TargetLowering.h revision b25fe8267182662750dcb76a70a20f4b14a5568d
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CodeGen/SelectionDAGNodes.h"
26#include "llvm/CodeGen/RuntimeLibcalls.h"
27#include <map>
28#include <vector>
29
30namespace llvm {
31  class Value;
32  class Function;
33  class TargetMachine;
34  class TargetData;
35  class TargetRegisterClass;
36  class SDNode;
37  class SDOperand;
38  class SelectionDAG;
39  class MachineBasicBlock;
40  class MachineInstr;
41  class PackedType;
42
43//===----------------------------------------------------------------------===//
44/// TargetLowering - This class defines information used to lower LLVM code to
45/// legal SelectionDAG operators that the target instruction selector can accept
46/// natively.
47///
48/// This class also defines callbacks that targets must implement to lower
49/// target-specific constructs to SelectionDAG operators.
50///
51class TargetLowering {
52public:
53  /// LegalizeAction - This enum indicates whether operations are valid for a
54  /// target, and if not, what action should be used to make them valid.
55  enum LegalizeAction {
56    Legal,      // The target natively supports this operation.
57    Promote,    // This operation should be executed in a larger type.
58    Expand,     // Try to expand this to other ops, otherwise use a libcall.
59    Custom      // Use the LowerOperation hook to implement custom lowering.
60  };
61
62  enum OutOfRangeShiftAmount {
63    Undefined,  // Oversized shift amounts are undefined (default).
64    Mask,       // Shift amounts are auto masked (anded) to value size.
65    Extend      // Oversized shift pulls in zeros or sign bits.
66  };
67
68  enum SetCCResultValue {
69    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
70    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
71    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
72  };
73
74  enum SchedPreference {
75    SchedulingForLatency,          // Scheduling for shortest total latency.
76    SchedulingForRegPressure       // Scheduling for lowest register pressure.
77  };
78
79  TargetLowering(TargetMachine &TM);
80  virtual ~TargetLowering();
81
82  TargetMachine &getTargetMachine() const { return TM; }
83  const TargetData *getTargetData() const { return TD; }
84
85  bool isLittleEndian() const { return IsLittleEndian; }
86  MVT::ValueType getPointerTy() const { return PointerTy; }
87  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
88  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
89
90  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
91  /// codegen.
92  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
93
94  /// isSelectExpensive - Return true if the select operation is expensive for
95  /// this target.
96  bool isSelectExpensive() const { return SelectIsExpensive; }
97
98  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
99  /// a sequence of several shifts, adds, and multiplies for this target.
100  bool isIntDivCheap() const { return IntDivIsCheap; }
101
102  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
103  /// srl/add/sra.
104  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
105
106  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
107  ///
108  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
109
110  /// getSetCCResultContents - For targets without boolean registers, this flag
111  /// returns information about the contents of the high-bits in the setcc
112  /// result register.
113  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
114
115  /// getSchedulingPreference - Return target scheduling preference.
116  SchedPreference getSchedulingPreference() const {
117    return SchedPreferenceInfo;
118  }
119
120  /// getRegClassFor - Return the register class that should be used for the
121  /// specified value type.  This may only be called on legal types.
122  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
123    TargetRegisterClass *RC = RegClassForVT[VT];
124    assert(RC && "This value type is not natively supported!");
125    return RC;
126  }
127
128  /// isTypeLegal - Return true if the target has native support for the
129  /// specified value type.  This means that it has a register that directly
130  /// holds it without promotions or expansions.
131  bool isTypeLegal(MVT::ValueType VT) const {
132    return RegClassForVT[VT] != 0;
133  }
134
135  class ValueTypeActionImpl {
136    /// ValueTypeActions - This is a bitvector that contains two bits for each
137    /// value type, where the two bits correspond to the LegalizeAction enum.
138    /// This can be queried with "getTypeAction(VT)".
139    uint32_t ValueTypeActions[2];
140  public:
141    ValueTypeActionImpl() {
142      ValueTypeActions[0] = ValueTypeActions[1] = 0;
143    }
144    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
145      ValueTypeActions[0] = RHS.ValueTypeActions[0];
146      ValueTypeActions[1] = RHS.ValueTypeActions[1];
147    }
148
149    LegalizeAction getTypeAction(MVT::ValueType VT) const {
150      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
151    }
152    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
153      assert(unsigned(VT >> 4) <
154             sizeof(ValueTypeActions)/sizeof(ValueTypeActions[0]));
155      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
156    }
157  };
158
159  const ValueTypeActionImpl &getValueTypeActions() const {
160    return ValueTypeActions;
161  }
162
163  /// getTypeAction - Return how we should legalize values of this type, either
164  /// it is already legal (return 'Legal') or we need to promote it to a larger
165  /// type (return 'Promote'), or we need to expand it into multiple registers
166  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
167  LegalizeAction getTypeAction(MVT::ValueType VT) const {
168    return ValueTypeActions.getTypeAction(VT);
169  }
170
171  /// getTypeToTransformTo - For types supported by the target, this is an
172  /// identity function.  For types that must be promoted to larger types, this
173  /// returns the larger type to promote to.  For integer types that are larger
174  /// than the largest integer register, this contains one step in the expansion
175  /// to get to the smaller register. For illegal floating point types, this
176  /// returns the integer type to transform to.
