TargetLowering.h revision bc9ae377d9880a0257b9a5aaeac9b1691cc47398
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/Type.h"
26#include "llvm/CodeGen/ValueTypes.h"
27#include "llvm/Support/DataTypes.h"
28#include <vector>
29
30namespace llvm {
31  class Value;
32  class Function;
33  class TargetMachine;
34  class TargetData;
35  class TargetRegisterClass;
36  class SDNode;
37  class SDOperand;
38  class SelectionDAG;
39  class MachineBasicBlock;
40  class MachineInstr;
41
42//===----------------------------------------------------------------------===//
43/// TargetLowering - This class defines information used to lower LLVM code to
44/// legal SelectionDAG operators that the target instruction selector can accept
45/// natively.
46///
47/// This class also defines callbacks that targets must implement to lower
48/// target-specific constructs to SelectionDAG operators.
49///
50class TargetLowering {
51public:
52  /// LegalizeAction - This enum indicates whether operations are valid for a
53  /// target, and if not, what action should be used to make them valid.
54  enum LegalizeAction {
55    Legal,      // The target natively supports this operation.
56    Promote,    // This operation should be executed in a larger type.
57    Expand,     // Try to expand this to other ops, otherwise use a libcall.
58    Custom,     // Use the LowerOperation hook to implement custom lowering.
59  };
60
61  enum OutOfRangeShiftAmount {
62    Undefined,  // Oversized shift amounts are undefined (default).
63    Mask,       // Shift amounts are auto masked (anded) to value size.
64    Extend,     // Oversized shift pulls in zeros or sign bits.
65  };
66
67  enum SetCCResultValue {
68    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
69    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
70    ZeroOrNegativeOneSetCCResult,  // SetCC returns a sign extended result.
71  };
72
73  enum SchedPreference {
74    SchedulingForLatency,          // Scheduling for shortest total latency.
75    SchedulingForRegPressure,      // Scheduling for lowest register pressure.
76  };
77
78  TargetLowering(TargetMachine &TM);
79  virtual ~TargetLowering();
80
81  TargetMachine &getTargetMachine() const { return TM; }
82  const TargetData &getTargetData() const { return TD; }
83
84  bool isLittleEndian() const { return IsLittleEndian; }
85  MVT::ValueType getPointerTy() const { return PointerTy; }
86  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
87  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
88
89  /// isSetCCExpensive - Return true if the setcc operation is expensive for
90  /// this target.
91  bool isSetCCExpensive() const { return SetCCIsExpensive; }
92
93  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
94  /// a sequence of several shifts, adds, and multiplies for this target.
95  bool isIntDivCheap() const { return IntDivIsCheap; }
96
97  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
98  /// srl/add/sra.
99  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
100
101  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
102  ///
103  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
104
105  /// getSetCCResultContents - For targets without boolean registers, this flag
106  /// returns information about the contents of the high-bits in the setcc
107  /// result register.
108  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
109
110  /// getSchedulingPreference - Return target scheduling preference.
111  SchedPreference getSchedulingPreference() const {
112    return SchedPreferenceInfo;
113  }
114
115  /// getRegClassFor - Return the register class that should be used for the
116  /// specified value type.  This may only be called on legal types.
117  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
118    TargetRegisterClass *RC = RegClassForVT[VT];
119    assert(RC && "This value type is not natively supported!");
120    return RC;
121  }
122
123  /// isTypeLegal - Return true if the target has native support for the
124  /// specified value type.  This means that it has a register that directly
125  /// holds it without promotions or expansions.
126  bool isTypeLegal(MVT::ValueType VT) const {
127    return RegClassForVT[VT] != 0;
128  }
129
130  /// getTypeAction - Return how we should legalize values of this type, either
131  /// it is already legal (return 'Legal') or we need to promote it to a larger
132  /// type (return 'Promote'), or we need to expand it into multiple registers
133  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
134  LegalizeAction getTypeAction(MVT::ValueType VT) const {
135    return (LegalizeAction)((ValueTypeActions >> (2*VT)) & 3);
136  }
137  unsigned long long getValueTypeActions() const { return ValueTypeActions; }
138
139  /// getTypeToTransformTo - For types supported by the target, this is an
140  /// identity function.  For types that must be promoted to larger types, this
141  /// returns the larger type to promote to.  For types that are larger than the
142  /// largest integer register, this contains one step in the expansion to get
143  /// to the smaller register.
