TargetLowering.h revision d49edb7ab098fa0c82f59efbcf1b4eb2958f8dc3
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/Support/CallSite.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/CodeGen/RuntimeLibcalls.h"
31#include "llvm/Support/DebugLoc.h"
32#include "llvm/Target/TargetCallingConv.h"
33#include "llvm/Target/TargetMachine.h"
34#include <climits>
35#include <map>
36#include <vector>
37
38namespace llvm {
39  class CallInst;
40  class CCState;
41  class FastISel;
42  class FunctionLoweringInfo;
43  class ImmutableCallSite;
44  class IntrinsicInst;
45  class MachineBasicBlock;
46  class MachineFunction;
47  class MachineInstr;
48  class MachineJumpTableInfo;
49  class MCContext;
50  class MCExpr;
51  template<typename T> class SmallVectorImpl;
52  class TargetData;
53  class TargetRegisterClass;
54  class TargetLibraryInfo;
55  class TargetLoweringObjectFile;
56  class Value;
57
58  namespace Sched {
59    enum Preference {
60      None,             // No preference
61      Source,           // Follow source order.
62      RegPressure,      // Scheduling for lowest register pressure.
63      Hybrid,           // Scheduling for both latency and register pressure.
64      ILP,              // Scheduling for ILP in low register pressure mode.
65      VLIW              // Scheduling for VLIW targets.
66    };
67  }
68
69
70//===----------------------------------------------------------------------===//
71/// TargetLowering - This class defines information used to lower LLVM code to
72/// legal SelectionDAG operators that the target instruction selector can accept
73/// natively.
74///
75/// This class also defines callbacks that targets must implement to lower
76/// target-specific constructs to SelectionDAG operators.
77///
78class TargetLowering {
79  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
80  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
81public:
82  /// LegalizeAction - This enum indicates whether operations are valid for a
83  /// target, and if not, what action should be used to make them valid.
84  enum LegalizeAction {
85    Legal,      // The target natively supports this operation.
86    Promote,    // This operation should be executed in a larger type.
87    Expand,     // Try to expand this to other ops, otherwise use a libcall.
88    Custom      // Use the LowerOperation hook to implement custom lowering.
89  };
90
91  /// LegalizeTypeAction - This enum indicates whether a types are legal for a
92  /// target, and if not, what action should be used to make them valid.
93  enum LegalizeTypeAction {
94    TypeLegal,           // The target natively supports this type.
95    TypePromoteInteger,  // Replace this integer with a larger one.
96    TypeExpandInteger,   // Split this integer into two of half the size.
97    TypeSoftenFloat,     // Convert this float to a same size integer type.
98    TypeExpandFloat,     // Split this float into two of half the size.
99    TypeScalarizeVector, // Replace this one-element vector with its element.
100    TypeSplitVector,     // Split this vector into two of half the size.
101    TypeWidenVector      // This vector should be widened into a larger vector.
102  };
103
104  enum BooleanContent { // How the target represents true/false values.
105    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
106    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
107    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
108  };
109
110  static ISD::NodeType getExtendForContent(BooleanContent Content) {
111    switch (Content) {
112    case UndefinedBooleanContent:
113      // Extend by adding rubbish bits.
114      return ISD::ANY_EXTEND;
115    case ZeroOrOneBooleanContent:
116      // Extend by adding zero bits.
117      return ISD::ZERO_EXTEND;
118    case ZeroOrNegativeOneBooleanContent:
119      // Extend by copying the sign bit.
120      return ISD::SIGN_EXTEND;
121    }
122    llvm_unreachable("Invalid content kind");
123  }
124
125  /// NOTE: The constructor takes ownership of TLOF.
126  explicit TargetLowering(const TargetMachine &TM,
127                          const TargetLoweringObjectFile *TLOF);
128  virtual ~TargetLowering();
129
130  const TargetMachine &getTargetMachine() const { return TM; }
131  const TargetData *getTargetData() const { return TD; }
132  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
133
134  bool isBigEndian() const { return !IsLittleEndian; }
135  bool isLittleEndian() const { return IsLittleEndian; }
136  MVT getPointerTy() const { return PointerTy; }
137  virtual MVT getShiftAmountTy(EVT LHSTy) const;
138
139  /// isSelectExpensive - Return true if the select operation is expensive for
140  /// this target.
141  bool isSelectExpensive() const { return SelectIsExpensive; }
142
143  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
144  /// a sequence of several shifts, adds, and multiplies for this target.
145  bool isIntDivCheap() const { return IntDivIsCheap; }
146
147  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
148  /// srl/add/sra.
149  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
150
151  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
152  /// that should be avoided.
153  bool isJumpExpensive() const { return JumpIsExpensive; }
154
155  /// isPredictableSelectExpensive - Return true if selects are only cheaper
156  /// than branches if the branch is unlikely to be predicted right.
157  bool isPredictableSelectExpensive() const {
158    return predictableSelectIsExpensive;
159  }
160
161  /// getSetCCResultType - Return the ValueType of the result of SETCC
162  /// operations.  Also used to obtain the target's preferred type for
163  /// the condition operand of SELECT and BRCOND nodes.  In the case of
164  /// BRCOND the argument passed is MVT::Other since there are no other
165  /// operands to get a type hint from.
166  virtual EVT getSetCCResultType(EVT VT) const;
167
168  /// getCmpLibcallReturnType - Return the ValueType for comparison
169  /// libcalls. Comparions libcalls include floating point comparion calls,
170  /// and Ordered/Unordered check calls on floating point numbers.
171  virtual
172  MVT::SimpleValueType getCmpLibcallReturnType() const;
173
174  /// getBooleanContents - For targets without i1 registers, this gives the
175  /// nature of the high-bits of boolean values held in types wider than i1.
176  /// "Boolean values" are special true/false values produced by nodes like
177  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
178  /// Not to be confused with general values promoted from i1.
179  /// Some cpus distinguish between vectors of boolean and scalars; the isVec
180  /// parameter selects between the two kinds.  For example on X86 a scalar
181  /// boolean should be zero extended from i1, while the elements of a vector
182  /// of booleans should be sign extended from i1.
183  BooleanContent getBooleanContents(bool isVec) const {
184    return isVec ? BooleanVectorContents : BooleanContents;
185  }
186
187  /// getSchedulingPreference - Return target scheduling preference.
188  Sched::Preference getSchedulingPreference() const {
189    return SchedPreferenceInfo;
190  }
191
192  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
193  /// different scheduling heuristics for different nodes. This function returns
194  /// the preference (or none) for the given node.
195  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
196    return Sched::None;
197  }
198
199  /// getRegClassFor - Return the register class that should be used for the
200  /// specified value type.
201  virtual const TargetRegisterClass *getRegClassFor(EVT VT) const {
202    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
203    const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
204    assert(RC && "This value type is not natively supported!");
205    return RC;
206  }
207
208  /// getRepRegClassFor - Return the 'representative' register class for the
209  /// specified value type. The 'representative' register class is the largest
210  /// legal super-reg register class for the register class of the value type.
211  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
212  /// while the rep register class is GR64 on x86_64.
213  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
214    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
215    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
216    return RC;
217  }
218
219  /// getRepRegClassCostFor - Return the cost of the 'representative' register
220  /// class for the specified value type.
221  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
222    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
223    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
224  }
225
226  /// isTypeLegal - Return true if the target has native support for the
227  /// specified value type.  This means that it has a register that directly
228  /// holds it without promotions or expansions.
229  bool isTypeLegal(EVT VT) const {
230    assert(!VT.isSimple() ||
231           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
232    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
233  }
234
235  class ValueTypeActionImpl {
236    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
237    /// that indicates how instruction selection should deal with the type.
238    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
239
240  public:
241    ValueTypeActionImpl() {
242      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
243    }
244
245    LegalizeTypeAction getTypeAction(MVT VT) const {
246      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
247    }
248
249    void setTypeAction(EVT VT, LegalizeTypeAction Action) {
250      unsigned I = VT.getSimpleVT().SimpleTy;
251      ValueTypeActions[I] = Action;
252    }
253  };
254
255  const ValueTypeActionImpl &getValueTypeActions() const {
256    return ValueTypeActions;
257  }
258
259  /// getTypeAction - Return how we should legalize values of this type, either
260  /// it is already legal (return 'Legal') or we need to promote it to a larger
261  /// type (return 'Promote'), or we need to expand it into multiple registers
262  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
263  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
264    return getTypeConversion(Context, VT).first;
265  }
266  LegalizeTypeAction getTypeAction(MVT VT) const {
267    return ValueTypeActions.getTypeAction(VT);
268  }
269
270  /// getTypeToTransformTo - For types supported by the target, this is an
271  /// identity function.  For types that must be promoted to larger types, this
272  /// returns the larger type to promote to.  For integer types that are larger
273  /// than the largest integer register, this contains one step in the expansion
274  /// to get to the smaller register. For illegal floating point types, this
275  /// returns the integer type to transform to.
276  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
277    return getTypeConversion(Context, VT).second;
278  }
279
280  /// getTypeToExpandTo - For types supported by the target, this is an
281  /// identity function.  For types that must be expanded (i.e. integer types
282  /// that are larger than the largest integer register or illegal floating
283  /// point types), this returns the largest legal type it will be expanded to.
