TargetLowering.h revision d6662add687f20cffa0755e410efbb40de4dcf23
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/InlineAsm.h"
26#include "llvm/CodeGen/SelectionDAGNodes.h"
27#include "llvm/CodeGen/RuntimeLibcalls.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/DebugLoc.h"
34#include "llvm/Target/TargetMachine.h"
35#include <climits>
36#include <map>
37#include <vector>
38
39namespace llvm {
40  class AllocaInst;
41  class CallInst;
42  class Function;
43  class FastISel;
44  class MachineBasicBlock;
45  class MachineFunction;
46  class MachineFrameInfo;
47  class MachineInstr;
48  class MachineModuleInfo;
49  class DwarfWriter;
50  class SDNode;
51  class SDValue;
52  class SelectionDAG;
53  class TargetData;
54  class TargetMachine;
55  class TargetRegisterClass;
56  class TargetSubtarget;
57  class TargetLoweringObjectFile;
58  class Value;
59
60  // FIXME: should this be here?
61  namespace TLSModel {
62    enum Model {
63      GeneralDynamic,
64      LocalDynamic,
65      InitialExec,
66      LocalExec
67    };
68  }
69  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
70
71
72//===----------------------------------------------------------------------===//
73/// TargetLowering - This class defines information used to lower LLVM code to
74/// legal SelectionDAG operators that the target instruction selector can accept
75/// natively.
76///
77/// This class also defines callbacks that targets must implement to lower
78/// target-specific constructs to SelectionDAG operators.
79///
80class TargetLowering {
81  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
82  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
83public:
84  /// LegalizeAction - This enum indicates whether operations are valid for a
85  /// target, and if not, what action should be used to make them valid.
86  enum LegalizeAction {
87    Legal,      // The target natively supports this operation.
88    Promote,    // This operation should be executed in a larger type.
89    Expand,     // Try to expand this to other ops, otherwise use a libcall.
90    Custom      // Use the LowerOperation hook to implement custom lowering.
91  };
92
93  enum BooleanContent { // How the target represents true/false values.
94    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
95    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
96    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
97  };
98
99  enum SchedPreference {
100    SchedulingForLatency,          // Scheduling for shortest total latency.
101    SchedulingForRegPressure       // Scheduling for lowest register pressure.
102  };
103
104  /// NOTE: The constructor takes ownership of TLOF.
105  explicit TargetLowering(TargetMachine &TM, TargetLoweringObjectFile *TLOF);
106  virtual ~TargetLowering();
107
108  TargetMachine &getTargetMachine() const { return TM; }
109  const TargetData *getTargetData() const { return TD; }
110  TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
111
112  bool isBigEndian() const { return !IsLittleEndian; }
113  bool isLittleEndian() const { return IsLittleEndian; }
114  MVT::SimpleValueType getPointerTy() const { return PointerTy; }
115  MVT::SimpleValueType getShiftAmountTy() const { return ShiftAmountTy; }
116
117  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
118  /// codegen.
119  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
120
121  /// isSelectExpensive - Return true if the select operation is expensive for
122  /// this target.
123  bool isSelectExpensive() const { return SelectIsExpensive; }
124
125  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
126  /// a sequence of several shifts, adds, and multiplies for this target.
127  bool isIntDivCheap() const { return IntDivIsCheap; }
128
129  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
130  /// srl/add/sra.
131  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
132
133  /// getSetCCResultType - Return the ValueType of the result of SETCC
134  /// operations.  Also used to obtain the target's preferred type for
135  /// the condition operand of SELECT and BRCOND nodes.  In the case of
136  /// BRCOND the argument passed is MVT::Other since there are no other
137  /// operands to get a type hint from.
138  virtual
139  MVT::SimpleValueType getSetCCResultType(MVT VT) const;
140
141  /// getBooleanContents - For targets without i1 registers, this gives the
142  /// nature of the high-bits of boolean values held in types wider than i1.
143  /// "Boolean values" are special true/false values produced by nodes like
144  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
145  /// Not to be confused with general values promoted from i1.
146  BooleanContent getBooleanContents() const { return BooleanContents;}
147
148  /// getSchedulingPreference - Return target scheduling preference.
149  SchedPreference getSchedulingPreference() const {
150    return SchedPreferenceInfo;
151  }
152
153  /// getRegClassFor - Return the register class that should be used for the
154  /// specified value type.  This may only be called on legal types.
155  TargetRegisterClass *getRegClassFor(MVT VT) const {
156    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
157    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT()];
158    assert(RC && "This value type is not natively supported!");
159    return RC;
160  }
161
162  /// isTypeLegal - Return true if the target has native support for the
163  /// specified value type.  This means that it has a register that directly
164  /// holds it without promotions or expansions.
165  bool isTypeLegal(MVT VT) const {
166    assert(!VT.isSimple() ||
167           (unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
168    return VT.isSimple() && RegClassForVT[VT.getSimpleVT()] != 0;
169  }
170
171  class ValueTypeActionImpl {
172    /// ValueTypeActions - This is a bitvector that contains two bits for each
173    /// value type, where the two bits correspond to the LegalizeAction enum.
174    /// This can be queried with "getTypeAction(VT)".
175    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
176    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
177  public:
178    ValueTypeActionImpl() {
179      ValueTypeActions[0] = ValueTypeActions[1] = 0;
180      ValueTypeActions[2] = ValueTypeActions[3] = 0;
181    }
182    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
183      ValueTypeActions[0] = RHS.ValueTypeActions[0];
184      ValueTypeActions[1] = RHS.ValueTypeActions[1];
185      ValueTypeActions[2] = RHS.ValueTypeActions[2];
186      ValueTypeActions[3] = RHS.ValueTypeActions[3];
187    }
188
189    LegalizeAction getTypeAction(MVT VT) const {
190      if (VT.isExtended()) {
191        if (VT.isVector()) {
192          return VT.isPow2VectorType() ? Expand : Promote;
193        }
194        if (VT.isInteger())
195          // First promote to a power-of-two size, then expand if necessary.
196          return VT == VT.getRoundIntegerType() ? Expand : Promote;
197        assert(0 && "Unsupported extended type!");
198        return Legal;
199      }
200      unsigned I = VT.getSimpleVT();
201      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
202      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
203    }
204    void setTypeAction(MVT VT, LegalizeAction Action) {
205      unsigned I = VT.getSimpleVT();
206      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
207      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
208    }
209  };
210
211  const ValueTypeActionImpl &getValueTypeActions() const {
212    return ValueTypeActions;
213  }
214
215  /// getTypeAction - Return how we should legalize values of this type, either
216  /// it is already legal (return 'Legal') or we need to promote it to a larger
217  /// type (return 'Promote'), or we need to expand it into multiple registers
218  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
219  LegalizeAction getTypeAction(MVT VT) const {
220    return ValueTypeActions.getTypeAction(VT);
221  }
222
223  /// getTypeToTransformTo - For types supported by the target, this is an
224  /// identity function.  For types that must be promoted to larger types, this
225  /// returns the larger type to promote to.  For integer types that are larger
226  /// than the largest integer register, this contains one step in the expansion
227  /// to get to the smaller register. For illegal floating point types, this
228  /// returns the integer type to transform to.
229  MVT getTypeToTransformTo(MVT VT) const {
230    if (VT.isSimple()) {
231      assert((unsigned)VT.getSimpleVT() < array_lengthof(TransformToType));
232      MVT NVT = TransformToType[VT.getSimpleVT()];
233      assert(getTypeAction(NVT) != Promote &&
234             "Promote may not follow Expand or Promote");
235      return NVT;
236    }
237
238    if (VT.isVector()) {
239      MVT NVT = VT.getPow2VectorType();
240      if (NVT == VT) {
241        // Vector length is a power of 2 - split to half the size.
242        unsigned NumElts = VT.getVectorNumElements();
243        MVT EltVT = VT.getVectorElementType();
244        return (NumElts == 1) ? EltVT : MVT::getVectorVT(EltVT, NumElts / 2);
245      }
246      // Promote to a power of two size, avoiding multi-step promotion.
