TargetLowering.h revision d4f5a615674aaabeee4e444e708d1fa00a41495e
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// This file describes how to lower LLVM code to machine code.  This has two
12/// main components:
13///
14///  1. Which ValueTypes are natively supported by the target.
15///  2. Which operations are supported for supported ValueTypes.
16///  3. Cost thresholds for alternative implementations of certain operations.
17///
18/// In addition it has a few other components, like information about FP
19/// immediates.
20///
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_TARGET_TARGETLOWERING_H
24#define LLVM_TARGET_TARGETLOWERING_H
25
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/CodeGen/DAGCombine.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/IR/Attributes.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/InlineAsm.h"
33#include "llvm/Support/CallSite.h"
34#include "llvm/Target/TargetCallingConv.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class CallInst;
42  class CCState;
43  class FastISel;
44  class FunctionLoweringInfo;
45  class ImmutableCallSite;
46  class IntrinsicInst;
47  class MachineBasicBlock;
48  class MachineFunction;
49  class MachineInstr;
50  class MachineJumpTableInfo;
51  class MCContext;
52  class MCExpr;
53  template<typename T> class SmallVectorImpl;
54  class DataLayout;
55  class TargetRegisterClass;
56  class TargetLibraryInfo;
57  class TargetLoweringObjectFile;
58  class Value;
59
60  namespace Sched {
61    enum Preference {
62      None,             // No preference
63      Source,           // Follow source order.
64      RegPressure,      // Scheduling for lowest register pressure.
65      Hybrid,           // Scheduling for both latency and register pressure.
66      ILP,              // Scheduling for ILP in low register pressure mode.
67      VLIW              // Scheduling for VLIW targets.
68    };
69  }
70
71/// This base class for TargetLowering contains the SelectionDAG-independent
72/// parts that can be used from the rest of CodeGen.
73class TargetLoweringBase {
74  TargetLoweringBase(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
75  void operator=(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
76
77public:
78  /// This enum indicates whether operations are valid for a target, and if not,
79  /// what action should be used to make them valid.
80  enum LegalizeAction {
81    Legal,      // The target natively supports this operation.
82    Promote,    // This operation should be executed in a larger type.
83    Expand,     // Try to expand this to other ops, otherwise use a libcall.
84    Custom      // Use the LowerOperation hook to implement custom lowering.
85  };
86
87  /// This enum indicates whether a types are legal for a target, and if not,
88  /// what action should be used to make them valid.
89  enum LegalizeTypeAction {
90    TypeLegal,           // The target natively supports this type.
91    TypePromoteInteger,  // Replace this integer with a larger one.
92    TypeExpandInteger,   // Split this integer into two of half the size.
93    TypeSoftenFloat,     // Convert this float to a same size integer type.
94    TypeExpandFloat,     // Split this float into two of half the size.
95    TypeScalarizeVector, // Replace this one-element vector with its element.
96    TypeSplitVector,     // Split this vector into two of half the size.
97    TypeWidenVector      // This vector should be widened into a larger vector.
98  };
99
100  /// LegalizeKind holds the legalization kind that needs to happen to EVT
101  /// in order to type-legalize it.
102  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
103
104  /// Enum that describes how the target represents true/false values.
105  enum BooleanContent {
106    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
107    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
108    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
109  };
110
111  /// Enum that describes what type of support for selects the target has.
112  enum SelectSupportKind {
113    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
114    ScalarCondVectorVal,  // The target supports selects with a scalar condition
115                          // and vector values (ex: cmov).
116    VectorMaskSelect      // The target supports vector selects with a vector
117                          // mask (ex: x86 blends).
118  };
119
120  static ISD::NodeType getExtendForContent(BooleanContent Content) {
121    switch (Content) {
122    case UndefinedBooleanContent:
123      // Extend by adding rubbish bits.
124      return ISD::ANY_EXTEND;
125    case ZeroOrOneBooleanContent:
126      // Extend by adding zero bits.
127      return ISD::ZERO_EXTEND;
128    case ZeroOrNegativeOneBooleanContent:
129      // Extend by copying the sign bit.
130      return ISD::SIGN_EXTEND;
131    }
132    llvm_unreachable("Invalid content kind");
133  }
134
135  /// NOTE: The constructor takes ownership of TLOF.
136  explicit TargetLoweringBase(const TargetMachine &TM,
137                              const TargetLoweringObjectFile *TLOF);
138  virtual ~TargetLoweringBase();
139
140protected:
141  /// \brief Initialize all of the actions to default values.
142  void initActions();
143
144public:
145  const TargetMachine &getTargetMachine() const { return TM; }
146  const DataLayout *getDataLayout() const { return TD; }
147  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
148
149  bool isBigEndian() const { return !IsLittleEndian; }
150  bool isLittleEndian() const { return IsLittleEndian; }
151
152  /// Return the pointer type for the given address space, defaults to
153  /// the pointer type from the data layout.
154  /// FIXME: The default needs to be removed once all the code is updated.
155  virtual MVT getPointerTy(uint32_t /*AS*/ = 0) const;
156  unsigned getPointerSizeInBits(uint32_t AS = 0) const;
157  unsigned getPointerTypeSizeInBits(Type *Ty) const;
158  virtual MVT getScalarShiftAmountTy(EVT LHSTy) const;
159
160  EVT getShiftAmountTy(EVT LHSTy) const;
161
162  /// Returns the type to be used for the index operand of:
163  /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
164  /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
165  virtual MVT getVectorIdxTy() const {
166    return getPointerTy();
167  }
168
169  /// Return true if the select operation is expensive for this target.
170  bool isSelectExpensive() const { return SelectIsExpensive; }
171
172  virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
173    return true;
174  }
175
176  /// Return true if a vector of the given type should be split
177  /// (TypeSplitVector) instead of promoted (TypePromoteInteger) during type
178  /// legalization.
179  virtual bool shouldSplitVectorElementType(EVT /*VT*/) const { return false; }
180
181  /// Return true if integer divide is usually cheaper than a sequence of
182  /// several shifts, adds, and multiplies for this target.
183  bool isIntDivCheap() const { return IntDivIsCheap; }
184
185  /// Returns true if target has indicated at least one type should be bypassed.
186  bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
187
188  /// Returns map of slow types for division or remainder with corresponding
189  /// fast types
190  const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
191    return BypassSlowDivWidths;
192  }
193
194  /// Return true if pow2 div is cheaper than a chain of srl/add/sra.
195  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
196
197  /// Return true if Flow Control is an expensive operation that should be
198  /// avoided.
199  bool isJumpExpensive() const { return JumpIsExpensive; }
200
201  /// Return true if selects are only cheaper than branches if the branch is
202  /// unlikely to be predicted right.
203  bool isPredictableSelectExpensive() const {
204    return PredictableSelectIsExpensive;
205  }
206
207  /// Return the ValueType of the result of SETCC operations.  Also used to
208  /// obtain the target's preferred type for the condition operand of SELECT and
209  /// BRCOND nodes.  In the case of BRCOND the argument passed is MVT::Other
210  /// since there are no other operands to get a type hint from.
211  virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
212
213  /// Return the ValueType for comparison libcalls. Comparions libcalls include
214  /// floating point comparion calls, and Ordered/Unordered check calls on
215  /// floating point numbers.
216  virtual
217  MVT::SimpleValueType getCmpLibcallReturnType() const;
218
219  /// For targets without i1 registers, this gives the nature of the high-bits
220  /// of boolean values held in types wider than i1.
221  ///
222  /// "Boolean values" are special true/false values produced by nodes like
223  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
224  /// Not to be confused with general values promoted from i1.  Some cpus
225  /// distinguish between vectors of boolean and scalars; the isVec parameter
226  /// selects between the two kinds.  For example on X86 a scalar boolean should
227  /// be zero extended from i1, while the elements of a vector of booleans
228  /// should be sign extended from i1.
229  BooleanContent getBooleanContents(bool isVec) const {
230    return isVec ? BooleanVectorContents : BooleanContents;
231  }
232
233  /// Return target scheduling preference.
234  Sched::Preference getSchedulingPreference() const {
235    return SchedPreferenceInfo;
236  }
237
238  /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
239  /// for different nodes. This function returns the preference (or none) for
240  /// the given node.
241  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
242    return Sched::None;
243  }
244
245  /// Return the register class that should be used for the specified value
246  /// type.
247  virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
248    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
249    assert(RC && "This value type is not natively supported!");
250    return RC;
251  }
252
253  /// Return the 'representative' register class for the specified value
254  /// type.
255  ///
256  /// The 'representative' register class is the largest legal super-reg
257  /// register class for the register class of the value type.  For example, on
258  /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
259  /// register class is GR64 on x86_64.
260  virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
261    const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
262    return RC;
263  }
264
265  /// Return the cost of the 'representative' register class for the specified
266  /// value type.
267  virtual uint8_t getRepRegClassCostFor(MVT VT) const {
268    return RepRegClassCostForVT[VT.SimpleTy];
269  }
270
271  /// Return true if the target has native support for the specified value type.
272  /// This means that it has a register that directly holds it without
273  /// promotions or expansions.
274  bool isTypeLegal(EVT VT) const {
275    assert(!VT.isSimple() ||
276           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
277    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
278  }
279
280  class ValueTypeActionImpl {
281    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
282    /// that indicates how instruction selection should deal with the type.
283    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
284
285  public:
286    ValueTypeActionImpl() {
287      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
288    }
289
290    LegalizeTypeAction getTypeAction(MVT VT) const {
291      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
292    }
293
294    void setTypeAction(MVT VT, LegalizeTypeAction Action) {
295      unsigned I = VT.SimpleTy;
296      ValueTypeActions[I] = Action;
297    }
298  };
299
300  const ValueTypeActionImpl &getValueTypeActions() const {
301    return ValueTypeActions;
302  }
303
304  /// Return how we should legalize values of this type, either it is already
305  /// legal (return 'Legal') or we need to promote it to a larger type (return
306  /// 'Promote'), or we need to expand it into multiple registers of smaller
307  /// integer type (return 'Expand').  'Custom' is not an option.