284  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
285    assert(!VT.isVector());
286    while (true) {
287      switch (getTypeAction(Context, VT)) {
288      case TypeLegal:
289        return VT;
290      case TypeExpandInteger:
291        VT = getTypeToTransformTo(Context, VT);
292        break;
293      default:
294        llvm_unreachable("Type is not legal nor is it to be expanded!");
295      }
296    }
297  }
298
299  /// getVectorTypeBreakdown - Vector types are broken down into some number of
300  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
301  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
302  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
303  ///
304  /// This method returns the number of registers needed, and the VT for each
305  /// register.  It also returns the VT and quantity of the intermediate values
306  /// before they are promoted/expanded.
307  ///
308  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
309                                  EVT &IntermediateVT,
310                                  unsigned &NumIntermediates,
311                                  EVT &RegisterVT) const;
312
313  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
314  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
315  /// this is the case, it returns true and store the intrinsic
316  /// information into the IntrinsicInfo that was passed to the function.
317  struct IntrinsicInfo {
318    unsigned     opc;         // target opcode
319    EVT          memVT;       // memory VT
320    const Value* ptrVal;      // value representing memory location
321    int          offset;      // offset off of ptrVal
322    unsigned     align;       // alignment
323    bool         vol;         // is volatile?
324    bool         readMem;     // reads memory?
325    bool         writeMem;    // writes memory?
326  };
327
328  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
329                                  unsigned /*Intrinsic*/) const {
330    return false;
331  }
332
333  /// isFPImmLegal - Returns true if the target can instruction select the
334  /// specified FP immediate natively. If false, the legalizer will materialize
335  /// the FP immediate as a load from a constant pool.
336  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
337    return false;
338  }
339
340  /// isShuffleMaskLegal - Targets can use this to indicate that they only
341  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
342  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
343  /// are assumed to be legal.
344  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
345                                  EVT /*VT*/) const {
346    return true;
347  }
348
349  /// canOpTrap - Returns true if the operation can trap for the value type.
350  /// VT must be a legal type. By default, we optimistically assume most
351  /// operations don't trap except for divide and remainder.
352  virtual bool canOpTrap(unsigned Op, EVT VT) const;
353
354  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
355  /// used by Targets can use this to indicate if there is a suitable
356  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
357  /// pool entry.
358  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
359                                      EVT /*VT*/) const {
360    return false;
361  }
362
363  /// getOperationAction - Return how this operation should be treated: either
364  /// it is legal, needs to be promoted to a larger size, needs to be
365  /// expanded to some other code sequence, or the target has a custom expander
366  /// for it.
367  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
368    if (VT.isExtended()) return Expand;
369    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
370    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
371    return (LegalizeAction)OpActions[I][Op];
372  }
373
374  /// isOperationLegalOrCustom - Return true if the specified operation is
375  /// legal on this target or can be made legal with custom lowering. This
376  /// is used to help guide high-level lowering decisions.
377  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
378    return (VT == MVT::Other || isTypeLegal(VT)) &&
379      (getOperationAction(Op, VT) == Legal ||
380       getOperationAction(Op, VT) == Custom);
381  }
382
383  /// isOperationLegal - Return true if the specified operation is legal on this
384  /// target.
385  bool isOperationLegal(unsigned Op, EVT VT) const {
386    return (VT == MVT::Other || isTypeLegal(VT)) &&
387           getOperationAction(Op, VT) == Legal;
388  }
389
390  /// getLoadExtAction - Return how this load with extension should be treated:
391  /// either it is legal, needs to be promoted to a larger size, needs to be
392  /// expanded to some other code sequence, or the target has a custom expander
393  /// for it.
394  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
395    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
396           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
397           "Table isn't big enough!");
398    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
399  }
400
401  /// isLoadExtLegal - Return true if the specified load with extension is legal
402  /// on this target.
403  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
404    return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
405  }
406
407  /// getTruncStoreAction - Return how this store with truncation should be
408  /// treated: either it is legal, needs to be promoted to a larger size, needs
409  /// to be expanded to some other code sequence, or the target has a custom
410  /// expander for it.
411  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
412    assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
413           MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
414           "Table isn't big enough!");
415    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
416                                            [MemVT.getSimpleVT().SimpleTy];
417  }
418
419  /// isTruncStoreLegal - Return true if the specified store with truncation is
420  /// legal on this target.
421  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
422    return isTypeLegal(ValVT) && MemVT.isSimple() &&
423           getTruncStoreAction(ValVT, MemVT) == Legal;
424  }
425
426  /// getIndexedLoadAction - Return how the indexed load should be treated:
427  /// either it is legal, needs to be promoted to a larger size, needs to be
428  /// expanded to some other code sequence, or the target has a custom expander
429  /// for it.
430  LegalizeAction
431  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
432    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
433           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
434           "Table isn't big enough!");
435    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
436    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
437  }
438
439  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
440  /// on this target.
441  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
442    return VT.isSimple() &&
443      (getIndexedLoadAction(IdxMode, VT) == Legal ||
444       getIndexedLoadAction(IdxMode, VT) == Custom);
445  }
446
447  /// getIndexedStoreAction - Return how the indexed store should be treated:
448  /// either it is legal, needs to be promoted to a larger size, needs to be
449  /// expanded to some other code sequence, or the target has a custom expander
450  /// for it.
451  LegalizeAction
452  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
453    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
454           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
455           "Table isn't big enough!");
456    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
457    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
458  }
459
460  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
461  /// on this target.
462  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
463    return VT.isSimple() &&
464      (getIndexedStoreAction(IdxMode, VT) == Legal ||
465       getIndexedStoreAction(IdxMode, VT) == Custom);
466  }
467
468  /// getCondCodeAction - Return how the condition code should be treated:
469  /// either it is legal, needs to be expanded to some other code sequence,
470  /// or the target has a custom expander for it.
471  LegalizeAction
472  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
473    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
474           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
475           "Table isn't big enough!");
476    LegalizeAction Action = (LegalizeAction)
477      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
478    assert(Action != Promote && "Can't promote condition code!");
479    return Action;
480  }
481
482  /// isCondCodeLegal - Return true if the specified condition code is legal
483  /// on this target.
484  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
485    return getCondCodeAction(CC, VT) == Legal ||
486           getCondCodeAction(CC, VT) == Custom;
487  }
488
489
490  /// getTypeToPromoteTo - If the action for this operation is to promote, this
491  /// method returns the ValueType to promote to.
492  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
493    assert(getOperationAction(Op, VT) == Promote &&
494           "This operation isn't promoted!");
495
496    // See if this has an explicit type specified.
497    std::map<std::pair<unsigned, MVT::SimpleValueType>,
498             MVT::SimpleValueType>::const_iterator PTTI =
499      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
500    if (PTTI != PromoteToType.end()) return PTTI->second;
501
502    assert((VT.isInteger() || VT.isFloatingPoint()) &&
503           "Cannot autopromote this type, add it with AddPromotedToType.");
504
505    EVT NVT = VT;
506    do {
507      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
508      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
509             "Didn't find type to promote to!");
510    } while (!isTypeLegal(NVT) ||
511              getOperationAction(Op, NVT) == Promote);
512    return NVT;
513  }
514
515  /// getValueType - Return the EVT corresponding to this LLVM type.
516  /// This is fixed by the LLVM operations except for the pointer size.  If
517  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
518  /// counterpart (e.g. structs), otherwise it will assert.
519  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
520    // Lower scalar pointers to native pointer types.
521    if (Ty->isPointerTy()) return PointerTy;
522
523    if (Ty->isVectorTy()) {
524      VectorType *VTy = cast<VectorType>(Ty);
525      Type *Elm = VTy->getElementType();
526      // Lower vectors of pointers to native pointer types.
527      if (Elm->isPointerTy())
528        Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
529      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
530                       VTy->getNumElements());
531    }
532    return EVT::getEVT(Ty, AllowUnknown);
533  }
534
535  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
536  /// function arguments in the caller parameter area.  This is the actual
537  /// alignment, not its logarithm.
538  virtual unsigned getByValTypeAlignment(Type *Ty) const;
539
540  /// getRegisterType - Return the type of registers that this ValueType will
541  /// eventually require.
542  EVT getRegisterType(MVT VT) const {
543    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
544    return RegisterTypeForVT[VT.SimpleTy];
545  }
546
547  /// getRegisterType - Return the type of registers that this ValueType will
548  /// eventually require.
549  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
550    if (VT.isSimple()) {
551      assert((unsigned)VT.getSimpleVT().SimpleTy <
552                array_lengthof(RegisterTypeForVT));
553      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
554    }
555    if (VT.isVector()) {
556      EVT VT1, RegisterVT;
557      unsigned NumIntermediates;
558      (void)getVectorTypeBreakdown(Context, VT, VT1,
559                                   NumIntermediates, RegisterVT);
560      return RegisterVT;
561    }
562    if (VT.isInteger()) {
563      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
564    }
565    llvm_unreachable("Unsupported extended type!");
566  }
567
568  /// getNumRegisters - Return the number of registers that this ValueType will
569  /// eventually require.  This is one for any types promoted to live in larger
570  /// registers, but may be more than one for types (like i64) that are split
571  /// into pieces.  For types like i140, which are first promoted then expanded,
572  /// it is the number of registers needed to hold all the bits of the original
573  /// type.  For an i140 on a 32 bit machine this means 5 registers.
