& ArgValues, DebugLoc dl);
1093
1094  /// LowerCallTo - This hook lowers an abstract call to a function into an
1095  /// actual call.  This returns a pair of operands.  The first element is the
1096  /// return value for the function (if RetTy is not VoidTy).  The second
1097  /// element is the outgoing token chain.
1098  struct ArgListEntry {
1099    SDValue Node;
1100    const Type* Ty;
1101    bool isSExt  : 1;
1102    bool isZExt  : 1;
1103    bool isInReg : 1;
1104    bool isSRet  : 1;
1105    bool isNest  : 1;
1106    bool isByVal : 1;
1107    uint16_t Alignment;
1108
1109    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1110      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1111  };
1112  typedef std::vector<ArgListEntry> ArgListTy;
1113  virtual std::pair<SDValue, SDValue>
1114  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1115              bool isVarArg, bool isInreg, unsigned CallingConv,
1116              bool isTailCall, SDValue Callee, ArgListTy &Args,
1117              SelectionDAG &DAG, DebugLoc dl);
1118
1119  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1120  /// memcpy. This can be used by targets to provide code sequences for cases
1121  /// that don't fit the target's parameters for simple loads/stores and can be
1122  /// more efficient than using a library call. This function can return a null
1123  /// SDValue if the target declines to use custom code and a different
1124  /// lowering strategy should be used.
1125  ///
1126  /// If AlwaysInline is true, the size is constant and the target should not
1127  /// emit any calls and is strongly encouraged to attempt to emit inline code
1128  /// even if it is beyond the usual threshold because this intrinsic is being
1129  /// expanded in a place where calls are not feasible (e.g. within the prologue
1130  /// for another call). If the target chooses to decline an AlwaysInline
1131  /// request here, legalize will resort to using simple loads and stores.
1132  virtual SDValue
1133  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1134                          SDValue Chain,
1135                          SDValue Op1, SDValue Op2,
1136                          SDValue Op3, unsigned Align,
1137                          bool AlwaysInline,
1138                          const Value *DstSV, uint64_t DstOff,
1139                          const Value *SrcSV, uint64_t SrcOff) {
1140    return SDValue();
1141  }
1142
1143  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1144  /// memmove. This can be used by targets to provide code sequences for cases
1145  /// that don't fit the target's parameters for simple loads/stores and can be
1146  /// more efficient than using a library call. This function can return a null
1147  /// SDValue if the target declines to use custom code and a different
1148  /// lowering strategy should be used.
1149  virtual SDValue
1150  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1151                           SDValue Chain,
1152                           SDValue Op1, SDValue Op2,
1153                           SDValue Op3, unsigned Align,
1154                           const Value *DstSV, uint64_t DstOff,
1155                           const Value *SrcSV, uint64_t SrcOff) {
1156    return SDValue();
1157  }
1158
1159  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1160  /// memset. This can be used by targets to provide code sequences for cases
1161  /// that don't fit the target's parameters for simple stores and can be more
1162  /// efficient than using a library call. This function can return a null
1163  /// SDValue if the target declines to use custom code and a different
1164  /// lowering strategy should be used.
1165  virtual SDValue
1166  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1167                          SDValue Chain,
1168                          SDValue Op1, SDValue Op2,
1169                          SDValue Op3, unsigned Align,
1170                          const Value *DstSV, uint64_t DstOff) {
1171    return SDValue();
1172  }
1173
1174  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1175  /// to legalize nodes with an illegal operand type but legal result types.
1176  /// It replaces the LowerOperation callback in the type Legalizer.
1177  /// The reason we can not do away with LowerOperation entirely is that
1178  /// LegalizeDAG isn't yet ready to use this callback.
1179  /// TODO: Consider merging with ReplaceNodeResults.
1180
1181  /// The target places new result values for the node in Results (their number
1182  /// and types must exactly match those of the original return values of
1183  /// the node), or leaves Results empty, which indicates that the node is not
1184  /// to be custom lowered after all.
1185  /// The default implementation calls LowerOperation.
1186  virtual void LowerOperationWrapper(SDNode *N,
1187                                     SmallVectorImpl<SDValue> &Results,
1188                                     SelectionDAG &DAG);
1189
1190  /// LowerOperation - This callback is invoked for operations that are
1191  /// unsupported by the target, which are registered to use 'custom' lowering,
1192  /// and whose defined values are all legal.