177  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
178    return TransformToType[VT];
179  }
180
181  /// getTypeToExpandTo - For types supported by the target, this is an
182  /// identity function.  For types that must be expanded (i.e. integer types
183  /// that are larger than the largest integer register or illegal floating
184  /// point types), this returns the largest legal type it will be expanded to.
185  MVT::ValueType getTypeToExpandTo(MVT::ValueType VT) const {
186    while (true) {
187      switch (getTypeAction(VT)) {
188      case Legal:
189        return VT;
190      case Expand:
191        VT = TransformToType[VT];
192        break;
193      default:
194        assert(false && "Type is not legal nor is it to be expanded!");
195        return VT;
196      }
197    }
198    return VT;
199  }
200
201  /// getPackedTypeBreakdown - Packed types are broken down into some number of
202  /// legal first class types.  For example, <8 x float> maps to 2 MVT::v4f32
203  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
204  /// Similarly, <2 x long> turns into 4 MVT::i32 values with both PPC and X86.
205  ///
206  /// This method returns the number of registers needed, and the VT for each
207  /// register.  It also returns the VT of the PackedType elements before they
208  /// are promoted/expanded.
209  ///
210  unsigned getPackedTypeBreakdown(const PackedType *PTy,
211                                  MVT::ValueType &PTyElementVT,
212                                  MVT::ValueType &PTyLegalElementVT) const;
213
214  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
215  legal_fpimm_iterator legal_fpimm_begin() const {
216    return LegalFPImmediates.begin();
217  }
218  legal_fpimm_iterator legal_fpimm_end() const {
219    return LegalFPImmediates.end();
220  }
221
222  /// isShuffleMaskLegal - Targets can use this to indicate that they only
223  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
224  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
225  /// are assumed to be legal.
226  virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
227    return true;
228  }
229
230  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
231  /// used by Targets can use this to indicate if there is a suitable
232  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
233  /// pool entry.
234  virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
235                                      MVT::ValueType EVT,
236                                      SelectionDAG &DAG) const {
237    return false;
238  }
239
240  /// getOperationAction - Return how this operation should be treated: either
241  /// it is legal, needs to be promoted to a larger size, needs to be
242  /// expanded to some other code sequence, or the target has a custom expander
243  /// for it.
244  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
245    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
246  }
247
248  /// isOperationLegal - Return true if the specified operation is legal on this
249  /// target.
250  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
251    return getOperationAction(Op, VT) == Legal ||
252           getOperationAction(Op, VT) == Custom;
253  }
254
255  /// getLoadXAction - Return how this load with extension should be treated:
256  /// either it is legal, needs to be promoted to a larger size, needs to be
257  /// expanded to some other code sequence, or the target has a custom expander
258  /// for it.
259  LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const {
260    return (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3);
261  }
262
263  /// isLoadXLegal - Return true if the specified load with extension is legal
264  /// on this target.
265  bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const {
266    return getLoadXAction(LType, VT) == Legal ||
267           getLoadXAction(LType, VT) == Custom;
268  }
269
270  /// getStoreXAction - Return how this store with truncation should be treated:
271  /// either it is legal, needs to be promoted to a larger size, needs to be
272  /// expanded to some other code sequence, or the target has a custom expander
273  /// for it.
274  LegalizeAction getStoreXAction(MVT::ValueType VT) const {
275    return (LegalizeAction)((StoreXActions >> (2*VT)) & 3);
276  }
277
278  /// isStoreXLegal - Return true if the specified store with truncation is
279  /// legal on this target.
280  bool isStoreXLegal(MVT::ValueType VT) const {
281    return getStoreXAction(VT) == Legal || getStoreXAction(VT) == Custom;
282  }
283
284  /// getIndexedLoadAction - Return how the indexed load should be treated:
285  /// either it is legal, needs to be promoted to a larger size, needs to be
286  /// expanded to some other code sequence, or the target has a custom expander
287  /// for it.
288  LegalizeAction
289  getIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT) const {
290    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >> (2*VT)) & 3);
291  }
292
293  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
294  /// on this target.