247      return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
248    } else if (VT.isInteger()) {
249      MVT NVT = VT.getRoundIntegerType();
250      if (NVT == VT)
251        // Size is a power of two - expand to half the size.
252        return MVT::getIntegerVT(VT.getSizeInBits() / 2);
253      else
254        // Promote to a power of two size, avoiding multi-step promotion.
255        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
256    }
257    assert(0 && "Unsupported extended type!");
258    return MVT(MVT::Other); // Not reached
259  }
260
261  /// getTypeToExpandTo - For types supported by the target, this is an
262  /// identity function.  For types that must be expanded (i.e. integer types
263  /// that are larger than the largest integer register or illegal floating
264  /// point types), this returns the largest legal type it will be expanded to.
265  MVT getTypeToExpandTo(MVT VT) const {
266    assert(!VT.isVector());
267    while (true) {
268      switch (getTypeAction(VT)) {
269      case Legal:
270        return VT;
271      case Expand:
272        VT = getTypeToTransformTo(VT);
273        break;
274      default:
275        assert(false && "Type is not legal nor is it to be expanded!");
276        return VT;
277      }
278    }
279    return VT;
280  }
281
282  /// getVectorTypeBreakdown - Vector types are broken down into some number of
283  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
284  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
285  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
286  ///
287  /// This method returns the number of registers needed, and the VT for each
288  /// register.  It also returns the VT and quantity of the intermediate values
289  /// before they are promoted/expanded.
290  ///
291  unsigned getVectorTypeBreakdown(MVT VT,
292                                  MVT &IntermediateVT,
293                                  unsigned &NumIntermediates,
294                                  MVT &RegisterVT) const;
295
296  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
297  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
298  /// this is the case, it returns true and store the intrinsic
299  /// information into the IntrinsicInfo that was passed to the function.
300  typedef struct IntrinsicInfo {
301    unsigned     opc;         // target opcode
302    MVT          memVT;       // memory VT
303    const Value* ptrVal;      // value representing memory location
304    int          offset;      // offset off of ptrVal
305    unsigned     align;       // alignment
306    bool         vol;         // is volatile?
307    bool         readMem;     // reads memory?
308    bool         writeMem;    // writes memory?
309  } IntrinisicInfo;
310
311  virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
312                                  CallInst &I, unsigned Intrinsic) {
313    return false;
314  }
315
316  /// getWidenVectorType: given a vector type, returns the type to widen to
317  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
318  /// If there is no vector type that we want to widen to, returns MVT::Other
319  /// When and were to widen is target dependent based on the cost of
320  /// scalarizing vs using the wider vector type.
321  virtual MVT getWidenVectorType(MVT VT) const;
322
323  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
324  legal_fpimm_iterator legal_fpimm_begin() const {
325    return LegalFPImmediates.begin();
326  }
327  legal_fpimm_iterator legal_fpimm_end() const {
328    return LegalFPImmediates.end();
329  }
330
331  /// isShuffleMaskLegal - Targets can use this to indicate that they only
332  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
333  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
334  /// are assumed to be legal.
335  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
336                                  MVT VT) const {
337    return true;
338  }
339
340  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
341  /// used by Targets can use this to indicate if there is a suitable
342  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
343  /// pool entry.
344  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
345                                      MVT VT) const {
346    return false;
347  }
348
349  /// getOperationAction - Return how this operation should be treated: either
350  /// it is legal, needs to be promoted to a larger size, needs to be
351  /// expanded to some other code sequence, or the target has a custom expander
352  /// for it.
353  LegalizeAction getOperationAction(unsigned Op, MVT VT) const {
354    if (VT.isExtended()) return Expand;
355    assert(Op < array_lengthof(OpActions[0]) &&
356           (unsigned)VT.getSimpleVT() < sizeof(OpActions[0][0])*8 &&
357           "Table isn't big enough!");
358    unsigned I = (unsigned) VT.getSimpleVT();
359    unsigned J = I & 31;
360    I = I >> 5;
361    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
362  }
363
364  /// isOperationLegalOrCustom - Return true if the specified operation is
365  /// legal on this target or can be made legal with custom lowering. This
366  /// is used to help guide high-level lowering decisions.
367  bool isOperationLegalOrCustom(unsigned Op, MVT VT) const {
368    return (VT == MVT::Other || isTypeLegal(VT)) &&
369      (getOperationAction(Op, VT) == Legal ||
370       getOperationAction(Op, VT) == Custom);
371  }
372
373  /// isOperationLegal - Return true if the specified operation is legal on this
374  /// target.
375  bool isOperationLegal(unsigned Op, MVT VT) const {
376    return (VT == MVT::Other || isTypeLegal(VT)) &&
377           getOperationAction(Op, VT) == Legal;
378  }
379
380  /// getLoadExtAction - Return how this load with extension should be treated:
381  /// either it is legal, needs to be promoted to a larger size, needs to be
382  /// expanded to some other code sequence, or the target has a custom expander
383  /// for it.
384  LegalizeAction getLoadExtAction(unsigned LType, MVT VT) const {
385    assert(LType < array_lengthof(LoadExtActions) &&
386           (unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
387           "Table isn't big enough!");
388    return (LegalizeAction)((LoadExtActions[LType] >> (2*VT.getSimpleVT())) & 3);
389  }
390
391  /// isLoadExtLegal - Return true if the specified load with extension is legal
392  /// on this target.
393  bool isLoadExtLegal(unsigned LType, MVT VT) const {
394    return VT.isSimple() &&
395      (getLoadExtAction(LType, VT) == Legal ||
396       getLoadExtAction(LType, VT) == Custom);
397  }
398
399  /// getTruncStoreAction - Return how this store with truncation should be
400  /// treated: either it is legal, needs to be promoted to a larger size, needs
401  /// to be expanded to some other code sequence, or the target has a custom
402  /// expander for it.
403  LegalizeAction getTruncStoreAction(MVT ValVT,
404                                     MVT MemVT) const {
405    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
406           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
407           "Table isn't big enough!");
408    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT()] >>
409                             (2*MemVT.getSimpleVT())) & 3);
410  }
411
412  /// isTruncStoreLegal - Return true if the specified store with truncation is
413  /// legal on this target.
414  bool isTruncStoreLegal(MVT ValVT, MVT MemVT) const {
415    return isTypeLegal(ValVT) && MemVT.isSimple() &&
416      (getTruncStoreAction(ValVT, MemVT) == Legal ||
417       getTruncStoreAction(ValVT, MemVT) == Custom);
418  }
419
420  /// getIndexedLoadAction - Return how the indexed load should be treated:
421  /// either it is legal, needs to be promoted to a larger size, needs to be
422  /// expanded to some other code sequence, or the target has a custom expander
423  /// for it.
424  LegalizeAction
425  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
426    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
427           ((unsigned)VT.getSimpleVT()) < MVT::LAST_VALUETYPE &&
428           "Table isn't big enough!");
429    return (LegalizeAction)((IndexedModeActions[(unsigned)VT.getSimpleVT()][0][IdxMode]));
430  }
431
432  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
433  /// on this target.
434  bool isIndexedLoadLegal(unsigned IdxMode, MVT VT) const {
435    return VT.isSimple() &&
436      (getIndexedLoadAction(IdxMode, VT) == Legal ||
437       getIndexedLoadAction(IdxMode, VT) == Custom);
438  }
439
440  /// getIndexedStoreAction - Return how the indexed store should be treated:
441  /// either it is legal, needs to be promoted to a larger size, needs to be
442  /// expanded to some other code sequence, or the target has a custom expander
443  /// for it.
444  LegalizeAction
445  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
446    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
447           (unsigned)VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
448           "Table isn't big enough!");
449    return (LegalizeAction)((IndexedModeActions[(unsigned)VT.getSimpleVT()][1][IdxMode]));
450  }
451
452  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
453  /// on this target.