574  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
575    if (VT.isSimple()) {
576      assert((unsigned)VT.getSimpleVT().SimpleTy <
577                array_lengthof(NumRegistersForVT));
578      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
579    }
580    if (VT.isVector()) {
581      EVT VT1, VT2;
582      unsigned NumIntermediates;
583      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
584    }
585    if (VT.isInteger()) {
586      unsigned BitWidth = VT.getSizeInBits();
587      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
588      return (BitWidth + RegWidth - 1) / RegWidth;
589    }
590    llvm_unreachable("Unsupported extended type!");
591  }
592
593  /// ShouldShrinkFPConstant - If true, then instruction selection should
594  /// seek to shrink the FP constant of the specified type to a smaller type
595  /// in order to save space and / or reduce runtime.
596  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
597
598  /// hasTargetDAGCombine - If true, the target has custom DAG combine
599  /// transformations that it can perform for the specified node.
600  bool hasTargetDAGCombine(ISD::NodeType NT) const {
601    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
602    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
603  }
604
605  /// This function returns the maximum number of store operations permitted
606  /// to replace a call to llvm.memset. The value is set by the target at the
607  /// performance threshold for such a replacement. If OptSize is true,
608  /// return the limit for functions that have OptSize attribute.
609  /// @brief Get maximum # of store operations permitted for llvm.memset
610  unsigned getMaxStoresPerMemset(bool OptSize) const {
611    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
612  }
613
614  /// This function returns the maximum number of store operations permitted
615  /// to replace a call to llvm.memcpy. The value is set by the target at the
616  /// performance threshold for such a replacement. If OptSize is true,
617  /// return the limit for functions that have OptSize attribute.
618  /// @brief Get maximum # of store operations permitted for llvm.memcpy
619  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
620    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
621  }
622
623  /// This function returns the maximum number of store operations permitted
624  /// to replace a call to llvm.memmove. The value is set by the target at the
625  /// performance threshold for such a replacement. If OptSize is true,
626  /// return the limit for functions that have OptSize attribute.
627  /// @brief Get maximum # of store operations permitted for llvm.memmove
628  unsigned getMaxStoresPerMemmove(bool OptSize) const {
629    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
630  }
631
632  /// This function returns true if the target allows unaligned memory accesses.
633  /// of the specified type. This is used, for example, in situations where an
634  /// array copy/move/set is  converted to a sequence of store operations. It's
635  /// use helps to ensure that such replacements don't generate code that causes
636  /// an alignment error  (trap) on the target machine.
637  /// @brief Determine if the target supports unaligned memory accesses.
638  virtual bool allowsUnalignedMemoryAccesses(EVT) const {
639    return false;
640  }
641
642  /// This function returns true if the target would benefit from code placement
643  /// optimization.
644  /// @brief Determine if the target should perform code placement optimization.
645  bool shouldOptimizeCodePlacement() const {
646    return benefitFromCodePlacementOpt;
647  }
648
649  /// getOptimalMemOpType - Returns the target specific optimal type for load
650  /// and store operations as a result of memset, memcpy, and memmove
651  /// lowering. If DstAlign is zero that means it's safe to destination
652  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
653  /// means there isn't a need to check it against alignment requirement,
654  /// probably because the source does not need to be loaded. If
655  /// 'IsZeroVal' is true, that means it's safe to return a
656  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
657  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
658  /// constant so it does not need to be loaded.
659  /// It returns EVT::Other if the type should be determined using generic
660  /// target-independent logic.
661  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
662                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
663                                  bool /*IsZeroVal*/,
664                                  bool /*MemcpyStrSrc*/,
665                                  MachineFunction &/*MF*/) const {
666    return MVT::Other;
667  }
668
669  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
670  /// to implement llvm.setjmp.
671  bool usesUnderscoreSetJmp() const {
672    return UseUnderscoreSetJmp;
673  }
674
675  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
676  /// to implement llvm.longjmp.
677  bool usesUnderscoreLongJmp() const {
678    return UseUnderscoreLongJmp;
679  }
680
681  /// supportJumpTables - return whether the target can generate code for
682  /// jump tables.
683  bool supportJumpTables() const {
684    return SupportJumpTables;
685  }
686
687  /// getStackPointerRegisterToSaveRestore - If a physical register, this
688  /// specifies the register that llvm.savestack/llvm.restorestack should save
689  /// and restore.
690  unsigned getStackPointerRegisterToSaveRestore() const {
691    return StackPointerRegisterToSaveRestore;
692  }
693
694  /// getExceptionPointerRegister - If a physical register, this returns
695  /// the register that receives the exception address on entry to a landing
696  /// pad.
697  unsigned getExceptionPointerRegister() const {
698    return ExceptionPointerRegister;
699  }
700
701  /// getExceptionSelectorRegister - If a physical register, this returns
702  /// the register that receives the exception typeid on entry to a landing
703  /// pad.
704  unsigned getExceptionSelectorRegister() const {
705    return ExceptionSelectorRegister;
706  }
707
708  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
709  /// set, the default is 200)
710  unsigned getJumpBufSize() const {
711    return JumpBufSize;
712  }
713
714  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
715  /// (if never set, the default is 0)
716  unsigned getJumpBufAlignment() const {
717    return JumpBufAlignment;
718  }
719
720  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
721  /// argument.
722  unsigned getMinStackArgumentAlignment() const {
723    return MinStackArgumentAlignment;
724  }
725
726  /// getMinFunctionAlignment - return the minimum function alignment.
727  ///
728  unsigned getMinFunctionAlignment() const {
729    return MinFunctionAlignment;
730  }
731
732  /// getPrefFunctionAlignment - return the preferred function alignment.
733  ///
734  unsigned getPrefFunctionAlignment() const {
735    return PrefFunctionAlignment;
736  }
737
738  /// getPrefLoopAlignment - return the preferred loop alignment.
739  ///
740  unsigned getPrefLoopAlignment() const {
741    return PrefLoopAlignment;
742  }
743
744  /// getShouldFoldAtomicFences - return whether the combiner should fold
745  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
746  ///
747  bool getShouldFoldAtomicFences() const {
748    return ShouldFoldAtomicFences;
749  }
750
751  /// getInsertFencesFor - return whether the DAG builder should automatically
752  /// insert fences and reduce ordering for atomics.
753  ///
754  bool getInsertFencesForAtomic() const {
755    return InsertFencesForAtomic;
756  }
757
758  /// getPreIndexedAddressParts - returns true by value, base pointer and
759  /// offset pointer and addressing mode by reference if the node's address
760  /// can be legally represented as pre-indexed load / store address.
761  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
762                                         SDValue &/*Offset*/,
763                                         ISD::MemIndexedMode &/*AM*/,
764                                         SelectionDAG &/*DAG*/) const {
765    return false;
766  }
767
768  /// getPostIndexedAddressParts - returns true by value, base pointer and
769  /// offset pointer and addressing mode by reference if this node can be
770  /// combined with a load / store to form a post-indexed load / store.
771  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
772                                          SDValue &/*Base*/, SDValue &/*Offset*/,
773                                          ISD::MemIndexedMode &/*AM*/,
774                                          SelectionDAG &/*DAG*/) const {
775    return false;
776  }
777
778  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
779  /// current function.  The returned value is a member of the
780  /// MachineJumpTableInfo::JTEntryKind enum.
781  virtual unsigned getJumpTableEncoding() const;
782
783  virtual const MCExpr *
784  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
785                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
786                            MCContext &/*Ctx*/) const {
787    llvm_unreachable("Need to implement this hook if target has custom JTIs");
788  }
789
790  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
791  /// jumptable.
792  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
793                                           SelectionDAG &DAG) const;
794
795  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
796  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
797  /// MCExpr.
798  virtual const MCExpr *
799  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
800                               unsigned JTI, MCContext &Ctx) const;
801
802  /// isOffsetFoldingLegal - Return true if folding a constant offset
803  /// with the given GlobalAddress is legal.  It is frequently not legal in
804  /// PIC relocation models.
805  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
806
807  /// getStackCookieLocation - Return true if the target stores stack
808  /// protector cookies at a fixed offset in some non-standard address
809  /// space, and populates the address space and offset as
810  /// appropriate.
811  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
812                                      unsigned &/*Offset*/) const {
813    return false;
814  }
815
816  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
817  /// used for loads / stores from the global.
818  virtual unsigned getMaximalGlobalOffset() const {
819    return 0;
820  }
821
822  //===--------------------------------------------------------------------===//
823  // TargetLowering Optimization Methods
824  //
825
826  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
827  /// SDValues for returning information from TargetLowering to its clients
828  /// that want to combine
829  struct TargetLoweringOpt {
830    SelectionDAG &DAG;
831    bool LegalTys;
832    bool LegalOps;
833    SDValue Old;
834    SDValue New;
835
836    explicit TargetLoweringOpt(SelectionDAG &InDAG,
837                               bool LT, bool LO) :
838      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
839
840    bool LegalTypes() const { return LegalTys; }
841    bool LegalOperations() const { return LegalOps; }
842
843    bool CombineTo(SDValue O, SDValue N) {
844      Old = O;
845      New = N;
846      return true;
847    }
848
849    /// ShrinkDemandedConstant - Check to see if the specified operand of the
850    /// specified instruction is a constant integer.  If so, check to see if
851    /// there are any bits set in the constant that are not demanded.  If so,
852    /// shrink the constant and return true.