308  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
309    return getTypeConversion(Context, VT).first;
310  }
311  LegalizeTypeAction getTypeAction(MVT VT) const {
312    return ValueTypeActions.getTypeAction(VT);
313  }
314
315  /// For types supported by the target, this is an identity function.  For
316  /// types that must be promoted to larger types, this returns the larger type
317  /// to promote to.  For integer types that are larger than the largest integer
318  /// register, this contains one step in the expansion to get to the smaller
319  /// register. For illegal floating point types, this returns the integer type
320  /// to transform to.
321  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
322    return getTypeConversion(Context, VT).second;
323  }
324
325  /// For types supported by the target, this is an identity function.  For
326  /// types that must be expanded (i.e. integer types that are larger than the
327  /// largest integer register or illegal floating point types), this returns
328  /// the largest legal type it will be expanded to.
329  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
330    assert(!VT.isVector());
331    while (true) {
332      switch (getTypeAction(Context, VT)) {
333      case TypeLegal:
334        return VT;
335      case TypeExpandInteger:
336        VT = getTypeToTransformTo(Context, VT);
337        break;
338      default:
339        llvm_unreachable("Type is not legal nor is it to be expanded!");
340      }
341    }
342  }
343
344  /// Vector types are broken down into some number of legal first class types.
345  /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
346  /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
347  /// turns into 4 EVT::i32 values with both PPC and X86.
348  ///
349  /// This method returns the number of registers needed, and the VT for each
350  /// register.  It also returns the VT and quantity of the intermediate values
351  /// before they are promoted/expanded.
352  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
353                                  EVT &IntermediateVT,
354                                  unsigned &NumIntermediates,
355                                  MVT &RegisterVT) const;
356
357  struct IntrinsicInfo {
358    unsigned     opc;         // target opcode
359    EVT          memVT;       // memory VT
360    const Value* ptrVal;      // value representing memory location
361    int          offset;      // offset off of ptrVal
362    unsigned     align;       // alignment
363    bool         vol;         // is volatile?
364    bool         readMem;     // reads memory?
365    bool         writeMem;    // writes memory?
366  };
367
368  /// Given an intrinsic, checks if on the target the intrinsic will need to map
369  /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
370  /// true and store the intrinsic information into the IntrinsicInfo that was
371  /// passed to the function.
372  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
373                                  unsigned /*Intrinsic*/) const {
374    return false;
375  }
376
377  /// Returns true if the target can instruction select the specified FP
378  /// immediate natively. If false, the legalizer will materialize the FP
379  /// immediate as a load from a constant pool.
380  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
381    return false;
382  }
383
384  /// Targets can use this to indicate that they only support *some*
385  /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
386  /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
387  /// legal.
388  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
389                                  EVT /*VT*/) const {
390    return true;
391  }
392
393  /// Returns true if the operation can trap for the value type.
394  ///
395  /// VT must be a legal type. By default, we optimistically assume most
396  /// operations don't trap except for divide and remainder.
397  virtual bool canOpTrap(unsigned Op, EVT VT) const;
398
399  /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
400  /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
401  /// a VAND with a constant pool entry.
402  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
403                                      EVT /*VT*/) const {
404    return false;
405  }
406
407  /// Return how this operation should be treated: either it is legal, needs to
408  /// be promoted to a larger size, needs to be expanded to some other code
409  /// sequence, or the target has a custom expander for it.
410  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
411    if (VT.isExtended()) return Expand;
412    // If a target-specific SDNode requires legalization, require the target
413    // to provide custom legalization for it.
414    if (Op > array_lengthof(OpActions[0])) return Custom;
415    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
416    return (LegalizeAction)OpActions[I][Op];
417  }
418
419  /// Return true if the specified operation is legal on this target or can be
420  /// made legal with custom lowering. This is used to help guide high-level
421  /// lowering decisions.
422  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
423    return (VT == MVT::Other || isTypeLegal(VT)) &&
424      (getOperationAction(Op, VT) == Legal ||
425       getOperationAction(Op, VT) == Custom);
426  }
427
428  /// Return true if the specified operation is legal on this target or can be
429  /// made legal using promotion. This is used to help guide high-level lowering
430  /// decisions.
431  bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
432    return (VT == MVT::Other || isTypeLegal(VT)) &&
433      (getOperationAction(Op, VT) == Legal ||
434       getOperationAction(Op, VT) == Promote);
435  }
436
437  /// Return true if the specified operation is illegal on this target or
438  /// unlikely to be made legal with custom lowering. This is used to help guide
439  /// high-level lowering decisions.
440  bool isOperationExpand(unsigned Op, EVT VT) const {
441    return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
442  }
443
444  /// Return true if the specified operation is legal on this target.
445  bool isOperationLegal(unsigned Op, EVT VT) const {
446    return (VT == MVT::Other || isTypeLegal(VT)) &&
447           getOperationAction(Op, VT) == Legal;
448  }
449
450  /// Return how this load with extension should be treated: either it is legal,
451  /// needs to be promoted to a larger size, needs to be expanded to some other
452  /// code sequence, or the target has a custom expander for it.
453  LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const {
454    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
455           "Table isn't big enough!");
456    return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType];
457  }
458
459  /// Return true if the specified load with extension is legal on this target.
460  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
461    return VT.isSimple() &&
462      getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal;
463  }
464
465  /// Return how this store with truncation should be treated: either it is
466  /// legal, needs to be promoted to a larger size, needs to be expanded to some
467  /// other code sequence, or the target has a custom expander for it.
468  LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const {
469    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
470           "Table isn't big enough!");
471    return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy]
472                                            [MemVT.SimpleTy];
473  }
474
475  /// Return true if the specified store with truncation is legal on this
476  /// target.
477  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
478    return isTypeLegal(ValVT) && MemVT.isSimple() &&
479      getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
480  }
481
482  /// Return how the indexed load should be treated: either it is legal, needs
483  /// to be promoted to a larger size, needs to be expanded to some other code
484  /// sequence, or the target has a custom expander for it.
485  LegalizeAction
486  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
487    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
488           "Table isn't big enough!");
489    unsigned Ty = (unsigned)VT.SimpleTy;
490    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
491  }
492
493  /// Return true if the specified indexed load is legal on this target.
494  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
495    return VT.isSimple() &&
496      (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
497       getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
498  }
499
500  /// Return how the indexed store should be treated: either it is legal, needs
501  /// to be promoted to a larger size, needs to be expanded to some other code
502  /// sequence, or the target has a custom expander for it.
503  LegalizeAction
504  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
505    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
506           "Table isn't big enough!");
507    unsigned Ty = (unsigned)VT.SimpleTy;
508    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
509  }
510
511  /// Return true if the specified indexed load is legal on this target.
512  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
513    return VT.isSimple() &&
514      (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
515       getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
516  }
517
518  /// Return how the condition code should be treated: either it is legal, needs
519  /// to be expanded to some other code sequence, or the target has a custom
520  /// expander for it.
521  LegalizeAction
522  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
523    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
524           ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) &&
525           "Table isn't big enough!");
526    // See setCondCodeAction for how this is encoded.
527    uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
528    uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 4];
529    LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0x3);
530    assert(Action != Promote && "Can't promote condition code!");
531    return Action;
532  }
533
534  /// Return true if the specified condition code is legal on this target.
535  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
536    return
537      getCondCodeAction(CC, VT) == Legal ||
538      getCondCodeAction(CC, VT) == Custom;
539  }
540
541
542  /// If the action for this operation is to promote, this method returns the
543  /// ValueType to promote to.
544  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
545    assert(getOperationAction(Op, VT) == Promote &&
546           "This operation isn't promoted!");
547
548    // See if this has an explicit type specified.
549    std::map<std::pair<unsigned, MVT::SimpleValueType>,
550             MVT::SimpleValueType>::const_iterator PTTI =
551      PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
552    if (PTTI != PromoteToType.end()) return PTTI->second;
553
554    assert((VT.isInteger() || VT.isFloatingPoint()) &&
555           "Cannot autopromote this type, add it with AddPromotedToType.");
556
557    MVT NVT = VT;
558    do {
559      NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
560      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
561             "Didn't find type to promote to!");
562    } while (!isTypeLegal(NVT) ||
563              getOperationAction(Op, NVT) == Promote);
564    return NVT;
565  }
566
567  /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
568  /// operations except for the pointer size.  If AllowUnknown is true, this
569  /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
570  /// otherwise it will assert.
571  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
572    // Lower scalar pointers to native pointer types.
573    if (PointerType *PTy = dyn_cast<PointerType>(Ty))
574      return getPointerTy(PTy->getAddressSpace());
575
576    if (Ty->isVectorTy()) {
577      VectorType *VTy = cast<VectorType>(Ty);
578      Type *Elm = VTy->getElementType();
579      // Lower vectors of pointers to native pointer types.
580      if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
581        EVT PointerTy(getPointerTy(PT->getAddressSpace()));
582        Elm = PointerTy.getTypeForEVT(Ty->getContext());
583      }
584
585      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
586                       VTy->getNumElements());
587    }
588    return EVT::getEVT(Ty, AllowUnknown);
589  }
590
591  /// Return the MVT corresponding to this LLVM type. See getValueType.
592  MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
593    return getValueType(Ty, AllowUnknown).getSimpleVT();
594  }
595
596  /// Return the desired alignment for ByVal aggregate function arguments in the
597  /// caller parameter area.  This is the actual alignment, not its logarithm.
598  virtual unsigned getByValTypeAlignment(Type *Ty) const;
599
600  /// Return the type of registers that this ValueType will eventually require.
601  MVT getRegisterType(MVT VT) const {
602    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
603    return RegisterTypeForVT[VT.SimpleTy];
604  }
605
606  /// Return the type of registers that this ValueType will eventually require.
607  MVT getRegisterType(LLVMContext &Context, EVT VT) const {
608    if (VT.isSimple()) {
609      assert((unsigned)VT.getSimpleVT().SimpleTy <
610                array_lengthof(RegisterTypeForVT));
611      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
612    }
613    if (VT.isVector()) {
614      EVT VT1;
615      MVT RegisterVT;
616      unsigned NumIntermediates;
617      (void)getVectorTypeBreakdown(Context, VT, VT1,
618                                   NumIntermediates, RegisterVT);
619      return RegisterVT;
620    }
621    if (VT.isInteger()) {
622      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
623    }
624    llvm_unreachable("Unsupported extended type!");
625  }
626
627  /// Return the number of registers that this ValueType will eventually
628  /// require.