454  bool isIndexedStoreLegal(unsigned IdxMode, MVT VT) const {
455    return VT.isSimple() &&
456      (getIndexedStoreAction(IdxMode, VT) == Legal ||
457       getIndexedStoreAction(IdxMode, VT) == Custom);
458  }
459
460  /// getConvertAction - Return how the conversion should be treated:
461  /// either it is legal, needs to be promoted to a larger size, needs to be
462  /// expanded to some other code sequence, or the target has a custom expander
463  /// for it.
464  LegalizeAction
465  getConvertAction(MVT FromVT, MVT ToVT) const {
466    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
467           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
468           "Table isn't big enough!");
469    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT()] >>
470                             (2*ToVT.getSimpleVT())) & 3);
471  }
472
473  /// isConvertLegal - Return true if the specified conversion is legal
474  /// on this target.
475  bool isConvertLegal(MVT FromVT, MVT ToVT) const {
476    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
477      (getConvertAction(FromVT, ToVT) == Legal ||
478       getConvertAction(FromVT, ToVT) == Custom);
479  }
480
481  /// getCondCodeAction - Return how the condition code should be treated:
482  /// either it is legal, needs to be expanded to some other code sequence,
483  /// or the target has a custom expander for it.
484  LegalizeAction
485  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
486    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
487           (unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
488           "Table isn't big enough!");
489    LegalizeAction Action = (LegalizeAction)
490      ((CondCodeActions[CC] >> (2*VT.getSimpleVT())) & 3);
491    assert(Action != Promote && "Can't promote condition code!");
492    return Action;
493  }
494
495  /// isCondCodeLegal - Return true if the specified condition code is legal
496  /// on this target.
497  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
498    return getCondCodeAction(CC, VT) == Legal ||
499           getCondCodeAction(CC, VT) == Custom;
500  }
501
502
503  /// getTypeToPromoteTo - If the action for this operation is to promote, this
504  /// method returns the ValueType to promote to.
505  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
506    assert(getOperationAction(Op, VT) == Promote &&
507           "This operation isn't promoted!");
508
509    // See if this has an explicit type specified.
510    std::map<std::pair<unsigned, MVT::SimpleValueType>,
511             MVT::SimpleValueType>::const_iterator PTTI =
512      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT()));
513    if (PTTI != PromoteToType.end()) return PTTI->second;
514
515    assert((VT.isInteger() || VT.isFloatingPoint()) &&
516           "Cannot autopromote this type, add it with AddPromotedToType.");
517
518    MVT NVT = VT;
519    do {
520      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT()+1);
521      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
522             "Didn't find type to promote to!");
523    } while (!isTypeLegal(NVT) ||
524              getOperationAction(Op, NVT) == Promote);
525    return NVT;
526  }
527
528  /// getValueType - Return the MVT corresponding to this LLVM type.
529  /// This is fixed by the LLVM operations except for the pointer size.  If
530  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
531  /// counterpart (e.g. structs), otherwise it will assert.
532  MVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
533    MVT VT = MVT::getMVT(Ty, AllowUnknown);
534    return VT == MVT::iPTR ? PointerTy : VT;
535  }
536
537  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
538  /// function arguments in the caller parameter area.  This is the actual
539  /// alignment, not its logarithm.
540  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
541
542  /// getRegisterType - Return the type of registers that this ValueType will
543  /// eventually require.
544  MVT getRegisterType(MVT VT) const {
545    if (VT.isSimple()) {
546      assert((unsigned)VT.getSimpleVT() < array_lengthof(RegisterTypeForVT));
547      return RegisterTypeForVT[VT.getSimpleVT()];
548    }
549    if (VT.isVector()) {
550      MVT VT1, RegisterVT;
551      unsigned NumIntermediates;
552      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
553      return RegisterVT;
554    }
555    if (VT.isInteger()) {
556      return getRegisterType(getTypeToTransformTo(VT));
557    }
558    assert(0 && "Unsupported extended type!");
559    return MVT(MVT::Other); // Not reached
560  }
561
562  /// getNumRegisters - Return the number of registers that this ValueType will
563  /// eventually require.  This is one for any types promoted to live in larger
564  /// registers, but may be more than one for types (like i64) that are split
565  /// into pieces.  For types like i140, which are first promoted then expanded,
566  /// it is the number of registers needed to hold all the bits of the original
567  /// type.  For an i140 on a 32 bit machine this means 5 registers.
568  unsigned getNumRegisters(MVT VT) const {
569    if (VT.isSimple()) {
570      assert((unsigned)VT.getSimpleVT() < array_lengthof(NumRegistersForVT));
571      return NumRegistersForVT[VT.getSimpleVT()];
572    }
573    if (VT.isVector()) {
574      MVT VT1, VT2;
575      unsigned NumIntermediates;
576      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
577    }
578    if (VT.isInteger()) {
579      unsigned BitWidth = VT.getSizeInBits();
580      unsigned RegWidth = getRegisterType(VT).getSizeInBits();
581      return (BitWidth + RegWidth - 1) / RegWidth;
582    }
583    assert(0 && "Unsupported extended type!");
584    return 0; // Not reached
585  }
586
587  /// ShouldShrinkFPConstant - If true, then instruction selection should
588  /// seek to shrink the FP constant of the specified type to a smaller type
589  /// in order to save space and / or reduce runtime.
590  virtual bool ShouldShrinkFPConstant(MVT VT) const { return true; }
591
592  /// hasTargetDAGCombine - If true, the target has custom DAG combine
593  /// transformations that it can perform for the specified node.
594  bool hasTargetDAGCombine(ISD::NodeType NT) const {
595    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
596    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
597  }
598
599  /// This function returns the maximum number of store operations permitted
600  /// to replace a call to llvm.memset. The value is set by the target at the
601  /// performance threshold for such a replacement.
602  /// @brief Get maximum # of store operations permitted for llvm.memset
603  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
604
605  /// This function returns the maximum number of store operations permitted
606  /// to replace a call to llvm.memcpy. The value is set by the target at the
607  /// performance threshold for such a replacement.
608  /// @brief Get maximum # of store operations permitted for llvm.memcpy
609  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
610
611  /// This function returns the maximum number of store operations permitted
612  /// to replace a call to llvm.memmove. The value is set by the target at the
613  /// performance threshold for such a replacement.
614  /// @brief Get maximum # of store operations permitted for llvm.memmove
615  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
616
617  /// This function returns true if the target allows unaligned memory accesses.
618  /// This is used, for example, in situations where an array copy/move/set is
619  /// converted to a sequence of store operations. It's use helps to ensure that
620  /// such replacements don't generate code that causes an alignment error
621  /// (trap) on the target machine.
622  /// @brief Determine if the target supports unaligned memory accesses.
623  bool allowsUnalignedMemoryAccesses() const {
624    return allowUnalignedMemoryAccesses;
625  }
626
627  /// This function returns true if the target would benefit from code placement
628  /// optimization.
629  /// @brief Determine if the target should perform code placement optimization.
630  bool shouldOptimizeCodePlacement() const {
631    return benefitFromCodePlacementOpt;
632  }
633
634  /// getOptimalMemOpType - Returns the target specific optimal type for load
635  /// and store operations as a result of memset, memcpy, and memmove lowering.
636  /// It returns MVT::iAny if SelectionDAG should be responsible for
637  /// determining it.
638  virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
639                                  bool isSrcConst, bool isSrcStr,
640                                  SelectionDAG &DAG) const {
641    return MVT::iAny;
642  }
643
644  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
645  /// to implement llvm.setjmp.
646  bool usesUnderscoreSetJmp() const {
647    return UseUnderscoreSetJmp;
648  }
649
650  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
651  /// to implement llvm.longjmp.
652  bool usesUnderscoreLongJmp() const {
653    return UseUnderscoreLongJmp;
654  }
655
656  /// getStackPointerRegisterToSaveRestore - If a physical register, this
657  /// specifies the register that llvm.savestack/llvm.restorestack should save
658  /// and restore.
