TargetLowering.h revision d70f57b254114841892425a40944268d38ae0bcd
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/CodeGen/SelectionDAGNodes.h"
29#include "llvm/CodeGen/RuntimeLibcalls.h"
30#include "llvm/ADT/APFloat.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/DebugLoc.h"
36#include "llvm/Target/TargetCallingConv.h"
37#include "llvm/Target/TargetMachine.h"
38#include <climits>
39#include <map>
40#include <vector>
41
42namespace llvm {
43  class AllocaInst;
44  class CallInst;
45  class Function;
46  class FastISel;
47  class FunctionLoweringInfo;
48  class MachineBasicBlock;
49  class MachineFunction;
50  class MachineFrameInfo;
51  class MachineInstr;
52  class MachineJumpTableInfo;
53  class MCContext;
54  class MCExpr;
55  class SDNode;
56  class SDValue;
57  class SelectionDAG;
58  class TargetData;
59  class TargetMachine;
60  class TargetRegisterClass;
61  class TargetLoweringObjectFile;
62  class Value;
63
64  // FIXME: should this be here?
65  namespace TLSModel {
66    enum Model {
67      GeneralDynamic,
68      LocalDynamic,
69      InitialExec,
70      LocalExec
71    };
72  }
73  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
74
75
76//===----------------------------------------------------------------------===//
77/// TargetLowering - This class defines information used to lower LLVM code to
78/// legal SelectionDAG operators that the target instruction selector can accept
79/// natively.
80///
81/// This class also defines callbacks that targets must implement to lower
82/// target-specific constructs to SelectionDAG operators.
83///
84class TargetLowering {
85  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
86  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
87public:
88  /// LegalizeAction - This enum indicates whether operations are valid for a
89  /// target, and if not, what action should be used to make them valid.
90  enum LegalizeAction {
91    Legal,      // The target natively supports this operation.
92    Promote,    // This operation should be executed in a larger type.
93    Expand,     // Try to expand this to other ops, otherwise use a libcall.
94    Custom      // Use the LowerOperation hook to implement custom lowering.
95  };
96
97  enum BooleanContent { // How the target represents true/false values.
98    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
99    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
100    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
101  };
102
103  /// NOTE: The constructor takes ownership of TLOF.
104  explicit TargetLowering(const TargetMachine &TM,
105                          const TargetLoweringObjectFile *TLOF);
106  virtual ~TargetLowering();
107
108  const TargetMachine &getTargetMachine() const { return TM; }
109  const TargetData *getTargetData() const { return TD; }
110  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
111
112  bool isBigEndian() const { return !IsLittleEndian; }
113  bool isLittleEndian() const { return IsLittleEndian; }
114  MVT getPointerTy() const { return PointerTy; }
115  MVT getShiftAmountTy() const { return ShiftAmountTy; }
116
117  /// isSelectExpensive - Return true if the select operation is expensive for
118  /// this target.
119  bool isSelectExpensive() const { return SelectIsExpensive; }
120
121  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
122  /// a sequence of several shifts, adds, and multiplies for this target.
123  bool isIntDivCheap() const { return IntDivIsCheap; }
124
125  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
126  /// srl/add/sra.
127  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
128
129  /// getSetCCResultType - Return the ValueType of the result of SETCC
130  /// operations.  Also used to obtain the target's preferred type for
131  /// the condition operand of SELECT and BRCOND nodes.  In the case of
132  /// BRCOND the argument passed is MVT::Other since there are no other
133  /// operands to get a type hint from.
134  virtual
135  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
136
137  /// getCmpLibcallReturnType - Return the ValueType for comparison
138  /// libcalls. Comparions libcalls include floating point comparion calls,
139  /// and Ordered/Unordered check calls on floating point numbers.
140  virtual
141  MVT::SimpleValueType getCmpLibcallReturnType() const;
142
143  /// getBooleanContents - For targets without i1 registers, this gives the
144  /// nature of the high-bits of boolean values held in types wider than i1.
145  /// "Boolean values" are special true/false values produced by nodes like
146  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
147  /// Not to be confused with general values promoted from i1.
148  BooleanContent getBooleanContents() const { return BooleanContents;}
149
150  /// getSchedulingPreference - Return target scheduling preference.
151  Sched::Preference getSchedulingPreference() const {
152    return SchedPreferenceInfo;
153  }
154
155  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
156  /// different scheduling heuristics for different nodes. This function returns
157  /// the preference (or none) for the given node.
158  virtual Sched::Preference getSchedulingPreference(SDNode *N) const {
159    return Sched::None;
160  }
161
162  /// getRegClassFor - Return the register class that should be used for the
163  /// specified value type.
164  virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
165    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
166    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
167    assert(RC && "This value type is not natively supported!");
168    return RC;
169  }
170
171  /// getRepRegClassFor - Return the 'representative' register class for the
172  /// specified value type. The 'representative' register class is the largest
173  /// legal super-reg register class for the register class of the value type.
174  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
175  /// while the rep register class is GR64 on x86_64.
176  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
177    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
178    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
179    assert(RC && "This value type is not natively supported!");
180    return RC;
181  }
182
183  /// isTypeLegal - Return true if the target has native support for the
184  /// specified value type.  This means that it has a register that directly
185  /// holds it without promotions or expansions.
186  bool isTypeLegal(EVT VT) const {
187    assert(!VT.isSimple() ||
188           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
189    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
190  }
191
192  /// isTypeSynthesizable - Return true if it's OK for the compiler to create
193  /// new operations of this type.  All Legal types are synthesizable except
194  /// MMX vector types on X86.  Non-Legal types are not synthesizable.
195  bool isTypeSynthesizable(EVT VT) const {
196    return isTypeLegal(VT) && Synthesizable[VT.getSimpleVT().SimpleTy];
197  }
198
199  class ValueTypeActionImpl {
200    /// ValueTypeActions - For each value type, keep a LegalizeAction enum
201    /// that indicates how instruction selection should deal with the type.
202    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
203  public:
204    ValueTypeActionImpl() {
205      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
206    }
207    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
208      if (VT.isExtended()) {
209        if (VT.isVector()) {
210          return VT.isPow2VectorType() ? Expand : Promote;
211        }
212        if (VT.isInteger())
213          // First promote to a power-of-two size, then expand if necessary.
