TargetLowering.h revision c45420ddd2db5200426fa4d8b9b4edaeffe01cc5
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/Type.h"
26#include "llvm/CodeGen/SelectionDAGNodes.h"
27#include <map>
28
29namespace llvm {
30  class Value;
31  class Function;
32  class TargetMachine;
33  class TargetData;
34  class TargetRegisterClass;
35  class SDNode;
36  class SDOperand;
37  class SelectionDAG;
38  class MachineBasicBlock;
39  class MachineInstr;
40
41//===----------------------------------------------------------------------===//
42/// TargetLowering - This class defines information used to lower LLVM code to
43/// legal SelectionDAG operators that the target instruction selector can accept
44/// natively.
45///
46/// This class also defines callbacks that targets must implement to lower
47/// target-specific constructs to SelectionDAG operators.
48///
49class TargetLowering {
50public:
51  /// LegalizeAction - This enum indicates whether operations are valid for a
52  /// target, and if not, what action should be used to make them valid.
53  enum LegalizeAction {
54    Legal,      // The target natively supports this operation.
55    Promote,    // This operation should be executed in a larger type.
56    Expand,     // Try to expand this to other ops, otherwise use a libcall.
57    Custom      // Use the LowerOperation hook to implement custom lowering.
58  };
59
60  enum OutOfRangeShiftAmount {
61    Undefined,  // Oversized shift amounts are undefined (default).
62    Mask,       // Shift amounts are auto masked (anded) to value size.
63    Extend      // Oversized shift pulls in zeros or sign bits.
64  };
65
66  enum SetCCResultValue {
67    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
68    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
69    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
70  };
71
72  enum SchedPreference {
73    SchedulingForLatency,          // Scheduling for shortest total latency.
74    SchedulingForRegPressure       // Scheduling for lowest register pressure.
75  };
76
77  TargetLowering(TargetMachine &TM);
78  virtual ~TargetLowering();
79
80  TargetMachine &getTargetMachine() const { return TM; }
81  const TargetData &getTargetData() const { return TD; }
82
83  bool isLittleEndian() const { return IsLittleEndian; }
84  MVT::ValueType getPointerTy() const { return PointerTy; }
85  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
86  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
87
88  /// isSetCCExpensive - Return true if the setcc operation is expensive for
89  /// this target.
90  bool isSetCCExpensive() const { return SetCCIsExpensive; }
91
92  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
93  /// a sequence of several shifts, adds, and multiplies for this target.
94  bool isIntDivCheap() const { return IntDivIsCheap; }
95
96  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
97  /// srl/add/sra.
98  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
99
100  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
101  ///
102  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
103
104  /// getSetCCResultContents - For targets without boolean registers, this flag
105  /// returns information about the contents of the high-bits in the setcc
106  /// result register.
107  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
108
109  /// getSchedulingPreference - Return target scheduling preference.
110  SchedPreference getSchedulingPreference() const {
111    return SchedPreferenceInfo;
112  }
113
114  /// getRegClassFor - Return the register class that should be used for the
115  /// specified value type.  This may only be called on legal types.
116  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
117    TargetRegisterClass *RC = RegClassForVT[VT];
118    assert(RC && "This value type is not natively supported!");
119    return RC;
120  }
121
122  /// isTypeLegal - Return true if the target has native support for the
123  /// specified value type.  This means that it has a register that directly
124  /// holds it without promotions or expansions.
125  bool isTypeLegal(MVT::ValueType VT) const {
126    return RegClassForVT[VT] != 0;
127  }
128
129  class ValueTypeActionImpl {
130    /// ValueTypeActions - This is a bitvector that contains two bits for each
131    /// value type, where the two bits correspond to the LegalizeAction enum.
132    /// This can be queried with "getTypeAction(VT)".