1193  /// If the target has no operations that require custom lowering, it need not
1194  /// implement this.  The default implementation of this aborts.
1195  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1196
1197  /// ReplaceNodeResults - This callback is invoked when a node result type is
1198  /// illegal for the target, and the operation was registered to use 'custom'
1199  /// lowering for that result type.  The target places new result values for
1200  /// the node in Results (their number and types must exactly match those of
1201  /// the original return values of the node), or leaves Results empty, which
1202  /// indicates that the node is not to be custom lowered after all.
1203  ///
1204  /// If the target has no operations that require custom lowering, it need not
1205  /// implement this.  The default implementation aborts.
1206  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1207                                  SelectionDAG &DAG) {
1208    assert(0 && "ReplaceNodeResults not implemented for this target!");
1209  }
1210
1211  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
1212  /// tail call optimization. Targets which want to do tail call optimization
1213  /// should override this function.
1214  virtual bool IsEligibleForTailCallOptimization(CallSDNode *Call,
1215                                                 SDValue Ret,
1216                                                 SelectionDAG &DAG) const {
1217    return false;
1218  }
1219
1220  /// CheckTailCallReturnConstraints - Check whether CALL node immediatly
1221  /// preceeds the RET node and whether the return uses the result of the node
1222  /// or is a void return. This function can be used by the target to determine
1223  /// eligiblity of tail call optimization.
1224  static bool CheckTailCallReturnConstraints(CallSDNode *TheCall, SDValue Ret);
1225
1226  /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
1227  /// it exists. Skip a possible ISD::TokenFactor.
1228  static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
1229                                                 unsigned TailCallNodeOpCode) {
1230    if (Chain.getOpcode() == TailCallNodeOpCode) {
1231      return Chain;
1232    } else if (Chain.getOpcode() == ISD::TokenFactor) {
1233      if (Chain.getNumOperands() &&
1234          Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
1235        return Chain.getOperand(0);
1236    }
1237    return Chain;
1238  }
1239
1240  /// getTargetNodeName() - This method returns the name of a target specific
1241  /// DAG node.
1242  virtual const char *getTargetNodeName(unsigned Opcode) const;
1243
1244  /// createFastISel - This method returns a target specific FastISel object,
1245  /// or null if the target does not support "fast" ISel.
1246  virtual FastISel *
1247  createFastISel(MachineFunction &,
1248                 MachineModuleInfo *, DwarfWriter *,
1249                 DenseMap<const Value *, unsigned> &,
1250                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1251                 DenseMap<const AllocaInst *, int> &
1252#ifndef NDEBUG
1253                 , SmallSet<Instruction*, 8> &CatchInfoLost
1254#endif
1255                 ) {
1256    return 0;
1257  }
1258
1259  //===--------------------------------------------------------------------===//
1260  // Inline Asm Support hooks
1261  //
1262
1263  enum ConstraintType {
1264    C_Register,            // Constraint represents specific register(s).
1265    C_RegisterClass,       // Constraint represents any of register(s) in class.
1266    C_Memory,              // Memory constraint.
1267    C_Other,               // Something else.
1268    C_Unknown              // Unsupported constraint.
1269  };
1270
1271  /// AsmOperandInfo - This contains information for each constraint that we are
1272  /// lowering.
1273  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1274    /// ConstraintCode - This contains the actual string for the code, like "m".
1275    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1276    /// most closely matches the operand.
1277    std::string ConstraintCode;
1278
1279    /// ConstraintType - Information about the constraint code, e.g. Register,
1280    /// RegisterClass, Memory, Other, Unknown.
1281    TargetLowering::ConstraintType ConstraintType;
1282
1283    /// CallOperandval - If this is the result output operand or a
1284    /// clobber, this is null, otherwise it is the incoming operand to the
1285    /// CallInst.  This gets modified as the asm is processed.
1286    Value *CallOperandVal;
1287
1288    /// ConstraintVT - The ValueType for the operand value.
1289    MVT ConstraintVT;
1290
1291    /// isMatchingInputConstraint - Return true of this is an input operand that
1292    /// is a matching constraint like "4".
1293    bool isMatchingInputConstraint() const;
1294
1295    /// getMatchedOperand - If this is an input matching constraint, this method
1296    /// returns the output operand it matches.