214          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
215        assert(0 && "Unsupported extended type!");
216        return Legal;
217      }
218      unsigned I = VT.getSimpleVT().SimpleTy;
219      return (LegalizeAction)ValueTypeActions[I];
220    }
221    void setTypeAction(EVT VT, LegalizeAction Action) {
222      unsigned I = VT.getSimpleVT().SimpleTy;
223      ValueTypeActions[I] = Action;
224    }
225  };
226
227  const ValueTypeActionImpl &getValueTypeActions() const {
228    return ValueTypeActions;
229  }
230
231  /// getTypeAction - Return how we should legalize values of this type, either
232  /// it is already legal (return 'Legal') or we need to promote it to a larger
233  /// type (return 'Promote'), or we need to expand it into multiple registers
234  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
235  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
236    return ValueTypeActions.getTypeAction(Context, VT);
237  }
238
239  /// getTypeToTransformTo - For types supported by the target, this is an
240  /// identity function.  For types that must be promoted to larger types, this
241  /// returns the larger type to promote to.  For integer types that are larger
242  /// than the largest integer register, this contains one step in the expansion
243  /// to get to the smaller register. For illegal floating point types, this
244  /// returns the integer type to transform to.
245  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
246    if (VT.isSimple()) {
247      assert((unsigned)VT.getSimpleVT().SimpleTy <
248             array_lengthof(TransformToType));
249      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
250      assert(getTypeAction(Context, NVT) != Promote &&
251             "Promote may not follow Expand or Promote");
252      return NVT;
253    }
254
255    if (VT.isVector()) {
256      EVT NVT = VT.getPow2VectorType(Context);
257      if (NVT == VT) {
258        // Vector length is a power of 2 - split to half the size.
259        unsigned NumElts = VT.getVectorNumElements();
260        EVT EltVT = VT.getVectorElementType();
261        return (NumElts == 1) ?
262          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
263      }
264      // Promote to a power of two size, avoiding multi-step promotion.
265      return getTypeAction(Context, NVT) == Promote ?
266        getTypeToTransformTo(Context, NVT) : NVT;
267    } else if (VT.isInteger()) {
268      EVT NVT = VT.getRoundIntegerType(Context);
269      if (NVT == VT)
270        // Size is a power of two - expand to half the size.
271        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
272      else
273        // Promote to a power of two size, avoiding multi-step promotion.
274        return getTypeAction(Context, NVT) == Promote ?
275          getTypeToTransformTo(Context, NVT) : NVT;
276    }
277    assert(0 && "Unsupported extended type!");
278    return MVT(MVT::Other); // Not reached
279  }
280
281  /// getTypeToExpandTo - For types supported by the target, this is an
282  /// identity function.  For types that must be expanded (i.e. integer types
283  /// that are larger than the largest integer register or illegal floating
284  /// point types), this returns the largest legal type it will be expanded to.
285  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
286    assert(!VT.isVector());
287    while (true) {
288      switch (getTypeAction(Context, VT)) {
289      case Legal:
290        return VT;
291      case Expand:
292        VT = getTypeToTransformTo(Context, VT);
293        break;
294      default:
295        assert(false && "Type is not legal nor is it to be expanded!");
296        return VT;
297      }
298    }
299    return VT;
300  }
301
302  /// getVectorTypeBreakdown - Vector types are broken down into some number of
303  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
304  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
305  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
306  ///
307  /// This method returns the number of registers needed, and the VT for each
308  /// register.  It also returns the VT and quantity of the intermediate values
309  /// before they are promoted/expanded.
310  ///
311  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
312                                  EVT &IntermediateVT,
313                                  unsigned &NumIntermediates,
314                                  EVT &RegisterVT) const;
315
316  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
317  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
318  /// this is the case, it returns true and store the intrinsic
319  /// information into the IntrinsicInfo that was passed to the function.
320  struct IntrinsicInfo {
321    unsigned     opc;         // target opcode
322    EVT          memVT;       // memory VT
323    const Value* ptrVal;      // value representing memory location
324    int          offset;      // offset off of ptrVal
325    unsigned     align;       // alignment
326    bool         vol;         // is volatile?
327    bool         readMem;     // reads memory?
328    bool         writeMem;    // writes memory?
329  };
330
331  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
332                                  const CallInst &I, unsigned Intrinsic) const {
333    return false;
334  }
335
336  /// isFPImmLegal - Returns true if the target can instruction select the
337  /// specified FP immediate natively. If false, the legalizer will materialize
338  /// the FP immediate as a load from a constant pool.
339  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
340    return false;
341  }
342
343  /// isShuffleMaskLegal - Targets can use this to indicate that they only
344  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
345  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
346  /// are assumed to be legal.
347  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
348                                  EVT VT) const {
349    return true;
350  }
351
352  /// canOpTrap - Returns true if the operation can trap for the value type.
353  /// VT must be a legal type. By default, we optimistically assume most
354  /// operations don't trap except for divide and remainder.
355  virtual bool canOpTrap(unsigned Op, EVT VT) const;
356
357  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
358  /// used by Targets can use this to indicate if there is a suitable
359  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
360  /// pool entry.
361  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
362                                      EVT VT) const {
363    return false;
364  }
365
366  /// getOperationAction - Return how this operation should be treated: either
367  /// it is legal, needs to be promoted to a larger size, needs to be
368  /// expanded to some other code sequence, or the target has a custom expander
369  /// for it.
370  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
371    if (VT.isExtended()) return Expand;
372    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
373    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
374    return (LegalizeAction)OpActions[I][Op];
375  }
376
377  /// isOperationLegalOrCustom - Return true if the specified operation is
378  /// legal on this target or can be made legal with custom lowering. This
379  /// is used to help guide high-level lowering decisions.
380  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
381    return (VT == MVT::Other || isTypeLegal(VT)) &&
382      (getOperationAction(Op, VT) == Legal ||
383       getOperationAction(Op, VT) == Custom);
384  }
385
386  /// isOperationLegal - Return true if the specified operation is legal on this
387  /// target.
388  bool isOperationLegal(unsigned Op, EVT VT) const {
389    return (VT == MVT::Other || isTypeLegal(VT)) &&
390           getOperationAction(Op, VT) == Legal;
391  }
392
393  /// getLoadExtAction - Return how this load with extension should be treated:
394  /// either it is legal, needs to be promoted to a larger size, needs to be
395  /// expanded to some other code sequence, or the target has a custom expander
396  /// for it.
397  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
398    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
399           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
400           "Table isn't big enough!");
401    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
402  }
403
404  /// isLoadExtLegal - Return true if the specified load with extension is legal
405  /// on this target.
406  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
407    return VT.isSimple() &&
408      (getLoadExtAction(ExtType, VT) == Legal ||
409       getLoadExtAction(ExtType, VT) == Custom);
410  }
411
412  /// getTruncStoreAction - Return how this store with truncation should be
413  /// treated: either it is legal, needs to be promoted to a larger size, needs
414  /// to be expanded to some other code sequence, or the target has a custom
415  /// expander for it.
416  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
417    assert((unsigned)ValVT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
418           (unsigned)MemVT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
419           "Table isn't big enough!");
420    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
421                                            [MemVT.getSimpleVT().SimpleTy];
422  }
423
424  /// isTruncStoreLegal - Return true if the specified store with truncation is
425  /// legal on this target.