133    uint32_t ValueTypeActions[2];
134  public:
135    ValueTypeActionImpl() {
136      ValueTypeActions[0] = ValueTypeActions[1] = 0;
137    }
138    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
139      ValueTypeActions[0] = RHS.ValueTypeActions[0];
140      ValueTypeActions[1] = RHS.ValueTypeActions[1];
141    }
142
143    LegalizeAction getTypeAction(MVT::ValueType VT) const {
144      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
145    }
146    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
147      assert(unsigned(VT >> 4) <
148             sizeof(ValueTypeActions)/sizeof(ValueTypeActions[0]));
149      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
150    }
151  };
152
153  const ValueTypeActionImpl &getValueTypeActions() const {
154    return ValueTypeActions;
155  }
156
157  /// getTypeAction - Return how we should legalize values of this type, either
158  /// it is already legal (return 'Legal') or we need to promote it to a larger
159  /// type (return 'Promote'), or we need to expand it into multiple registers
160  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
161  LegalizeAction getTypeAction(MVT::ValueType VT) const {
162    return ValueTypeActions.getTypeAction(VT);
163  }
164
165  /// getTypeToTransformTo - For types supported by the target, this is an
166  /// identity function.  For types that must be promoted to larger types, this
167  /// returns the larger type to promote to.  For types that are larger than the
168  /// largest integer register, this contains one step in the expansion to get
169  /// to the smaller register.
170  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
171    return TransformToType[VT];
172  }
173
174  /// getPackedTypeBreakdown - Packed types are broken down into some number of
175  /// legal scalar types.  For example, <8 x float> maps to 2 MVT::v2f32 values
176  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
177  /// Similarly, <2 x long> turns into 4 MVT::i32 values with both PPC and X86.
178  ///
179  /// This method returns the number of registers needed, and the VT for each
180  /// register.  It also returns the VT of the PackedType elements before they
181  /// are promoted/expanded.
182  ///
183  unsigned getPackedTypeBreakdown(const PackedType *PTy,
184                                  MVT::ValueType &PTyElementVT,
185                                  MVT::ValueType &PTyLegalElementVT) const;
186
187  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
188  legal_fpimm_iterator legal_fpimm_begin() const {
189    return LegalFPImmediates.begin();
190  }
191  legal_fpimm_iterator legal_fpimm_end() const {
192    return LegalFPImmediates.end();
193  }
194
195  /// isShuffleMaskLegal - Targets can use this to indicate that they only
196  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
197  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
198  /// are assumed to be legal.
199  virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
200    return true;
201  }
202
203  /// getOperationAction - Return how this operation should be treated: either
204  /// it is legal, needs to be promoted to a larger size, needs to be
205  /// expanded to some other code sequence, or the target has a custom expander
206  /// for it.
207  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
208    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
209  }
210
211  /// isOperationLegal - Return true if the specified operation is legal on this
212  /// target.
213  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
214    return getOperationAction(Op, VT) == Legal ||
215           getOperationAction(Op, VT) == Custom;
216  }
217
218  /// getTypeToPromoteTo - If the action for this operation is to promote, this
219  /// method returns the ValueType to promote to.
220  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
221    assert(getOperationAction(Op, VT) == Promote &&
222           "This operation isn't promoted!");
223
224    // See if this has an explicit type specified.
225    std::map<std::pair<unsigned, MVT::ValueType>,
226             MVT::ValueType>::const_iterator PTTI =
227      PromoteToType.find(std::make_pair(Op, VT));
228    if (PTTI != PromoteToType.end()) return PTTI->second;
229
230    assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
231           "Cannot autopromote this type, add it with AddPromotedToType.");
232
233    MVT::ValueType NVT = VT;
234    do {
235      NVT = (MVT::ValueType)(NVT+1);
236      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
237             "Didn't find type to promote to!");
238    } while (!isTypeLegal(NVT) ||
239              getOperationAction(Op, NVT) == Promote);
240    return NVT;
241  }
242
243  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
244  /// This is fixed by the LLVM operations except for the pointer size.