629  ///
630  /// This is one for any types promoted to live in larger registers, but may be
631  /// more than one for types (like i64) that are split into pieces.  For types
632  /// like i140, which are first promoted then expanded, it is the number of
633  /// registers needed to hold all the bits of the original type.  For an i140
634  /// on a 32 bit machine this means 5 registers.
635  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
636    if (VT.isSimple()) {
637      assert((unsigned)VT.getSimpleVT().SimpleTy <
638                array_lengthof(NumRegistersForVT));
639      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
640    }
641    if (VT.isVector()) {
642      EVT VT1;
643      MVT VT2;
644      unsigned NumIntermediates;
645      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
646    }
647    if (VT.isInteger()) {
648      unsigned BitWidth = VT.getSizeInBits();
649      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
650      return (BitWidth + RegWidth - 1) / RegWidth;
651    }
652    llvm_unreachable("Unsupported extended type!");
653  }
654
655  /// If true, then instruction selection should seek to shrink the FP constant
656  /// of the specified type to a smaller type in order to save space and / or
657  /// reduce runtime.
658  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
659
660  /// If true, the target has custom DAG combine transformations that it can
661  /// perform for the specified node.
662  bool hasTargetDAGCombine(ISD::NodeType NT) const {
663    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
664    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
665  }
666
667  /// \brief Get maximum # of store operations permitted for llvm.memset
668  ///
669  /// This function returns the maximum number of store operations permitted
670  /// to replace a call to llvm.memset. The value is set by the target at the
671  /// performance threshold for such a replacement. If OptSize is true,
672  /// return the limit for functions that have OptSize attribute.
673  unsigned getMaxStoresPerMemset(bool OptSize) const {
674    return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
675  }
676
677  /// \brief Get maximum # of store operations permitted for llvm.memcpy
678  ///
679  /// This function returns the maximum number of store operations permitted
680  /// to replace a call to llvm.memcpy. The value is set by the target at the
681  /// performance threshold for such a replacement. If OptSize is true,
682  /// return the limit for functions that have OptSize attribute.
683  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
684    return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
685  }
686
687  /// \brief Get maximum # of store operations permitted for llvm.memmove
688  ///
689  /// This function returns the maximum number of store operations permitted
690  /// to replace a call to llvm.memmove. The value is set by the target at the
691  /// performance threshold for such a replacement. If OptSize is true,
692  /// return the limit for functions that have OptSize attribute.
693  unsigned getMaxStoresPerMemmove(bool OptSize) const {
694    return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
695  }
696
697  /// \brief Determine if the target supports unaligned memory accesses.
698  ///
699  /// This function returns true if the target allows unaligned memory accesses.
700  /// of the specified type. If true, it also returns whether the unaligned
701  /// memory access is "fast" in the second argument by reference. This is used,
702  /// for example, in situations where an array copy/move/set is converted to a
703  /// sequence of store operations. It's use helps to ensure that such
704  /// replacements don't generate code that causes an alignment error (trap) on
705  /// the target machine.
706  virtual bool allowsUnalignedMemoryAccesses(EVT, bool * /*Fast*/ = 0) const {
707    return false;
708  }
709
710  /// Returns the target specific optimal type for load and store operations as
711  /// a result of memset, memcpy, and memmove lowering.
712  ///
713  /// If DstAlign is zero that means it's safe to destination alignment can
714  /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
715  /// a need to check it against alignment requirement, probably because the
716  /// source does not need to be loaded. If 'IsMemset' is true, that means it's
717  /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
718  /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
719  /// does not need to be loaded.  It returns EVT::Other if the type should be
720  /// determined using generic target-independent logic.
721  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
722                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
723                                  bool /*IsMemset*/,
724                                  bool /*ZeroMemset*/,
725                                  bool /*MemcpyStrSrc*/,
726                                  MachineFunction &/*MF*/) const {
727    return MVT::Other;
728  }
729
730  /// Returns true if it's safe to use load / store of the specified type to
731  /// expand memcpy / memset inline.
732  ///
733  /// This is mostly true for all types except for some special cases. For
734  /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
735  /// fstpl which also does type conversion. Note the specified type doesn't
736  /// have to be legal as the hook is used before type legalization.
737  virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
738
739  /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
740  bool usesUnderscoreSetJmp() const {
741    return UseUnderscoreSetJmp;
742  }
743
744  /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
745  bool usesUnderscoreLongJmp() const {
746    return UseUnderscoreLongJmp;
747  }
748
749  /// Return whether the target can generate code for jump tables.
750  bool supportJumpTables() const {
751    return SupportJumpTables;
752  }
753
754  /// Return integer threshold on number of blocks to use jump tables rather
755  /// than if sequence.
756  int getMinimumJumpTableEntries() const {
757    return MinimumJumpTableEntries;
758  }
759
760  /// If a physical register, this specifies the register that
761  /// llvm.savestack/llvm.restorestack should save and restore.
762  unsigned getStackPointerRegisterToSaveRestore() const {
763    return StackPointerRegisterToSaveRestore;
764  }
765
766  /// If a physical register, this returns the register that receives the
767  /// exception address on entry to a landing pad.
768  unsigned getExceptionPointerRegister() const {
769    return ExceptionPointerRegister;
770  }
771
772  /// If a physical register, this returns the register that receives the
773  /// exception typeid on entry to a landing pad.
774  unsigned getExceptionSelectorRegister() const {
775    return ExceptionSelectorRegister;
776  }
777
778  /// Returns the target's jmp_buf size in bytes (if never set, the default is
779  /// 200)
780  unsigned getJumpBufSize() const {
781    return JumpBufSize;
782  }
783
784  /// Returns the target's jmp_buf alignment in bytes (if never set, the default
785  /// is 0)
786  unsigned getJumpBufAlignment() const {
787    return JumpBufAlignment;
788  }
789
790  /// Return the minimum stack alignment of an argument.
791  unsigned getMinStackArgumentAlignment() const {
792    return MinStackArgumentAlignment;
793  }
794
795  /// Return the minimum function alignment.
796  unsigned getMinFunctionAlignment() const {
797    return MinFunctionAlignment;
798  }
799
800  /// Return the preferred function alignment.
801  unsigned getPrefFunctionAlignment() const {
802    return PrefFunctionAlignment;
803  }
804
805  /// Return the preferred loop alignment.
806  unsigned getPrefLoopAlignment() const {
807    return PrefLoopAlignment;
808  }
809
810  /// Return whether the DAG builder should automatically insert fences and
811  /// reduce ordering for atomics.
812  bool getInsertFencesForAtomic() const {
813    return InsertFencesForAtomic;
814  }
815
816  /// Return true if the target stores stack protector cookies at a fixed offset
817  /// in some non-standard address space, and populates the address space and
818  /// offset as appropriate.
819  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
820                                      unsigned &/*Offset*/) const {
821    return false;
822  }
823
824  /// Returns the maximal possible offset which can be used for loads / stores
825  /// from the global.
826  virtual unsigned getMaximalGlobalOffset() const {
827    return 0;
828  }
829
830  //===--------------------------------------------------------------------===//
831  /// \name Helpers for TargetTransformInfo implementations
832  /// @{
833
834  /// Get the ISD node that corresponds to the Instruction class opcode.
835  int InstructionOpcodeToISD(unsigned Opcode) const;
836
837  /// Estimate the cost of type-legalization and the legalized type.
838  std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
839
840  /// @}
841
842  //===--------------------------------------------------------------------===//
843  // TargetLowering Configuration Methods - These methods should be invoked by
844  // the derived class constructor to configure this object for the target.
845  //
846
847  /// \brief Reset the operation actions based on target options.
848  virtual void resetOperationActions() {}
849
850protected:
851  /// Specify how the target extends the result of a boolean value from i1 to a
852  /// wider type.  See getBooleanContents.
853  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
854
855  /// Specify how the target extends the result of a vector boolean value from a
856  /// vector of i1 to a wider type.  See getBooleanContents.
857  void setBooleanVectorContents(BooleanContent Ty) {
858    BooleanVectorContents = Ty;
859  }
860
861  /// Specify the target scheduling preference.
862  void setSchedulingPreference(Sched::Preference Pref) {
863    SchedPreferenceInfo = Pref;
864  }
865
866  /// Indicate whether this target prefers to use _setjmp to implement
867  /// llvm.setjmp or the non _ version.  Defaults to false.
868  void setUseUnderscoreSetJmp(bool Val) {
869    UseUnderscoreSetJmp = Val;
870  }
871
872  /// Indicate whether this target prefers to use _longjmp to implement
873  /// llvm.longjmp or the non _ version.  Defaults to false.
874  void setUseUnderscoreLongJmp(bool Val) {
875    UseUnderscoreLongJmp = Val;
876  }
877
878  /// Indicate whether the target can generate code for jump tables.
879  void setSupportJumpTables(bool Val) {
880    SupportJumpTables = Val;
881  }
882
883  /// Indicate the number of blocks to generate jump tables rather than if
884  /// sequence.
885  void setMinimumJumpTableEntries(int Val) {
886    MinimumJumpTableEntries = Val;
887  }
888
889  /// If set to a physical register, this specifies the register that
890  /// llvm.savestack/llvm.restorestack should save and restore.
891  void setStackPointerRegisterToSaveRestore(unsigned R) {
892    StackPointerRegisterToSaveRestore = R;
893  }
894
895  /// If set to a physical register, this sets the register that receives the
896  /// exception address on entry to a landing pad.
897  void setExceptionPointerRegister(unsigned R) {
898    ExceptionPointerRegister = R;
899  }
900
901  /// If set to a physical register, this sets the register that receives the
902  /// exception typeid on entry to a landing pad.
903  void setExceptionSelectorRegister(unsigned R) {
904    ExceptionSelectorRegister = R;
905  }
906
907  /// Tells the code generator not to expand operations into sequences that use
908  /// the select operations if possible.
909  void setSelectIsExpensive(bool isExpensive = true) {
910    SelectIsExpensive = isExpensive;
911  }
912
913  /// Tells the code generator not to expand sequence of operations into a
914  /// separate sequences that increases the amount of flow control.
915  void setJumpIsExpensive(bool isExpensive = true) {
916    JumpIsExpensive = isExpensive;
917  }
918
919  /// Tells the code generator that integer divide is expensive, and if
920  /// possible, should be replaced by an alternate sequence of instructions not
921  /// containing an integer divide.
922  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
923
924  /// Tells the code generator which bitwidths to bypass.