426  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
427    return isTypeLegal(ValVT) && MemVT.isSimple() &&
428      (getTruncStoreAction(ValVT, MemVT) == Legal ||
429       getTruncStoreAction(ValVT, MemVT) == Custom);
430  }
431
432  /// getIndexedLoadAction - Return how the indexed load should be treated:
433  /// either it is legal, needs to be promoted to a larger size, needs to be
434  /// expanded to some other code sequence, or the target has a custom expander
435  /// for it.
436  LegalizeAction
437  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
438    assert( IdxMode < ISD::LAST_INDEXED_MODE &&
439           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
440           "Table isn't big enough!");
441    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
442    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
443  }
444
445  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
446  /// on this target.
447  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
448    return VT.isSimple() &&
449      (getIndexedLoadAction(IdxMode, VT) == Legal ||
450       getIndexedLoadAction(IdxMode, VT) == Custom);
451  }
452
453  /// getIndexedStoreAction - Return how the indexed store should be treated:
454  /// either it is legal, needs to be promoted to a larger size, needs to be
455  /// expanded to some other code sequence, or the target has a custom expander
456  /// for it.
457  LegalizeAction
458  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
459    assert( IdxMode < ISD::LAST_INDEXED_MODE &&
460           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
461           "Table isn't big enough!");
462    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
463    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
464  }
465
466  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
467  /// on this target.
468  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
469    return VT.isSimple() &&
470      (getIndexedStoreAction(IdxMode, VT) == Legal ||
471       getIndexedStoreAction(IdxMode, VT) == Custom);
472  }
473
474  /// getCondCodeAction - Return how the condition code should be treated:
475  /// either it is legal, needs to be expanded to some other code sequence,
476  /// or the target has a custom expander for it.
477  LegalizeAction
478  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
479    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
480           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
481           "Table isn't big enough!");
482    LegalizeAction Action = (LegalizeAction)
483      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
484    assert(Action != Promote && "Can't promote condition code!");
485    return Action;
486  }
487
488  /// isCondCodeLegal - Return true if the specified condition code is legal
489  /// on this target.
490  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
491    return getCondCodeAction(CC, VT) == Legal ||
492           getCondCodeAction(CC, VT) == Custom;
493  }
494
495
496  /// getTypeToPromoteTo - If the action for this operation is to promote, this
497  /// method returns the ValueType to promote to.
498  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
499    assert(getOperationAction(Op, VT) == Promote &&
500           "This operation isn't promoted!");
501
502    // See if this has an explicit type specified.
503    std::map<std::pair<unsigned, MVT::SimpleValueType>,
504             MVT::SimpleValueType>::const_iterator PTTI =
505      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
506    if (PTTI != PromoteToType.end()) return PTTI->second;
507
508    assert((VT.isInteger() || VT.isFloatingPoint()) &&
509           "Cannot autopromote this type, add it with AddPromotedToType.");
510
511    EVT NVT = VT;
512    do {
513      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
514      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
515             "Didn't find type to promote to!");
516    } while (!isTypeLegal(NVT) ||
517              getOperationAction(Op, NVT) == Promote);
518    return NVT;
519  }
520
521  /// getValueType - Return the EVT corresponding to this LLVM type.
522  /// This is fixed by the LLVM operations except for the pointer size.  If
523  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
524  /// counterpart (e.g. structs), otherwise it will assert.
525  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
526    EVT VT = EVT::getEVT(Ty, AllowUnknown);
527    return VT == MVT::iPTR ? PointerTy : VT;
528  }
529
530  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
531  /// function arguments in the caller parameter area.  This is the actual
532  /// alignment, not its logarithm.
533  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
534
535  /// getRegisterType - Return the type of registers that this ValueType will
536  /// eventually require.
537  EVT getRegisterType(MVT VT) const {
538    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
539    return RegisterTypeForVT[VT.SimpleTy];
540  }
541
542  /// getRegisterType - Return the type of registers that this ValueType will
543  /// eventually require.
544  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
545    if (VT.isSimple()) {
546      assert((unsigned)VT.getSimpleVT().SimpleTy <
547                array_lengthof(RegisterTypeForVT));
548      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
549    }
550    if (VT.isVector()) {
551      EVT VT1, RegisterVT;
552      unsigned NumIntermediates;
553      (void)getVectorTypeBreakdown(Context, VT, VT1,
554                                   NumIntermediates, RegisterVT);
555      return RegisterVT;
556    }
557    if (VT.isInteger()) {
558      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
559    }
560    assert(0 && "Unsupported extended type!");
561    return EVT(MVT::Other); // Not reached
562  }
563
564  /// getNumRegisters - Return the number of registers that this ValueType will
565  /// eventually require.  This is one for any types promoted to live in larger
566  /// registers, but may be more than one for types (like i64) that are split
567  /// into pieces.  For types like i140, which are first promoted then expanded,
568  /// it is the number of registers needed to hold all the bits of the original
569  /// type.  For an i140 on a 32 bit machine this means 5 registers.
570  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
571    if (VT.isSimple()) {
572      assert((unsigned)VT.getSimpleVT().SimpleTy <
573                array_lengthof(NumRegistersForVT));
574      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
575    }
576    if (VT.isVector()) {
577      EVT VT1, VT2;
578      unsigned NumIntermediates;
579      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
580    }
581    if (VT.isInteger()) {
582      unsigned BitWidth = VT.getSizeInBits();
583      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
584      return (BitWidth + RegWidth - 1) / RegWidth;
585    }
586    assert(0 && "Unsupported extended type!");
587    return 0; // Not reached
588  }
589
590  /// ShouldShrinkFPConstant - If true, then instruction selection should
591  /// seek to shrink the FP constant of the specified type to a smaller type
592  /// in order to save space and / or reduce runtime.
593  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
594
595  /// hasTargetDAGCombine - If true, the target has custom DAG combine
596  /// transformations that it can perform for the specified node.
597  bool hasTargetDAGCombine(ISD::NodeType NT) const {
598    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
599    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
600  }
601
602  /// This function returns the maximum number of store operations permitted
603  /// to replace a call to llvm.memset. The value is set by the target at the
604  /// performance threshold for such a replacement.
605  /// @brief Get maximum # of store operations permitted for llvm.memset
606  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
607
608  /// This function returns the maximum number of store operations permitted
609  /// to replace a call to llvm.memcpy. The value is set by the target at the
610  /// performance threshold for such a replacement.
611  /// @brief Get maximum # of store operations permitted for llvm.memcpy
612  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
613
614  /// This function returns the maximum number of store operations permitted
615  /// to replace a call to llvm.memmove. The value is set by the target at the
616  /// performance threshold for such a replacement.
617  /// @brief Get maximum # of store operations permitted for llvm.memmove
618  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
619
620  /// This function returns true if the target allows unaligned memory accesses.