144  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
145    return TransformToType[VT];
146  }
147
148  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
149  legal_fpimm_iterator legal_fpimm_begin() const {
150    return LegalFPImmediates.begin();
151  }
152  legal_fpimm_iterator legal_fpimm_end() const {
153    return LegalFPImmediates.end();
154  }
155
156  /// getOperationAction - Return how this operation should be treated: either
157  /// it is legal, needs to be promoted to a larger size, needs to be
158  /// expanded to some other code sequence, or the target has a custom expander
159  /// for it.
160  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
161    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
162  }
163
164  /// isOperationLegal - Return true if the specified operation is legal on this
165  /// target.
166  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
167    return getOperationAction(Op, VT) == Legal;
168  }
169
170  /// getTypeToPromoteTo - If the action for this operation is to promote, this
171  /// method returns the ValueType to promote to.
172  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
173    assert(getOperationAction(Op, VT) == Promote &&
174           "This operation isn't promoted!");
175    MVT::ValueType NVT = VT;
176    do {
177      NVT = (MVT::ValueType)(NVT+1);
178      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
179             "Didn't find type to promote to!");
180    } while (!isTypeLegal(NVT) ||
181              getOperationAction(Op, NVT) == Promote);
182    return NVT;
183  }
184
185  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
186  /// This is fixed by the LLVM operations except for the pointer size.
187  MVT::ValueType getValueType(const Type *Ty) const {
188    switch (Ty->getTypeID()) {
189    default: assert(0 && "Unknown type!");
190    case Type::VoidTyID:    return MVT::isVoid;
191    case Type::BoolTyID:    return MVT::i1;
192    case Type::UByteTyID:
193    case Type::SByteTyID:   return MVT::i8;
194    case Type::ShortTyID:
195    case Type::UShortTyID:  return MVT::i16;
196    case Type::IntTyID:
197    case Type::UIntTyID:    return MVT::i32;
198    case Type::LongTyID:
199    case Type::ULongTyID:   return MVT::i64;
200    case Type::FloatTyID:   return MVT::f32;
201    case Type::DoubleTyID:  return MVT::f64;
202    case Type::PointerTyID: return PointerTy;
203    case Type::PackedTyID:  return MVT::Vector;
204    }
205  }
206
207  /// getNumElements - Return the number of registers that this ValueType will
208  /// eventually require.  This is always one for all non-integer types, is
209  /// one for any types promoted to live in larger registers, but may be more
210  /// than one for types (like i64) that are split into pieces.
211  unsigned getNumElements(MVT::ValueType VT) const {
212    return NumElementsForVT[VT];
213  }
214
215  /// This function returns the maximum number of store operations permitted
216  /// to replace a call to llvm.memset. The value is set by the target at the
217  /// performance threshold for such a replacement.
218  /// @brief Get maximum # of store operations permitted for llvm.memset
219  unsigned getMaxStoresPerMemSet() const { return maxStoresPerMemSet; }
220
221  /// This function returns the maximum number of store operations permitted
222  /// to replace a call to llvm.memcpy. The value is set by the target at the
223  /// performance threshold for such a replacement.
224  /// @brief Get maximum # of store operations permitted for llvm.memcpy
225  unsigned getMaxStoresPerMemCpy() const { return maxStoresPerMemCpy; }
226
227  /// This function returns the maximum number of store operations permitted
228  /// to replace a call to llvm.memmove. The value is set by the target at the
229  /// performance threshold for such a replacement.
230  /// @brief Get maximum # of store operations permitted for llvm.memmove
231  unsigned getMaxStoresPerMemMove() const { return maxStoresPerMemMove; }
232
233  /// This function returns true if the target allows unaligned memory accesses.
234  /// This is used, for example, in situations where an array copy/move/set is
235  /// converted to a sequence of store operations. It's use helps to ensure that
236  /// such replacements don't generate code that causes an alignment error
237  /// (trap) on the target machine.