853    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
854
855    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
856    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
857    /// cast, but it could be generalized for targets with other types of
858    /// implicit widening casts.
859    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
860                          DebugLoc dl);
861  };
862
863  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
864  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
865  /// use this information to simplify Op, create a new simplified DAG node and
866  /// return true, returning the original and new nodes in Old and New.
867  /// Otherwise, analyze the expression and return a mask of KnownOne and
868  /// KnownZero bits for the expression (used to simplify the caller).
869  /// The KnownZero/One bits may only be accurate for those bits in the
870  /// DemandedMask.
871  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
872                            APInt &KnownZero, APInt &KnownOne,
873                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
874
875  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
876  /// Mask are known to be either zero or one and return them in the
877  /// KnownZero/KnownOne bitsets.
878  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
879                                              APInt &KnownZero,
880                                              APInt &KnownOne,
881                                              const SelectionDAG &DAG,
882                                              unsigned Depth = 0) const;
883
884  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
885  /// targets that want to expose additional information about sign bits to the
886  /// DAG Combiner.
887  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
888                                                   unsigned Depth = 0) const;
889
890  struct DAGCombinerInfo {
891    void *DC;  // The DAG Combiner object.
892    bool BeforeLegalize;
893    bool BeforeLegalizeOps;
894    bool CalledByLegalizer;
895  public:
896    SelectionDAG &DAG;
897
898    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
899      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
900        CalledByLegalizer(cl), DAG(dag) {}
901
902    bool isBeforeLegalize() const { return BeforeLegalize; }
903    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
904    bool isCalledByLegalizer() const { return CalledByLegalizer; }
905
906    void AddToWorklist(SDNode *N);
907    void RemoveFromWorklist(SDNode *N);
908    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
909                      bool AddTo = true);
910    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
911    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
912
913    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
914  };
915
916  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
917  /// and cc. If it is unable to simplify it, return a null SDValue.
918  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
919                          ISD::CondCode Cond, bool foldBooleans,
920                          DAGCombinerInfo &DCI, DebugLoc dl) const;
921
922  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
923  /// node is a GlobalAddress + offset.
924  virtual bool
925  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
926
927  /// PerformDAGCombine - This method will be invoked for all target nodes and
928  /// for any target-independent nodes that the target has registered with
929  /// invoke it for.
930  ///
931  /// The semantics are as follows:
932  /// Return Value:
933  ///   SDValue.Val == 0   - No change was made
934  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
935  ///   otherwise          - N should be replaced by the returned Operand.
936  ///
937  /// In addition, methods provided by DAGCombinerInfo may be used to perform
938  /// more complex transformations.
939  ///
940  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
941
942  /// isTypeDesirableForOp - Return true if the target has native support for
943  /// the specified value type and it is 'desirable' to use the type for the
944  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
945  /// instruction encodings are longer and some i16 instructions are slow.
946  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
947    // By default, assume all legal types are desirable.
948    return isTypeLegal(VT);
949  }
950
951  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
952  /// to transform a floating point op of specified opcode to a equivalent op of
953  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
954  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
955                                                 EVT /*VT*/) const {
956    return false;
957  }
958
959  /// IsDesirableToPromoteOp - This method query the target whether it is
960  /// beneficial for dag combiner to promote the specified node. If true, it
961  /// should return the desired promotion type by reference.
962  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
963    return false;
964  }
965
966  //===--------------------------------------------------------------------===//
967  // TargetLowering Configuration Methods - These methods should be invoked by
968  // the derived class constructor to configure this object for the target.
969  //
970
971protected:
972  /// setBooleanContents - Specify how the target extends the result of a
973  /// boolean value from i1 to a wider type.  See getBooleanContents.
974  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
975  /// setBooleanVectorContents - Specify how the target extends the result
976  /// of a vector boolean value from a vector of i1 to a wider type.  See
977  /// getBooleanContents.
978  void setBooleanVectorContents(BooleanContent Ty) {
979    BooleanVectorContents = Ty;
980  }
981
982  /// setSchedulingPreference - Specify the target scheduling preference.
983  void setSchedulingPreference(Sched::Preference Pref) {
984    SchedPreferenceInfo = Pref;
985  }
986
987  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
988  /// use _setjmp to implement llvm.setjmp or the non _ version.
989  /// Defaults to false.
990  void setUseUnderscoreSetJmp(bool Val) {
991    UseUnderscoreSetJmp = Val;
992  }
993
994  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
995  /// use _longjmp to implement llvm.longjmp or the non _ version.
996  /// Defaults to false.
997  void setUseUnderscoreLongJmp(bool Val) {
998    UseUnderscoreLongJmp = Val;
999  }
1000
1001  /// setSupportJumpTables - Indicate whether the target can generate code for
1002  /// jump tables.
1003  void setSupportJumpTables(bool Val) {
1004    SupportJumpTables = Val;
1005  }
1006
1007  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
1008  /// specifies the register that llvm.savestack/llvm.restorestack should save
1009  /// and restore.
1010  void setStackPointerRegisterToSaveRestore(unsigned R) {
1011    StackPointerRegisterToSaveRestore = R;
1012  }
1013
1014  /// setExceptionPointerRegister - If set to a physical register, this sets
1015  /// the register that receives the exception address on entry to a landing
1016  /// pad.
1017  void setExceptionPointerRegister(unsigned R) {
1018    ExceptionPointerRegister = R;
1019  }
1020
1021  /// setExceptionSelectorRegister - If set to a physical register, this sets
1022  /// the register that receives the exception typeid on entry to a landing
1023  /// pad.
1024  void setExceptionSelectorRegister(unsigned R) {
1025    ExceptionSelectorRegister = R;
1026  }
1027
1028  /// SelectIsExpensive - Tells the code generator not to expand operations
1029  /// into sequences that use the select operations if possible.
1030  void setSelectIsExpensive(bool isExpensive = true) {
1031    SelectIsExpensive = isExpensive;
1032  }
1033
1034  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1035  /// operations into a separate sequences that increases the amount of
1036  /// flow control.
1037  void setJumpIsExpensive(bool isExpensive = true) {
1038    JumpIsExpensive = isExpensive;
1039  }
1040
1041  /// setIntDivIsCheap - Tells the code generator that integer divide is
1042  /// expensive, and if possible, should be replaced by an alternate sequence
1043  /// of instructions not containing an integer divide.
1044  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1045
1046  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1047  /// srl/add/sra for a signed divide by power of two, and let the target handle
1048  /// it.
1049  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1050
1051  /// addRegisterClass - Add the specified register class as an available
1052  /// regclass for the specified value type.  This indicates the selector can
1053  /// handle values of that class natively.
1054  void addRegisterClass(EVT VT, const TargetRegisterClass *RC) {
1055    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1056    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1057    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1058  }
1059
1060  /// findRepresentativeClass - Return the largest legal super-reg register class
1061  /// of the register class for the specified type and its associated "cost".
1062  virtual std::pair<const TargetRegisterClass*, uint8_t>
1063  findRepresentativeClass(EVT VT) const;
1064
1065  /// computeRegisterProperties - Once all of the register classes are added,
1066  /// this allows us to compute derived properties we expose.
1067  void computeRegisterProperties();
1068
1069  /// setOperationAction - Indicate that the specified operation does not work
1070  /// with the specified type and indicate what to do about it.
1071  void setOperationAction(unsigned Op, MVT VT,
1072                          LegalizeAction Action) {
1073    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1074    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1075  }
1076
1077  /// setLoadExtAction - Indicate that the specified load with extension does
1078  /// not work with the specified type and indicate what to do about it.
1079  void setLoadExtAction(unsigned ExtType, MVT VT,
1080                        LegalizeAction Action) {
1081    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1082           "Table isn't big enough!");
1083    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1084  }
1085
1086  /// setTruncStoreAction - Indicate that the specified truncating store does
1087  /// not work with the specified type and indicate what to do about it.
1088  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1089                           LegalizeAction Action) {
1090    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1091           "Table isn't big enough!");
1092    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1093  }
1094
1095  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1096  /// does not work with the specified type and indicate what to do abort
1097  /// it. NOTE: All indexed mode loads are initialized to Expand in
1098  /// TargetLowering.cpp
1099  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1100                            LegalizeAction Action) {
1101    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1102           (unsigned)Action < 0xf && "Table isn't big enough!");
1103    // Load action are kept in the upper half.
1104    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1105    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1106  }
1107
1108  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1109  /// does not work with the specified type and indicate what to do about
1110  /// it. NOTE: All indexed mode stores are initialized to Expand in
1111  /// TargetLowering.cpp
1112  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1113                             LegalizeAction Action) {
1114    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1115           (unsigned)Action < 0xf && "Table isn't big enough!");
1116    // Store action are kept in the lower half.