245  MVT::ValueType getValueType(const Type *Ty) const {
246    switch (Ty->getTypeID()) {
247    default: assert(0 && "Unknown type!");
248    case Type::VoidTyID:    return MVT::isVoid;
249    case Type::BoolTyID:    return MVT::i1;
250    case Type::UByteTyID:
251    case Type::SByteTyID:   return MVT::i8;
252    case Type::ShortTyID:
253    case Type::UShortTyID:  return MVT::i16;
254    case Type::IntTyID:
255    case Type::UIntTyID:    return MVT::i32;
256    case Type::LongTyID:
257    case Type::ULongTyID:   return MVT::i64;
258    case Type::FloatTyID:   return MVT::f32;
259    case Type::DoubleTyID:  return MVT::f64;
260    case Type::PointerTyID: return PointerTy;
261    case Type::PackedTyID:  return MVT::Vector;
262    }
263  }
264
265  /// getNumElements - Return the number of registers that this ValueType will
266  /// eventually require.  This is always one for all non-integer types, is
267  /// one for any types promoted to live in larger registers, but may be more
268  /// than one for types (like i64) that are split into pieces.
269  unsigned getNumElements(MVT::ValueType VT) const {
270    return NumElementsForVT[VT];
271  }
272
273  /// hasTargetDAGCombine - If true, the target has custom DAG combine
274  /// transformations that it can perform for the specified node.
275  bool hasTargetDAGCombine(ISD::NodeType NT) const {
276    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
277  }
278
279  /// This function returns the maximum number of store operations permitted
280  /// to replace a call to llvm.memset. The value is set by the target at the
281  /// performance threshold for such a replacement.
282  /// @brief Get maximum # of store operations permitted for llvm.memset
283  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
284
285  /// This function returns the maximum number of store operations permitted
286  /// to replace a call to llvm.memcpy. The value is set by the target at the
287  /// performance threshold for such a replacement.
288  /// @brief Get maximum # of store operations permitted for llvm.memcpy
289  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
290
291  /// This function returns the maximum number of store operations permitted
292  /// to replace a call to llvm.memmove. The value is set by the target at the
293  /// performance threshold for such a replacement.
294  /// @brief Get maximum # of store operations permitted for llvm.memmove
295  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
296
297  /// This function returns true if the target allows unaligned memory accesses.
298  /// This is used, for example, in situations where an array copy/move/set is
299  /// converted to a sequence of store operations. It's use helps to ensure that
300  /// such replacements don't generate code that causes an alignment error
301  /// (trap) on the target machine.
302  /// @brief Determine if the target supports unaligned memory accesses.
303  bool allowsUnalignedMemoryAccesses() const {
304    return allowUnalignedMemoryAccesses;
305  }
306
307  /// usesUnderscoreSetJmpLongJmp - Determine if we should use _setjmp or setjmp
308  /// to implement llvm.setjmp.
309  bool usesUnderscoreSetJmpLongJmp() const {
310    return UseUnderscoreSetJmpLongJmp;
311  }
312
313  /// getStackPointerRegisterToSaveRestore - If a physical register, this
314  /// specifies the register that llvm.savestack/llvm.restorestack should save
315  /// and restore.
316  unsigned getStackPointerRegisterToSaveRestore() const {
317    return StackPointerRegisterToSaveRestore;
318  }
319
320  //===--------------------------------------------------------------------===//
321  // TargetLowering Optimization Methods
322  //
323
324  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
325  /// SDOperands for returning information from TargetLowering to its clients
326  /// that want to combine
327  struct TargetLoweringOpt {
328    SelectionDAG &DAG;
329    SDOperand Old;
330    SDOperand New;
331
332    TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
333
334    bool CombineTo(SDOperand O, SDOperand N) {
335      Old = O;
336      New = N;
337      return true;
338    }
339
340    /// ShrinkDemandedConstant - Check to see if the specified operand of the
341    /// specified instruction is a constant integer.  If so, check to see if there
342    /// are any bits set in the constant that are not demanded.  If so, shrink the
343    /// constant and return true.
344    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
345  };
346
347  /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero.  We
348  /// use this predicate to simplify operations downstream.  Op and Mask are
349  /// known to be the same type.
350  bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0)
351    const;
352
353  /// ComputeMaskedBits - Determine which of the bits specified in Mask are
354  /// known to be either zero or one and return them in the KnownZero/KnownOne
355  /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
356  /// processing.  Targets can implement the computeMaskedBitsForTargetNode
357  /// method, to allow target nodes to be understood.