659  unsigned getStackPointerRegisterToSaveRestore() const {
660    return StackPointerRegisterToSaveRestore;
661  }
662
663  /// getExceptionAddressRegister - If a physical register, this returns
664  /// the register that receives the exception address on entry to a landing
665  /// pad.
666  unsigned getExceptionAddressRegister() const {
667    return ExceptionPointerRegister;
668  }
669
670  /// getExceptionSelectorRegister - If a physical register, this returns
671  /// the register that receives the exception typeid on entry to a landing
672  /// pad.
673  unsigned getExceptionSelectorRegister() const {
674    return ExceptionSelectorRegister;
675  }
676
677  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
678  /// set, the default is 200)
679  unsigned getJumpBufSize() const {
680    return JumpBufSize;
681  }
682
683  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
684  /// (if never set, the default is 0)
685  unsigned getJumpBufAlignment() const {
686    return JumpBufAlignment;
687  }
688
689  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
690  /// limit. Any block whose size is greater should not be predicated.
691  unsigned getIfCvtBlockSizeLimit() const {
692    return IfCvtBlockSizeLimit;
693  }
694
695  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
696  /// block to be considered for duplication. Any block whose size is greater
697  /// should not be duplicated to facilitate its predication.
698  unsigned getIfCvtDupBlockSizeLimit() const {
699    return IfCvtDupBlockSizeLimit;
700  }
701
702  /// getPrefLoopAlignment - return the preferred loop alignment.
703  ///
704  unsigned getPrefLoopAlignment() const {
705    return PrefLoopAlignment;
706  }
707
708  /// getPreIndexedAddressParts - returns true by value, base pointer and
709  /// offset pointer and addressing mode by reference if the node's address
710  /// can be legally represented as pre-indexed load / store address.
711  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
712                                         SDValue &Offset,
713                                         ISD::MemIndexedMode &AM,
714                                         SelectionDAG &DAG) const {
715    return false;
716  }
717
718  /// getPostIndexedAddressParts - returns true by value, base pointer and
719  /// offset pointer and addressing mode by reference if this node can be
720  /// combined with a load / store to form a post-indexed load / store.
721  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
722                                          SDValue &Base, SDValue &Offset,
723                                          ISD::MemIndexedMode &AM,
724                                          SelectionDAG &DAG) const {
725    return false;
726  }
727
728  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
729  /// jumptable.
730  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
731                                             SelectionDAG &DAG) const;
732
733  /// isOffsetFoldingLegal - Return true if folding a constant offset
734  /// with the given GlobalAddress is legal.  It is frequently not legal in
735  /// PIC relocation models.
736  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
737
738  /// getFunctionAlignment - Return the Log2 alignment of this function.
739  virtual unsigned getFunctionAlignment(const Function *) const = 0;
740
741  //===--------------------------------------------------------------------===//
742  // TargetLowering Optimization Methods
743  //
744
745  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
746  /// SDValues for returning information from TargetLowering to its clients
747  /// that want to combine
748  struct TargetLoweringOpt {
749    SelectionDAG &DAG;
750    SDValue Old;
751    SDValue New;
752
753    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
754
755    bool CombineTo(SDValue O, SDValue N) {
756      Old = O;
757      New = N;
758      return true;
759    }
760
761    /// ShrinkDemandedConstant - Check to see if the specified operand of the
762    /// specified instruction is a constant integer.  If so, check to see if
763    /// there are any bits set in the constant that are not demanded.  If so,
764    /// shrink the constant and return true.
765    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
766
767    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
768    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
769    /// cast, but it could be generalized for targets with other types of
770    /// implicit widening casts.
771    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
772                          DebugLoc dl);
773  };
774
775  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
776  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
777  /// use this information to simplify Op, create a new simplified DAG node and
778  /// return true, returning the original and new nodes in Old and New.
779  /// Otherwise, analyze the expression and return a mask of KnownOne and
780  /// KnownZero bits for the expression (used to simplify the caller).
781  /// The KnownZero/One bits may only be accurate for those bits in the
782  /// DemandedMask.
783  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
784                            APInt &KnownZero, APInt &KnownOne,
785                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
786
787  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
788  /// Mask are known to be either zero or one and return them in the
789  /// KnownZero/KnownOne bitsets.
790  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
791                                              const APInt &Mask,
792                                              APInt &KnownZero,
793                                              APInt &KnownOne,
794                                              const SelectionDAG &DAG,
795                                              unsigned Depth = 0) const;
796
797  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
798  /// targets that want to expose additional information about sign bits to the
799  /// DAG Combiner.
800  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
801                                                   unsigned Depth = 0) const;
802
803  struct DAGCombinerInfo {
804    void *DC;  // The DAG Combiner object.
805    bool BeforeLegalize;
806    bool BeforeLegalizeOps;
807    bool CalledByLegalizer;
808  public:
809    SelectionDAG &DAG;
810
811    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
812      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
813        CalledByLegalizer(cl), DAG(dag) {}
814
815    bool isBeforeLegalize() const { return BeforeLegalize; }
816    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
817    bool isCalledByLegalizer() const { return CalledByLegalizer; }
818
819    void AddToWorklist(SDNode *N);
820    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
821                      bool AddTo = true);
822    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
823    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
824
825    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
826  };
827
828  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
829  /// and cc. If it is unable to simplify it, return a null SDValue.
830  SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
831                          ISD::CondCode Cond, bool foldBooleans,
832                          DAGCombinerInfo &DCI, DebugLoc dl) const;
833
834  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
835  /// node is a GlobalAddress + offset.
836  virtual bool
837  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
838
839  /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
840  /// location that is 'Dist' units away from the location that the 'Base' load
841  /// is loading from.
842  bool isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes,
843                         int Dist, const MachineFrameInfo *MFI) const;
844
845  /// PerformDAGCombine - This method will be invoked for all target nodes and
846  /// for any target-independent nodes that the target has registered with
847  /// invoke it for.
848  ///
849  /// The semantics are as follows:
850  /// Return Value:
851  ///   SDValue.Val == 0   - No change was made
852  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
853  ///   otherwise          - N should be replaced by the returned Operand.
854  ///
855  /// In addition, methods provided by DAGCombinerInfo may be used to perform
856  /// more complex transformations.
857  ///
858  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
859
860  //===--------------------------------------------------------------------===//
861  // TargetLowering Configuration Methods - These methods should be invoked by
862  // the derived class constructor to configure this object for the target.
863  //
864
865protected:
866  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
867  /// GOT for PC-relative code.
868  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
869
870  /// setShiftAmountType - Describe the type that should be used for shift
871  /// amounts.  This type defaults to the pointer type.
872  void setShiftAmountType(MVT::SimpleValueType VT) { ShiftAmountTy = VT; }
873
874  /// setBooleanContents - Specify how the target extends the result of a
875  /// boolean value from i1 to a wider type.  See getBooleanContents.
876  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
877
878  /// setSchedulingPreference - Specify the target scheduling preference.
879  void setSchedulingPreference(SchedPreference Pref) {
880    SchedPreferenceInfo = Pref;
881  }
882
883  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
884  /// use _setjmp to implement llvm.setjmp or the non _ version.
885  /// Defaults to false.
886  void setUseUnderscoreSetJmp(bool Val) {
887    UseUnderscoreSetJmp = Val;
888  }
889
890  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
891  /// use _longjmp to implement llvm.longjmp or the non _ version.
892  /// Defaults to false.
893  void setUseUnderscoreLongJmp(bool Val) {
894    UseUnderscoreLongJmp = Val;
895  }
896
897  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
898  /// specifies the register that llvm.savestack/llvm.restorestack should save
899  /// and restore.
900  void setStackPointerRegisterToSaveRestore(unsigned R) {
901    StackPointerRegisterToSaveRestore = R;
902  }
903
904  /// setExceptionPointerRegister - If set to a physical register, this sets
905  /// the register that receives the exception address on entry to a landing
906  /// pad.