1117    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1118    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1119  }
1120
1121  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1122  /// supported on the target and indicate what to do about it.
1123  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1124                         LegalizeAction Action) {
1125    assert(VT < MVT::LAST_VALUETYPE &&
1126           (unsigned)CC < array_lengthof(CondCodeActions) &&
1127           "Table isn't big enough!");
1128    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1129    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1130  }
1131
1132  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1133  /// promotion code defaults to trying a larger integer/fp until it can find
1134  /// one that works.  If that default is insufficient, this method can be used
1135  /// by the target to override the default.
1136  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1137    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1138  }
1139
1140  /// setTargetDAGCombine - Targets should invoke this method for each target
1141  /// independent node that they want to provide a custom DAG combiner for by
1142  /// implementing the PerformDAGCombine virtual method.
1143  void setTargetDAGCombine(ISD::NodeType NT) {
1144    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1145    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1146  }
1147
1148  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1149  /// bytes); default is 200
1150  void setJumpBufSize(unsigned Size) {
1151    JumpBufSize = Size;
1152  }
1153
1154  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1155  /// alignment (in bytes); default is 0
1156  void setJumpBufAlignment(unsigned Align) {
1157    JumpBufAlignment = Align;
1158  }
1159
1160  /// setMinFunctionAlignment - Set the target's minimum function alignment (in
1161  /// log2(bytes))
1162  void setMinFunctionAlignment(unsigned Align) {
1163    MinFunctionAlignment = Align;
1164  }
1165
1166  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1167  /// This should be set if there is a performance benefit to
1168  /// higher-than-minimum alignment (in log2(bytes))
1169  void setPrefFunctionAlignment(unsigned Align) {
1170    PrefFunctionAlignment = Align;
1171  }
1172
1173  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1174  /// alignment is zero, it means the target does not care about loop alignment.
1175  /// The alignment is specified in log2(bytes).
1176  void setPrefLoopAlignment(unsigned Align) {
1177    PrefLoopAlignment = Align;
1178  }
1179
1180  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1181  /// argument (in log2(bytes)).
1182  void setMinStackArgumentAlignment(unsigned Align) {
1183    MinStackArgumentAlignment = Align;
1184  }
1185
1186  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1187  /// atomic operation intrinsics includes locking. Default is false.
1188  void setShouldFoldAtomicFences(bool fold) {
1189    ShouldFoldAtomicFences = fold;
1190  }
1191
1192  /// setInsertFencesForAtomic - Set if the DAG builder should
1193  /// automatically insert fences and reduce the order of atomic memory
1194  /// operations to Monotonic.
1195  void setInsertFencesForAtomic(bool fence) {
1196    InsertFencesForAtomic = fence;
1197  }
1198
1199public:
1200  //===--------------------------------------------------------------------===//
1201  // Lowering methods - These methods must be implemented by targets so that
1202  // the SelectionDAGLowering code knows how to lower these.
1203  //
1204
1205  /// LowerFormalArguments - This hook must be implemented to lower the
1206  /// incoming (formal) arguments, described by the Ins array, into the
1207  /// specified DAG. The implementation should fill in the InVals array
1208  /// with legal-type argument values, and return the resulting token
1209  /// chain value.
1210  ///
1211  virtual SDValue
1212    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1213                         bool /*isVarArg*/,
1214                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1215                         DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1216                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1217    llvm_unreachable("Not Implemented");
1218  }
1219
1220  struct ArgListEntry {
1221    SDValue Node;
1222    Type* Ty;
1223    bool isSExt  : 1;
1224    bool isZExt  : 1;
1225    bool isInReg : 1;
1226    bool isSRet  : 1;
1227    bool isNest  : 1;
1228    bool isByVal : 1;
1229    uint16_t Alignment;
1230
1231    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1232      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1233  };
1234  typedef std::vector<ArgListEntry> ArgListTy;
1235
1236  /// CallLoweringInfo - This structure contains all information that is
1237  /// necessary for lowering calls. It is passed to TLI::LowerCallTo when the
1238  /// SelectionDAG builder needs to lower a call, and targets will see this
1239  /// struct in their LowerCall implementation.
1240  struct CallLoweringInfo {
1241    SDValue Chain;
1242    Type *RetTy;
1243    bool RetSExt           : 1;
1244    bool RetZExt           : 1;
1245    bool IsVarArg          : 1;
1246    bool IsInReg           : 1;
1247    bool DoesNotReturn     : 1;
1248    bool IsReturnValueUsed : 1;
1249
1250    // IsTailCall should be modified by implementations of
1251    // TargetLowering::LowerCall that perform tail call conversions.
1252    bool IsTailCall;
1253
1254    unsigned NumFixedArgs;
1255    CallingConv::ID CallConv;
1256    SDValue Callee;
1257    ArgListTy &Args;
1258    SelectionDAG &DAG;
1259    DebugLoc DL;
1260    ImmutableCallSite *CS;
1261    SmallVector<ISD::OutputArg, 32> Outs;
1262    SmallVector<SDValue, 32> OutVals;
1263    SmallVector<ISD::InputArg, 32> Ins;
1264
1265
1266    /// CallLoweringInfo - Constructs a call lowering context based on the
1267    /// ImmutableCallSite \p cs.
1268    CallLoweringInfo(SDValue chain, Type *retTy,
1269                     FunctionType *FTy, bool isTailCall, SDValue callee,
1270                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl,
1271                     ImmutableCallSite &cs)
1272    : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)),
1273      RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()),
1274      IsInReg(cs.paramHasAttr(0, Attribute::InReg)),
1275      DoesNotReturn(cs.doesNotReturn()),
1276      IsReturnValueUsed(!cs.getInstruction()->use_empty()),
1277      IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
1278      CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
1279      DL(dl), CS(&cs) {}
1280
1281    /// CallLoweringInfo - Constructs a call lowering context based on the
1282    /// provided call information.
1283    CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
1284                     bool isVarArg, bool isInReg, unsigned numFixedArgs,
1285                     CallingConv::ID callConv, bool isTailCall,
1286                     bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
1287                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl)
1288    : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
1289      IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
1290      IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
1291      NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
1292      Args(args), DAG(dag), DL(dl), CS(NULL) {}
1293  };
1294
1295  /// LowerCallTo - This function lowers an abstract call to a function into an
1296  /// actual call.  This returns a pair of operands.  The first element is the
1297  /// return value for the function (if RetTy is not VoidTy).  The second
1298  /// element is the outgoing token chain. It calls LowerCall to do the actual
1299  /// lowering.
1300  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
1301
1302  /// LowerCall - This hook must be implemented to lower calls into the
1303  /// the specified DAG. The outgoing arguments to the call are described
1304  /// by the Outs array, and the values to be returned by the call are
1305  /// described by the Ins array. The implementation should fill in the
1306  /// InVals array with legal-type return values from the call, and return
1307  /// the resulting token chain value.
1308  virtual SDValue
1309    LowerCall(CallLoweringInfo &/*CLI*/,
1310              SmallVectorImpl<SDValue> &/*InVals*/) const {
1311    llvm_unreachable("Not Implemented");
1312  }
1313
1314  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1315  virtual void HandleByVal(CCState *, unsigned &) const {}
1316
1317  /// CanLowerReturn - This hook should be implemented to check whether the
1318  /// return values described by the Outs array can fit into the return
1319  /// registers.  If false is returned, an sret-demotion is performed.
1320  ///
1321  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
1322                              MachineFunction &/*MF*/, bool /*isVarArg*/,
1323               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1324               LLVMContext &/*Context*/) const
1325  {
1326    // Return true by default to get preexisting behavior.
1327    return true;
1328  }
1329
1330  /// LowerReturn - This hook must be implemented to lower outgoing
1331  /// return values, described by the Outs array, into the specified
1332  /// DAG. The implementation should return the resulting token chain
1333  /// value.
1334  ///
1335  virtual SDValue
1336    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1337                bool /*isVarArg*/,
1338                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1339                const SmallVectorImpl<SDValue> &/*OutVals*/,
1340                DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
1341    llvm_unreachable("Not Implemented");
1342  }
1343
1344  /// isUsedByReturnOnly - Return true if result of the specified node is used
1345  /// by a return node only. It also compute and return the input chain for the
1346  /// tail call.
1347  /// This is used to determine whether it is possible
1348  /// to codegen a libcall as tail call at legalization time.
1349  virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const {
1350    return false;
1351  }
1352
1353  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1354  /// call instruction as a tail call. This is used by optimization passes to
1355  /// determine if it's profitable to duplicate return instructions to enable
1356  /// tailcall optimization.
1357  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
1358    return false;
1359  }
1360
1361  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1362  /// sign extend a zeroext/signext integer argument or return value.
1363  /// FIXME: Most C calling convention requires the return type to be promoted,
1364  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1365  /// necessary for non-C calling conventions. The frontend should handle this
1366  /// and include all of the necessary information.
1367  virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1368                                       ISD::NodeType /*ExtendKind*/) const {
1369    EVT MinVT = getRegisterType(Context, MVT::i32);
1370    return VT.bitsLT(MinVT) ? MinVT : VT;
1371  }
1372
1373  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1374  /// to legalize nodes with an illegal operand type but legal result types.
1375  /// It replaces the LowerOperation callback in the type Legalizer.