238  /// @brief Determine if the target supports unaligned memory accesses.
239  bool allowsUnalignedMemoryAccesses() const
240    { return allowUnalignedMemoryAccesses; }
241
242  /// usesUnderscoreSetJmpLongJmp - Determine if we should use _setjmp or setjmp
243  /// to implement llvm.setjmp.
244  bool usesUnderscoreSetJmpLongJmp() const {
245    return UseUnderscoreSetJmpLongJmp;
246  }
247
248  /// getStackPointerRegisterToSaveRestore - If a physical register, this
249  /// specifies the register that llvm.savestack/llvm.restorestack should save
250  /// and restore.
251  unsigned getStackPointerRegisterToSaveRestore() const {
252    return StackPointerRegisterToSaveRestore;
253  }
254
255  //===--------------------------------------------------------------------===//
256  // TargetLowering Configuration Methods - These methods should be invoked by
257  // the derived class constructor to configure this object for the target.
258  //
259
260protected:
261
262  /// setShiftAmountType - Describe the type that should be used for shift
263  /// amounts.  This type defaults to the pointer type.
264  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
265
266  /// setSetCCResultType - Describe the type that shoudl be used as the result
267  /// of a setcc operation.  This defaults to the pointer type.
268  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
269
270  /// setSetCCResultContents - Specify how the target extends the result of a
271  /// setcc operation in a register.
272  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
273
274  /// setSchedulingPreference - Specify the target scheduling preference.
275  void setSchedulingPreference(SchedPreference Pref) {
276    SchedPreferenceInfo = Pref;
277  }
278
279  /// setShiftAmountFlavor - Describe how the target handles out of range shift
280  /// amounts.
281  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
282    ShiftAmtHandling = OORSA;
283  }
284
285  /// setUseUnderscoreSetJmpLongJmp - Indicate whether this target prefers to
286  /// use _setjmp and _longjmp to or implement llvm.setjmp/llvm.longjmp or
287  /// the non _ versions.  Defaults to false.
288  void setUseUnderscoreSetJmpLongJmp(bool Val) {
289    UseUnderscoreSetJmpLongJmp = Val;
290  }
291
292  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
293  /// specifies the register that llvm.savestack/llvm.restorestack should save
294  /// and restore.
295  void setStackPointerRegisterToSaveRestore(unsigned R) {
296    StackPointerRegisterToSaveRestore = R;
297  }
298
299  /// setSetCCIxExpensive - This is a short term hack for targets that codegen
300  /// setcc as a conditional branch.  This encourages the code generator to fold
301  /// setcc operations into other operations if possible.
302  void setSetCCIsExpensive() { SetCCIsExpensive = true; }
303
304  /// setIntDivIsCheap - Tells the code generator that integer divide is
305  /// expensive, and if possible, should be replaced by an alternate sequence
306  /// of instructions not containing an integer divide.
307  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
308
309  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
310  /// srl/add/sra for a signed divide by power of two, and let the target handle
311  /// it.
312  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
313
314  /// addRegisterClass - Add the specified register class as an available
315  /// regclass for the specified value type.  This indicates the selector can
316  /// handle values of that class natively.
317  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
318    AvailableRegClasses.push_back(std::make_pair(VT, RC));
319    RegClassForVT[VT] = RC;
320  }
321
322  /// computeRegisterProperties - Once all of the register classes are added,
323  /// this allows us to compute derived properties we expose.
324  void computeRegisterProperties();
325
326  /// setOperationAction - Indicate that the specified operation does not work
327  /// with the specified type and indicate what to do about it.
328  void setOperationAction(unsigned Op, MVT::ValueType VT,
329                          LegalizeAction Action) {
330    assert(VT < 16 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
331           "Table isn't big enough!");
332    OpActions[Op] |= Action << VT*2;
333  }
334
335  /// addLegalFPImmediate - Indicate that this target can instruction select
336  /// the specified FP immediate natively.
337  void addLegalFPImmediate(double Imm) {
338    LegalFPImmediates.push_back(Imm);
339  }
340
341public:
342
343  //===--------------------------------------------------------------------===//
344  // Lowering methods - These methods must be implemented by targets so that
345  // the SelectionDAGLowering code knows how to lower these.