621  /// of the specified type. This is used, for example, in situations where an
622  /// array copy/move/set is  converted to a sequence of store operations. It's
623  /// use helps to ensure that such replacements don't generate code that causes
624  /// an alignment error  (trap) on the target machine.
625  /// @brief Determine if the target supports unaligned memory accesses.
626  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
627    return false;
628  }
629
630  /// This function returns true if the target would benefit from code placement
631  /// optimization.
632  /// @brief Determine if the target should perform code placement optimization.
633  bool shouldOptimizeCodePlacement() const {
634    return benefitFromCodePlacementOpt;
635  }
636
637  /// getOptimalMemOpType - Returns the target specific optimal type for load
638  /// and store operations as a result of memset, memcpy, and memmove
639  /// lowering. If DstAlign is zero that means it's safe to destination
640  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
641  /// means there isn't a need to check it against alignment requirement,
642  /// probably because the source does not need to be loaded. If
643  /// 'NonScalarIntSafe' is true, that means it's safe to return a
644  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
645  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
646  /// constant so it does not need to be loaded.
647  /// It returns EVT::Other if the type should be determined using generic
648  /// target-independent logic.
649  virtual EVT getOptimalMemOpType(uint64_t Size,
650                                  unsigned DstAlign, unsigned SrcAlign,
651                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
652                                  MachineFunction &MF) const {
653    return MVT::Other;
654  }
655
656  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
657  /// to implement llvm.setjmp.
658  bool usesUnderscoreSetJmp() const {
659    return UseUnderscoreSetJmp;
660  }
661
662  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
663  /// to implement llvm.longjmp.
664  bool usesUnderscoreLongJmp() const {
665    return UseUnderscoreLongJmp;
666  }
667
668  /// getStackPointerRegisterToSaveRestore - If a physical register, this
669  /// specifies the register that llvm.savestack/llvm.restorestack should save
670  /// and restore.
671  unsigned getStackPointerRegisterToSaveRestore() const {
672    return StackPointerRegisterToSaveRestore;
673  }
674
675  /// getExceptionAddressRegister - If a physical register, this returns
676  /// the register that receives the exception address on entry to a landing
677  /// pad.
678  unsigned getExceptionAddressRegister() const {
679    return ExceptionPointerRegister;
680  }
681
682  /// getExceptionSelectorRegister - If a physical register, this returns
683  /// the register that receives the exception typeid on entry to a landing
684  /// pad.
685  unsigned getExceptionSelectorRegister() const {
686    return ExceptionSelectorRegister;
687  }
688
689  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
690  /// set, the default is 200)
691  unsigned getJumpBufSize() const {
692    return JumpBufSize;
693  }
694
695  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
696  /// (if never set, the default is 0)
697  unsigned getJumpBufAlignment() const {
698    return JumpBufAlignment;
699  }
700
701  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
702  /// argument.
703  unsigned getMinStackArgumentAlignment() const {
704    return MinStackArgumentAlignment;
705  }
706
707  /// getPrefLoopAlignment - return the preferred loop alignment.
708  ///
709  unsigned getPrefLoopAlignment() const {
710    return PrefLoopAlignment;
711  }
712
713  /// getShouldFoldAtomicFences - return whether the combiner should fold
714  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
715  ///
716  bool getShouldFoldAtomicFences() const {
717    return ShouldFoldAtomicFences;
718  }
719
720  /// getPreIndexedAddressParts - returns true by value, base pointer and
721  /// offset pointer and addressing mode by reference if the node's address
722  /// can be legally represented as pre-indexed load / store address.
723  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
724                                         SDValue &Offset,
725                                         ISD::MemIndexedMode &AM,
726                                         SelectionDAG &DAG) const {
727    return false;
728  }
729
730  /// getPostIndexedAddressParts - returns true by value, base pointer and
731  /// offset pointer and addressing mode by reference if this node can be
732  /// combined with a load / store to form a post-indexed load / store.
733  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
734                                          SDValue &Base, SDValue &Offset,
735                                          ISD::MemIndexedMode &AM,
736                                          SelectionDAG &DAG) const {
737    return false;
738  }
739
740  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
741  /// current function.  The returned value is a member of the
742  /// MachineJumpTableInfo::JTEntryKind enum.
743  virtual unsigned getJumpTableEncoding() const;
744
745  virtual const MCExpr *
746  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
747                            const MachineBasicBlock *MBB, unsigned uid,
748                            MCContext &Ctx) const {
749    assert(0 && "Need to implement this hook if target has custom JTIs");
750    return 0;
751  }
752
753  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
754  /// jumptable.
755  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
756                                           SelectionDAG &DAG) const;
757
758  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
759  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
760  /// MCExpr.
761  virtual const MCExpr *
762  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
763                               unsigned JTI, MCContext &Ctx) const;
764
765  /// isOffsetFoldingLegal - Return true if folding a constant offset
766  /// with the given GlobalAddress is legal.  It is frequently not legal in
767  /// PIC relocation models.
768  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
769
770  /// getFunctionAlignment - Return the Log2 alignment of this function.
771  virtual unsigned getFunctionAlignment(const Function *) const = 0;
772
773  /// getStackCookieLocation - Return true if the target stores stack
774  /// protector cookies at a fixed offset in some non-standard address
775  /// space, and populates the address space and offset as
776  /// appropriate.
777  virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const {
778    return false;
779  }
780
781  //===--------------------------------------------------------------------===//
782  // TargetLowering Optimization Methods
783  //
784
785  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
786  /// SDValues for returning information from TargetLowering to its clients
787  /// that want to combine
788  struct TargetLoweringOpt {
789    SelectionDAG &DAG;
790    bool LegalTys;
791    bool LegalOps;
792    SDValue Old;
793    SDValue New;
794
795    explicit TargetLoweringOpt(SelectionDAG &InDAG,
796                               bool LT, bool LO) :
797      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
798
799    bool LegalTypes() const { return LegalTys; }
800    bool LegalOperations() const { return LegalOps; }
801
802    bool CombineTo(SDValue O, SDValue N) {
803      Old = O;
804      New = N;
805      return true;
806    }
807
808    /// ShrinkDemandedConstant - Check to see if the specified operand of the
809    /// specified instruction is a constant integer.  If so, check to see if
810    /// there are any bits set in the constant that are not demanded.  If so,
811    /// shrink the constant and return true.
812    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
813
814    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
815    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
816    /// cast, but it could be generalized for targets with other types of
817    /// implicit widening casts.
818    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
819                          DebugLoc dl);
820  };
821
822  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
823  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
824  /// use this information to simplify Op, create a new simplified DAG node and
825  /// return true, returning the original and new nodes in Old and New.
826  /// Otherwise, analyze the expression and return a mask of KnownOne and
827  /// KnownZero bits for the expression (used to simplify the caller).
828  /// The KnownZero/One bits may only be accurate for those bits in the
829  /// DemandedMask.