1297    unsigned getMatchedOperand() const;
1298
1299    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1300      : InlineAsm::ConstraintInfo(info),
1301        ConstraintType(TargetLowering::C_Unknown),
1302        CallOperandVal(0), ConstraintVT(MVT::Other) {
1303    }
1304  };
1305
1306  /// ComputeConstraintToUse - Determines the constraint code and constraint
1307  /// type to use for the specific AsmOperandInfo, setting
1308  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1309  /// being passed in is available, it can be passed in as Op, otherwise an
1310  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1311  /// constraint of the inline asm instruction being processed is 'm'.
1312  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1313                                      SDValue Op,
1314                                      bool hasMemory,
1315                                      SelectionDAG *DAG = 0) const;
1316
1317  /// getConstraintType - Given a constraint, return the type of constraint it
1318  /// is for this target.
1319  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1320
1321  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1322  /// return a list of registers that can be used to satisfy the constraint.
1323  /// This should only be used for C_RegisterClass constraints.
1324  virtual std::vector<unsigned>
1325  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1326                                    MVT VT) const;
1327
1328  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1329  /// {edx}), return the register number and the register class for the
1330  /// register.
1331  ///
1332  /// Given a register class constraint, like 'r', if this corresponds directly
1333  /// to an LLVM register class, return a register of 0 and the register class
1334  /// pointer.
1335  ///
1336  /// This should only be used for C_Register constraints.  On error,
1337  /// this returns a register number of 0 and a null register class pointer..
1338  virtual std::pair<unsigned, const TargetRegisterClass*>
1339    getRegForInlineAsmConstraint(const std::string &Constraint,
1340                                 MVT VT) const;
1341
1342  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1343  /// with another that has more specific requirements based on the type of the
1344  /// corresponding operand.  This returns null if there is no replacement to
1345  /// make.
1346  virtual const char *LowerXConstraint(MVT ConstraintVT) const;
1347
1348  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1349  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1350  /// it means one of the asm constraint of the inline asm instruction being
1351  /// processed is 'm'.
1352  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1353                                            bool hasMemory,
1354                                            std::vector<SDValue> &Ops,
1355                                            SelectionDAG &DAG) const;
1356
1357  //===--------------------------------------------------------------------===//
1358  // Scheduler hooks
1359  //
1360
1361  // EmitInstrWithCustomInserter - This method should be implemented by targets
1362  // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1363  // instructions are special in various ways, which require special support to
1364  // insert.  The specified MachineInstr is created but not inserted into any
1365  // basic blocks, and the scheduler passes ownership of it to this method.
1366  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1367                                                  MachineBasicBlock *MBB) const;
1368
1369  //===--------------------------------------------------------------------===//
1370  // Addressing mode description hooks (used by LSR etc).
1371  //
1372
1373  /// AddrMode - This represents an addressing mode of:
1374  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1375  /// If BaseGV is null,  there is no BaseGV.
1376  /// If BaseOffs is zero, there is no base offset.
1377  /// If HasBaseReg is false, there is no base register.
1378  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1379  /// no scale.
1380  ///
1381  struct AddrMode {
1382    GlobalValue *BaseGV;
1383    int64_t      BaseOffs;
1384    bool         HasBaseReg;
1385    int64_t      Scale;
1386    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1387  };
1388
1389  /// isLegalAddressingMode - Return true if the addressing mode represented by
1390  /// AM is legal for this target, for a load/store of the specified type.
1391  /// The type may be VoidTy, in which case only return true if the addressing
1392  /// mode is legal for a load/store of any legal type.
1393  /// TODO: Handle pre/postinc as well.
1394  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1395
1396  /// isTruncateFree - Return true if it's free to truncate a value of
1397  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1398  /// register EAX to i16 by referencing its sub-register AX.
1399  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1400    return false;
1401  }
1402
1403  virtual bool isTruncateFree(MVT VT1, MVT VT2) const {
1404    return false;
1405  }
1406
1407  /// isZExtFree - Return true if any actual instruction that defines a
1408  /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1409  /// register. This does not necessarily include registers defined in
1410  /// unknown ways, such as incoming arguments, or copies from unknown
1411  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1412  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1413  /// all instructions that define 32-bit values implicit zero-extend the
1414  /// result out to 64 bits.
1415  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1416    return false;
1417  }
1418
1419  virtual bool isZExtFree(MVT VT1, MVT VT2) const {
1420    return false;
1421  }
1422
1423  /// isNarrowingProfitable - Return true if it's profitable to narrow
1424  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1425  /// from i32 to i8 but not from i32 to i16.