346  //
347
348  /// LowerArguments - This hook must be implemented to indicate how we should
349  /// lower the arguments for the specified function, into the specified DAG.
350  virtual std::vector<SDOperand>
351  LowerArguments(Function &F, SelectionDAG &DAG) = 0;
352
353  /// LowerCallTo - This hook lowers an abstract call to a function into an
354  /// actual call.  This returns a pair of operands.  The first element is the
355  /// return value for the function (if RetTy is not VoidTy).  The second
356  /// element is the outgoing token chain.
357  typedef std::vector<std::pair<SDOperand, const Type*> > ArgListTy;
358  virtual std::pair<SDOperand, SDOperand>
359  LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
360              unsigned CallingConv, bool isTailCall, SDOperand Callee,
361              ArgListTy &Args, SelectionDAG &DAG) = 0;
362
363  /// LowerReturnTo - This hook lowers a return instruction into the appropriate
364  /// legal ISD::RET node for the target's current ABI.  This method is optional
365  /// and is intended for targets that need non-standard behavior.
366  virtual SDOperand LowerReturnTo(SDOperand Chain, SDOperand Op,
367                                  SelectionDAG &DAG);
368
369  /// LowerFrameReturnAddress - This hook lowers a call to llvm.returnaddress or
370  /// llvm.frameaddress (depending on the value of the first argument).  The
371  /// return values are the result pointer and the resultant token chain.  If
372  /// not implemented, both of these intrinsics will return null.
373  virtual std::pair<SDOperand, SDOperand>
374  LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
375                          SelectionDAG &DAG);
376
377  /// LowerOperation - For operations that are unsupported by the target, and
378  /// which are registered to use 'custom' lowering.  This callback is invoked.
379  /// If the target has no operations that require custom lowering, it need not
380  /// implement this.  The default implementation of this aborts.
381  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
382
383  /// getTargetNodeName() - This method returns the name of a target specific
384  /// DAG node.
385  virtual const char *getTargetNodeName(unsigned Opcode) const;
386
387  /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
388  /// be zero. Op is expected to be a target specific node. Used by DAG
389  /// combiner.
390  virtual bool isMaskedValueZeroForTargetNode(const SDOperand &Op,
391                                              uint64_t Mask) const;
392
393  //===--------------------------------------------------------------------===//
394  // Inline Asm Support hooks
395  //
396
397  /// getRegForInlineAsmConstraint - Given a constraint letter or register
398  /// name (e.g. "r" or "edx"), return a list of registers that can be used to
399  /// satisfy the constraint.  If the constraint isn't supported, or isn't a
400  /// register constraint, return an empty list.
401  virtual std::vector<unsigned>
402  getRegForInlineAsmConstraint(const std::string &Constraint) const;
403
404  //===--------------------------------------------------------------------===//
405  // Scheduler hooks
406  //
407
408  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
409  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
410  // instructions are special in various ways, which require special support to
411  // insert.  The specified MachineInstr is created but not inserted into any
412  // basic blocks, and the scheduler passes ownership of it to this method.
413  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
414                                                     MachineBasicBlock *MBB);
415
416private:
417  TargetMachine &TM;
418  const TargetData &TD;
419
420  /// IsLittleEndian - True if this is a little endian target.
421  ///
422  bool IsLittleEndian;
423
424  /// PointerTy - The type to use for pointers, usually i32 or i64.
425  ///
426  MVT::ValueType PointerTy;
427
428  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
429  /// PointerTy is.
430  MVT::ValueType ShiftAmountTy;
431
432  OutOfRangeShiftAmount ShiftAmtHandling;
433
434  /// SetCCIsExpensive - This is a short term hack for targets that codegen
435  /// setcc as a conditional branch.  This encourages the code generator to fold
436  /// setcc operations into other operations if possible.
437  bool SetCCIsExpensive;
438
439  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
440  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
441  /// a real cost model is in place.  If we ever optimize for size, this will be
442  /// set to true unconditionally.
443  bool IntDivIsCheap;
444
445  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
446  /// srl/add/sra for a signed divide by power of two, and let the target handle
447  /// it.