830  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
831                            APInt &KnownZero, APInt &KnownOne,
832                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
833
834  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
835  /// Mask are known to be either zero or one and return them in the
836  /// KnownZero/KnownOne bitsets.
837  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
838                                              const APInt &Mask,
839                                              APInt &KnownZero,
840                                              APInt &KnownOne,
841                                              const SelectionDAG &DAG,
842                                              unsigned Depth = 0) const;
843
844  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
845  /// targets that want to expose additional information about sign bits to the
846  /// DAG Combiner.
847  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
848                                                   unsigned Depth = 0) const;
849
850  struct DAGCombinerInfo {
851    void *DC;  // The DAG Combiner object.
852    bool BeforeLegalize;
853    bool BeforeLegalizeOps;
854    bool CalledByLegalizer;
855  public:
856    SelectionDAG &DAG;
857
858    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
859      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
860        CalledByLegalizer(cl), DAG(dag) {}
861
862    bool isBeforeLegalize() const { return BeforeLegalize; }
863    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
864    bool isCalledByLegalizer() const { return CalledByLegalizer; }
865
866    void AddToWorklist(SDNode *N);
867    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
868                      bool AddTo = true);
869    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
870    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
871
872    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
873  };
874
875  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
876  /// and cc. If it is unable to simplify it, return a null SDValue.
877  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
878                          ISD::CondCode Cond, bool foldBooleans,
879                          DAGCombinerInfo &DCI, DebugLoc dl) const;
880
881  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
882  /// node is a GlobalAddress + offset.
883  virtual bool
884  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
885
886  /// PerformDAGCombine - This method will be invoked for all target nodes and
887  /// for any target-independent nodes that the target has registered with
888  /// invoke it for.
889  ///
890  /// The semantics are as follows:
891  /// Return Value:
892  ///   SDValue.Val == 0   - No change was made
893  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
894  ///   otherwise          - N should be replaced by the returned Operand.
895  ///
896  /// In addition, methods provided by DAGCombinerInfo may be used to perform
897  /// more complex transformations.
898  ///
899  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
900
901  /// isTypeDesirableForOp - Return true if the target has native support for
902  /// the specified value type and it is 'desirable' to use the type for the
903  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
904  /// instruction encodings are longer and some i16 instructions are slow.
905  virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
906    // By default, assume all legal types are desirable.
907    return isTypeLegal(VT);
908  }
909
910  /// IsDesirableToPromoteOp - This method query the target whether it is
911  /// beneficial for dag combiner to promote the specified node. If true, it
912  /// should return the desired promotion type by reference.
913  virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
914    return false;
915  }
916
917  //===--------------------------------------------------------------------===//
918  // TargetLowering Configuration Methods - These methods should be invoked by
919  // the derived class constructor to configure this object for the target.
920  //
921
922protected:
923  /// setShiftAmountType - Describe the type that should be used for shift
924  /// amounts.  This type defaults to the pointer type.
925  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
926
927  /// setBooleanContents - Specify how the target extends the result of a
928  /// boolean value from i1 to a wider type.  See getBooleanContents.
929  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
930
931  /// setSchedulingPreference - Specify the target scheduling preference.
932  void setSchedulingPreference(Sched::Preference Pref) {
933    SchedPreferenceInfo = Pref;
934  }
935
936  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
937  /// use _setjmp to implement llvm.setjmp or the non _ version.
938  /// Defaults to false.
939  void setUseUnderscoreSetJmp(bool Val) {
940    UseUnderscoreSetJmp = Val;
941  }
942
943  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
944  /// use _longjmp to implement llvm.longjmp or the non _ version.
945  /// Defaults to false.
946  void setUseUnderscoreLongJmp(bool Val) {
947    UseUnderscoreLongJmp = Val;
948  }
949
950  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
951  /// specifies the register that llvm.savestack/llvm.restorestack should save
952  /// and restore.
953  void setStackPointerRegisterToSaveRestore(unsigned R) {
954    StackPointerRegisterToSaveRestore = R;
955  }
956
957  /// setExceptionPointerRegister - If set to a physical register, this sets
958  /// the register that receives the exception address on entry to a landing
959  /// pad.
960  void setExceptionPointerRegister(unsigned R) {
961    ExceptionPointerRegister = R;
962  }
963
964  /// setExceptionSelectorRegister - If set to a physical register, this sets
965  /// the register that receives the exception typeid on entry to a landing
966  /// pad.
967  void setExceptionSelectorRegister(unsigned R) {
968    ExceptionSelectorRegister = R;
969  }
970
971  /// SelectIsExpensive - Tells the code generator not to expand operations
972  /// into sequences that use the select operations if possible.
973  void setSelectIsExpensive() { SelectIsExpensive = true; }
974
975  /// setIntDivIsCheap - Tells the code generator that integer divide is
976  /// expensive, and if possible, should be replaced by an alternate sequence
977  /// of instructions not containing an integer divide.
978  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
979
980  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
981  /// srl/add/sra for a signed divide by power of two, and let the target handle
982  /// it.
983  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
984
985  /// addRegisterClass - Add the specified register class as an available
986  /// regclass for the specified value type.  This indicates the selector can
987  /// handle values of that class natively.
988  void addRegisterClass(EVT VT, TargetRegisterClass *RC,
989                        bool isSynthesizable = true) {
990    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
991    AvailableRegClasses.push_back(std::make_pair(VT, RC));
992    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
993    Synthesizable[VT.getSimpleVT().SimpleTy] = isSynthesizable;
994  }
995
996  /// findRepresentativeClass - Return the largest legal super-reg register class
997  /// of the specified register class.
998  virtual const TargetRegisterClass *
999  findRepresentativeClass(const TargetRegisterClass *RC) const;
1000
1001  /// computeRegisterProperties - Once all of the register classes are added,
1002  /// this allows us to compute derived properties we expose.
1003  void computeRegisterProperties();
1004
1005  /// setOperationAction - Indicate that the specified operation does not work
1006  /// with the specified type and indicate what to do about it.
1007  void setOperationAction(unsigned Op, MVT VT,
1008                          LegalizeAction Action) {
1009    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1010    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1011  }
1012
1013  /// setLoadExtAction - Indicate that the specified load with extension does
1014  /// not work with the specified type and indicate what to do about it.
1015  void setLoadExtAction(unsigned ExtType, MVT VT,
1016                        LegalizeAction Action) {
1017    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
1018           (unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1019           "Table isn't big enough!");
1020    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1021  }
1022
1023  /// setTruncStoreAction - Indicate that the specified truncating store does
1024  /// not work with the specified type and indicate what to do about it.