907  void setExceptionPointerRegister(unsigned R) {
908    ExceptionPointerRegister = R;
909  }
910
911  /// setExceptionSelectorRegister - If set to a physical register, this sets
912  /// the register that receives the exception typeid on entry to a landing
913  /// pad.
914  void setExceptionSelectorRegister(unsigned R) {
915    ExceptionSelectorRegister = R;
916  }
917
918  /// SelectIsExpensive - Tells the code generator not to expand operations
919  /// into sequences that use the select operations if possible.
920  void setSelectIsExpensive() { SelectIsExpensive = true; }
921
922  /// setIntDivIsCheap - Tells the code generator that integer divide is
923  /// expensive, and if possible, should be replaced by an alternate sequence
924  /// of instructions not containing an integer divide.
925  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
926
927  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
928  /// srl/add/sra for a signed divide by power of two, and let the target handle
929  /// it.
930  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
931
932  /// addRegisterClass - Add the specified register class as an available
933  /// regclass for the specified value type.  This indicates the selector can
934  /// handle values of that class natively.
935  void addRegisterClass(MVT VT, TargetRegisterClass *RC) {
936    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
937    AvailableRegClasses.push_back(std::make_pair(VT, RC));
938    RegClassForVT[VT.getSimpleVT()] = RC;
939  }
940
941  /// computeRegisterProperties - Once all of the register classes are added,
942  /// this allows us to compute derived properties we expose.
943  void computeRegisterProperties();
944
945  /// setOperationAction - Indicate that the specified operation does not work
946  /// with the specified type and indicate what to do about it.
947  void setOperationAction(unsigned Op, MVT::SimpleValueType VT,
948                          LegalizeAction Action) {
949    unsigned I = (unsigned)VT;
950    unsigned J = I & 31;
951    I = I >> 5;
952    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
953    OpActions[I][Op] |= (uint64_t)Action << (J*2);
954  }
955
956  /// setLoadExtAction - Indicate that the specified load with extension does
957  /// not work with the with specified type and indicate what to do about it.
958  void setLoadExtAction(unsigned ExtType, MVT::SimpleValueType VT,
959                      LegalizeAction Action) {
960    assert((unsigned)VT < sizeof(LoadExtActions[0])*4 &&
961           ExtType < array_lengthof(LoadExtActions) &&
962           "Table isn't big enough!");
963    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT*2);
964    LoadExtActions[ExtType] |= (uint64_t)Action << VT*2;
965  }
966
967  /// setTruncStoreAction - Indicate that the specified truncating store does
968  /// not work with the with specified type and indicate what to do about it.
969  void setTruncStoreAction(MVT::SimpleValueType ValVT,
970                           MVT::SimpleValueType MemVT,
971                           LegalizeAction Action) {
972    assert((unsigned)ValVT < array_lengthof(TruncStoreActions) &&
973           (unsigned)MemVT < sizeof(TruncStoreActions[0])*4 &&
974           "Table isn't big enough!");
975    TruncStoreActions[ValVT] &= ~(uint64_t(3UL)  << MemVT*2);
976    TruncStoreActions[ValVT] |= (uint64_t)Action << MemVT*2;
977  }
978
979  /// setIndexedLoadAction - Indicate that the specified indexed load does or
980  /// does not work with the with specified type and indicate what to do abort
981  /// it. NOTE: All indexed mode loads are initialized to Expand in
982  /// TargetLowering.cpp
983  void setIndexedLoadAction(unsigned IdxMode, MVT::SimpleValueType VT,
984                            LegalizeAction Action) {
985    assert((unsigned)VT < MVT::LAST_VALUETYPE &&
986           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
987           "Table isn't big enough!");
988    IndexedModeActions[(unsigned)VT][0][IdxMode] = (uint8_t)Action;
989  }
990
991  /// setIndexedStoreAction - Indicate that the specified indexed store does or
992  /// does not work with the with specified type and indicate what to do about
993  /// it. NOTE: All indexed mode stores are initialized to Expand in
994  /// TargetLowering.cpp
995  void setIndexedStoreAction(unsigned IdxMode, MVT::SimpleValueType VT,
996                             LegalizeAction Action) {
997    assert((unsigned)VT < MVT::LAST_VALUETYPE &&
998           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
999           "Table isn't big enough!");
1000    IndexedModeActions[(unsigned)VT][1][IdxMode] = (uint8_t)Action;
1001  }
1002
1003  /// setConvertAction - Indicate that the specified conversion does or does
1004  /// not work with the with specified type and indicate what to do about it.
1005  void setConvertAction(MVT::SimpleValueType FromVT, MVT::SimpleValueType ToVT,
1006                        LegalizeAction Action) {
1007    assert((unsigned)FromVT < array_lengthof(ConvertActions) &&
1008           (unsigned)ToVT < sizeof(ConvertActions[0])*4 &&
1009           "Table isn't big enough!");
1010    ConvertActions[FromVT] &= ~(uint64_t(3UL)  << ToVT*2);
1011    ConvertActions[FromVT] |= (uint64_t)Action << ToVT*2;
1012  }
1013
1014  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1015  /// supported on the target and indicate what to do about it.
1016  void setCondCodeAction(ISD::CondCode CC, MVT::SimpleValueType VT,
1017                         LegalizeAction Action) {
1018    assert((unsigned)VT < sizeof(CondCodeActions[0])*4 &&
1019           (unsigned)CC < array_lengthof(CondCodeActions) &&
1020           "Table isn't big enough!");
1021    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT*2);
1022    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT*2;
1023  }
1024
1025  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1026  /// promotion code defaults to trying a larger integer/fp until it can find
1027  /// one that works.  If that default is insufficient, this method can be used
1028  /// by the target to override the default.
1029  void AddPromotedToType(unsigned Opc, MVT::SimpleValueType OrigVT,
1030                         MVT::SimpleValueType DestVT) {
1031    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
1032  }
1033
1034  /// addLegalFPImmediate - Indicate that this target can instruction select
1035  /// the specified FP immediate natively.
1036  void addLegalFPImmediate(const APFloat& Imm) {
1037    LegalFPImmediates.push_back(Imm);
1038  }
1039
1040  /// setTargetDAGCombine - Targets should invoke this method for each target
1041  /// independent node that they want to provide a custom DAG combiner for by
1042  /// implementing the PerformDAGCombine virtual method.
1043  void setTargetDAGCombine(ISD::NodeType NT) {
1044    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1045    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1046  }
1047
1048  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1049  /// bytes); default is 200
1050  void setJumpBufSize(unsigned Size) {
1051    JumpBufSize = Size;
1052  }
1053
1054  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1055  /// alignment (in bytes); default is 0
1056  void setJumpBufAlignment(unsigned Align) {
1057    JumpBufAlignment = Align;
1058  }
1059
1060  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1061  /// limit (in number of instructions); default is 2.
1062  void setIfCvtBlockSizeLimit(unsigned Limit) {
1063    IfCvtBlockSizeLimit = Limit;
1064  }
1065
1066  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1067  /// of instructions) to be considered for code duplication during
1068  /// if-conversion; default is 2.
1069  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1070    IfCvtDupBlockSizeLimit = Limit;
1071  }
1072
1073  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1074  /// alignment is zero, it means the target does not care about loop alignment.
1075  void setPrefLoopAlignment(unsigned Align) {
1076    PrefLoopAlignment = Align;
1077  }
1078
1079public:
1080
1081  virtual const TargetSubtarget *getSubtarget() {
1082    assert(0 && "Not Implemented");
1083    return NULL;    // this is here to silence compiler errors
1084  }
1085
1086  //===--------------------------------------------------------------------===//
1087  // Lowering methods - These methods must be implemented by targets so that
1088  // the SelectionDAGLowering code knows how to lower these.
1089  //
1090
1091  /// LowerFormalArguments - This hook must be implemented to lower the
1092  /// incoming (formal) arguments, described by the Ins array, into the
1093  /// specified DAG. The implementation should fill in the InVals array
1094  /// with legal-type argument values, and return the resulting token
1095  /// chain value.