295  bool isIndexedLoadLegal(unsigned IdxMode, MVT::ValueType VT) const {
296    return getIndexedLoadAction(IdxMode, VT) == Legal ||
297           getIndexedLoadAction(IdxMode, VT) == Custom;
298  }
299
300  /// getIndexedStoreAction - Return how the indexed store should be treated:
301  /// either it is legal, needs to be promoted to a larger size, needs to be
302  /// expanded to some other code sequence, or the target has a custom expander
303  /// for it.
304  LegalizeAction
305  getIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT) const {
306    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >> (2*VT)) & 3);
307  }
308
309  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
310  /// on this target.
311  bool isIndexedStoreLegal(unsigned IdxMode, MVT::ValueType VT) const {
312    return getIndexedStoreAction(IdxMode, VT) == Legal ||
313           getIndexedStoreAction(IdxMode, VT) == Custom;
314  }
315
316  /// getTypeToPromoteTo - If the action for this operation is to promote, this
317  /// method returns the ValueType to promote to.
318  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
319    assert(getOperationAction(Op, VT) == Promote &&
320           "This operation isn't promoted!");
321
322    // See if this has an explicit type specified.
323    std::map<std::pair<unsigned, MVT::ValueType>,
324             MVT::ValueType>::const_iterator PTTI =
325      PromoteToType.find(std::make_pair(Op, VT));
326    if (PTTI != PromoteToType.end()) return PTTI->second;
327
328    assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
329           "Cannot autopromote this type, add it with AddPromotedToType.");
330
331    MVT::ValueType NVT = VT;
332    do {
333      NVT = (MVT::ValueType)(NVT+1);
334      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
335             "Didn't find type to promote to!");
336    } while (!isTypeLegal(NVT) ||
337              getOperationAction(Op, NVT) == Promote);
338    return NVT;
339  }
340
341  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
342  /// This is fixed by the LLVM operations except for the pointer size.
343  MVT::ValueType getValueType(const Type *Ty) const;
344
345  /// getNumElements - Return the number of registers that this ValueType will
346  /// eventually require.  This is one for any types promoted to live in larger
347  /// registers, but may be more than one for types (like i64) that are split
348  /// into pieces.
349  unsigned getNumElements(MVT::ValueType VT) const {
350    return NumElementsForVT[VT];
351  }
352
353  /// hasTargetDAGCombine - If true, the target has custom DAG combine
354  /// transformations that it can perform for the specified node.
355  bool hasTargetDAGCombine(ISD::NodeType NT) const {
356    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
357  }
358
359  /// This function returns the maximum number of store operations permitted
360  /// to replace a call to llvm.memset. The value is set by the target at the
361  /// performance threshold for such a replacement.
362  /// @brief Get maximum # of store operations permitted for llvm.memset
363  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
364
365  /// This function returns the maximum number of store operations permitted
366  /// to replace a call to llvm.memcpy. The value is set by the target at the
367  /// performance threshold for such a replacement.
368  /// @brief Get maximum # of store operations permitted for llvm.memcpy
369  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
370
371  /// This function returns the maximum number of store operations permitted
372  /// to replace a call to llvm.memmove. The value is set by the target at the
373  /// performance threshold for such a replacement.
374  /// @brief Get maximum # of store operations permitted for llvm.memmove
375  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
376
377  /// This function returns true if the target allows unaligned memory accesses.
378  /// This is used, for example, in situations where an array copy/move/set is
379  /// converted to a sequence of store operations. It's use helps to ensure that
380  /// such replacements don't generate code that causes an alignment error
381  /// (trap) on the target machine.
382  /// @brief Determine if the target supports unaligned memory accesses.
383  bool allowsUnalignedMemoryAccesses() const {
384    return allowUnalignedMemoryAccesses;
385  }
386
387  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
388  /// to implement llvm.setjmp.
389  bool usesUnderscoreSetJmp() const {
390    return UseUnderscoreSetJmp;
391  }
392
393  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
394  /// to implement llvm.longjmp.
395  bool usesUnderscoreLongJmp() const {
396    return UseUnderscoreLongJmp;
397  }
398
399  /// getStackPointerRegisterToSaveRestore - If a physical register, this
400  /// specifies the register that llvm.savestack/llvm.restorestack should save
401  /// and restore.
402  unsigned getStackPointerRegisterToSaveRestore() const {
403    return StackPointerRegisterToSaveRestore;
404  }
405
406  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
407  /// set, the default is 200)
408  unsigned getJumpBufSize() const {
409    return JumpBufSize;
410  }
411
412  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
413  /// (if never set, the default is 0)
414  unsigned getJumpBufAlignment() const {
415    return JumpBufAlignment;
416  }
417
418  /// getPreIndexedAddressParts - returns true by value, base pointer and
419  /// offset pointer and addressing mode by reference if the node's address
420  /// can be legally represented as pre-indexed load / store address.