1025  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1026                           LegalizeAction Action) {
1027    assert((unsigned)ValVT.SimpleTy < MVT::LAST_VALUETYPE &&
1028           (unsigned)MemVT.SimpleTy < MVT::LAST_VALUETYPE &&
1029           "Table isn't big enough!");
1030    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1031  }
1032
1033  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1034  /// does not work with the specified type and indicate what to do abort
1035  /// it. NOTE: All indexed mode loads are initialized to Expand in
1036  /// TargetLowering.cpp
1037  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1038                            LegalizeAction Action) {
1039    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1040           IdxMode < ISD::LAST_INDEXED_MODE &&
1041           (unsigned)Action < 0xf &&
1042           "Table isn't big enough!");
1043    // Load action are kept in the upper half.
1044    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1045    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1046  }
1047
1048  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1049  /// does not work with the specified type and indicate what to do about
1050  /// it. NOTE: All indexed mode stores are initialized to Expand in
1051  /// TargetLowering.cpp
1052  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1053                             LegalizeAction Action) {
1054    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1055           IdxMode < ISD::LAST_INDEXED_MODE &&
1056           (unsigned)Action < 0xf &&
1057           "Table isn't big enough!");
1058    // Store action are kept in the lower half.
1059    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1060    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1061  }
1062
1063  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1064  /// supported on the target and indicate what to do about it.
1065  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1066                         LegalizeAction Action) {
1067    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1068           (unsigned)CC < array_lengthof(CondCodeActions) &&
1069           "Table isn't big enough!");
1070    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1071    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1072  }
1073
1074  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1075  /// promotion code defaults to trying a larger integer/fp until it can find
1076  /// one that works.  If that default is insufficient, this method can be used
1077  /// by the target to override the default.
1078  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1079    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1080  }
1081
1082  /// setTargetDAGCombine - Targets should invoke this method for each target
1083  /// independent node that they want to provide a custom DAG combiner for by
1084  /// implementing the PerformDAGCombine virtual method.
1085  void setTargetDAGCombine(ISD::NodeType NT) {
1086    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1087    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1088  }
1089
1090  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1091  /// bytes); default is 200
1092  void setJumpBufSize(unsigned Size) {
1093    JumpBufSize = Size;
1094  }
1095
1096  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1097  /// alignment (in bytes); default is 0
1098  void setJumpBufAlignment(unsigned Align) {
1099    JumpBufAlignment = Align;
1100  }
1101
1102  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1103  /// alignment is zero, it means the target does not care about loop alignment.
1104  void setPrefLoopAlignment(unsigned Align) {
1105    PrefLoopAlignment = Align;
1106  }
1107
1108  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1109  /// argument.
1110  void setMinStackArgumentAlignment(unsigned Align) {
1111    MinStackArgumentAlignment = Align;
1112  }
1113
1114  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1115  /// atomic operation intrinsics includes locking. Default is false.
1116  void setShouldFoldAtomicFences(bool fold) {
1117    ShouldFoldAtomicFences = fold;
1118  }
1119
1120public:
1121  //===--------------------------------------------------------------------===//
1122  // Lowering methods - These methods must be implemented by targets so that
1123  // the SelectionDAGLowering code knows how to lower these.
1124  //
1125
1126  /// LowerFormalArguments - This hook must be implemented to lower the
1127  /// incoming (formal) arguments, described by the Ins array, into the
1128  /// specified DAG. The implementation should fill in the InVals array
1129  /// with legal-type argument values, and return the resulting token
1130  /// chain value.
1131  ///
1132  virtual SDValue
1133    LowerFormalArguments(SDValue Chain,
1134                         CallingConv::ID CallConv, bool isVarArg,
1135                         const SmallVectorImpl<ISD::InputArg> &Ins,
1136                         DebugLoc dl, SelectionDAG &DAG,
1137                         SmallVectorImpl<SDValue> &InVals) const {
1138    assert(0 && "Not Implemented");
1139    return SDValue();    // this is here to silence compiler errors
1140  }
1141
1142  /// LowerCallTo - This function lowers an abstract call to a function into an
1143  /// actual call.  This returns a pair of operands.  The first element is the
1144  /// return value for the function (if RetTy is not VoidTy).  The second
1145  /// element is the outgoing token chain. It calls LowerCall to do the actual
1146  /// lowering.
1147  struct ArgListEntry {
1148    SDValue Node;
1149    const Type* Ty;
1150    bool isSExt  : 1;
1151    bool isZExt  : 1;
1152    bool isInReg : 1;
1153    bool isSRet  : 1;
1154    bool isNest  : 1;
1155    bool isByVal : 1;
1156    uint16_t Alignment;
1157
1158    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1159      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1160  };
1161  typedef std::vector<ArgListEntry> ArgListTy;
1162  std::pair<SDValue, SDValue>
1163  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1164              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1165              CallingConv::ID CallConv, bool isTailCall,
1166              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1167              SelectionDAG &DAG, DebugLoc dl) const;
1168
1169  /// LowerCall - This hook must be implemented to lower calls into the
1170  /// the specified DAG. The outgoing arguments to the call are described
1171  /// by the Outs array, and the values to be returned by the call are
1172  /// described by the Ins array. The implementation should fill in the
1173  /// InVals array with legal-type return values from the call, and return
1174  /// the resulting token chain value.
1175  virtual SDValue
1176    LowerCall(SDValue Chain, SDValue Callee,
1177              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1178              const SmallVectorImpl<ISD::OutputArg> &Outs,
1179              const SmallVectorImpl<SDValue> &OutVals,
1180              const SmallVectorImpl<ISD::InputArg> &Ins,
1181              DebugLoc dl, SelectionDAG &DAG,
1182              SmallVectorImpl<SDValue> &InVals) const {
1183    assert(0 && "Not Implemented");
1184    return SDValue();    // this is here to silence compiler errors
1185  }
1186
1187  /// CanLowerReturn - This hook should be implemented to check whether the
1188  /// return values described by the Outs array can fit into the return
1189  /// registers.  If false is returned, an sret-demotion is performed.
1190  ///
1191  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1192               const SmallVectorImpl<ISD::OutputArg> &Outs,
1193               LLVMContext &Context) const
1194  {
1195    // Return true by default to get preexisting behavior.
1196    return true;
1197  }
1198
1199  /// LowerReturn - This hook must be implemented to lower outgoing
1200  /// return values, described by the Outs array, into the specified
1201  /// DAG. The implementation should return the resulting token chain
1202  /// value.
1203  ///
1204  virtual SDValue
1205    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1206                const SmallVectorImpl<ISD::OutputArg> &Outs,
1207                const SmallVectorImpl<SDValue> &OutVals,
1208                DebugLoc dl, SelectionDAG &DAG) const {
1209    assert(0 && "Not Implemented");
1210    return SDValue();    // this is here to silence compiler errors
1211  }
1212
1213  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1214  /// to legalize nodes with an illegal operand type but legal result types.
1215  /// It replaces the LowerOperation callback in the type Legalizer.
1216  /// The reason we can not do away with LowerOperation entirely is that
1217  /// LegalizeDAG isn't yet ready to use this callback.