1096  ///
1097  virtual SDValue
1098    LowerFormalArguments(SDValue Chain,
1099                         unsigned CallConv, bool isVarArg,
1100                         const SmallVectorImpl<ISD::InputArg> &Ins,
1101                         DebugLoc dl, SelectionDAG &DAG,
1102                         SmallVectorImpl<SDValue> &InVals) {
1103    assert(0 && "Not Implemented");
1104    return SDValue();    // this is here to silence compiler errors
1105  }
1106
1107  /// LowerCallTo - This function lowers an abstract call to a function into an
1108  /// actual call.  This returns a pair of operands.  The first element is the
1109  /// return value for the function (if RetTy is not VoidTy).  The second
1110  /// element is the outgoing token chain. It calls LowerCall to do the actual
1111  /// lowering.
1112  struct ArgListEntry {
1113    SDValue Node;
1114    const Type* Ty;
1115    bool isSExt  : 1;
1116    bool isZExt  : 1;
1117    bool isInReg : 1;
1118    bool isSRet  : 1;
1119    bool isNest  : 1;
1120    bool isByVal : 1;
1121    uint16_t Alignment;
1122
1123    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1124      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1125  };
1126  typedef std::vector<ArgListEntry> ArgListTy;
1127  std::pair<SDValue, SDValue>
1128  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1129              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1130              unsigned CallConv, bool isTailCall, bool isReturnValueUsed,
1131              SDValue Callee, ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl);
1132
1133  /// LowerCall - This hook must be implemented to lower calls into the
1134  /// the specified DAG. The outgoing arguments to the call are described
1135  /// by the Outs array, and the values to be returned by the call are
1136  /// described by the Ins array. The implementation should fill in the
1137  /// InVals array with legal-type return values from the call, and return
1138  /// the resulting token chain value.
1139  ///
1140  /// The isTailCall flag here is normative. If it is true, the
1141  /// implementation must emit a tail call. The
1142  /// IsEligibleForTailCallOptimization hook should be used to catch
1143  /// cases that cannot be handled.
1144  ///
1145  virtual SDValue
1146    LowerCall(SDValue Chain, SDValue Callee,
1147              unsigned CallConv, bool isVarArg, bool isTailCall,
1148              const SmallVectorImpl<ISD::OutputArg> &Outs,
1149              const SmallVectorImpl<ISD::InputArg> &Ins,
1150              DebugLoc dl, SelectionDAG &DAG,
1151              SmallVectorImpl<SDValue> &InVals) {
1152    assert(0 && "Not Implemented");
1153    return SDValue();    // this is here to silence compiler errors
1154  }
1155
1156  /// LowerReturn - This hook must be implemented to lower outgoing
1157  /// return values, described by the Outs array, into the specified
1158  /// DAG. The implementation should return the resulting token chain
1159  /// value.
1160  ///
1161  virtual SDValue
1162    LowerReturn(SDValue Chain, unsigned CallConv, bool isVarArg,
1163                const SmallVectorImpl<ISD::OutputArg> &Outs,
1164                DebugLoc dl, SelectionDAG &DAG) {
1165    assert(0 && "Not Implemented");
1166    return SDValue();    // this is here to silence compiler errors
1167  }
1168
1169  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1170  /// memcpy. This can be used by targets to provide code sequences for cases
1171  /// that don't fit the target's parameters for simple loads/stores and can be
1172  /// more efficient than using a library call. This function can return a null
1173  /// SDValue if the target declines to use custom code and a different
1174  /// lowering strategy should be used.
1175  ///
1176  /// If AlwaysInline is true, the size is constant and the target should not
1177  /// emit any calls and is strongly encouraged to attempt to emit inline code
1178  /// even if it is beyond the usual threshold because this intrinsic is being
1179  /// expanded in a place where calls are not feasible (e.g. within the prologue
1180  /// for another call). If the target chooses to decline an AlwaysInline
1181  /// request here, legalize will resort to using simple loads and stores.
1182  virtual SDValue
1183  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1184                          SDValue Chain,
1185                          SDValue Op1, SDValue Op2,
1186                          SDValue Op3, unsigned Align,
1187                          bool AlwaysInline,
1188                          const Value *DstSV, uint64_t DstOff,
1189                          const Value *SrcSV, uint64_t SrcOff) {
1190    return SDValue();
1191  }
1192
1193  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1194  /// memmove. This can be used by targets to provide code sequences for cases
1195  /// that don't fit the target's parameters for simple loads/stores and can be
1196  /// more efficient than using a library call. This function can return a null
1197  /// SDValue if the target declines to use custom code and a different
1198  /// lowering strategy should be used.
1199  virtual SDValue
1200  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1201                           SDValue Chain,
1202                           SDValue Op1, SDValue Op2,
1203                           SDValue Op3, unsigned Align,
1204                           const Value *DstSV, uint64_t DstOff,
1205                           const Value *SrcSV, uint64_t SrcOff) {
1206    return SDValue();
1207  }
1208
1209  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1210  /// memset. This can be used by targets to provide code sequences for cases
1211  /// that don't fit the target's parameters for simple stores and can be more
1212  /// efficient than using a library call. This function can return a null
1213  /// SDValue if the target declines to use custom code and a different
1214  /// lowering strategy should be used.
1215  virtual SDValue
1216  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1217                          SDValue Chain,
1218                          SDValue Op1, SDValue Op2,
1219                          SDValue Op3, unsigned Align,
1220                          const Value *DstSV, uint64_t DstOff) {
1221    return SDValue();
1222  }
1223
1224  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1225  /// to legalize nodes with an illegal operand type but legal result types.
1226  /// It replaces the LowerOperation callback in the type Legalizer.
1227  /// The reason we can not do away with LowerOperation entirely is that
1228  /// LegalizeDAG isn't yet ready to use this callback.
1229  /// TODO: Consider merging with ReplaceNodeResults.
1230
1231  /// The target places new result values for the node in Results (their number
1232  /// and types must exactly match those of the original return values of
1233  /// the node), or leaves Results empty, which indicates that the node is not
1234  /// to be custom lowered after all.
1235  /// The default implementation calls LowerOperation.
1236  virtual void LowerOperationWrapper(SDNode *N,
1237                                     SmallVectorImpl<SDValue> &Results,
1238                                     SelectionDAG &DAG);
1239
1240  /// LowerOperation - This callback is invoked for operations that are
1241  /// unsupported by the target, which are registered to use 'custom' lowering,
1242  /// and whose defined values are all legal.
1243  /// If the target has no operations that require custom lowering, it need not
1244  /// implement this.  The default implementation of this aborts.
1245  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1246
1247  /// ReplaceNodeResults - This callback is invoked when a node result type is
1248  /// illegal for the target, and the operation was registered to use 'custom'
1249  /// lowering for that result type.  The target places new result values for
1250  /// the node in Results (their number and types must exactly match those of
1251  /// the original return values of the node), or leaves Results empty, which
1252  /// indicates that the node is not to be custom lowered after all.
1253  ///
1254  /// If the target has no operations that require custom lowering, it need not
1255  /// implement this.  The default implementation aborts.
1256  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1257                                  SelectionDAG &DAG) {
1258    assert(0 && "ReplaceNodeResults not implemented for this target!");
1259  }
1260
1261  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
1262  /// tail call optimization. Targets which want to do tail call optimization
1263  /// should override this function.
1264  virtual bool
1265  IsEligibleForTailCallOptimization(SDValue Callee,
1266                                    unsigned CalleeCC,
1267                                    bool isVarArg,
1268                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1269                                    SelectionDAG& DAG) const {
1270    // Conservative default: no calls are eligible.
1271    return false;
1272  }
1273
1274  /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
1275  /// it exists. Skip a possible ISD::TokenFactor.