358  void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero,
359                         uint64_t &KnownOne, unsigned Depth = 0) const;
360
361  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
362  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
363  /// use this information to simplify Op, create a new simplified DAG node and
364  /// return true, returning the original and new nodes in Old and New.
365  /// Otherwise, analyze the expression and return a mask of KnownOne and
366  /// KnownZero bits for the expression (used to simplify the caller).
367  /// The KnownZero/One bits may only be accurate for those bits in the
368  /// DemandedMask.
369  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
370                            uint64_t &KnownZero, uint64_t &KnownOne,
371                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
372
373  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
374  /// Mask are known to be either zero or one and return them in the
375  /// KnownZero/KnownOne bitsets.
376  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
377                                              uint64_t Mask,
378                                              uint64_t &KnownZero,
379                                              uint64_t &KnownOne,
380                                              unsigned Depth = 0) const;
381
382  struct DAGCombinerInfo {
383    void *DC;  // The DAG Combiner object.
384    bool BeforeLegalize;
385  public:
386    SelectionDAG &DAG;
387
388    DAGCombinerInfo(SelectionDAG &dag, bool bl, void *dc)
389      : DC(dc), BeforeLegalize(bl), DAG(dag) {}
390
391    bool isBeforeLegalize() const { return BeforeLegalize; }
392
393    void AddToWorklist(SDNode *N);
394    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
395    SDOperand CombineTo(SDNode *N, SDOperand Res);
396    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
397  };
398
399  /// PerformDAGCombine - This method will be invoked for all target nodes and
400  /// for any target-independent nodes that the target has registered with
401  /// invoke it for.
402  ///
403  /// The semantics are as follows:
404  /// Return Value:
405  ///   SDOperand.Val == 0   - No change was made
406  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
407  ///   otherwise            - N should be replaced by the returned Operand.
408  ///
409  /// In addition, methods provided by DAGCombinerInfo may be used to perform
410  /// more complex transformations.
411  ///
412  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
413
414  //===--------------------------------------------------------------------===//
415  // TargetLowering Configuration Methods - These methods should be invoked by
416  // the derived class constructor to configure this object for the target.
417  //
418
419protected:
420
421  /// setShiftAmountType - Describe the type that should be used for shift
422  /// amounts.  This type defaults to the pointer type.
423  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
424
425  /// setSetCCResultType - Describe the type that shoudl be used as the result
426  /// of a setcc operation.  This defaults to the pointer type.
427  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
428
429  /// setSetCCResultContents - Specify how the target extends the result of a
430  /// setcc operation in a register.
431  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
432
433  /// setSchedulingPreference - Specify the target scheduling preference.
434  void setSchedulingPreference(SchedPreference Pref) {
435    SchedPreferenceInfo = Pref;
436  }
437
438  /// setShiftAmountFlavor - Describe how the target handles out of range shift
439  /// amounts.
440  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
441    ShiftAmtHandling = OORSA;
442  }
443
444  /// setUseUnderscoreSetJmpLongJmp - Indicate whether this target prefers to
445  /// use _setjmp and _longjmp to or implement llvm.setjmp/llvm.longjmp or
446  /// the non _ versions.  Defaults to false.
447  void setUseUnderscoreSetJmpLongJmp(bool Val) {
448    UseUnderscoreSetJmpLongJmp = Val;
449  }
450
451  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
452  /// specifies the register that llvm.savestack/llvm.restorestack should save
453  /// and restore.
454  void setStackPointerRegisterToSaveRestore(unsigned R) {
455    StackPointerRegisterToSaveRestore = R;
456  }
457
458  /// setSetCCIxExpensive - This is a short term hack for targets that codegen
459  /// setcc as a conditional branch.  This encourages the code generator to fold
460  /// setcc operations into other operations if possible.
461  void setSetCCIsExpensive() { SetCCIsExpensive = true; }
462
463  /// setIntDivIsCheap - Tells the code generator that integer divide is
464  /// expensive, and if possible, should be replaced by an alternate sequence
465  /// of instructions not containing an integer divide.