925  void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
926    BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
927  }
928
929  /// Tells the code generator that it shouldn't generate srl/add/sra for a
930  /// signed divide by power of two, and let the target handle it.
931  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
932
933  /// Add the specified register class as an available regclass for the
934  /// specified value type. This indicates the selector can handle values of
935  /// that class natively.
936  void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
937    assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
938    AvailableRegClasses.push_back(std::make_pair(VT, RC));
939    RegClassForVT[VT.SimpleTy] = RC;
940  }
941
942  /// Remove all register classes.
943  void clearRegisterClasses() {
944    memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*));
945
946    AvailableRegClasses.clear();
947  }
948
949  /// \brief Remove all operation actions.
950  void clearOperationActions() {
951  }
952
953  /// Return the largest legal super-reg register class of the register class
954  /// for the specified type and its associated "cost".
955  virtual std::pair<const TargetRegisterClass*, uint8_t>
956  findRepresentativeClass(MVT VT) const;
957
958  /// Once all of the register classes are added, this allows us to compute
959  /// derived properties we expose.
960  void computeRegisterProperties();
961
962  /// Indicate that the specified operation does not work with the specified
963  /// type and indicate what to do about it.
964  void setOperationAction(unsigned Op, MVT VT,
965                          LegalizeAction Action) {
966    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
967    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
968  }
969
970  /// Indicate that the specified load with extension does not work with the
971  /// specified type and indicate what to do about it.
972  void setLoadExtAction(unsigned ExtType, MVT VT,
973                        LegalizeAction Action) {
974    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
975           "Table isn't big enough!");
976    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
977  }
978
979  /// Indicate that the specified truncating store does not work with the
980  /// specified type and indicate what to do about it.
981  void setTruncStoreAction(MVT ValVT, MVT MemVT,
982                           LegalizeAction Action) {
983    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
984           "Table isn't big enough!");
985    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
986  }
987
988  /// Indicate that the specified indexed load does or does not work with the
989  /// specified type and indicate what to do abort it.
990  ///
991  /// NOTE: All indexed mode loads are initialized to Expand in
992  /// TargetLowering.cpp
993  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
994                            LegalizeAction Action) {
995    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
996           (unsigned)Action < 0xf && "Table isn't big enough!");
997    // Load action are kept in the upper half.
998    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
999    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1000  }
1001
1002  /// Indicate that the specified indexed store does or does not work with the
1003  /// specified type and indicate what to do about it.
1004  ///
1005  /// NOTE: All indexed mode stores are initialized to Expand in
1006  /// TargetLowering.cpp
1007  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1008                             LegalizeAction Action) {
1009    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1010           (unsigned)Action < 0xf && "Table isn't big enough!");
1011    // Store action are kept in the lower half.
1012    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1013    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1014  }
1015
1016  /// Indicate that the specified condition code is or isn't supported on the
1017  /// target and indicate what to do about it.
1018  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1019                         LegalizeAction Action) {
1020    assert(VT < MVT::LAST_VALUETYPE &&
1021           (unsigned)CC < array_lengthof(CondCodeActions) &&
1022           "Table isn't big enough!");
1023    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 32-bit
1024    /// value and the upper 27 bits index into the second dimension of the array
1025    /// to select what 32-bit value to use.
1026    uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
1027    CondCodeActions[CC][VT.SimpleTy >> 4] &= ~((uint32_t)0x3 << Shift);
1028    CondCodeActions[CC][VT.SimpleTy >> 4] |= (uint32_t)Action << Shift;
1029  }
1030
1031  /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
1032  /// to trying a larger integer/fp until it can find one that works. If that
1033  /// default is insufficient, this method can be used by the target to override
1034  /// the default.
1035  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1036    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1037  }
1038
1039  /// Targets should invoke this method for each target independent node that
1040  /// they want to provide a custom DAG combiner for by implementing the
1041  /// PerformDAGCombine virtual method.
1042  void setTargetDAGCombine(ISD::NodeType NT) {
1043    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1044    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1045  }
1046
1047  /// Set the target's required jmp_buf buffer size (in bytes); default is 200
1048  void setJumpBufSize(unsigned Size) {
1049    JumpBufSize = Size;
1050  }
1051
1052  /// Set the target's required jmp_buf buffer alignment (in bytes); default is
1053  /// 0
1054  void setJumpBufAlignment(unsigned Align) {
1055    JumpBufAlignment = Align;
1056  }
1057
1058  /// Set the target's minimum function alignment (in log2(bytes))
1059  void setMinFunctionAlignment(unsigned Align) {
1060    MinFunctionAlignment = Align;
1061  }
1062
1063  /// Set the target's preferred function alignment.  This should be set if
1064  /// there is a performance benefit to higher-than-minimum alignment (in
1065  /// log2(bytes))
1066  void setPrefFunctionAlignment(unsigned Align) {
1067    PrefFunctionAlignment = Align;
1068  }
1069
1070  /// Set the target's preferred loop alignment. Default alignment is zero, it
1071  /// means the target does not care about loop alignment.  The alignment is
1072  /// specified in log2(bytes).
1073  void setPrefLoopAlignment(unsigned Align) {
1074    PrefLoopAlignment = Align;
1075  }
1076
1077  /// Set the minimum stack alignment of an argument (in log2(bytes)).
1078  void setMinStackArgumentAlignment(unsigned Align) {
1079    MinStackArgumentAlignment = Align;
1080  }
1081
1082  /// Set if the DAG builder should automatically insert fences and reduce the
1083  /// order of atomic memory operations to Monotonic.
1084  void setInsertFencesForAtomic(bool fence) {
1085    InsertFencesForAtomic = fence;
1086  }
1087
1088public:
1089  //===--------------------------------------------------------------------===//
1090  // Addressing mode description hooks (used by LSR etc).
1091  //
1092
1093  /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
1094  /// instructions reading the address. This allows as much computation as
1095  /// possible to be done in the address mode for that operand. This hook lets
1096  /// targets also pass back when this should be done on intrinsics which
1097  /// load/store.
1098  virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
1099                                    SmallVectorImpl<Value*> &/*Ops*/,
1100                                    Type *&/*AccessTy*/) const {
1101    return false;
1102  }
1103
1104  /// This represents an addressing mode of:
1105  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1106  /// If BaseGV is null,  there is no BaseGV.
1107  /// If BaseOffs is zero, there is no base offset.
1108  /// If HasBaseReg is false, there is no base register.
1109  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1110  /// no scale.
1111  struct AddrMode {
1112    GlobalValue *BaseGV;
1113    int64_t      BaseOffs;
1114    bool         HasBaseReg;
1115    int64_t      Scale;
1116    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1117  };
1118
1119  /// Return true if the addressing mode represented by AM is legal for this
1120  /// target, for a load/store of the specified type.
1121  ///
1122  /// The type may be VoidTy, in which case only return true if the addressing
1123  /// mode is legal for a load/store of any legal type.  TODO: Handle
1124  /// pre/postinc as well.
1125  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1126
1127  /// \brief Return the cost of the scaling factor used in the addressing mode
1128  /// represented by AM for this target, for a load/store of the specified type.
1129  ///
1130  /// If the AM is supported, the return value must be >= 0.
1131  /// If the AM is not supported, it returns a negative value.
1132  /// TODO: Handle pre/postinc as well.
1133  virtual int getScalingFactorCost(const AddrMode &AM, Type *Ty) const {
1134    // Default: assume that any scaling factor used in a legal AM is free.
1135    if (isLegalAddressingMode(AM, Ty)) return 0;
1136    return -1;
1137  }
1138
1139  /// Return true if the specified immediate is legal icmp immediate, that is
1140  /// the target has icmp instructions which can compare a register against the
1141  /// immediate without having to materialize the immediate into a register.
1142  virtual bool isLegalICmpImmediate(int64_t) const {
1143    return true;
1144  }
1145
1146  /// Return true if the specified immediate is legal add immediate, that is the
1147  /// target has add instructions which can add a register with the immediate
1148  /// without having to materialize the immediate into a register.
1149  virtual bool isLegalAddImmediate(int64_t) const {
1150    return true;
1151  }
1152
1153  /// Return true if it's free to truncate a value of type Ty1 to type
1154  /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
1155  /// by referencing its sub-register AX.
1156  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1157    return false;
1158  }
1159
1160  /// Return true if a truncation from Ty1 to Ty2 is permitted when deciding
1161  /// whether a call is in tail position. Typically this means that both results
1162  /// would be assigned to the same register or stack slot, but it could mean
1163  /// the target performs adequate checks of its own before proceeding with the
1164  /// tail call.
1165  virtual bool allowTruncateForTailCall(Type * /*Ty1*/, Type * /*Ty2*/) const {
1166    return false;
1167  }
1168
1169  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1170    return false;
1171  }
1172
1173  /// Return true if any actual instruction that defines a value of type Ty1
1174  /// implicitly zero-extends the value to Ty2 in the result register.
1175  ///
1176  /// This does not necessarily include registers defined in unknown ways, such
1177  /// as incoming arguments, or copies from unknown virtual registers. Also, if
1178  /// isTruncateFree(Ty2, Ty1) is true, this does not necessarily apply to
1179  /// truncate instructions. e.g. on x86-64, all instructions that define 32-bit
1180  /// values implicit zero-extend the result out to 64 bits.
1181  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1182    return false;
1183  }
1184
1185  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1186    return false;
1187  }
1188
1189  /// Return true if the target supplies and combines to a paired load
1190  /// two loaded values of type LoadedType next to each other in memory.
1191  /// RequiredAlignment gives the minimal alignment constraints that must be met
1192  /// to be able to select this paired load.
1193  ///
1194  /// This information is *not* used to generate actual paired loads, but it is
1195  /// used to generate a sequence of loads that is easier to combine into a
1196  /// paired load.
1197  /// For instance, something like this:
1198  /// a = load i64* addr
1199  /// b = trunc i64 a to i32
1200  /// c = lshr i64 a, 32
1201  /// d = trunc i64 c to i32
1202  /// will be optimized into:
1203  /// b = load i32* addr1
1204  /// d = load i32* addr2
1205  /// Where addr1 = addr2 +/- sizeof(i32).
1206  ///
1207  /// In other words, unless the target performs a post-isel load combining,
1208  /// this information should not be provided because it will generate more
1209  /// loads.