1276  static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
1277                                                 unsigned TailCallNodeOpCode) {
1278    if (Chain.getOpcode() == TailCallNodeOpCode) {
1279      return Chain;
1280    } else if (Chain.getOpcode() == ISD::TokenFactor) {
1281      if (Chain.getNumOperands() &&
1282          Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
1283        return Chain.getOperand(0);
1284    }
1285    return Chain;
1286  }
1287
1288  /// getTargetNodeName() - This method returns the name of a target specific
1289  /// DAG node.
1290  virtual const char *getTargetNodeName(unsigned Opcode) const;
1291
1292  /// createFastISel - This method returns a target specific FastISel object,
1293  /// or null if the target does not support "fast" ISel.
1294  virtual FastISel *
1295  createFastISel(MachineFunction &,
1296                 MachineModuleInfo *, DwarfWriter *,
1297                 DenseMap<const Value *, unsigned> &,
1298                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1299                 DenseMap<const AllocaInst *, int> &
1300#ifndef NDEBUG
1301                 , SmallSet<Instruction*, 8> &CatchInfoLost
1302#endif
1303                 ) {
1304    return 0;
1305  }
1306
1307  //===--------------------------------------------------------------------===//
1308  // Inline Asm Support hooks
1309  //
1310
1311  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1312  /// call to be explicit llvm code if it wants to.  This is useful for
1313  /// turning simple inline asms into LLVM intrinsics, which gives the
1314  /// compiler more information about the behavior of the code.
1315  virtual bool ExpandInlineAsm(CallInst *CI) const {
1316    return false;
1317  }
1318
1319  enum ConstraintType {
1320    C_Register,            // Constraint represents specific register(s).
1321    C_RegisterClass,       // Constraint represents any of register(s) in class.
1322    C_Memory,              // Memory constraint.
1323    C_Other,               // Something else.
1324    C_Unknown              // Unsupported constraint.
1325  };
1326
1327  /// AsmOperandInfo - This contains information for each constraint that we are
1328  /// lowering.
1329  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1330    /// ConstraintCode - This contains the actual string for the code, like "m".
1331    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1332    /// most closely matches the operand.
1333    std::string ConstraintCode;
1334
1335    /// ConstraintType - Information about the constraint code, e.g. Register,
1336    /// RegisterClass, Memory, Other, Unknown.
1337    TargetLowering::ConstraintType ConstraintType;
1338
1339    /// CallOperandval - If this is the result output operand or a
1340    /// clobber, this is null, otherwise it is the incoming operand to the
1341    /// CallInst.  This gets modified as the asm is processed.
1342    Value *CallOperandVal;
1343
1344    /// ConstraintVT - The ValueType for the operand value.
1345    MVT ConstraintVT;
1346
1347    /// isMatchingInputConstraint - Return true of this is an input operand that
1348    /// is a matching constraint like "4".
1349    bool isMatchingInputConstraint() const;
1350
1351    /// getMatchedOperand - If this is an input matching constraint, this method
1352    /// returns the output operand it matches.
1353    unsigned getMatchedOperand() const;
1354
1355    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1356      : InlineAsm::ConstraintInfo(info),
1357        ConstraintType(TargetLowering::C_Unknown),
1358        CallOperandVal(0), ConstraintVT(MVT::Other) {
1359    }
1360  };
1361
1362  /// ComputeConstraintToUse - Determines the constraint code and constraint
1363  /// type to use for the specific AsmOperandInfo, setting
1364  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1365  /// being passed in is available, it can be passed in as Op, otherwise an
1366  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1367  /// constraint of the inline asm instruction being processed is 'm'.
1368  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1369                                      SDValue Op,
1370                                      bool hasMemory,
1371                                      SelectionDAG *DAG = 0) const;
1372
1373  /// getConstraintType - Given a constraint, return the type of constraint it
1374  /// is for this target.
1375  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1376
1377  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1378  /// return a list of registers that can be used to satisfy the constraint.
1379  /// This should only be used for C_RegisterClass constraints.
1380  virtual std::vector<unsigned>
1381  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1382                                    MVT VT) const;
1383
1384  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1385  /// {edx}), return the register number and the register class for the
1386  /// register.
1387  ///
1388  /// Given a register class constraint, like 'r', if this corresponds directly
1389  /// to an LLVM register class, return a register of 0 and the register class
1390  /// pointer.
1391  ///
1392  /// This should only be used for C_Register constraints.  On error,
1393  /// this returns a register number of 0 and a null register class pointer..
1394  virtual std::pair<unsigned, const TargetRegisterClass*>
1395    getRegForInlineAsmConstraint(const std::string &Constraint,
1396                                 MVT VT) const;
1397
1398  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1399  /// with another that has more specific requirements based on the type of the
1400  /// corresponding operand.  This returns null if there is no replacement to
1401  /// make.
1402  virtual const char *LowerXConstraint(MVT ConstraintVT) const;
1403
1404  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1405  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1406  /// it means one of the asm constraint of the inline asm instruction being
1407  /// processed is 'm'.
1408  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1409                                            bool hasMemory,
1410                                            std::vector<SDValue> &Ops,
1411                                            SelectionDAG &DAG) const;
1412
1413  //===--------------------------------------------------------------------===//
1414  // Scheduler hooks
1415  //
1416
1417  // EmitInstrWithCustomInserter - This method should be implemented by targets
1418  // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1419  // instructions are special in various ways, which require special support to
1420  // insert.  The specified MachineInstr is created but not inserted into any
1421  // basic blocks, and the scheduler passes ownership of it to this method.
1422  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1423                                                  MachineBasicBlock *MBB) const;
1424
1425  //===--------------------------------------------------------------------===//
1426  // Addressing mode description hooks (used by LSR etc).
1427  //
1428
1429  /// AddrMode - This represents an addressing mode of:
1430  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1431  /// If BaseGV is null,  there is no BaseGV.
1432  /// If BaseOffs is zero, there is no base offset.
1433  /// If HasBaseReg is false, there is no base register.
1434  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1435  /// no scale.
1436  ///
1437  struct AddrMode {
1438    GlobalValue *BaseGV;
1439    int64_t      BaseOffs;
1440    bool         HasBaseReg;
1441    int64_t      Scale;
1442    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1443  };
1444
1445  /// isLegalAddressingMode - Return true if the addressing mode represented by
1446  /// AM is legal for this target, for a load/store of the specified type.
1447  /// The type may be VoidTy, in which case only return true if the addressing
1448  /// mode is legal for a load/store of any legal type.
1449  /// TODO: Handle pre/postinc as well.
1450  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1451
1452  /// isTruncateFree - Return true if it's free to truncate a value of
1453  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1454  /// register EAX to i16 by referencing its sub-register AX.
1455  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1456    return false;
1457  }
1458
1459  virtual bool isTruncateFree(MVT VT1, MVT VT2) const {
1460    return false;
1461  }
1462
1463  /// isZExtFree - Return true if any actual instruction that defines a
1464  /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1465  /// register. This does not necessarily include registers defined in
1466  /// unknown ways, such as incoming arguments, or copies from unknown
1467  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1468  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1469  /// all instructions that define 32-bit values implicit zero-extend the
1470  /// result out to 64 bits.
1471  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1472    return false;
1473  }
1474
1475  virtual bool isZExtFree(MVT VT1, MVT VT2) const {
1476    return false;
1477  }
1478
1479  /// isNarrowingProfitable - Return true if it's profitable to narrow
1480  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1481  /// from i32 to i8 but not from i32 to i16.
1482  virtual bool isNarrowingProfitable(MVT VT1, MVT VT2) const {
1483    return false;
1484  }
1485
1486  //===--------------------------------------------------------------------===//
1487  // Div utility functions
1488  //
1489  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1490                      std::vector<SDNode*>* Created) const;
1491  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1492                      std::vector<SDNode*>* Created) const;
1493
1494
1495  //===--------------------------------------------------------------------===//
1496  // Runtime Library hooks
1497  //
1498
1499  /// setLibcallName - Rename the default libcall routine name for the specified
1500  /// libcall.
1501  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1502    LibcallRoutineNames[Call] = Name;
1503  }
1504
1505  /// getLibcallName - Get the libcall routine name for the specified libcall.