421  virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
422                                         SDOperand &Offset,
423                                         ISD::MemIndexedMode &AM,
424                                         SelectionDAG &DAG) {
425    return false;
426  }
427
428  /// getPostIndexedAddressParts - returns true by value, base pointer and
429  /// offset pointer and addressing mode by reference if this node can be
430  /// combined with a load / store to form a post-indexed load / store.
431  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
432                                          SDOperand &Base, SDOperand &Offset,
433                                          ISD::MemIndexedMode &AM,
434                                          SelectionDAG &DAG) {
435    return false;
436  }
437
438  //===--------------------------------------------------------------------===//
439  // TargetLowering Optimization Methods
440  //
441
442  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
443  /// SDOperands for returning information from TargetLowering to its clients
444  /// that want to combine
445  struct TargetLoweringOpt {
446    SelectionDAG &DAG;
447    SDOperand Old;
448    SDOperand New;
449
450    TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
451
452    bool CombineTo(SDOperand O, SDOperand N) {
453      Old = O;
454      New = N;
455      return true;
456    }
457
458    /// ShrinkDemandedConstant - Check to see if the specified operand of the
459    /// specified instruction is a constant integer.  If so, check to see if there
460    /// are any bits set in the constant that are not demanded.  If so, shrink the
461    /// constant and return true.
462    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
463  };
464
465  /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero.  We
466  /// use this predicate to simplify operations downstream.  Op and Mask are
467  /// known to be the same type.
468  bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0)
469    const;
470
471  /// ComputeMaskedBits - Determine which of the bits specified in Mask are
472  /// known to be either zero or one and return them in the KnownZero/KnownOne
473  /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
474  /// processing.  Targets can implement the computeMaskedBitsForTargetNode
475  /// method, to allow target nodes to be understood.
476  void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero,
477                         uint64_t &KnownOne, unsigned Depth = 0) const;
478
479  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
480  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
481  /// use this information to simplify Op, create a new simplified DAG node and
482  /// return true, returning the original and new nodes in Old and New.
483  /// Otherwise, analyze the expression and return a mask of KnownOne and
484  /// KnownZero bits for the expression (used to simplify the caller).
485  /// The KnownZero/One bits may only be accurate for those bits in the
486  /// DemandedMask.
487  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
488                            uint64_t &KnownZero, uint64_t &KnownOne,
489                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
490
491  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
492  /// Mask are known to be either zero or one and return them in the
493  /// KnownZero/KnownOne bitsets.
494  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
495                                              uint64_t Mask,
496                                              uint64_t &KnownZero,
497                                              uint64_t &KnownOne,
498                                              unsigned Depth = 0) const;
499
500  /// ComputeNumSignBits - Return the number of times the sign bit of the
501  /// register is replicated into the other bits.  We know that at least 1 bit
502  /// is always equal to the sign bit (itself), but other cases can give us
503  /// information.  For example, immediately after an "SRA X, 2", we know that
504  /// the top 3 bits are all equal to each other, so we return 3.
505  unsigned ComputeNumSignBits(SDOperand Op, unsigned Depth = 0) const;
506
507  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
508  /// targets that want to expose additional information about sign bits to the
509  /// DAG Combiner.
510  virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
511                                                   unsigned Depth = 0) const;
512
513  struct DAGCombinerInfo {
514    void *DC;  // The DAG Combiner object.
515    bool BeforeLegalize;
516  public:
517    SelectionDAG &DAG;
518
519    DAGCombinerInfo(SelectionDAG &dag, bool bl, void *dc)
520      : DC(dc), BeforeLegalize(bl), DAG(dag) {}
521
522    bool isBeforeLegalize() const { return BeforeLegalize; }
523
524    void AddToWorklist(SDNode *N);
525    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
526    SDOperand CombineTo(SDNode *N, SDOperand Res);
527    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
528  };
529
530  /// PerformDAGCombine - This method will be invoked for all target nodes and
531  /// for any target-independent nodes that the target has registered with
532  /// invoke it for.
533  ///
534  /// The semantics are as follows:
535  /// Return Value:
536  ///   SDOperand.Val == 0   - No change was made
537  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
538  ///   otherwise            - N should be replaced by the returned Operand.
539  ///
540  /// In addition, methods provided by DAGCombinerInfo may be used to perform
541  /// more complex transformations.