1210  virtual bool hasPairedLoad(Type * /*LoadedType*/,
1211                             unsigned & /*RequiredAligment*/) const {
1212    return false;
1213  }
1214
1215  virtual bool hasPairedLoad(EVT /*LoadedType*/,
1216                             unsigned & /*RequiredAligment*/) const {
1217    return false;
1218  }
1219
1220  /// Return true if zero-extending the specific node Val to type VT2 is free
1221  /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
1222  /// because it's folded such as X86 zero-extending loads).
1223  virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1224    return isZExtFree(Val.getValueType(), VT2);
1225  }
1226
1227  /// Return true if an fneg operation is free to the point where it is never
1228  /// worthwhile to replace it with a bitwise operation.
1229  virtual bool isFNegFree(EVT VT) const {
1230    assert(VT.isFloatingPoint());
1231    return false;
1232  }
1233
1234  /// Return true if an fabs operation is free to the point where it is never
1235  /// worthwhile to replace it with a bitwise operation.
1236  virtual bool isFAbsFree(EVT VT) const {
1237    assert(VT.isFloatingPoint());
1238    return false;
1239  }
1240
1241  /// Return true if an FMA operation is faster than a pair of fmul and fadd
1242  /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
1243  /// returns true, otherwise fmuladd is expanded to fmul + fadd.
1244  ///
1245  /// NOTE: This may be called before legalization on types for which FMAs are
1246  /// not legal, but should return true if those types will eventually legalize
1247  /// to types that support FMAs. After legalization, it will only be called on
1248  /// types that support FMAs (via Legal or Custom actions)
1249  virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
1250    return false;
1251  }
1252
1253  /// Return true if it's profitable to narrow operations of type VT1 to
1254  /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
1255  /// i32 to i16.
1256  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1257    return false;
1258  }
1259
1260  //===--------------------------------------------------------------------===//
1261  // Runtime Library hooks
1262  //
1263
1264  /// Rename the default libcall routine name for the specified libcall.
1265  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1266    LibcallRoutineNames[Call] = Name;
1267  }
1268
1269  /// Get the libcall routine name for the specified libcall.
1270  const char *getLibcallName(RTLIB::Libcall Call) const {
1271    return LibcallRoutineNames[Call];
1272  }
1273
1274  /// Override the default CondCode to be used to test the result of the
1275  /// comparison libcall against zero.
1276  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1277    CmpLibcallCCs[Call] = CC;
1278  }
1279
1280  /// Get the CondCode that's to be used to test the result of the comparison
1281  /// libcall against zero.
1282  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1283    return CmpLibcallCCs[Call];
1284  }
1285
1286  /// Set the CallingConv that should be used for the specified libcall.
1287  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1288    LibcallCallingConvs[Call] = CC;
1289  }
1290
1291  /// Get the CallingConv that should be used for the specified libcall.
1292  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1293    return LibcallCallingConvs[Call];
1294  }
1295
1296private:
1297  const TargetMachine &TM;
1298  const DataLayout *TD;
1299  const TargetLoweringObjectFile &TLOF;
1300
1301  /// True if this is a little endian target.
1302  bool IsLittleEndian;
1303
1304  /// Tells the code generator not to expand operations into sequences that use
1305  /// the select operations if possible.
1306  bool SelectIsExpensive;
1307
1308  /// Tells the code generator not to expand integer divides by constants into a
1309  /// sequence of muls, adds, and shifts.  This is a hack until a real cost
1310  /// model is in place.  If we ever optimize for size, this will be set to true
1311  /// unconditionally.
1312  bool IntDivIsCheap;
1313
1314  /// Tells the code generator to bypass slow divide or remainder
1315  /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
1316  /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
1317  /// div/rem when the operands are positive and less than 256.
1318  DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1319
1320  /// Tells the code generator that it shouldn't generate srl/add/sra for a
1321  /// signed divide by power of two, and let the target handle it.
1322  bool Pow2DivIsCheap;
1323
1324  /// Tells the code generator that it shouldn't generate extra flow control
1325  /// instructions and should attempt to combine flow control instructions via
1326  /// predication.
1327  bool JumpIsExpensive;
1328
1329  /// This target prefers to use _setjmp to implement llvm.setjmp.
1330  ///
1331  /// Defaults to false.
1332  bool UseUnderscoreSetJmp;
1333
1334  /// This target prefers to use _longjmp to implement llvm.longjmp.
1335  ///
1336  /// Defaults to false.
1337  bool UseUnderscoreLongJmp;
1338
1339  /// Whether the target can generate code for jumptables.  If it's not true,
1340  /// then each jumptable must be lowered into if-then-else's.
1341  bool SupportJumpTables;
1342
1343  /// Number of blocks threshold to use jump tables.
1344  int MinimumJumpTableEntries;
1345
1346  /// Information about the contents of the high-bits in boolean values held in
1347  /// a type wider than i1. See getBooleanContents.
1348  BooleanContent BooleanContents;
1349
1350  /// Information about the contents of the high-bits in boolean vector values
1351  /// when the element type is wider than i1. See getBooleanContents.
1352  BooleanContent BooleanVectorContents;
1353
1354  /// The target scheduling preference: shortest possible total cycles or lowest
1355  /// register usage.
1356  Sched::Preference SchedPreferenceInfo;
1357
1358  /// The size, in bytes, of the target's jmp_buf buffers
1359  unsigned JumpBufSize;
1360
1361  /// The alignment, in bytes, of the target's jmp_buf buffers
1362  unsigned JumpBufAlignment;
1363
1364  /// The minimum alignment that any argument on the stack needs to have.
1365  unsigned MinStackArgumentAlignment;
1366
1367  /// The minimum function alignment (used when optimizing for size, and to
1368  /// prevent explicitly provided alignment from leading to incorrect code).
1369  unsigned MinFunctionAlignment;
1370
1371  /// The preferred function alignment (used when alignment unspecified and
1372  /// optimizing for speed).
1373  unsigned PrefFunctionAlignment;
1374
1375  /// The preferred loop alignment.
1376  unsigned PrefLoopAlignment;
1377
1378  /// Whether the DAG builder should automatically insert fences and reduce
1379  /// ordering for atomics.  (This will be set for for most architectures with
1380  /// weak memory ordering.)
1381  bool InsertFencesForAtomic;
1382
1383  /// If set to a physical register, this specifies the register that
1384  /// llvm.savestack/llvm.restorestack should save and restore.
1385  unsigned StackPointerRegisterToSaveRestore;
1386
1387  /// If set to a physical register, this specifies the register that receives
1388  /// the exception address on entry to a landing pad.
1389  unsigned ExceptionPointerRegister;
1390
1391  /// If set to a physical register, this specifies the register that receives
1392  /// the exception typeid on entry to a landing pad.
1393  unsigned ExceptionSelectorRegister;
1394
1395  /// This indicates the default register class to use for each ValueType the
1396  /// target supports natively.
1397  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1398  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1399  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1400
1401  /// This indicates the "representative" register class to use for each
1402  /// ValueType the target supports natively. This information is used by the
1403  /// scheduler to track register pressure. By default, the representative
1404  /// register class is the largest legal super-reg register class of the
1405  /// register class of the specified type. e.g. On x86, i8, i16, and i32's
1406  /// representative class would be GR32.
1407  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1408
1409  /// This indicates the "cost" of the "representative" register class for each
1410  /// ValueType. The cost is used by the scheduler to approximate register
1411  /// pressure.
1412  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1413
1414  /// For any value types we are promoting or expanding, this contains the value
1415  /// type that we are changing to.  For Expanded types, this contains one step
1416  /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
1417  /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
1418  /// the same type (e.g. i32 -> i32).
1419  MVT TransformToType[MVT::LAST_VALUETYPE];
1420
1421  /// For each operation and each value type, keep a LegalizeAction that
1422  /// indicates how instruction selection should deal with the operation.  Most
1423  /// operations are Legal (aka, supported natively by the target), but
1424  /// operations that are not should be described.  Note that operations on
1425  /// non-legal value types are not described here.
1426  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1427
1428  /// For each load extension type and each value type, keep a LegalizeAction
1429  /// that indicates how instruction selection should deal with a load of a
1430  /// specific value type and extension type.
1431  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1432
1433  /// For each value type pair keep a LegalizeAction that indicates whether a
1434  /// truncating store of a specific value type and truncating type is legal.
1435  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1436
1437  /// For each indexed mode and each value type, keep a pair of LegalizeAction
1438  /// that indicates how instruction selection should deal with the load /
1439  /// store.
1440  ///
1441  /// The first dimension is the value_type for the reference. The second
1442  /// dimension represents the various modes for load store.
1443  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1444
1445  /// For each condition code (ISD::CondCode) keep a LegalizeAction that
1446  /// indicates how instruction selection should deal with the condition code.
1447  ///
1448  /// Because each CC action takes up 2 bits, we need to have the array size be
1449  /// large enough to fit all of the value types. This can be done by rounding
1450  /// up the MVT::LAST_VALUETYPE value to the next multiple of 16.
1451  uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 15) / 16];
1452
1453  ValueTypeActionImpl ValueTypeActions;
1454
1455public:
1456  LegalizeKind
1457  getTypeConversion(LLVMContext &Context, EVT VT) const {
1458    // If this is a simple type, use the ComputeRegisterProp mechanism.
1459    if (VT.isSimple()) {
1460      MVT SVT = VT.getSimpleVT();
1461      assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
1462      MVT NVT = TransformToType[SVT.SimpleTy];
1463      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1464
1465      assert(
1466        (LA == TypeLegal ||
1467         ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)
1468         && "Promote may not follow Expand or Promote");
1469
1470      if (LA == TypeSplitVector)
1471        return LegalizeKind(LA, EVT::getVectorVT(Context,
1472                                                 SVT.getVectorElementType(),
1473                                                 SVT.getVectorNumElements()/2));
1474      if (LA == TypeScalarizeVector)
1475        return LegalizeKind(LA, SVT.getVectorElementType());
1476      return LegalizeKind(LA, NVT);
1477    }
1478
1479    // Handle Extended Scalar Types.
1480    if (!VT.isVector()) {
1481      assert(VT.isInteger() && "Float types must be simple");
1482      unsigned BitSize = VT.getSizeInBits();
1483      // First promote to a power-of-two size, then expand if necessary.