1376  /// The reason we can not do away with LowerOperation entirely is that
1377  /// LegalizeDAG isn't yet ready to use this callback.
1378  /// TODO: Consider merging with ReplaceNodeResults.
1379
1380  /// The target places new result values for the node in Results (their number
1381  /// and types must exactly match those of the original return values of
1382  /// the node), or leaves Results empty, which indicates that the node is not
1383  /// to be custom lowered after all.
1384  /// The default implementation calls LowerOperation.
1385  virtual void LowerOperationWrapper(SDNode *N,
1386                                     SmallVectorImpl<SDValue> &Results,
1387                                     SelectionDAG &DAG) const;
1388
1389  /// LowerOperation - This callback is invoked for operations that are
1390  /// unsupported by the target, which are registered to use 'custom' lowering,
1391  /// and whose defined values are all legal.
1392  /// If the target has no operations that require custom lowering, it need not
1393  /// implement this.  The default implementation of this aborts.
1394  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1395
1396  /// ReplaceNodeResults - This callback is invoked when a node result type is
1397  /// illegal for the target, and the operation was registered to use 'custom'
1398  /// lowering for that result type.  The target places new result values for
1399  /// the node in Results (their number and types must exactly match those of
1400  /// the original return values of the node), or leaves Results empty, which
1401  /// indicates that the node is not to be custom lowered after all.
1402  ///
1403  /// If the target has no operations that require custom lowering, it need not
1404  /// implement this.  The default implementation aborts.
1405  virtual void ReplaceNodeResults(SDNode * /*N*/,
1406                                  SmallVectorImpl<SDValue> &/*Results*/,
1407                                  SelectionDAG &/*DAG*/) const {
1408    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
1409  }
1410
1411  /// getTargetNodeName() - This method returns the name of a target specific
1412  /// DAG node.
1413  virtual const char *getTargetNodeName(unsigned Opcode) const;
1414
1415  /// createFastISel - This method returns a target specific FastISel object,
1416  /// or null if the target does not support "fast" ISel.
1417  virtual FastISel *createFastISel(FunctionLoweringInfo &,
1418                                   const TargetLibraryInfo *) const {
1419    return 0;
1420  }
1421
1422  //===--------------------------------------------------------------------===//
1423  // Inline Asm Support hooks
1424  //
1425
1426  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1427  /// call to be explicit llvm code if it wants to.  This is useful for
1428  /// turning simple inline asms into LLVM intrinsics, which gives the
1429  /// compiler more information about the behavior of the code.
1430  virtual bool ExpandInlineAsm(CallInst *) const {
1431    return false;
1432  }
1433
1434  enum ConstraintType {
1435    C_Register,            // Constraint represents specific register(s).
1436    C_RegisterClass,       // Constraint represents any of register(s) in class.
1437    C_Memory,              // Memory constraint.
1438    C_Other,               // Something else.
1439    C_Unknown              // Unsupported constraint.
1440  };
1441
1442  enum ConstraintWeight {
1443    // Generic weights.
1444    CW_Invalid  = -1,     // No match.
1445    CW_Okay     = 0,      // Acceptable.
1446    CW_Good     = 1,      // Good weight.
1447    CW_Better   = 2,      // Better weight.
1448    CW_Best     = 3,      // Best weight.
1449
1450    // Well-known weights.
1451    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1452    CW_Register     = CW_Good,    // Register operands.
1453    CW_Memory       = CW_Better,  // Memory operands.
1454    CW_Constant     = CW_Best,    // Constant operand.
1455    CW_Default      = CW_Okay     // Default or don't know type.
1456  };
1457
1458  /// AsmOperandInfo - This contains information for each constraint that we are
1459  /// lowering.
1460  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1461    /// ConstraintCode - This contains the actual string for the code, like "m".
1462    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1463    /// most closely matches the operand.
1464    std::string ConstraintCode;
1465
1466    /// ConstraintType - Information about the constraint code, e.g. Register,
1467    /// RegisterClass, Memory, Other, Unknown.
1468    TargetLowering::ConstraintType ConstraintType;
1469
1470    /// CallOperandval - If this is the result output operand or a
1471    /// clobber, this is null, otherwise it is the incoming operand to the
1472    /// CallInst.  This gets modified as the asm is processed.
1473    Value *CallOperandVal;
1474
1475    /// ConstraintVT - The ValueType for the operand value.
1476    EVT ConstraintVT;
1477
1478    /// isMatchingInputConstraint - Return true of this is an input operand that
1479    /// is a matching constraint like "4".
1480    bool isMatchingInputConstraint() const;
1481
1482    /// getMatchedOperand - If this is an input matching constraint, this method
1483    /// returns the output operand it matches.
1484    unsigned getMatchedOperand() const;
1485
1486    /// Copy constructor for copying from an AsmOperandInfo.
1487    AsmOperandInfo(const AsmOperandInfo &info)
1488      : InlineAsm::ConstraintInfo(info),
1489        ConstraintCode(info.ConstraintCode),
1490        ConstraintType(info.ConstraintType),
1491        CallOperandVal(info.CallOperandVal),
1492        ConstraintVT(info.ConstraintVT) {
1493    }
1494
1495    /// Copy constructor for copying from a ConstraintInfo.
1496    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1497      : InlineAsm::ConstraintInfo(info),
1498        ConstraintType(TargetLowering::C_Unknown),
1499        CallOperandVal(0), ConstraintVT(MVT::Other) {
1500    }
1501  };
1502
1503  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1504
1505  /// ParseConstraints - Split up the constraint string from the inline
1506  /// assembly value into the specific constraints and their prefixes,
1507  /// and also tie in the associated operand values.
1508  /// If this returns an empty vector, and if the constraint string itself
1509  /// isn't empty, there was an error parsing.
1510  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1511
1512  /// Examine constraint type and operand type and determine a weight value.
1513  /// The operand object must already have been set up with the operand type.
1514  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1515      AsmOperandInfo &info, int maIndex) const;
1516
1517  /// Examine constraint string and operand type and determine a weight value.
1518  /// The operand object must already have been set up with the operand type.
1519  virtual ConstraintWeight getSingleConstraintMatchWeight(
1520      AsmOperandInfo &info, const char *constraint) const;
1521
1522  /// ComputeConstraintToUse - Determines the constraint code and constraint
1523  /// type to use for the specific AsmOperandInfo, setting
1524  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1525  /// being passed in is available, it can be passed in as Op, otherwise an
1526  /// empty SDValue can be passed.
1527  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1528                                      SDValue Op,
1529                                      SelectionDAG *DAG = 0) const;
1530
1531  /// getConstraintType - Given a constraint, return the type of constraint it
1532  /// is for this target.
1533  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1534
1535  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1536  /// {edx}), return the register number and the register class for the
1537  /// register.
1538  ///
1539  /// Given a register class constraint, like 'r', if this corresponds directly
1540  /// to an LLVM register class, return a register of 0 and the register class
1541  /// pointer.
1542  ///
1543  /// This should only be used for C_Register constraints.  On error,
1544  /// this returns a register number of 0 and a null register class pointer..
1545  virtual std::pair<unsigned, const TargetRegisterClass*>
1546    getRegForInlineAsmConstraint(const std::string &Constraint,
1547                                 EVT VT) const;
1548
1549  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1550  /// with another that has more specific requirements based on the type of the
1551  /// corresponding operand.  This returns null if there is no replacement to
1552  /// make.
1553  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1554
1555  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1556  /// vector.  If it is invalid, don't add anything to Ops.
1557  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1558                                            std::vector<SDValue> &Ops,
1559                                            SelectionDAG &DAG) const;
1560
1561  //===--------------------------------------------------------------------===//
1562  // Instruction Emitting Hooks
1563  //
1564
1565  // EmitInstrWithCustomInserter - This method should be implemented by targets
1566  // that mark instructions with the 'usesCustomInserter' flag.  These
1567  // instructions are special in various ways, which require special support to
1568  // insert.  The specified MachineInstr is created but not inserted into any
1569  // basic blocks, and this method is called to expand it into a sequence of
1570  // instructions, potentially also creating new basic blocks and control flow.
1571  virtual MachineBasicBlock *
1572    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1573
1574  /// AdjustInstrPostInstrSelection - This method should be implemented by
1575  /// targets that mark instructions with the 'hasPostISelHook' flag. These
1576  /// instructions must be adjusted after instruction selection by target hooks.
1577  /// e.g. To fill in optional defs for ARM 's' setting instructions.
1578  virtual void
1579  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
1580
1581  //===--------------------------------------------------------------------===//
1582  // Addressing mode description hooks (used by LSR etc).
1583  //
1584
1585  /// AddrMode - This represents an addressing mode of:
1586  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1587  /// If BaseGV is null,  there is no BaseGV.
1588  /// If BaseOffs is zero, there is no base offset.
1589  /// If HasBaseReg is false, there is no base register.
1590  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1591  /// no scale.
1592  ///
1593  struct AddrMode {
1594    GlobalValue *BaseGV;
1595    int64_t      BaseOffs;
1596    bool         HasBaseReg;
1597    int64_t      Scale;
1598    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1599  };
1600
1601  /// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the
1602  /// same BB as Load/Store instructions reading the address.  This allows as
1603  /// much computation as possible to be done in the address mode for that
1604  /// operand.  This hook lets targets also pass back when this should be done
1605  /// on intrinsics which load/store.