542  ///
543  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
544
545  //===--------------------------------------------------------------------===//
546  // TargetLowering Configuration Methods - These methods should be invoked by
547  // the derived class constructor to configure this object for the target.
548  //
549
550protected:
551  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
552  /// GOT for PC-relative code.
553  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
554
555  /// setShiftAmountType - Describe the type that should be used for shift
556  /// amounts.  This type defaults to the pointer type.
557  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
558
559  /// setSetCCResultType - Describe the type that shoudl be used as the result
560  /// of a setcc operation.  This defaults to the pointer type.
561  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
562
563  /// setSetCCResultContents - Specify how the target extends the result of a
564  /// setcc operation in a register.
565  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
566
567  /// setSchedulingPreference - Specify the target scheduling preference.
568  void setSchedulingPreference(SchedPreference Pref) {
569    SchedPreferenceInfo = Pref;
570  }
571
572  /// setShiftAmountFlavor - Describe how the target handles out of range shift
573  /// amounts.
574  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
575    ShiftAmtHandling = OORSA;
576  }
577
578  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
579  /// use _setjmp to implement llvm.setjmp or the non _ version.
580  /// Defaults to false.
581  void setUseUnderscoreSetJmp(bool Val) {
582    UseUnderscoreSetJmp = Val;
583  }
584
585  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
586  /// use _longjmp to implement llvm.longjmp or the non _ version.
587  /// Defaults to false.
588  void setUseUnderscoreLongJmp(bool Val) {
589    UseUnderscoreLongJmp = Val;
590  }
591
592  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
593  /// specifies the register that llvm.savestack/llvm.restorestack should save
594  /// and restore.
595  void setStackPointerRegisterToSaveRestore(unsigned R) {
596    StackPointerRegisterToSaveRestore = R;
597  }
598
599  /// SelectIsExpensive - Tells the code generator not to expand operations
600  /// into sequences that use the select operations if possible.
601  void setSelectIsExpensive() { SelectIsExpensive = true; }
602
603  /// setIntDivIsCheap - Tells the code generator that integer divide is
604  /// expensive, and if possible, should be replaced by an alternate sequence
605  /// of instructions not containing an integer divide.
606  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
607
608  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
609  /// srl/add/sra for a signed divide by power of two, and let the target handle
610  /// it.
611  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
612
613  /// addRegisterClass - Add the specified register class as an available
614  /// regclass for the specified value type.  This indicates the selector can
615  /// handle values of that class natively.
616  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
617    AvailableRegClasses.push_back(std::make_pair(VT, RC));
618    RegClassForVT[VT] = RC;
619  }
620
621  /// computeRegisterProperties - Once all of the register classes are added,
622  /// this allows us to compute derived properties we expose.
623  void computeRegisterProperties();
624
625  /// setOperationAction - Indicate that the specified operation does not work
626  /// with the specified type and indicate what to do about it.
627  void setOperationAction(unsigned Op, MVT::ValueType VT,
628                          LegalizeAction Action) {
629    assert(VT < 32 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
630           "Table isn't big enough!");
631    OpActions[Op] &= ~(uint64_t(3UL) << VT*2);
632    OpActions[Op] |= (uint64_t)Action << VT*2;
633  }
634
635  /// setLoadXAction - Indicate that the specified load with extension does not
636  /// work with the with specified type and indicate what to do about it.
637  void setLoadXAction(unsigned ExtType, MVT::ValueType VT,
638                      LegalizeAction Action) {
639    assert(VT < 32 && ExtType < sizeof(LoadXActions)/sizeof(LoadXActions[0]) &&
640           "Table isn't big enough!");
641    LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2);
642    LoadXActions[ExtType] |= (uint64_t)Action << VT*2;
643  }
644
645  /// setStoreXAction - Indicate that the specified store with truncation does
646  /// not work with the with specified type and indicate what to do about it.
647  void setStoreXAction(MVT::ValueType VT, LegalizeAction Action) {
648    assert(VT < 32 && "Table isn't big enough!");
649    StoreXActions &= ~(uint64_t(3UL) << VT*2);
650    StoreXActions |= (uint64_t)Action << VT*2;
651  }
652
653  /// setIndexedLoadAction - Indicate that the specified indexed load does or
654  /// does not work with the with specified type and indicate what to do abort
655  /// it. NOTE: All indexed mode loads are initialized to Expand in
656  /// TargetLowering.cpp
657  void setIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT,
658                            LegalizeAction Action) {
659    assert(VT < 32 && IdxMode <
660           sizeof(IndexedModeActions[0]) / sizeof(IndexedModeActions[0][0]) &&
661           "Table isn't big enough!");
662    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT*2);
663    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT*2;
664  }
665
666  /// setIndexedStoreAction - Indicate that the specified indexed store does or
667  /// does not work with the with specified type and indicate what to do about
668  /// it. NOTE: All indexed mode stores are initialized to Expand in
669  /// TargetLowering.cpp
670  void setIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT,
671                             LegalizeAction Action) {
672    assert(VT < 32 && IdxMode <
673           sizeof(IndexedModeActions[1]) / sizeof(IndexedModeActions[1][0]) &&
674           "Table isn't big enough!");
675    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT*2);
676    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT*2;
677  }
678
679  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
680  /// promotion code defaults to trying a larger integer/fp until it can find
681  /// one that works.  If that default is insufficient, this method can be used
682  /// by the target to override the default.