1218  /// TODO: Consider merging with ReplaceNodeResults.
1219
1220  /// The target places new result values for the node in Results (their number
1221  /// and types must exactly match those of the original return values of
1222  /// the node), or leaves Results empty, which indicates that the node is not
1223  /// to be custom lowered after all.
1224  /// The default implementation calls LowerOperation.
1225  virtual void LowerOperationWrapper(SDNode *N,
1226                                     SmallVectorImpl<SDValue> &Results,
1227                                     SelectionDAG &DAG) const;
1228
1229  /// LowerOperation - This callback is invoked for operations that are
1230  /// unsupported by the target, which are registered to use 'custom' lowering,
1231  /// and whose defined values are all legal.
1232  /// If the target has no operations that require custom lowering, it need not
1233  /// implement this.  The default implementation of this aborts.
1234  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1235
1236  /// ReplaceNodeResults - This callback is invoked when a node result type is
1237  /// illegal for the target, and the operation was registered to use 'custom'
1238  /// lowering for that result type.  The target places new result values for
1239  /// the node in Results (their number and types must exactly match those of
1240  /// the original return values of the node), or leaves Results empty, which
1241  /// indicates that the node is not to be custom lowered after all.
1242  ///
1243  /// If the target has no operations that require custom lowering, it need not
1244  /// implement this.  The default implementation aborts.
1245  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1246                                  SelectionDAG &DAG) const {
1247    assert(0 && "ReplaceNodeResults not implemented for this target!");
1248  }
1249
1250  /// getTargetNodeName() - This method returns the name of a target specific
1251  /// DAG node.
1252  virtual const char *getTargetNodeName(unsigned Opcode) const;
1253
1254  /// createFastISel - This method returns a target specific FastISel object,
1255  /// or null if the target does not support "fast" ISel.
1256  virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const {
1257    return 0;
1258  }
1259
1260  //===--------------------------------------------------------------------===//
1261  // Inline Asm Support hooks
1262  //
1263
1264  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1265  /// call to be explicit llvm code if it wants to.  This is useful for
1266  /// turning simple inline asms into LLVM intrinsics, which gives the
1267  /// compiler more information about the behavior of the code.
1268  virtual bool ExpandInlineAsm(CallInst *CI) const {
1269    return false;
1270  }
1271
1272  enum ConstraintType {
1273    C_Register,            // Constraint represents specific register(s).
1274    C_RegisterClass,       // Constraint represents any of register(s) in class.
1275    C_Memory,              // Memory constraint.
1276    C_Other,               // Something else.
1277    C_Unknown              // Unsupported constraint.
1278  };
1279
1280  /// AsmOperandInfo - This contains information for each constraint that we are
1281  /// lowering.
1282  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1283    /// ConstraintCode - This contains the actual string for the code, like "m".
1284    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1285    /// most closely matches the operand.
1286    std::string ConstraintCode;
1287
1288    /// ConstraintType - Information about the constraint code, e.g. Register,
1289    /// RegisterClass, Memory, Other, Unknown.
1290    TargetLowering::ConstraintType ConstraintType;
1291
1292    /// CallOperandval - If this is the result output operand or a
1293    /// clobber, this is null, otherwise it is the incoming operand to the
1294    /// CallInst.  This gets modified as the asm is processed.
1295    Value *CallOperandVal;
1296
1297    /// ConstraintVT - The ValueType for the operand value.
1298    EVT ConstraintVT;
1299
1300    /// isMatchingInputConstraint - Return true of this is an input operand that
1301    /// is a matching constraint like "4".
1302    bool isMatchingInputConstraint() const;
1303
1304    /// getMatchedOperand - If this is an input matching constraint, this method
1305    /// returns the output operand it matches.
1306    unsigned getMatchedOperand() const;
1307
1308    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1309      : InlineAsm::ConstraintInfo(info),
1310        ConstraintType(TargetLowering::C_Unknown),
1311        CallOperandVal(0), ConstraintVT(MVT::Other) {
1312    }
1313  };
1314
1315  /// ComputeConstraintToUse - Determines the constraint code and constraint
1316  /// type to use for the specific AsmOperandInfo, setting
1317  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1318  /// being passed in is available, it can be passed in as Op, otherwise an
1319  /// empty SDValue can be passed.
1320  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1321                                      SDValue Op,
1322                                      SelectionDAG *DAG = 0) const;
1323
1324  /// getConstraintType - Given a constraint, return the type of constraint it
1325  /// is for this target.
1326  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1327
1328  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1329  /// return a list of registers that can be used to satisfy the constraint.
1330  /// This should only be used for C_RegisterClass constraints.
1331  virtual std::vector<unsigned>
1332  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1333                                    EVT VT) const;
1334
1335  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1336  /// {edx}), return the register number and the register class for the
1337  /// register.
1338  ///
1339  /// Given a register class constraint, like 'r', if this corresponds directly
1340  /// to an LLVM register class, return a register of 0 and the register class
1341  /// pointer.
1342  ///
1343  /// This should only be used for C_Register constraints.  On error,
1344  /// this returns a register number of 0 and a null register class pointer..
1345  virtual std::pair<unsigned, const TargetRegisterClass*>
1346    getRegForInlineAsmConstraint(const std::string &Constraint,
1347                                 EVT VT) const;
1348
1349  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1350  /// with another that has more specific requirements based on the type of the
1351  /// corresponding operand.  This returns null if there is no replacement to
1352  /// make.
1353  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1354
1355  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1356  /// vector.  If it is invalid, don't add anything to Ops.
1357  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1358                                            std::vector<SDValue> &Ops,
1359                                            SelectionDAG &DAG) const;
1360
1361  //===--------------------------------------------------------------------===//
1362  // Instruction Emitting Hooks
1363  //
1364
1365  // EmitInstrWithCustomInserter - This method should be implemented by targets
1366  // that mark instructions with the 'usesCustomInserter' flag.  These
1367  // instructions are special in various ways, which require special support to
1368  // insert.  The specified MachineInstr is created but not inserted into any
1369  // basic blocks, and this method is called to expand it into a sequence of
1370  // instructions, potentially also creating new basic blocks and control flow.
1371  virtual MachineBasicBlock *
1372    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1373
1374  //===--------------------------------------------------------------------===//
1375  // Addressing mode description hooks (used by LSR etc).
1376  //
1377
1378  /// AddrMode - This represents an addressing mode of:
1379  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1380  /// If BaseGV is null,  there is no BaseGV.
1381  /// If BaseOffs is zero, there is no base offset.
1382  /// If HasBaseReg is false, there is no base register.
1383  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1384  /// no scale.
1385  ///
1386  struct AddrMode {
1387    GlobalValue *BaseGV;
1388    int64_t      BaseOffs;
1389    bool         HasBaseReg;
1390    int64_t      Scale;
1391    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1392  };
1393
1394  /// isLegalAddressingMode - Return true if the addressing mode represented by
1395  /// AM is legal for this target, for a load/store of the specified type.