1606  virtual bool GetAddrModeArguments(IntrinsicInst *I,
1607                                    SmallVectorImpl<Value*> &Ops,
1608                                    Type *&AccessTy) const {
1609    return false;
1610  }
1611
1612  /// isLegalAddressingMode - Return true if the addressing mode represented by
1613  /// AM is legal for this target, for a load/store of the specified type.
1614  /// The type may be VoidTy, in which case only return true if the addressing
1615  /// mode is legal for a load/store of any legal type.
1616  /// TODO: Handle pre/postinc as well.
1617  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1618
1619  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1620  /// icmp immediate, that is the target has icmp instructions which can compare
1621  /// a register against the immediate without having to materialize the
1622  /// immediate into a register.
1623  virtual bool isLegalICmpImmediate(int64_t) const {
1624    return true;
1625  }
1626
1627  /// isLegalAddImmediate - Return true if the specified immediate is legal
1628  /// add immediate, that is the target has add instructions which can add
1629  /// a register with the immediate without having to materialize the
1630  /// immediate into a register.
1631  virtual bool isLegalAddImmediate(int64_t) const {
1632    return true;
1633  }
1634
1635  /// isTruncateFree - Return true if it's free to truncate a value of
1636  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1637  /// register EAX to i16 by referencing its sub-register AX.
1638  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1639    return false;
1640  }
1641
1642  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1643    return false;
1644  }
1645
1646  /// isZExtFree - Return true if any actual instruction that defines a
1647  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1648  /// register. This does not necessarily include registers defined in
1649  /// unknown ways, such as incoming arguments, or copies from unknown
1650  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1651  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1652  /// all instructions that define 32-bit values implicit zero-extend the
1653  /// result out to 64 bits.
1654  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1655    return false;
1656  }
1657
1658  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1659    return false;
1660  }
1661
1662  /// isFNegFree - Return true if an fneg operation is free to the point where
1663  /// it is never worthwhile to replace it with a bitwise operation.
1664  virtual bool isFNegFree(EVT) const {
1665    return false;
1666  }
1667
1668  /// isFAbsFree - Return true if an fneg operation is free to the point where
1669  /// it is never worthwhile to replace it with a bitwise operation.
1670  virtual bool isFAbsFree(EVT) const {
1671    return false;
1672  }
1673
1674  /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
1675  /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
1676  /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
1677  /// is expanded to mul + add.
1678  virtual bool isFMAFasterThanMulAndAdd(EVT) const {
1679    return false;
1680  }
1681
1682  /// isNarrowingProfitable - Return true if it's profitable to narrow
1683  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1684  /// from i32 to i8 but not from i32 to i16.
1685  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1686    return false;
1687  }
1688
1689  //===--------------------------------------------------------------------===//
1690  // Div utility functions
1691  //
1692  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1693                         SelectionDAG &DAG) const;
1694  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1695                      std::vector<SDNode*>* Created) const;
1696  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1697                      std::vector<SDNode*>* Created) const;
1698
1699
1700  //===--------------------------------------------------------------------===//
1701  // Runtime Library hooks
1702  //
1703
1704  /// setLibcallName - Rename the default libcall routine name for the specified
1705  /// libcall.
1706  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1707    LibcallRoutineNames[Call] = Name;
1708  }
1709
1710  /// getLibcallName - Get the libcall routine name for the specified libcall.
1711  ///
1712  const char *getLibcallName(RTLIB::Libcall Call) const {
1713    return LibcallRoutineNames[Call];
1714  }
1715
1716  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1717  /// result of the comparison libcall against zero.
1718  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1719    CmpLibcallCCs[Call] = CC;
1720  }
1721
1722  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1723  /// the comparison libcall against zero.
1724  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1725    return CmpLibcallCCs[Call];
1726  }
1727
1728  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1729  /// specified libcall.
1730  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1731    LibcallCallingConvs[Call] = CC;
1732  }
1733
1734  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1735  /// specified libcall.
1736  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1737    return LibcallCallingConvs[Call];
1738  }
1739
1740private:
1741  const TargetMachine &TM;
1742  const TargetData *TD;
1743  const TargetLoweringObjectFile &TLOF;
1744
1745  /// PointerTy - The type to use for pointers, usually i32 or i64.
1746  ///
1747  MVT PointerTy;
1748
1749  /// IsLittleEndian - True if this is a little endian target.
1750  ///
1751  bool IsLittleEndian;
1752
1753  /// SelectIsExpensive - Tells the code generator not to expand operations
1754  /// into sequences that use the select operations if possible.
1755  bool SelectIsExpensive;
1756
1757  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1758  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1759  /// a real cost model is in place.  If we ever optimize for size, this will be
1760  /// set to true unconditionally.
1761  bool IntDivIsCheap;
1762
1763  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1764  /// srl/add/sra for a signed divide by power of two, and let the target handle
1765  /// it.
1766  bool Pow2DivIsCheap;
1767
1768  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1769  /// extra flow control instructions and should attempt to combine flow
1770  /// control instructions via predication.
1771  bool JumpIsExpensive;
1772
1773  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1774  /// llvm.setjmp.  Defaults to false.
1775  bool UseUnderscoreSetJmp;
1776
1777  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1778  /// llvm.longjmp.  Defaults to false.
1779  bool UseUnderscoreLongJmp;
1780
1781  /// SupportJumpTables - Whether the target can generate code for jumptables.
1782  /// If it's not true, then each jumptable must be lowered into if-then-else's.
1783  bool SupportJumpTables;
1784
1785  /// BooleanContents - Information about the contents of the high-bits in
1786  /// boolean values held in a type wider than i1.  See getBooleanContents.
1787  BooleanContent BooleanContents;
1788  /// BooleanVectorContents - Information about the contents of the high-bits
1789  /// in boolean vector values when the element type is wider than i1.  See
1790  /// getBooleanContents.
1791  BooleanContent BooleanVectorContents;
1792
1793  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1794  /// total cycles or lowest register usage.
1795  Sched::Preference SchedPreferenceInfo;
1796
1797  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1798  unsigned JumpBufSize;
1799
1800  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1801  /// buffers
1802  unsigned JumpBufAlignment;
1803
1804  /// MinStackArgumentAlignment - The minimum alignment that any argument
1805  /// on the stack needs to have.
1806  ///
1807  unsigned MinStackArgumentAlignment;
1808
1809  /// MinFunctionAlignment - The minimum function alignment (used when
1810  /// optimizing for size, and to prevent explicitly provided alignment
1811  /// from leading to incorrect code).
1812  ///
1813  unsigned MinFunctionAlignment;
1814
1815  /// PrefFunctionAlignment - The preferred function alignment (used when
1816  /// alignment unspecified and optimizing for speed).
1817  ///
1818  unsigned PrefFunctionAlignment;
1819
1820  /// PrefLoopAlignment - The preferred loop alignment.
1821  ///
1822  unsigned PrefLoopAlignment;
1823
1824  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1825  /// be folded into the enclosed atomic intrinsic instruction by the
1826  /// combiner.
1827  bool ShouldFoldAtomicFences;
1828
1829  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1830  /// insert fences and reduce ordering for atomics.  (This will be set for
1831  /// for most architectures with weak memory ordering.)
1832  bool InsertFencesForAtomic;
1833
1834  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1835  /// specifies the register that llvm.savestack/llvm.restorestack should save
1836  /// and restore.
1837  unsigned StackPointerRegisterToSaveRestore;
1838
1839  /// ExceptionPointerRegister - If set to a physical register, this specifies
1840  /// the register that receives the exception address on entry to a landing
1841  /// pad.
1842  unsigned ExceptionPointerRegister;
1843
1844  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1845  /// the register that receives the exception typeid on entry to a landing
1846  /// pad.
1847  unsigned ExceptionSelectorRegister;
1848
1849  /// RegClassForVT - This indicates the default register class to use for
1850  /// each ValueType the target supports natively.
1851  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1852  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1853  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1854
1855  /// RepRegClassForVT - This indicates the "representative" register class to
1856  /// use for each ValueType the target supports natively. This information is
1857  /// used by the scheduler to track register pressure. By default, the
1858  /// representative register class is the largest legal super-reg register
1859  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1860  /// and i32's representative class would be GR32.
1861  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1862
1863  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1864  /// register class for each ValueType. The cost is used by the scheduler to
1865  /// approximate register pressure.
1866  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1867
1868  /// TransformToType - For any value types we are promoting or expanding, this
1869  /// contains the value type that we are changing to.  For Expanded types, this
1870  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1871  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1872  /// by the system, this holds the same type (e.g. i32 -> i32).
1873  EVT TransformToType[MVT::LAST_VALUETYPE];
1874
1875  /// OpActions - For each operation and each value type, keep a LegalizeAction
1876  /// that indicates how instruction selection should deal with the operation.
1877  /// Most operations are Legal (aka, supported natively by the target), but
1878  /// operations that are not should be described.  Note that operations on
1879  /// non-legal value types are not described here.