683  void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT,
684                         MVT::ValueType DestVT) {
685    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
686  }
687
688  /// addLegalFPImmediate - Indicate that this target can instruction select
689  /// the specified FP immediate natively.
690  void addLegalFPImmediate(double Imm) {
691    LegalFPImmediates.push_back(Imm);
692  }
693
694  /// setTargetDAGCombine - Targets should invoke this method for each target
695  /// independent node that they want to provide a custom DAG combiner for by
696  /// implementing the PerformDAGCombine virtual method.
697  void setTargetDAGCombine(ISD::NodeType NT) {
698    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
699  }
700
701  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
702  /// bytes); default is 200
703  void setJumpBufSize(unsigned Size) {
704    JumpBufSize = Size;
705  }
706
707  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
708  /// alignment (in bytes); default is 0
709  void setJumpBufAlignment(unsigned Align) {
710    JumpBufAlignment = Align;
711  }
712
713public:
714
715  //===--------------------------------------------------------------------===//
716  // Lowering methods - These methods must be implemented by targets so that
717  // the SelectionDAGLowering code knows how to lower these.
718  //
719
720  /// LowerArguments - This hook must be implemented to indicate how we should
721  /// lower the arguments for the specified function, into the specified DAG.
722  virtual std::vector<SDOperand>
723  LowerArguments(Function &F, SelectionDAG &DAG);
724
725  /// LowerCallTo - This hook lowers an abstract call to a function into an
726  /// actual call.  This returns a pair of operands.  The first element is the
727  /// return value for the function (if RetTy is not VoidTy).  The second
728  /// element is the outgoing token chain.
729  struct ArgListEntry {
730    SDOperand Node;
731    const Type* Ty;
732    bool isSigned;
733    bool isInReg;
734    bool isSRet;
735
736    ArgListEntry():isSigned(false), isInReg(false), isSRet(false) { };
737  };
738  typedef std::vector<ArgListEntry> ArgListTy;
739  virtual std::pair<SDOperand, SDOperand>
740  LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetTyIsSigned,
741              bool isVarArg, unsigned CallingConv, bool isTailCall,
742              SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
743
744  /// LowerOperation - This callback is invoked for operations that are
745  /// unsupported by the target, which are registered to use 'custom' lowering,
746  /// and whose defined values are all legal.
747  /// If the target has no operations that require custom lowering, it need not
748  /// implement this.  The default implementation of this aborts.
749  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
750
751  /// CustomPromoteOperation - This callback is invoked for operations that are
752  /// unsupported by the target, are registered to use 'custom' lowering, and
753  /// whose type needs to be promoted.
754  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
755
756  /// getTargetNodeName() - This method returns the name of a target specific
757  /// DAG node.
758  virtual const char *getTargetNodeName(unsigned Opcode) const;
759
760  //===--------------------------------------------------------------------===//
761  // Inline Asm Support hooks
762  //
763
764  enum ConstraintType {
765    C_Register,            // Constraint represents a single register.
766    C_RegisterClass,       // Constraint represents one or more registers.
767    C_Memory,              // Memory constraint.
768    C_Other,               // Something else.
769    C_Unknown              // Unsupported constraint.
770  };
771
772  /// getConstraintType - Given a constraint letter, return the type of
773  /// constraint it is for this target.
774  virtual ConstraintType getConstraintType(char ConstraintLetter) const;
775
776
777  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
778  /// return a list of registers that can be used to satisfy the constraint.
779  /// This should only be used for C_RegisterClass constraints.
780  virtual std::vector<unsigned>
781  getRegClassForInlineAsmConstraint(const std::string &Constraint,
782                                    MVT::ValueType VT) const;
783
784  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
785  /// {edx}), return the register number and the register class for the
786  /// register.
787  ///
788  /// Given a register class constraint, like 'r', if this corresponds directly
789  /// to an LLVM register class, return a register of 0 and the register class
790  /// pointer.