1484      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1485        EVT NVT = VT.getRoundIntegerType(Context);
1486        assert(NVT != VT && "Unable to round integer VT");
1487        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1488        // Avoid multi-step promotion.
1489        if (NextStep.first == TypePromoteInteger) return NextStep;
1490        // Return rounded integer type.
1491        return LegalizeKind(TypePromoteInteger, NVT);
1492      }
1493
1494      return LegalizeKind(TypeExpandInteger,
1495                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1496    }
1497
1498    // Handle vector types.
1499    unsigned NumElts = VT.getVectorNumElements();
1500    EVT EltVT = VT.getVectorElementType();
1501
1502    // Vectors with only one element are always scalarized.
1503    if (NumElts == 1)
1504      return LegalizeKind(TypeScalarizeVector, EltVT);
1505
1506    // Try to widen vector elements until the element type is a power of two and
1507    // promote it to a legal type later on, for example:
1508    // <3 x i8> -> <4 x i8> -> <4 x i32>
1509    if (EltVT.isInteger()) {
1510      // Vectors with a number of elements that is not a power of two are always
1511      // widened, for example <3 x i8> -> <4 x i8>.
1512      if (!VT.isPow2VectorType()) {
1513        NumElts = (unsigned)NextPowerOf2(NumElts);
1514        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1515        return LegalizeKind(TypeWidenVector, NVT);
1516      }
1517
1518      // Examine the element type.
1519      LegalizeKind LK = getTypeConversion(Context, EltVT);
1520
1521      // If type is to be expanded, split the vector.
1522      //  <4 x i140> -> <2 x i140>
1523      if (LK.first == TypeExpandInteger)
1524        return LegalizeKind(TypeSplitVector,
1525                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
1526
1527      // Promote the integer element types until a legal vector type is found
1528      // or until the element integer type is too big. If a legal type was not
1529      // found, fallback to the usual mechanism of widening/splitting the
1530      // vector.
1531      EVT OldEltVT = EltVT;
1532      while (1) {
1533        // Increase the bitwidth of the element to the next pow-of-two
1534        // (which is greater than 8 bits).
1535        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
1536                                 ).getRoundIntegerType(Context);
1537
1538        // Stop trying when getting a non-simple element type.
1539        // Note that vector elements may be greater than legal vector element
1540        // types. Example: X86 XMM registers hold 64bit element on 32bit
1541        // systems.
1542        if (!EltVT.isSimple()) break;
1543
1544        // Build a new vector type and check if it is legal.
1545        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1546        // Found a legal promoted vector type.
1547        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1548          return LegalizeKind(TypePromoteInteger,
1549                              EVT::getVectorVT(Context, EltVT, NumElts));
1550      }
1551
1552      // Reset the type to the unexpanded type if we did not find a legal vector
1553      // type with a promoted vector element type.
1554      EltVT = OldEltVT;
1555    }
1556
1557    // Try to widen the vector until a legal type is found.
1558    // If there is no wider legal type, split the vector.
1559    while (1) {
1560      // Round up to the next power of 2.
1561      NumElts = (unsigned)NextPowerOf2(NumElts);
1562
1563      // If there is no simple vector type with this many elements then there
1564      // cannot be a larger legal vector type.  Note that this assumes that
1565      // there are no skipped intermediate vector types in the simple types.
1566      if (!EltVT.isSimple()) break;
1567      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1568      if (LargerVector == MVT()) break;
1569
1570      // If this type is legal then widen the vector.
1571      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1572        return LegalizeKind(TypeWidenVector, LargerVector);
1573    }
1574
1575    // Widen odd vectors to next power of two.
1576    if (!VT.isPow2VectorType()) {
1577      EVT NVT = VT.getPow2VectorType(Context);
1578      return LegalizeKind(TypeWidenVector, NVT);
1579    }
1580
1581    // Vectors with illegal element types are expanded.
1582    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1583    return LegalizeKind(TypeSplitVector, NVT);
1584  }
1585
1586private:
1587  std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
1588
1589  /// Targets can specify ISD nodes that they would like PerformDAGCombine
1590  /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
1591  /// array.
1592  unsigned char
1593  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1594
1595  /// For operations that must be promoted to a specific type, this holds the
1596  /// destination type.  This map should be sparse, so don't hold it as an
1597  /// array.
1598  ///
1599  /// Targets add entries to this map with AddPromotedToType(..), clients access
1600  /// this with getTypeToPromoteTo(..).
1601  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1602    PromoteToType;
1603
1604  /// Stores the name each libcall.
1605  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1606
1607  /// The ISD::CondCode that should be used to test the result of each of the
1608  /// comparison libcall against zero.
1609  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1610
1611  /// Stores the CallingConv that should be used for each libcall.
1612  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1613
1614protected:
1615  /// \brief Specify maximum number of store instructions per memset call.
1616  ///
1617  /// When lowering \@llvm.memset this field specifies the maximum number of
1618  /// store operations that may be substituted for the call to memset. Targets
1619  /// must set this value based on the cost threshold for that target. Targets
1620  /// should assume that the memset will be done using as many of the largest
1621  /// store operations first, followed by smaller ones, if necessary, per
1622  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1623  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1624  /// store.  This only applies to setting a constant array of a constant size.
1625  unsigned MaxStoresPerMemset;
1626
1627  /// Maximum number of stores operations that may be substituted for the call
1628  /// to memset, used for functions with OptSize attribute.
1629  unsigned MaxStoresPerMemsetOptSize;
1630
1631  /// \brief Specify maximum bytes of store instructions per memcpy call.
1632  ///
1633  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1634  /// store operations that may be substituted for a call to memcpy. Targets
1635  /// must set this value based on the cost threshold for that target. Targets
1636  /// should assume that the memcpy will be done using as many of the largest
1637  /// store operations first, followed by smaller ones, if necessary, per
1638  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1639  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1640  /// and one 1-byte store. This only applies to copying a constant array of
1641  /// constant size.
1642  unsigned MaxStoresPerMemcpy;
1643
1644  /// Maximum number of store operations that may be substituted for a call to
1645  /// memcpy, used for functions with OptSize attribute.
1646  unsigned MaxStoresPerMemcpyOptSize;
1647
1648  /// \brief Specify maximum bytes of store instructions per memmove call.
1649  ///
1650  /// When lowering \@llvm.memmove this field specifies the maximum number of
1651  /// store instructions that may be substituted for a call to memmove. Targets
1652  /// must set this value based on the cost threshold for that target. Targets
1653  /// should assume that the memmove will be done using as many of the largest
1654  /// store operations first, followed by smaller ones, if necessary, per
1655  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1656  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1657  /// applies to copying a constant array of constant size.
1658  unsigned MaxStoresPerMemmove;
1659
1660  /// Maximum number of store instructions that may be substituted for a call to
1661  /// memmove, used for functions with OpSize attribute.
1662  unsigned MaxStoresPerMemmoveOptSize;
1663
1664  /// Tells the code generator that select is more expensive than a branch if
1665  /// the branch is usually predicted right.
1666  bool PredictableSelectIsExpensive;
1667
1668protected:
1669  /// Return true if the value types that can be represented by the specified
1670  /// register class are all legal.
1671  bool isLegalRC(const TargetRegisterClass *RC) const;
1672};
1673
1674/// This class defines information used to lower LLVM code to legal SelectionDAG
1675/// operators that the target instruction selector can accept natively.
1676///
1677/// This class also defines callbacks that targets must implement to lower
1678/// target-specific constructs to SelectionDAG operators.
1679class TargetLowering : public TargetLoweringBase {
1680  TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
1681  void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
1682
1683public:
1684  /// NOTE: The constructor takes ownership of TLOF.
1685  explicit TargetLowering(const TargetMachine &TM,
1686                          const TargetLoweringObjectFile *TLOF);
1687
1688  /// Returns true by value, base pointer and offset pointer and addressing mode
1689  /// by reference if the node's address can be legally represented as
1690  /// pre-indexed load / store address.
1691  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
1692                                         SDValue &/*Offset*/,
1693                                         ISD::MemIndexedMode &/*AM*/,
1694                                         SelectionDAG &/*DAG*/) const {
1695    return false;
1696  }
1697
1698  /// Returns true by value, base pointer and offset pointer and addressing mode
1699  /// by reference if this node can be combined with a load / store to form a
1700  /// post-indexed load / store.
1701  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
1702                                          SDValue &/*Base*/,
1703                                          SDValue &/*Offset*/,
1704                                          ISD::MemIndexedMode &/*AM*/,
1705                                          SelectionDAG &/*DAG*/) const {
1706    return false;
1707  }
1708
1709  /// Return the entry encoding for a jump table in the current function.  The
1710  /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
1711  virtual unsigned getJumpTableEncoding() const;
1712
1713  virtual const MCExpr *
1714  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
1715                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
1716                            MCContext &/*Ctx*/) const {
1717    llvm_unreachable("Need to implement this hook if target has custom JTIs");
1718  }
1719
1720  /// Returns relocation base for the given PIC jumptable.
1721  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
1722                                           SelectionDAG &DAG) const;
1723
1724  /// This returns the relocation base for the given PIC jumptable, the same as
1725  /// getPICJumpTableRelocBase, but as an MCExpr.
1726  virtual const MCExpr *
1727  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1728                               unsigned JTI, MCContext &Ctx) const;
1729
1730  /// Return true if folding a constant offset with the given GlobalAddress is
1731  /// legal.  It is frequently not legal in PIC relocation models.
1732  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
1733
1734  bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
1735                            SDValue &Chain) const;
1736
1737  void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
1738                           SDValue &NewLHS, SDValue &NewRHS,
1739                           ISD::CondCode &CCCode, SDLoc DL) const;
1740
1741  /// Returns a pair of (return value, chain).
1742  std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
1743                                          EVT RetVT, const SDValue *Ops,
1744                                          unsigned NumOps, bool isSigned,
1745                                          SDLoc dl, bool doesNotReturn = false,
1746                                          bool isReturnValueUsed = true) const;
1747
1748  //===--------------------------------------------------------------------===//
1749  // TargetLowering Optimization Methods
1750  //
1751
1752  /// A convenience struct that encapsulates a DAG, and two SDValues for
1753  /// returning information from TargetLowering to its clients that want to
1754  /// combine.