1880  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1881
1882  /// LoadExtActions - For each load extension type and each value type,
1883  /// keep a LegalizeAction that indicates how instruction selection should deal
1884  /// with a load of a specific value type and extension type.
1885  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1886
1887  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1888  /// indicates whether a truncating store of a specific value type and
1889  /// truncating type is legal.
1890  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1891
1892  /// IndexedModeActions - For each indexed mode and each value type,
1893  /// keep a pair of LegalizeAction that indicates how instruction
1894  /// selection should deal with the load / store.  The first dimension is the
1895  /// value_type for the reference. The second dimension represents the various
1896  /// modes for load store.
1897  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1898
1899  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1900  /// LegalizeAction that indicates how instruction selection should
1901  /// deal with the condition code.
1902  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1903
1904  ValueTypeActionImpl ValueTypeActions;
1905
1906  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
1907
1908  LegalizeKind
1909  getTypeConversion(LLVMContext &Context, EVT VT) const {
1910    // If this is a simple type, use the ComputeRegisterProp mechanism.
1911    if (VT.isSimple()) {
1912      assert((unsigned)VT.getSimpleVT().SimpleTy <
1913             array_lengthof(TransformToType));
1914      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
1915      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
1916
1917      assert(
1918        (!(NVT.isSimple() && LA != TypeLegal) ||
1919         ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
1920         && "Promote may not follow Expand or Promote");
1921
1922      return LegalizeKind(LA, NVT);
1923    }
1924
1925    // Handle Extended Scalar Types.
1926    if (!VT.isVector()) {
1927      assert(VT.isInteger() && "Float types must be simple");
1928      unsigned BitSize = VT.getSizeInBits();
1929      // First promote to a power-of-two size, then expand if necessary.
1930      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1931        EVT NVT = VT.getRoundIntegerType(Context);
1932        assert(NVT != VT && "Unable to round integer VT");
1933        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1934        // Avoid multi-step promotion.
1935        if (NextStep.first == TypePromoteInteger) return NextStep;
1936        // Return rounded integer type.
1937        return LegalizeKind(TypePromoteInteger, NVT);
1938      }
1939
1940      return LegalizeKind(TypeExpandInteger,
1941                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1942    }
1943
1944    // Handle vector types.
1945    unsigned NumElts = VT.getVectorNumElements();
1946    EVT EltVT = VT.getVectorElementType();
1947
1948    // Vectors with only one element are always scalarized.
1949    if (NumElts == 1)
1950      return LegalizeKind(TypeScalarizeVector, EltVT);
1951
1952    // Try to widen vector elements until a legal type is found.
1953    if (EltVT.isInteger()) {
1954      // Vectors with a number of elements that is not a power of two are always
1955      // widened, for example <3 x float> -> <4 x float>.
1956      if (!VT.isPow2VectorType()) {
1957        NumElts = (unsigned)NextPowerOf2(NumElts);
1958        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1959        return LegalizeKind(TypeWidenVector, NVT);
1960      }
1961
1962      // Examine the element type.
1963      LegalizeKind LK = getTypeConversion(Context, EltVT);
1964
1965      // If type is to be expanded, split the vector.
1966      //  <4 x i140> -> <2 x i140>
1967      if (LK.first == TypeExpandInteger)
1968        return LegalizeKind(TypeSplitVector,
1969                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
1970
1971      // Promote the integer element types until a legal vector type is found
1972      // or until the element integer type is too big. If a legal type was not
1973      // found, fallback to the usual mechanism of widening/splitting the
1974      // vector.
1975      while (1) {
1976        // Increase the bitwidth of the element to the next pow-of-two
1977        // (which is greater than 8 bits).
1978        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
1979                                 ).getRoundIntegerType(Context);
1980
1981        // Stop trying when getting a non-simple element type.
1982        // Note that vector elements may be greater than legal vector element
1983        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
1984        if (!EltVT.isSimple()) break;
1985
1986        // Build a new vector type and check if it is legal.
1987        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1988        // Found a legal promoted vector type.
1989        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1990          return LegalizeKind(TypePromoteInteger,
1991                              EVT::getVectorVT(Context, EltVT, NumElts));
1992      }
1993    }
1994
1995    // Try to widen the vector until a legal type is found.
1996    // If there is no wider legal type, split the vector.
1997    while (1) {
1998      // Round up to the next power of 2.
1999      NumElts = (unsigned)NextPowerOf2(NumElts);
2000
2001      // If there is no simple vector type with this many elements then there
2002      // cannot be a larger legal vector type.  Note that this assumes that
2003      // there are no skipped intermediate vector types in the simple types.
2004      if (!EltVT.isSimple()) break;
2005      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2006      if (LargerVector == MVT()) break;
2007
2008      // If this type is legal then widen the vector.
2009      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
2010        return LegalizeKind(TypeWidenVector, LargerVector);
2011    }
2012
2013    // Widen odd vectors to next power of two.
2014    if (!VT.isPow2VectorType()) {
2015      EVT NVT = VT.getPow2VectorType(Context);
2016      return LegalizeKind(TypeWidenVector, NVT);
2017    }
2018
2019    // Vectors with illegal element types are expanded.
2020    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
2021    return LegalizeKind(TypeSplitVector, NVT);
2022  }
2023
2024  std::vector<std::pair<EVT, const TargetRegisterClass*> > AvailableRegClasses;
2025
2026  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
2027  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
2028  /// which sets a bit in this array.
2029  unsigned char
2030  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
2031
2032  /// PromoteToType - For operations that must be promoted to a specific type,
2033  /// this holds the destination type.  This map should be sparse, so don't hold
2034  /// it as an array.
2035  ///
2036  /// Targets add entries to this map with AddPromotedToType(..), clients access
2037  /// this with getTypeToPromoteTo(..).
2038  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
2039    PromoteToType;
2040
2041  /// LibcallRoutineNames - Stores the name each libcall.
2042  ///
2043  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
2044
2045  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
2046  /// of each of the comparison libcall against zero.
2047  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
2048
2049  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
2050  /// libcall.
2051  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
2052
2053protected:
2054  /// When lowering \@llvm.memset this field specifies the maximum number of
2055  /// store operations that may be substituted for the call to memset. Targets
2056  /// must set this value based on the cost threshold for that target. Targets
2057  /// should assume that the memset will be done using as many of the largest
2058  /// store operations first, followed by smaller ones, if necessary, per
2059  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
2060  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
2061  /// store.  This only applies to setting a constant array of a constant size.
2062  /// @brief Specify maximum number of store instructions per memset call.
2063  unsigned maxStoresPerMemset;
2064
2065  /// Maximum number of stores operations that may be substituted for the call
2066  /// to memset, used for functions with OptSize attribute.
2067  unsigned maxStoresPerMemsetOptSize;
2068
2069  /// When lowering \@llvm.memcpy this field specifies the maximum number of
2070  /// store operations that may be substituted for a call to memcpy. Targets
2071  /// must set this value based on the cost threshold for that target. Targets
2072  /// should assume that the memcpy will be done using as many of the largest
2073  /// store operations first, followed by smaller ones, if necessary, per
2074  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
2075  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
2076  /// and one 1-byte store. This only applies to copying a constant array of
2077  /// constant size.
2078  /// @brief Specify maximum bytes of store instructions per memcpy call.
2079  unsigned maxStoresPerMemcpy;
2080
2081  /// Maximum number of store operations that may be substituted for a call
2082  /// to memcpy, used for functions with OptSize attribute.
2083  unsigned maxStoresPerMemcpyOptSize;
2084
2085  /// When lowering \@llvm.memmove this field specifies the maximum number of
2086  /// store instructions that may be substituted for a call to memmove. Targets
2087  /// must set this value based on the cost threshold for that target. Targets
2088  /// should assume that the memmove will be done using as many of the largest
2089  /// store operations first, followed by smaller ones, if necessary, per
2090  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2091  /// with 8-bit alignment would result in nine 1-byte stores.  This only
2092  /// applies to copying a constant array of constant size.
2093  /// @brief Specify maximum bytes of store instructions per memmove call.
2094  unsigned maxStoresPerMemmove;
2095
2096  /// Maximum number of store instructions that may be substituted for a call
2097  /// to memmove, used for functions with OpSize attribute.
2098  unsigned maxStoresPerMemmoveOptSize;
2099
2100  /// This field specifies whether the target can benefit from code placement
2101  /// optimization.
2102  bool benefitFromCodePlacementOpt;
2103
2104  /// predictableSelectIsExpensive - Tells the code generator that select is
2105  /// more expensive than a branch if the branch is usually predicted right.
2106  bool predictableSelectIsExpensive;
2107
2108private:
2109  /// isLegalRC - Return true if the value types that can be represented by the
2110  /// specified register class are all legal.
2111  bool isLegalRC(const TargetRegisterClass *RC) const;
2112};
2113
2114/// GetReturnInfo - Given an LLVM IR type and return type attributes,
2115/// compute the return value EVTs and flags, and optionally also
2116/// the offsets, if the return value is being lowered to memory.
2117void GetReturnInfo(Type* ReturnType, Attributes attr,
2118                   SmallVectorImpl<ISD::OutputArg> &Outs,
2119                   const TargetLowering &TLI);
2120
2121} // end llvm namespace
2122
2123#endif
2124