791  ///
792  /// This should only be used for C_Register constraints.  On error,
793  /// this returns a register number of 0 and a null register class pointer..
794  virtual std::pair<unsigned, const TargetRegisterClass*>
795    getRegForInlineAsmConstraint(const std::string &Constraint,
796                                 MVT::ValueType VT) const;
797
798
799  /// isOperandValidForConstraint - Return the specified operand (possibly
800  /// modified) if the specified SDOperand is valid for the specified target
801  /// constraint letter, otherwise return null.
802  virtual SDOperand
803    isOperandValidForConstraint(SDOperand Op, char ConstraintLetter,
804                                SelectionDAG &DAG);
805
806  //===--------------------------------------------------------------------===//
807  // Scheduler hooks
808  //
809
810  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
811  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
812  // instructions are special in various ways, which require special support to
813  // insert.  The specified MachineInstr is created but not inserted into any
814  // basic blocks, and the scheduler passes ownership of it to this method.
815  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
816                                                     MachineBasicBlock *MBB);
817
818  //===--------------------------------------------------------------------===//
819  // Loop Strength Reduction hooks
820  //
821
822  /// isLegalAddressImmediate - Return true if the integer value or GlobalValue
823  /// can be used as the offset of the target addressing mode.
824  virtual bool isLegalAddressImmediate(int64_t V) const;
825  virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
826
827  typedef std::vector<unsigned>::const_iterator legal_am_scale_iterator;
828  legal_am_scale_iterator legal_am_scale_begin() const {
829    return LegalAddressScales.begin();
830  }
831  legal_am_scale_iterator legal_am_scale_end() const {
832    return LegalAddressScales.end();
833  }
834
835  //===--------------------------------------------------------------------===//
836  // Div utility functions
837  //
838  SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG,
839		      std::vector<SDNode*>* Created) const;
840  SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG,
841		      std::vector<SDNode*>* Created) const;
842
843
844  //===--------------------------------------------------------------------===//
845  // Runtime Library hooks
846  //
847
848  /// setLibcallName - Rename the default libcall routine name for the specified
849  /// libcall.
850  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
851    LibcallRoutineNames[Call] = Name;
852  }
853
854  /// getLibcallName - Get the libcall routine name for the specified libcall.
855  ///
856  const char *getLibcallName(RTLIB::Libcall Call) const {
857    return LibcallRoutineNames[Call];
858  }
859
860  /// setCmpLibcallCC - Override the default CondCode to be used to test the
861  /// result of the comparison libcall against zero.
862  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
863    CmpLibcallCCs[Call] = CC;
864  }
865
866  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
867  /// the comparison libcall against zero.
868  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
869    return CmpLibcallCCs[Call];
870  }
871
872protected:
873  /// addLegalAddressScale - Add a integer (> 1) value which can be used as
874  /// scale in the target addressing mode. Note: the ordering matters so the
875  /// least efficient ones should be entered first.
876  void addLegalAddressScale(unsigned Scale) {
877    LegalAddressScales.push_back(Scale);
878  }
879
880private:
881  std::vector<unsigned> LegalAddressScales;
882
883  TargetMachine &TM;
884  const TargetData *TD;
885
886  /// IsLittleEndian - True if this is a little endian target.
887  ///
888  bool IsLittleEndian;
889
890  /// PointerTy - The type to use for pointers, usually i32 or i64.
891  ///
892  MVT::ValueType PointerTy;
893
894  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
895  ///
896  bool UsesGlobalOffsetTable;
897
898  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
899  /// PointerTy is.
900  MVT::ValueType ShiftAmountTy;
901
902  OutOfRangeShiftAmount ShiftAmtHandling;
903
904  /// SelectIsExpensive - Tells the code generator not to expand operations
905  /// into sequences that use the select operations if possible.
906  bool SelectIsExpensive;
907
908  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
909  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
910  /// a real cost model is in place.  If we ever optimize for size, this will be
911  /// set to true unconditionally.
912  bool IntDivIsCheap;
913
914  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
915  /// srl/add/sra for a signed divide by power of two, and let the target handle
916  /// it.
917  bool Pow2DivIsCheap;
918
919  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
920  /// PointerTy.
921  MVT::ValueType SetCCResultTy;
922
923  /// SetCCResultContents - Information about the contents of the high-bits in
924  /// the result of a setcc comparison operation.
925  SetCCResultValue SetCCResultContents;
926
927  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
928  /// total cycles or lowest register usage.
929  SchedPreference SchedPreferenceInfo;
930
931  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
932  /// llvm.setjmp.  Defaults to false.
933  bool UseUnderscoreSetJmp;
934
935  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
936  /// llvm.longjmp.  Defaults to false.