1426  virtual bool isNarrowingProfitable(MVT VT1, MVT VT2) const {
1427    return false;
1428  }
1429
1430  //===--------------------------------------------------------------------===//
1431  // Div utility functions
1432  //
1433  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1434                      std::vector<SDNode*>* Created) const;
1435  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1436                      std::vector<SDNode*>* Created) const;
1437
1438
1439  //===--------------------------------------------------------------------===//
1440  // Runtime Library hooks
1441  //
1442
1443  /// setLibcallName - Rename the default libcall routine name for the specified
1444  /// libcall.
1445  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1446    LibcallRoutineNames[Call] = Name;
1447  }
1448
1449  /// getLibcallName - Get the libcall routine name for the specified libcall.
1450  ///
1451  const char *getLibcallName(RTLIB::Libcall Call) const {
1452    return LibcallRoutineNames[Call];
1453  }
1454
1455  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1456  /// result of the comparison libcall against zero.
1457  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1458    CmpLibcallCCs[Call] = CC;
1459  }
1460
1461  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1462  /// the comparison libcall against zero.
1463  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1464    return CmpLibcallCCs[Call];
1465  }
1466
1467private:
1468  TargetMachine &TM;
1469  const TargetData *TD;
1470
1471  /// PointerTy - The type to use for pointers, usually i32 or i64.
1472  ///
1473  MVT PointerTy;
1474
1475  /// IsLittleEndian - True if this is a little endian target.
1476  ///
1477  bool IsLittleEndian;
1478
1479  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1480  ///
1481  bool UsesGlobalOffsetTable;
1482
1483  /// SelectIsExpensive - Tells the code generator not to expand operations
1484  /// into sequences that use the select operations if possible.
1485  bool SelectIsExpensive;
1486
1487  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1488  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1489  /// a real cost model is in place.  If we ever optimize for size, this will be
1490  /// set to true unconditionally.
1491  bool IntDivIsCheap;
1492
1493  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1494  /// srl/add/sra for a signed divide by power of two, and let the target handle
1495  /// it.
1496  bool Pow2DivIsCheap;
1497
1498  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1499  /// llvm.setjmp.  Defaults to false.
1500  bool UseUnderscoreSetJmp;
1501
1502  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1503  /// llvm.longjmp.  Defaults to false.
1504  bool UseUnderscoreLongJmp;
1505
1506  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1507  /// PointerTy is.
1508  MVT ShiftAmountTy;
1509
1510  OutOfRangeShiftAmount ShiftAmtHandling;
1511
1512  /// BooleanContents - Information about the contents of the high-bits in
1513  /// boolean values held in a type wider than i1.  See getBooleanContents.
1514  BooleanContent BooleanContents;
1515
1516  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1517  /// total cycles or lowest register usage.
1518  SchedPreference SchedPreferenceInfo;
1519
1520  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1521  unsigned JumpBufSize;
1522
1523  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1524  /// buffers
1525  unsigned JumpBufAlignment;
1526
1527  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1528  /// if-converted.
1529  unsigned IfCvtBlockSizeLimit;
1530
1531  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1532  /// duplicated during if-conversion.
1533  unsigned IfCvtDupBlockSizeLimit;
1534
1535  /// PrefLoopAlignment - The perferred loop alignment.
1536  ///
1537  unsigned PrefLoopAlignment;
1538
1539  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1540  /// specifies the register that llvm.savestack/llvm.restorestack should save
1541  /// and restore.
1542  unsigned StackPointerRegisterToSaveRestore;
1543
1544  /// ExceptionPointerRegister - If set to a physical register, this specifies
1545  /// the register that receives the exception address on entry to a landing
1546  /// pad.
1547  unsigned ExceptionPointerRegister;
1548
1549  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1550  /// the register that receives the exception typeid on entry to a landing
1551  /// pad.
1552  unsigned ExceptionSelectorRegister;
1553
1554  /// RegClassForVT - This indicates the default register class to use for
1555  /// each ValueType the target supports natively.
1556  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1557  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1558  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1559
1560  /// TransformToType - For any value types we are promoting or expanding, this
1561  /// contains the value type that we are changing to.  For Expanded types, this
1562  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1563  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1564  /// by the system, this holds the same type (e.g. i32 -> i32).