1755  struct TargetLoweringOpt {
1756    SelectionDAG &DAG;
1757    bool LegalTys;
1758    bool LegalOps;
1759    SDValue Old;
1760    SDValue New;
1761
1762    explicit TargetLoweringOpt(SelectionDAG &InDAG,
1763                               bool LT, bool LO) :
1764      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
1765
1766    bool LegalTypes() const { return LegalTys; }
1767    bool LegalOperations() const { return LegalOps; }
1768
1769    bool CombineTo(SDValue O, SDValue N) {
1770      Old = O;
1771      New = N;
1772      return true;
1773    }
1774
1775    /// Check to see if the specified operand of the specified instruction is a
1776    /// constant integer.  If so, check to see if there are any bits set in the
1777    /// constant that are not demanded.  If so, shrink the constant and return
1778    /// true.
1779    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
1780
1781    /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
1782    /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
1783    /// generalized for targets with other types of implicit widening casts.
1784    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
1785                          SDLoc dl);
1786  };
1787
1788  /// Look at Op.  At this point, we know that only the DemandedMask bits of the
1789  /// result of Op are ever used downstream.  If we can use this information to
1790  /// simplify Op, create a new simplified DAG node and return true, returning
1791  /// the original and new nodes in Old and New.  Otherwise, analyze the
1792  /// expression and return a mask of KnownOne and KnownZero bits for the
1793  /// expression (used to simplify the caller).  The KnownZero/One bits may only
1794  /// be accurate for those bits in the DemandedMask.
1795  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
1796                            APInt &KnownZero, APInt &KnownOne,
1797                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
1798
1799  /// Determine which of the bits specified in Mask are known to be either zero
1800  /// or one and return them in the KnownZero/KnownOne bitsets.
1801  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
1802                                              APInt &KnownZero,
1803                                              APInt &KnownOne,
1804                                              const SelectionDAG &DAG,
1805                                              unsigned Depth = 0) const;
1806
1807  /// This method can be implemented by targets that want to expose additional
1808  /// information about sign bits to the DAG Combiner.
1809  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
1810                                                   unsigned Depth = 0) const;
1811
1812  struct DAGCombinerInfo {
1813    void *DC;  // The DAG Combiner object.
1814    CombineLevel Level;
1815    bool CalledByLegalizer;
1816  public:
1817    SelectionDAG &DAG;
1818
1819    DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
1820      : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
1821
1822    bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
1823    bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
1824    bool isAfterLegalizeVectorOps() const {
1825      return Level == AfterLegalizeDAG;
1826    }
1827    CombineLevel getDAGCombineLevel() { return Level; }
1828    bool isCalledByLegalizer() const { return CalledByLegalizer; }
1829
1830    void AddToWorklist(SDNode *N);
1831    void RemoveFromWorklist(SDNode *N);
1832    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
1833                      bool AddTo = true);
1834    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
1835    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
1836
1837    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
1838  };
1839
1840  /// Try to simplify a setcc built with the specified operands and cc. If it is
1841  /// unable to simplify it, return a null SDValue.
1842  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1843                          ISD::CondCode Cond, bool foldBooleans,
1844                          DAGCombinerInfo &DCI, SDLoc dl) const;
1845
1846  /// Returns true (and the GlobalValue and the offset) if the node is a
1847  /// GlobalAddress + offset.
1848  virtual bool
1849  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
1850
1851  /// This method will be invoked for all target nodes and for any
1852  /// target-independent nodes that the target has registered with invoke it
1853  /// for.
1854  ///
1855  /// The semantics are as follows:
1856  /// Return Value:
1857  ///   SDValue.Val == 0   - No change was made
1858  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
1859  ///   otherwise          - N should be replaced by the returned Operand.
1860  ///
1861  /// In addition, methods provided by DAGCombinerInfo may be used to perform
1862  /// more complex transformations.
1863  ///
1864  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
1865
1866  /// Return true if the target has native support for the specified value type
1867  /// and it is 'desirable' to use the type for the given node type. e.g. On x86
1868  /// i16 is legal, but undesirable since i16 instruction encodings are longer
1869  /// and some i16 instructions are slow.
1870  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
1871    // By default, assume all legal types are desirable.
1872    return isTypeLegal(VT);
1873  }
1874
1875  /// Return true if it is profitable for dag combiner to transform a floating
1876  /// point op of specified opcode to a equivalent op of an integer
1877  /// type. e.g. f32 load -> i32 load can be profitable on ARM.
1878  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
1879                                                 EVT /*VT*/) const {
1880    return false;
1881  }
1882
1883  /// This method query the target whether it is beneficial for dag combiner to
1884  /// promote the specified node. If true, it should return the desired
1885  /// promotion type by reference.
1886  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
1887    return false;
1888  }
1889
1890  //===--------------------------------------------------------------------===//
1891  // Lowering methods - These methods must be implemented by targets so that
1892  // the SelectionDAGBuilder code knows how to lower these.
1893  //
1894
1895  /// This hook must be implemented to lower the incoming (formal) arguments,
1896  /// described by the Ins array, into the specified DAG. The implementation
1897  /// should fill in the InVals array with legal-type argument values, and
1898  /// return the resulting token chain value.
1899  ///
1900  virtual SDValue
1901    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1902                         bool /*isVarArg*/,
1903                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1904                         SDLoc /*dl*/, SelectionDAG &/*DAG*/,
1905                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1906    llvm_unreachable("Not Implemented");
1907  }
1908
1909  struct ArgListEntry {
1910    SDValue Node;
1911    Type* Ty;
1912    bool isSExt     : 1;
1913    bool isZExt     : 1;
1914    bool isInReg    : 1;
1915    bool isSRet     : 1;
1916    bool isNest     : 1;
1917    bool isByVal    : 1;
1918    bool isReturned : 1;
1919    uint16_t Alignment;
1920
1921    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1922      isSRet(false), isNest(false), isByVal(false), isReturned(false),
1923      Alignment(0) { }
1924
1925    void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
1926  };
1927  typedef std::vector<ArgListEntry> ArgListTy;
1928
1929  /// This structure contains all information that is necessary for lowering
1930  /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
1931  /// needs to lower a call, and targets will see this struct in their LowerCall
1932  /// implementation.
1933  struct CallLoweringInfo {
1934    SDValue Chain;
1935    Type *RetTy;
1936    bool RetSExt           : 1;
1937    bool RetZExt           : 1;
1938    bool IsVarArg          : 1;
1939    bool IsInReg           : 1;
1940    bool DoesNotReturn     : 1;
1941    bool IsReturnValueUsed : 1;
1942
1943    // IsTailCall should be modified by implementations of
1944    // TargetLowering::LowerCall that perform tail call conversions.
1945    bool IsTailCall;
1946
1947    unsigned NumFixedArgs;
1948    CallingConv::ID CallConv;
1949    SDValue Callee;
1950    ArgListTy &Args;
1951    SelectionDAG &DAG;
1952    SDLoc DL;
1953    ImmutableCallSite *CS;
1954    SmallVector<ISD::OutputArg, 32> Outs;
1955    SmallVector<SDValue, 32> OutVals;
1956    SmallVector<ISD::InputArg, 32> Ins;
1957
1958
1959    /// Constructs a call lowering context based on the ImmutableCallSite \p cs.
1960    CallLoweringInfo(SDValue chain, Type *retTy,
1961                     FunctionType *FTy, bool isTailCall, SDValue callee,
1962                     ArgListTy &args, SelectionDAG &dag, SDLoc dl,
1963                     ImmutableCallSite &cs)
1964    : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)),
1965      RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()),
1966      IsInReg(cs.paramHasAttr(0, Attribute::InReg)),
1967      DoesNotReturn(cs.doesNotReturn()),
1968      IsReturnValueUsed(!cs.getInstruction()->use_empty()),
1969      IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
1970      CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
1971      DL(dl), CS(&cs) {}
1972
1973    /// Constructs a call lowering context based on the provided call
1974    /// information.
1975    CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
1976                     bool isVarArg, bool isInReg, unsigned numFixedArgs,
1977                     CallingConv::ID callConv, bool isTailCall,
1978                     bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
1979                     ArgListTy &args, SelectionDAG &dag, SDLoc dl)
1980    : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
1981      IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
1982      IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
1983      NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
1984      Args(args), DAG(dag), DL(dl), CS(NULL) {}
1985  };
1986
1987  /// This function lowers an abstract call to a function into an actual call.
1988  /// This returns a pair of operands.  The first element is the return value
1989  /// for the function (if RetTy is not VoidTy).  The second element is the
1990  /// outgoing token chain. It calls LowerCall to do the actual lowering.
1991  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
1992
1993  /// This hook must be implemented to lower calls into the the specified
1994  /// DAG. The outgoing arguments to the call are described by the Outs array,
1995  /// and the values to be returned by the call are described by the Ins
1996  /// array. The implementation should fill in the InVals array with legal-type
1997  /// return values from the call, and return the resulting token chain value.
1998  virtual SDValue
1999    LowerCall(CallLoweringInfo &/*CLI*/,
2000              SmallVectorImpl<SDValue> &/*InVals*/) const {
2001    llvm_unreachable("Not Implemented");
2002  }
2003
2004  /// Target-specific cleanup for formal ByVal parameters.
2005  virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
2006
2007  /// This hook should be implemented to check whether the return values
2008  /// described by the Outs array can fit into the return registers.  If false
2009  /// is returned, an sret-demotion is performed.
2010  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
2011                              MachineFunction &/*MF*/, bool /*isVarArg*/,
2012               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2013               LLVMContext &/*Context*/) const
2014  {
2015    // Return true by default to get preexisting behavior.
2016    return true;
2017  }
2018
2019  /// This hook must be implemented to lower outgoing return values, described
2020  /// by the Outs array, into the specified DAG. The implementation should
2021  /// return the resulting token chain value.
2022  virtual SDValue
2023    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2024                bool /*isVarArg*/,
2025                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2026                const SmallVectorImpl<SDValue> &/*OutVals*/,
2027                SDLoc /*dl*/, SelectionDAG &/*DAG*/) const {
2028    llvm_unreachable("Not Implemented");
2029  }
2030
2031  /// Return true if result of the specified node is used by a return node
2032  /// only. It also compute and return the input chain for the tail call.
2033  ///
2034  /// This is used to determine whether it is possible to codegen a libcall as
2035  /// tail call at legalization time.