466  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
467
468  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
469  /// srl/add/sra for a signed divide by power of two, and let the target handle
470  /// it.
471  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
472
473  /// addRegisterClass - Add the specified register class as an available
474  /// regclass for the specified value type.  This indicates the selector can
475  /// handle values of that class natively.
476  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
477    AvailableRegClasses.push_back(std::make_pair(VT, RC));
478    RegClassForVT[VT] = RC;
479  }
480
481  /// computeRegisterProperties - Once all of the register classes are added,
482  /// this allows us to compute derived properties we expose.
483  void computeRegisterProperties();
484
485  /// setOperationAction - Indicate that the specified operation does not work
486  /// with the specified type and indicate what to do about it.
487  void setOperationAction(unsigned Op, MVT::ValueType VT,
488                          LegalizeAction Action) {
489    assert(VT < 32 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
490           "Table isn't big enough!");
491    OpActions[Op] &= ~(3ULL << VT*2);
492    OpActions[Op] |= (uint64_t)Action << VT*2;
493  }
494
495  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
496  /// promotion code defaults to trying a larger integer/fp until it can find
497  /// one that works.  If that default is insufficient, this method can be used
498  /// by the target to override the default.
499  void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT,
500                         MVT::ValueType DestVT) {
501    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
502  }
503
504  /// addLegalFPImmediate - Indicate that this target can instruction select
505  /// the specified FP immediate natively.
506  void addLegalFPImmediate(double Imm) {
507    LegalFPImmediates.push_back(Imm);
508  }
509
510  /// setTargetDAGCombine - Targets should invoke this method for each target
511  /// independent node that they want to provide a custom DAG combiner for by
512  /// implementing the PerformDAGCombine virtual method.
513  void setTargetDAGCombine(ISD::NodeType NT) {
514    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
515  }
516
517public:
518
519  //===--------------------------------------------------------------------===//
520  // Lowering methods - These methods must be implemented by targets so that
521  // the SelectionDAGLowering code knows how to lower these.
522  //
523
524  /// LowerArguments - This hook must be implemented to indicate how we should
525  /// lower the arguments for the specified function, into the specified DAG.
526  virtual std::vector<SDOperand>
527  LowerArguments(Function &F, SelectionDAG &DAG) = 0;
528
529  /// LowerCallTo - This hook lowers an abstract call to a function into an
530  /// actual call.  This returns a pair of operands.  The first element is the
531  /// return value for the function (if RetTy is not VoidTy).  The second
532  /// element is the outgoing token chain.
533  typedef std::vector<std::pair<SDOperand, const Type*> > ArgListTy;
534  virtual std::pair<SDOperand, SDOperand>
535  LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
536              unsigned CallingConv, bool isTailCall, SDOperand Callee,
537              ArgListTy &Args, SelectionDAG &DAG) = 0;
538
539  /// LowerFrameReturnAddress - This hook lowers a call to llvm.returnaddress or
540  /// llvm.frameaddress (depending on the value of the first argument).  The
541  /// return values are the result pointer and the resultant token chain.  If
542  /// not implemented, both of these intrinsics will return null.
543  virtual std::pair<SDOperand, SDOperand>
544  LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
545                          SelectionDAG &DAG);
546
547  /// LowerOperation - This callback is invoked for operations that are
548  /// unsupported by the target, which are registered to use 'custom' lowering,
549  /// and whose defined values are all legal.
550  /// If the target has no operations that require custom lowering, it need not
551  /// implement this.  The default implementation of this aborts.
552  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
553
554  /// CustomPromoteOperation - This callback is invoked for operations that are
555  /// unsupported by the target, are registered to use 'custom' lowering, and
556  /// whose type needs to be promoted.
557  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
558
559  /// getTargetNodeName() - This method returns the name of a target specific
560  /// DAG node.