448  bool Pow2DivIsCheap;
449
450  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
451  /// PointerTy.
452  MVT::ValueType SetCCResultTy;
453
454  /// SetCCResultContents - Information about the contents of the high-bits in
455  /// the result of a setcc comparison operation.
456  SetCCResultValue SetCCResultContents;
457
458  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
459  /// total cycles or lowest register usage.
460  SchedPreference SchedPreferenceInfo;
461
462  /// UseUnderscoreSetJmpLongJmp - This target prefers to use _setjmp and
463  /// _longjmp to implement llvm.setjmp/llvm.longjmp.  Defaults to false.
464  bool UseUnderscoreSetJmpLongJmp;
465
466  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
467  /// specifies the register that llvm.savestack/llvm.restorestack should save
468  /// and restore.
469  unsigned StackPointerRegisterToSaveRestore;
470
471  /// RegClassForVT - This indicates the default register class to use for
472  /// each ValueType the target supports natively.
473  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
474  unsigned char NumElementsForVT[MVT::LAST_VALUETYPE];
475
476  /// ValueTypeActions - This is a bitvector that contains two bits for each
477  /// value type, where the two bits correspond to the LegalizeAction enum.
478  /// This can be queried with "getTypeAction(VT)".
479  unsigned long long ValueTypeActions;
480
481  /// TransformToType - For any value types we are promoting or expanding, this
482  /// contains the value type that we are changing to.  For Expanded types, this
483  /// contains one step of the expand (e.g. i64 -> i32), even if there are
484  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
485  /// by the system, this holds the same type (e.g. i32 -> i32).
486  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
487
488  /// OpActions - For each operation and each value type, keep a LegalizeAction
489  /// that indicates how instruction selection should deal with the operation.
490  /// Most operations are Legal (aka, supported natively by the target), but
491  /// operations that are not should be described.  Note that operations on
492  /// non-legal value types are not described here.
493  unsigned OpActions[128];
494
495  std::vector<double> LegalFPImmediates;
496
497  std::vector<std::pair<MVT::ValueType,
498                        TargetRegisterClass*> > AvailableRegClasses;
499
500protected:
501  /// When lowering %llvm.memset this field specifies the maximum number of
502  /// store operations that may be substituted for the call to memset. Targets
503  /// must set this value based on the cost threshold for that target. Targets
504  /// should assume that the memset will be done using as many of the largest
505  /// store operations first, followed by smaller ones, if necessary, per
506  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
507  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
508  /// store.  This only applies to setting a constant array of a constant size.
509  /// @brief Specify maximum number of store instructions per memset call.
510  unsigned maxStoresPerMemSet;
511
512  /// When lowering %llvm.memcpy this field specifies the maximum number of
513  /// store operations that may be substituted for a call to memcpy. Targets
514  /// must set this value based on the cost threshold for that target. Targets
515  /// should assume that the memcpy will be done using as many of the largest
516  /// store operations first, followed by smaller ones, if necessary, per
517  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
518  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
519  /// and one 1-byte store. This only applies to copying a constant array of
520  /// constant size.
521  /// @brief Specify maximum bytes of store instructions per memcpy call.
522  unsigned maxStoresPerMemCpy;
523
524  /// When lowering %llvm.memmove this field specifies the maximum number of
525  /// store instructions that may be substituted for a call to memmove. Targets
526  /// must set this value based on the cost threshold for that target. Targets
527  /// should assume that the memmove will be done using as many of the largest
528  /// store operations first, followed by smaller ones, if necessary, per
529  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
530  /// with 8-bit alignment would result in nine 1-byte stores.  This only
531  /// applies to copying a constant array of constant size.
532  /// @brief Specify maximum bytes of store instructions per memmove call.
533  unsigned maxStoresPerMemMove;
534
535  /// This field specifies whether the target machine permits unaligned memory
536  /// accesses.  This is used, for example, to determine the size of store
537  /// operations when copying small arrays and other similar tasks.
538  /// @brief Indicate whether the target permits unaligned memory accesses.
539  bool allowUnalignedMemoryAccesses;
540};
541} // end llvm namespace
542
543#endif
544