1506  ///
1507  const char *getLibcallName(RTLIB::Libcall Call) const {
1508    return LibcallRoutineNames[Call];
1509  }
1510
1511  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1512  /// result of the comparison libcall against zero.
1513  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1514    CmpLibcallCCs[Call] = CC;
1515  }
1516
1517  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1518  /// the comparison libcall against zero.
1519  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1520    return CmpLibcallCCs[Call];
1521  }
1522
1523private:
1524  TargetMachine &TM;
1525  const TargetData *TD;
1526  TargetLoweringObjectFile &TLOF;
1527
1528  /// PointerTy - The type to use for pointers, usually i32 or i64.
1529  ///
1530  MVT::SimpleValueType PointerTy;
1531
1532  /// IsLittleEndian - True if this is a little endian target.
1533  ///
1534  bool IsLittleEndian;
1535
1536  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1537  ///
1538  bool UsesGlobalOffsetTable;
1539
1540  /// SelectIsExpensive - Tells the code generator not to expand operations
1541  /// into sequences that use the select operations if possible.
1542  bool SelectIsExpensive;
1543
1544  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1545  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1546  /// a real cost model is in place.  If we ever optimize for size, this will be
1547  /// set to true unconditionally.
1548  bool IntDivIsCheap;
1549
1550  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1551  /// srl/add/sra for a signed divide by power of two, and let the target handle
1552  /// it.
1553  bool Pow2DivIsCheap;
1554
1555  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1556  /// llvm.setjmp.  Defaults to false.
1557  bool UseUnderscoreSetJmp;
1558
1559  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1560  /// llvm.longjmp.  Defaults to false.
1561  bool UseUnderscoreLongJmp;
1562
1563  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1564  /// PointerTy is.
1565  MVT::SimpleValueType ShiftAmountTy;
1566
1567  /// BooleanContents - Information about the contents of the high-bits in
1568  /// boolean values held in a type wider than i1.  See getBooleanContents.
1569  BooleanContent BooleanContents;
1570
1571  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1572  /// total cycles or lowest register usage.
1573  SchedPreference SchedPreferenceInfo;
1574
1575  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1576  unsigned JumpBufSize;
1577
1578  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1579  /// buffers
1580  unsigned JumpBufAlignment;
1581
1582  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1583  /// if-converted.
1584  unsigned IfCvtBlockSizeLimit;
1585
1586  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1587  /// duplicated during if-conversion.
1588  unsigned IfCvtDupBlockSizeLimit;
1589
1590  /// PrefLoopAlignment - The perferred loop alignment.
1591  ///
1592  unsigned PrefLoopAlignment;
1593
1594  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1595  /// specifies the register that llvm.savestack/llvm.restorestack should save
1596  /// and restore.
1597  unsigned StackPointerRegisterToSaveRestore;
1598
1599  /// ExceptionPointerRegister - If set to a physical register, this specifies
1600  /// the register that receives the exception address on entry to a landing
1601  /// pad.
1602  unsigned ExceptionPointerRegister;
1603
1604  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1605  /// the register that receives the exception typeid on entry to a landing
1606  /// pad.
1607  unsigned ExceptionSelectorRegister;
1608
1609  /// RegClassForVT - This indicates the default register class to use for
1610  /// each ValueType the target supports natively.
1611  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1612  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1613  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1614
1615  /// TransformToType - For any value types we are promoting or expanding, this
1616  /// contains the value type that we are changing to.  For Expanded types, this
1617  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1618  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1619  /// by the system, this holds the same type (e.g. i32 -> i32).
1620  MVT TransformToType[MVT::LAST_VALUETYPE];
1621
1622  /// OpActions - For each operation and each value type, keep a LegalizeAction
1623  /// that indicates how instruction selection should deal with the operation.
1624  /// Most operations are Legal (aka, supported natively by the target), but
1625  /// operations that are not should be described.  Note that operations on
1626  /// non-legal value types are not described here.
1627  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1628  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1629  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)][ISD::BUILTIN_OP_END];
1630
1631  /// LoadExtActions - For each load of load extension type and each value type,
1632  /// keep a LegalizeAction that indicates how instruction selection should deal
1633  /// with the load.
1634  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1635
1636  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1637  /// indicates how instruction selection should deal with the store.
1638  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1639
1640  /// IndexedModeActions - For each indexed mode and each value type,
1641  /// keep a pair of LegalizeAction that indicates how instruction
1642  /// selection should deal with the load / store.  The first
1643  /// dimension is now the value_type for the reference.  The second
1644  /// dimension is the load [0] vs. store[1].  The third dimension
1645  /// represents the various modes for load store.
1646  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1647
1648  /// ConvertActions - For each conversion from source type to destination type,
1649  /// keep a LegalizeAction that indicates how instruction selection should
1650  /// deal with the conversion.
1651  /// Currently, this is used only for floating->floating conversions
1652  /// (FP_EXTEND and FP_ROUND).
1653  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1654
1655  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1656  /// LegalizeAction that indicates how instruction selection should
1657  /// deal with the condition code.
1658  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1659
1660  ValueTypeActionImpl ValueTypeActions;
1661
1662  std::vector<APFloat> LegalFPImmediates;
1663
1664  std::vector<std::pair<MVT, TargetRegisterClass*> > AvailableRegClasses;
1665
1666  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1667  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1668  /// which sets a bit in this array.
1669  unsigned char
1670  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1671
1672  /// PromoteToType - For operations that must be promoted to a specific type,
1673  /// this holds the destination type.  This map should be sparse, so don't hold
1674  /// it as an array.
1675  ///
1676  /// Targets add entries to this map with AddPromotedToType(..), clients access
1677  /// this with getTypeToPromoteTo(..).
1678  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1679    PromoteToType;
1680
1681  /// LibcallRoutineNames - Stores the name each libcall.
1682  ///
1683  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1684
1685  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1686  /// of each of the comparison libcall against zero.
1687  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1688
1689protected:
1690  /// When lowering \@llvm.memset this field specifies the maximum number of
1691  /// store operations that may be substituted for the call to memset. Targets
1692  /// must set this value based on the cost threshold for that target. Targets
1693  /// should assume that the memset will be done using as many of the largest
1694  /// store operations first, followed by smaller ones, if necessary, per
1695  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1696  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1697  /// store.  This only applies to setting a constant array of a constant size.
1698  /// @brief Specify maximum number of store instructions per memset call.
1699  unsigned maxStoresPerMemset;
1700
1701  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1702  /// store operations that may be substituted for a call to memcpy. Targets
1703  /// must set this value based on the cost threshold for that target. Targets
1704  /// should assume that the memcpy will be done using as many of the largest
1705  /// store operations first, followed by smaller ones, if necessary, per
1706  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1707  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1708  /// and one 1-byte store. This only applies to copying a constant array of
1709  /// constant size.
1710  /// @brief Specify maximum bytes of store instructions per memcpy call.
1711  unsigned maxStoresPerMemcpy;
1712
1713  /// When lowering \@llvm.memmove this field specifies the maximum number of
1714  /// store instructions that may be substituted for a call to memmove. Targets
1715  /// must set this value based on the cost threshold for that target. Targets
1716  /// should assume that the memmove will be done using as many of the largest
1717  /// store operations first, followed by smaller ones, if necessary, per
1718  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1719  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1720  /// applies to copying a constant array of constant size.
1721  /// @brief Specify maximum bytes of store instructions per memmove call.
1722  unsigned maxStoresPerMemmove;
1723
1724  /// This field specifies whether the target machine permits unaligned memory
1725  /// accesses.  This is used, for example, to determine the size of store
1726  /// operations when copying small arrays and other similar tasks.
1727  /// @brief Indicate whether the target permits unaligned memory accesses.
1728  bool allowUnalignedMemoryAccesses;
1729
1730  /// This field specifies whether the target can benefit from code placement
1731  /// optimization.
1732  bool benefitFromCodePlacementOpt;
1733};
1734} // end llvm namespace
1735
1736#endif
1737