561  virtual const char *getTargetNodeName(unsigned Opcode) const;
562
563  //===--------------------------------------------------------------------===//
564  // Inline Asm Support hooks
565  //
566
567  enum ConstraintType {
568    C_Register,            // Constraint represents a single register.
569    C_RegisterClass,       // Constraint represents one or more registers.
570    C_Memory,              // Memory constraint.
571    C_Other,               // Something else.
572    C_Unknown              // Unsupported constraint.
573  };
574
575  /// getConstraintType - Given a constraint letter, return the type of
576  /// constraint it is for this target.
577  virtual ConstraintType getConstraintType(char ConstraintLetter) const;
578
579
580  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
581  /// return a list of registers that can be used to satisfy the constraint.
582  /// This should only be used for C_RegisterClass constraints.
583  virtual std::vector<unsigned>
584  getRegClassForInlineAsmConstraint(const std::string &Constraint,
585                                    MVT::ValueType VT) const;
586
587  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
588  /// {edx}), return the register number and the register class for the
589  /// register.  This should only be used for C_Register constraints.  On error,
590  /// this returns a register number of 0.
591  virtual std::pair<unsigned, const TargetRegisterClass*>
592    getRegForInlineAsmConstraint(const std::string &Constraint,
593                                 MVT::ValueType VT) const;
594
595
596  /// isOperandValidForConstraint - Return true if the specified SDOperand is
597  /// valid for the specified target constraint letter.
598  virtual bool isOperandValidForConstraint(SDOperand Op, char ConstraintLetter);
599
600  //===--------------------------------------------------------------------===//
601  // Scheduler hooks
602  //
603
604  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
605  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
606  // instructions are special in various ways, which require special support to
607  // insert.  The specified MachineInstr is created but not inserted into any
608  // basic blocks, and the scheduler passes ownership of it to this method.
609  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
610                                                     MachineBasicBlock *MBB);
611
612  //===--------------------------------------------------------------------===//
613  // Loop Strength Reduction hooks
614  //
615
616  /// isLegalAddressImmediate - Return true if the integer value or GlobalValue
617  /// can be used as the offset of the target addressing mode.
618  virtual bool isLegalAddressImmediate(int64_t V) const;
619  virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
620
621  typedef std::vector<unsigned>::const_iterator legal_am_scale_iterator;
622  legal_am_scale_iterator legal_am_scale_begin() const {
623    return LegalAddressScales.begin();
624  }
625  legal_am_scale_iterator legal_am_scale_end() const {
626    return LegalAddressScales.end();
627  }
628
629protected:
630  /// addLegalAddressScale - Add a integer (> 1) value which can be used as
631  /// scale in the target addressing mode. Note: the ordering matters so the
632  /// least efficient ones should be entered first.
633  void addLegalAddressScale(unsigned Scale) {
634    LegalAddressScales.push_back(Scale);
635  }
636
637private:
638  std::vector<unsigned> LegalAddressScales;
639
640  TargetMachine &TM;
641  const TargetData &TD;
642
643  /// IsLittleEndian - True if this is a little endian target.
644  ///
645  bool IsLittleEndian;
646
647  /// PointerTy - The type to use for pointers, usually i32 or i64.
648  ///
649  MVT::ValueType PointerTy;
650
651  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
652  /// PointerTy is.
653  MVT::ValueType ShiftAmountTy;
654
655  OutOfRangeShiftAmount ShiftAmtHandling;
656
657  /// SetCCIsExpensive - This is a short term hack for targets that codegen
658  /// setcc as a conditional branch.  This encourages the code generator to fold
659  /// setcc operations into other operations if possible.
660  bool SetCCIsExpensive;
661
662  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
663  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
664  /// a real cost model is in place.  If we ever optimize for size, this will be
665  /// set to true unconditionally.
666  bool IntDivIsCheap;
667
668  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
669  /// srl/add/sra for a signed divide by power of two, and let the target handle
670  /// it.
671  bool Pow2DivIsCheap;
672
673  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
674  /// PointerTy.
675  MVT::ValueType SetCCResultTy;
676
677  /// SetCCResultContents - Information about the contents of the high-bits in
678  /// the result of a setcc comparison operation.