937  bool UseUnderscoreLongJmp;
938
939  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
940  unsigned JumpBufSize;
941
942  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
943  /// buffers
944  unsigned JumpBufAlignment;
945
946  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
947  /// specifies the register that llvm.savestack/llvm.restorestack should save
948  /// and restore.
949  unsigned StackPointerRegisterToSaveRestore;
950
951  /// RegClassForVT - This indicates the default register class to use for
952  /// each ValueType the target supports natively.
953  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
954  unsigned char NumElementsForVT[MVT::LAST_VALUETYPE];
955
956  /// TransformToType - For any value types we are promoting or expanding, this
957  /// contains the value type that we are changing to.  For Expanded types, this
958  /// contains one step of the expand (e.g. i64 -> i32), even if there are
959  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
960  /// by the system, this holds the same type (e.g. i32 -> i32).
961  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
962
963  /// OpActions - For each operation and each value type, keep a LegalizeAction
964  /// that indicates how instruction selection should deal with the operation.
965  /// Most operations are Legal (aka, supported natively by the target), but
966  /// operations that are not should be described.  Note that operations on
967  /// non-legal value types are not described here.
968  uint64_t OpActions[156];
969
970  /// LoadXActions - For each load of load extension type and each value type,
971  /// keep a LegalizeAction that indicates how instruction selection should deal
972  /// with the load.
973  uint64_t LoadXActions[ISD::LAST_LOADX_TYPE];
974
975  /// StoreXActions - For each store with truncation of each value type, keep a
976  /// LegalizeAction that indicates how instruction selection should deal with
977  /// the store.
978  uint64_t StoreXActions;
979
980  /// IndexedModeActions - For each indexed mode and each value type, keep a
981  /// pair of LegalizeAction that indicates how instruction selection should
982  /// deal with the load / store.
983  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
984
985  ValueTypeActionImpl ValueTypeActions;
986
987  std::vector<double> LegalFPImmediates;
988
989  std::vector<std::pair<MVT::ValueType,
990                        TargetRegisterClass*> > AvailableRegClasses;
991
992  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
993  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
994  /// which sets a bit in this array.
995  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
996
997  /// PromoteToType - For operations that must be promoted to a specific type,
998  /// this holds the destination type.  This map should be sparse, so don't hold
999  /// it as an array.
1000  ///
1001  /// Targets add entries to this map with AddPromotedToType(..), clients access
1002  /// this with getTypeToPromoteTo(..).
1003  std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
1004
1005  /// LibcallRoutineNames - Stores the name each libcall.
1006  ///
1007  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1008
1009  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1010  /// of each of the comparison libcall against zero.
1011  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1012
1013protected:
1014  /// When lowering %llvm.memset this field specifies the maximum number of
1015  /// store operations that may be substituted for the call to memset. Targets
1016  /// must set this value based on the cost threshold for that target. Targets
1017  /// should assume that the memset will be done using as many of the largest
1018  /// store operations first, followed by smaller ones, if necessary, per
1019  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1020  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1021  /// store.  This only applies to setting a constant array of a constant size.
1022  /// @brief Specify maximum number of store instructions per memset call.
1023  unsigned maxStoresPerMemset;
1024
1025  /// When lowering %llvm.memcpy this field specifies the maximum number of
1026  /// store operations that may be substituted for a call to memcpy. Targets
1027  /// must set this value based on the cost threshold for that target. Targets
1028  /// should assume that the memcpy will be done using as many of the largest
1029  /// store operations first, followed by smaller ones, if necessary, per
1030  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1031  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1032  /// and one 1-byte store. This only applies to copying a constant array of
1033  /// constant size.
1034  /// @brief Specify maximum bytes of store instructions per memcpy call.
1035  unsigned maxStoresPerMemcpy;
1036
1037  /// When lowering %llvm.memmove this field specifies the maximum number of
1038  /// store instructions that may be substituted for a call to memmove. Targets
1039  /// must set this value based on the cost threshold for that target. Targets
1040  /// should assume that the memmove will be done using as many of the largest
1041  /// store operations first, followed by smaller ones, if necessary, per
1042  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1043  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1044  /// applies to copying a constant array of constant size.
1045  /// @brief Specify maximum bytes of store instructions per memmove call.
1046  unsigned maxStoresPerMemmove;
1047
1048  /// This field specifies whether the target machine permits unaligned memory
1049  /// accesses.  This is used, for example, to determine the size of store
1050  /// operations when copying small arrays and other similar tasks.
1051  /// @brief Indicate whether the target permits unaligned memory accesses.
1052  bool allowUnalignedMemoryAccesses;
1053};
1054} // end llvm namespace
1055
1056#endif
1057