2036  virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
2037    return false;
2038  }
2039
2040  /// Return true if the target may be able emit the call instruction as a tail
2041  /// call. This is used by optimization passes to determine if it's profitable
2042  /// to duplicate return instructions to enable tailcall optimization.
2043  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
2044    return false;
2045  }
2046
2047  /// Return the type that should be used to zero or sign extend a
2048  /// zeroext/signext integer argument or return value.  FIXME: Most C calling
2049  /// convention requires the return type to be promoted, but this is not true
2050  /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C
2051  /// calling conventions. The frontend should handle this and include all of
2052  /// the necessary information.
2053  virtual MVT getTypeForExtArgOrReturn(MVT VT,
2054                                       ISD::NodeType /*ExtendKind*/) const {
2055    MVT MinVT = getRegisterType(MVT::i32);
2056    return VT.bitsLT(MinVT) ? MinVT : VT;
2057  }
2058
2059  /// Returns a 0 terminated array of registers that can be safely used as
2060  /// scratch registers.
2061  virtual const uint16_t *getScratchRegisters(CallingConv::ID CC) const {
2062    return NULL;
2063  }
2064
2065  /// This callback is invoked by the type legalizer to legalize nodes with an
2066  /// illegal operand type but legal result types.  It replaces the
2067  /// LowerOperation callback in the type Legalizer.  The reason we can not do
2068  /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
2069  /// use this callback.
2070  ///
2071  /// TODO: Consider merging with ReplaceNodeResults.
2072  ///
2073  /// The target places new result values for the node in Results (their number
2074  /// and types must exactly match those of the original return values of
2075  /// the node), or leaves Results empty, which indicates that the node is not
2076  /// to be custom lowered after all.
2077  /// The default implementation calls LowerOperation.
2078  virtual void LowerOperationWrapper(SDNode *N,
2079                                     SmallVectorImpl<SDValue> &Results,
2080                                     SelectionDAG &DAG) const;
2081
2082  /// This callback is invoked for operations that are unsupported by the
2083  /// target, which are registered to use 'custom' lowering, and whose defined
2084  /// values are all legal.  If the target has no operations that require custom
2085  /// lowering, it need not implement this.  The default implementation of this
2086  /// aborts.
2087  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
2088
2089  /// This callback is invoked when a node result type is illegal for the
2090  /// target, and the operation was registered to use 'custom' lowering for that
2091  /// result type.  The target places new result values for the node in Results
2092  /// (their number and types must exactly match those of the original return
2093  /// values of the node), or leaves Results empty, which indicates that the
2094  /// node is not to be custom lowered after all.
2095  ///
2096  /// If the target has no operations that require custom lowering, it need not
2097  /// implement this.  The default implementation aborts.
2098  virtual void ReplaceNodeResults(SDNode * /*N*/,
2099                                  SmallVectorImpl<SDValue> &/*Results*/,
2100                                  SelectionDAG &/*DAG*/) const {
2101    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
2102  }
2103
2104  /// This method returns the name of a target specific DAG node.
2105  virtual const char *getTargetNodeName(unsigned Opcode) const;
2106
2107  /// This method returns a target specific FastISel object, or null if the
2108  /// target does not support "fast" ISel.
2109  virtual FastISel *createFastISel(FunctionLoweringInfo &,
2110                                   const TargetLibraryInfo *) const {
2111    return 0;
2112  }
2113
2114  //===--------------------------------------------------------------------===//
2115  // Inline Asm Support hooks
2116  //
2117
2118  /// This hook allows the target to expand an inline asm call to be explicit
2119  /// llvm code if it wants to.  This is useful for turning simple inline asms
2120  /// into LLVM intrinsics, which gives the compiler more information about the
2121  /// behavior of the code.
2122  virtual bool ExpandInlineAsm(CallInst *) const {
2123    return false;
2124  }
2125
2126  enum ConstraintType {
2127    C_Register,            // Constraint represents specific register(s).
2128    C_RegisterClass,       // Constraint represents any of register(s) in class.
2129    C_Memory,              // Memory constraint.
2130    C_Other,               // Something else.
2131    C_Unknown              // Unsupported constraint.
2132  };
2133
2134  enum ConstraintWeight {
2135    // Generic weights.
2136    CW_Invalid  = -1,     // No match.
2137    CW_Okay     = 0,      // Acceptable.
2138    CW_Good     = 1,      // Good weight.
2139    CW_Better   = 2,      // Better weight.
2140    CW_Best     = 3,      // Best weight.
2141
2142    // Well-known weights.
2143    CW_SpecificReg  = CW_Okay,    // Specific register operands.
2144    CW_Register     = CW_Good,    // Register operands.
2145    CW_Memory       = CW_Better,  // Memory operands.
2146    CW_Constant     = CW_Best,    // Constant operand.
2147    CW_Default      = CW_Okay     // Default or don't know type.
2148  };
2149
2150  /// This contains information for each constraint that we are lowering.
2151  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
2152    /// This contains the actual string for the code, like "m".  TargetLowering
2153    /// picks the 'best' code from ConstraintInfo::Codes that most closely
2154    /// matches the operand.
2155    std::string ConstraintCode;
2156
2157    /// Information about the constraint code, e.g. Register, RegisterClass,
2158    /// Memory, Other, Unknown.
2159    TargetLowering::ConstraintType ConstraintType;
2160
2161    /// If this is the result output operand or a clobber, this is null,
2162    /// otherwise it is the incoming operand to the CallInst.  This gets
2163    /// modified as the asm is processed.
2164    Value *CallOperandVal;
2165
2166    /// The ValueType for the operand value.
2167    MVT ConstraintVT;
2168
2169    /// Return true of this is an input operand that is a matching constraint
2170    /// like "4".
2171    bool isMatchingInputConstraint() const;
2172
2173    /// If this is an input matching constraint, this method returns the output
2174    /// operand it matches.
2175    unsigned getMatchedOperand() const;
2176
2177    /// Copy constructor for copying from an AsmOperandInfo.
2178    AsmOperandInfo(const AsmOperandInfo &info)
2179      : InlineAsm::ConstraintInfo(info),
2180        ConstraintCode(info.ConstraintCode),
2181        ConstraintType(info.ConstraintType),
2182        CallOperandVal(info.CallOperandVal),
2183        ConstraintVT(info.ConstraintVT) {
2184    }
2185
2186    /// Copy constructor for copying from a ConstraintInfo.
2187    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
2188      : InlineAsm::ConstraintInfo(info),
2189        ConstraintType(TargetLowering::C_Unknown),
2190        CallOperandVal(0), ConstraintVT(MVT::Other) {
2191    }
2192  };
2193
2194  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
2195
2196  /// Split up the constraint string from the inline assembly value into the
2197  /// specific constraints and their prefixes, and also tie in the associated
2198  /// operand values.  If this returns an empty vector, and if the constraint
2199  /// string itself isn't empty, there was an error parsing.
2200  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
2201
2202  /// Examine constraint type and operand type and determine a weight value.
2203  /// The operand object must already have been set up with the operand type.
2204  virtual ConstraintWeight getMultipleConstraintMatchWeight(
2205      AsmOperandInfo &info, int maIndex) const;
2206
2207  /// Examine constraint string and operand type and determine a weight value.
2208  /// The operand object must already have been set up with the operand type.
2209  virtual ConstraintWeight getSingleConstraintMatchWeight(
2210      AsmOperandInfo &info, const char *constraint) const;
2211
2212  /// Determines the constraint code and constraint type to use for the specific
2213  /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2214  /// If the actual operand being passed in is available, it can be passed in as
2215  /// Op, otherwise an empty SDValue can be passed.
2216  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2217                                      SDValue Op,
2218                                      SelectionDAG *DAG = 0) const;
2219
2220  /// Given a constraint, return the type of constraint it is for this target.
2221  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
2222
2223  /// Given a physical register constraint (e.g.  {edx}), return the register
2224  /// number and the register class for the register.
2225  ///
2226  /// Given a register class constraint, like 'r', if this corresponds directly
2227  /// to an LLVM register class, return a register of 0 and the register class
2228  /// pointer.
2229  ///
2230  /// This should only be used for C_Register constraints.  On error, this
2231  /// returns a register number of 0 and a null register class pointer..
2232  virtual std::pair<unsigned, const TargetRegisterClass*>
2233    getRegForInlineAsmConstraint(const std::string &Constraint,
2234                                 MVT VT) const;
2235
2236  /// Try to replace an X constraint, which matches anything, with another that
2237  /// has more specific requirements based on the type of the corresponding
2238  /// operand.  This returns null if there is no replacement to make.
2239  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
2240
2241  /// Lower the specified operand into the Ops vector.  If it is invalid, don't
2242  /// add anything to Ops.
2243  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
2244                                            std::vector<SDValue> &Ops,
2245                                            SelectionDAG &DAG) const;
2246
2247  //===--------------------------------------------------------------------===//
2248  // Div utility functions
2249  //
2250  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
2251                         SelectionDAG &DAG) const;
2252  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2253                      std::vector<SDNode*> *Created) const;
2254  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2255                      std::vector<SDNode*> *Created) const;
2256
2257  //===--------------------------------------------------------------------===//
2258  // Instruction Emitting Hooks
2259  //
2260
2261  /// This method should be implemented by targets that mark instructions with
2262  /// the 'usesCustomInserter' flag.  These instructions are special in various
2263  /// ways, which require special support to insert.  The specified MachineInstr
2264  /// is created but not inserted into any basic blocks, and this method is
2265  /// called to expand it into a sequence of instructions, potentially also
2266  /// creating new basic blocks and control flow.
2267  virtual MachineBasicBlock *
2268    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
2269
2270  /// This method should be implemented by targets that mark instructions with
2271  /// the 'hasPostISelHook' flag. These instructions must be adjusted after
2272  /// instruction selection by target hooks.  e.g. To fill in optional defs for
2273  /// ARM 's' setting instructions.
2274  virtual void
2275  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
2276};
2277
2278/// Given an LLVM IR type and return type attributes, compute the return value
2279/// EVTs and flags, and optionally also the offsets, if the return value is
2280/// being lowered to memory.
2281void GetReturnInfo(Type* ReturnType, AttributeSet attr,
2282                   SmallVectorImpl<ISD::OutputArg> &Outs,
2283                   const TargetLowering &TLI);
2284
2285} // end llvm namespace
2286
2287#endif
2288