1565  MVT TransformToType[MVT::LAST_VALUETYPE];
1566
1567  /// OpActions - For each operation and each value type, keep a LegalizeAction
1568  /// that indicates how instruction selection should deal with the operation.
1569  /// Most operations are Legal (aka, supported natively by the target), but
1570  /// operations that are not should be described.  Note that operations on
1571  /// non-legal value types are not described here.
1572  uint64_t OpActions[ISD::BUILTIN_OP_END];
1573
1574  /// LoadExtActions - For each load of load extension type and each value type,
1575  /// keep a LegalizeAction that indicates how instruction selection should deal
1576  /// with the load.
1577  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1578
1579  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1580  /// indicates how instruction selection should deal with the store.
1581  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1582
1583  /// IndexedModeActions - For each indexed mode and each value type, keep a
1584  /// pair of LegalizeAction that indicates how instruction selection should
1585  /// deal with the load / store.
1586  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1587
1588  /// ConvertActions - For each conversion from source type to destination type,
1589  /// keep a LegalizeAction that indicates how instruction selection should
1590  /// deal with the conversion.
1591  /// Currently, this is used only for floating->floating conversions
1592  /// (FP_EXTEND and FP_ROUND).
1593  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1594
1595  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1596  /// LegalizeAction that indicates how instruction selection should
1597  /// deal with the condition code.
1598  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1599
1600  ValueTypeActionImpl ValueTypeActions;
1601
1602  std::vector<APFloat> LegalFPImmediates;
1603
1604  std::vector<std::pair<MVT, TargetRegisterClass*> > AvailableRegClasses;
1605
1606  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1607  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1608  /// which sets a bit in this array.
1609  unsigned char
1610  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1611
1612  /// PromoteToType - For operations that must be promoted to a specific type,
1613  /// this holds the destination type.  This map should be sparse, so don't hold
1614  /// it as an array.
1615  ///
1616  /// Targets add entries to this map with AddPromotedToType(..), clients access
1617  /// this with getTypeToPromoteTo(..).
1618  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1619    PromoteToType;
1620
1621  /// LibcallRoutineNames - Stores the name each libcall.
1622  ///
1623  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1624
1625  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1626  /// of each of the comparison libcall against zero.
1627  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1628
1629protected:
1630  /// When lowering \@llvm.memset this field specifies the maximum number of
1631  /// store operations that may be substituted for the call to memset. Targets
1632  /// must set this value based on the cost threshold for that target. Targets
1633  /// should assume that the memset will be done using as many of the largest
1634  /// store operations first, followed by smaller ones, if necessary, per
1635  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1636  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1637  /// store.  This only applies to setting a constant array of a constant size.
1638  /// @brief Specify maximum number of store instructions per memset call.
1639  unsigned maxStoresPerMemset;
1640
1641  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1642  /// store operations that may be substituted for a call to memcpy. Targets
1643  /// must set this value based on the cost threshold for that target. Targets
1644  /// should assume that the memcpy will be done using as many of the largest
1645  /// store operations first, followed by smaller ones, if necessary, per
1646  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1647  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1648  /// and one 1-byte store. This only applies to copying a constant array of
1649  /// constant size.
1650  /// @brief Specify maximum bytes of store instructions per memcpy call.
1651  unsigned maxStoresPerMemcpy;
1652
1653  /// When lowering \@llvm.memmove this field specifies the maximum number of
1654  /// store instructions that may be substituted for a call to memmove. Targets
1655  /// must set this value based on the cost threshold for that target. Targets
1656  /// should assume that the memmove will be done using as many of the largest
1657  /// store operations first, followed by smaller ones, if necessary, per
1658  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1659  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1660  /// applies to copying a constant array of constant size.
1661  /// @brief Specify maximum bytes of store instructions per memmove call.
1662  unsigned maxStoresPerMemmove;
1663
1664  /// This field specifies whether the target machine permits unaligned memory
1665  /// accesses.  This is used, for example, to determine the size of store
1666  /// operations when copying small arrays and other similar tasks.
1667  /// @brief Indicate whether the target permits unaligned memory accesses.
1668  bool allowUnalignedMemoryAccesses;
1669
1670  /// This field specifies whether the target can benefit from code placement
1671  /// optimization.
1672  bool benefitFromCodePlacementOpt;
1673};
1674} // end llvm namespace
1675
1676#endif
1677