679  SetCCResultValue SetCCResultContents;
680
681  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
682  /// total cycles or lowest register usage.
683  SchedPreference SchedPreferenceInfo;
684
685  /// UseUnderscoreSetJmpLongJmp - This target prefers to use _setjmp and
686  /// _longjmp to implement llvm.setjmp/llvm.longjmp.  Defaults to false.
687  bool UseUnderscoreSetJmpLongJmp;
688
689  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
690  /// specifies the register that llvm.savestack/llvm.restorestack should save
691  /// and restore.
692  unsigned StackPointerRegisterToSaveRestore;
693
694  /// RegClassForVT - This indicates the default register class to use for
695  /// each ValueType the target supports natively.
696  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
697  unsigned char NumElementsForVT[MVT::LAST_VALUETYPE];
698
699  /// TransformToType - For any value types we are promoting or expanding, this
700  /// contains the value type that we are changing to.  For Expanded types, this
701  /// contains one step of the expand (e.g. i64 -> i32), even if there are
702  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
703  /// by the system, this holds the same type (e.g. i32 -> i32).
704  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
705
706  /// OpActions - For each operation and each value type, keep a LegalizeAction
707  /// that indicates how instruction selection should deal with the operation.
708  /// Most operations are Legal (aka, supported natively by the target), but
709  /// operations that are not should be described.  Note that operations on
710  /// non-legal value types are not described here.
711  uint64_t OpActions[156];
712
713  ValueTypeActionImpl ValueTypeActions;
714
715  std::vector<double> LegalFPImmediates;
716
717  std::vector<std::pair<MVT::ValueType,
718                        TargetRegisterClass*> > AvailableRegClasses;
719
720  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
721  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
722  /// which sets a bit in this array.
723  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
724
725  /// PromoteToType - For operations that must be promoted to a specific type,
726  /// this holds the destination type.  This map should be sparse, so don't hold
727  /// it as an array.
728  ///
729  /// Targets add entries to this map with AddPromotedToType(..), clients access
730  /// this with getTypeToPromoteTo(..).
731  std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
732
733protected:
734  /// When lowering %llvm.memset this field specifies the maximum number of
735  /// store operations that may be substituted for the call to memset. Targets
736  /// must set this value based on the cost threshold for that target. Targets
737  /// should assume that the memset will be done using as many of the largest
738  /// store operations first, followed by smaller ones, if necessary, per
739  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
740  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
741  /// store.  This only applies to setting a constant array of a constant size.
742  /// @brief Specify maximum number of store instructions per memset call.
743  unsigned maxStoresPerMemset;
744
745  /// When lowering %llvm.memcpy this field specifies the maximum number of
746  /// store operations that may be substituted for a call to memcpy. Targets
747  /// must set this value based on the cost threshold for that target. Targets
748  /// should assume that the memcpy will be done using as many of the largest
749  /// store operations first, followed by smaller ones, if necessary, per
750  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
751  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
752  /// and one 1-byte store. This only applies to copying a constant array of
753  /// constant size.
754  /// @brief Specify maximum bytes of store instructions per memcpy call.
755  unsigned maxStoresPerMemcpy;
756
757  /// When lowering %llvm.memmove this field specifies the maximum number of
758  /// store instructions that may be substituted for a call to memmove. Targets
759  /// must set this value based on the cost threshold for that target. Targets
760  /// should assume that the memmove will be done using as many of the largest
761  /// store operations first, followed by smaller ones, if necessary, per
762  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
763  /// with 8-bit alignment would result in nine 1-byte stores.  This only
764  /// applies to copying a constant array of constant size.
765  /// @brief Specify maximum bytes of store instructions per memmove call.
766  unsigned maxStoresPerMemmove;
767
768  /// This field specifies whether the target machine permits unaligned memory
769  /// accesses.  This is used, for example, to determine the size of store
770  /// operations when copying small arrays and other similar tasks.
771  /// @brief Indicate whether the target permits unaligned memory accesses.
772  bool allowUnalignedMemoryAccesses;
773};
774} // end llvm namespace
775
776#endif
777