1396  /// The type may be VoidTy, in which case only return true if the addressing
1397  /// mode is legal for a load/store of any legal type.
1398  /// TODO: Handle pre/postinc as well.
1399  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1400
1401  /// isTruncateFree - Return true if it's free to truncate a value of
1402  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1403  /// register EAX to i16 by referencing its sub-register AX.
1404  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1405    return false;
1406  }
1407
1408  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1409    return false;
1410  }
1411
1412  /// isZExtFree - Return true if any actual instruction that defines a
1413  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1414  /// register. This does not necessarily include registers defined in
1415  /// unknown ways, such as incoming arguments, or copies from unknown
1416  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1417  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1418  /// all instructions that define 32-bit values implicit zero-extend the
1419  /// result out to 64 bits.
1420  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1421    return false;
1422  }
1423
1424  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1425    return false;
1426  }
1427
1428  /// isNarrowingProfitable - Return true if it's profitable to narrow
1429  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1430  /// from i32 to i8 but not from i32 to i16.
1431  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1432    return false;
1433  }
1434
1435  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1436  /// icmp immediate, that is the target has icmp instructions which can compare
1437  /// a register against the immediate without having to materialize the
1438  /// immediate into a register.
1439  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1440    return true;
1441  }
1442
1443  //===--------------------------------------------------------------------===//
1444  // Div utility functions
1445  //
1446  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1447                      std::vector<SDNode*>* Created) const;
1448  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1449                      std::vector<SDNode*>* Created) const;
1450
1451
1452  //===--------------------------------------------------------------------===//
1453  // Runtime Library hooks
1454  //
1455
1456  /// setLibcallName - Rename the default libcall routine name for the specified
1457  /// libcall.
1458  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1459    LibcallRoutineNames[Call] = Name;
1460  }
1461
1462  /// getLibcallName - Get the libcall routine name for the specified libcall.
1463  ///
1464  const char *getLibcallName(RTLIB::Libcall Call) const {
1465    return LibcallRoutineNames[Call];
1466  }
1467
1468  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1469  /// result of the comparison libcall against zero.
1470  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1471    CmpLibcallCCs[Call] = CC;
1472  }
1473
1474  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1475  /// the comparison libcall against zero.
1476  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1477    return CmpLibcallCCs[Call];
1478  }
1479
1480  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1481  /// specified libcall.
1482  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1483    LibcallCallingConvs[Call] = CC;
1484  }
1485
1486  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1487  /// specified libcall.
1488  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1489    return LibcallCallingConvs[Call];
1490  }
1491
1492private:
1493  const TargetMachine &TM;
1494  const TargetData *TD;
1495  const TargetLoweringObjectFile &TLOF;
1496
1497  /// PointerTy - The type to use for pointers, usually i32 or i64.
1498  ///
1499  MVT PointerTy;
1500
1501  /// IsLittleEndian - True if this is a little endian target.
1502  ///
1503  bool IsLittleEndian;
1504
1505  /// SelectIsExpensive - Tells the code generator not to expand operations
1506  /// into sequences that use the select operations if possible.
1507  bool SelectIsExpensive;
1508
1509  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1510  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1511  /// a real cost model is in place.  If we ever optimize for size, this will be
1512  /// set to true unconditionally.
1513  bool IntDivIsCheap;
1514
1515  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1516  /// srl/add/sra for a signed divide by power of two, and let the target handle
1517  /// it.
1518  bool Pow2DivIsCheap;
1519
1520  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1521  /// llvm.setjmp.  Defaults to false.
1522  bool UseUnderscoreSetJmp;
1523
1524  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1525  /// llvm.longjmp.  Defaults to false.
1526  bool UseUnderscoreLongJmp;
1527
1528  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1529  /// PointerTy is.
1530  MVT ShiftAmountTy;
1531
1532  /// BooleanContents - Information about the contents of the high-bits in
1533  /// boolean values held in a type wider than i1.  See getBooleanContents.
1534  BooleanContent BooleanContents;
1535
1536  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1537  /// total cycles or lowest register usage.
1538  Sched::Preference SchedPreferenceInfo;
1539
1540  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1541  unsigned JumpBufSize;
1542
1543  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1544  /// buffers
1545  unsigned JumpBufAlignment;
1546
1547  /// MinStackArgumentAlignment - The minimum alignment that any argument
1548  /// on the stack needs to have.
1549  ///
1550  unsigned MinStackArgumentAlignment;
1551
1552  /// PrefLoopAlignment - The perferred loop alignment.
1553  ///
1554  unsigned PrefLoopAlignment;
1555
1556  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1557  /// be folded into the enclosed atomic intrinsic instruction by the
1558  /// combiner.
1559  bool ShouldFoldAtomicFences;
1560
1561  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1562  /// specifies the register that llvm.savestack/llvm.restorestack should save
1563  /// and restore.
1564  unsigned StackPointerRegisterToSaveRestore;
1565
1566  /// ExceptionPointerRegister - If set to a physical register, this specifies
1567  /// the register that receives the exception address on entry to a landing
1568  /// pad.
1569  unsigned ExceptionPointerRegister;
1570
1571  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1572  /// the register that receives the exception typeid on entry to a landing
1573  /// pad.
1574  unsigned ExceptionSelectorRegister;
1575
1576  /// RegClassForVT - This indicates the default register class to use for
1577  /// each ValueType the target supports natively.
1578  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1579  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1580  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1581
1582  /// RepRegClassForVT - This indicates the "representative" register class to
1583  /// use for each ValueType the target supports natively. This information is
1584  /// used by the scheduler to track register pressure. e.g. On x86, i8, i16,
1585  /// and i32's representative class would be GR32.
1586  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1587
1588  /// Synthesizable indicates whether it is OK for the compiler to create new
1589  /// operations using this type.  All Legal types are Synthesizable except
1590  /// MMX types on X86.  Non-Legal types are not Synthesizable.
1591  bool Synthesizable[MVT::LAST_VALUETYPE];
1592
1593  /// TransformToType - For any value types we are promoting or expanding, this
1594  /// contains the value type that we are changing to.  For Expanded types, this
1595  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1596  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1597  /// by the system, this holds the same type (e.g. i32 -> i32).
1598  EVT TransformToType[MVT::LAST_VALUETYPE];
1599
1600  /// OpActions - For each operation and each value type, keep a LegalizeAction
1601  /// that indicates how instruction selection should deal with the operation.
1602  /// Most operations are Legal (aka, supported natively by the target), but
1603  /// operations that are not should be described.  Note that operations on
1604  /// non-legal value types are not described here.
1605  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1606
1607  /// LoadExtActions - For each load extension type and each value type,
1608  /// keep a LegalizeAction that indicates how instruction selection should deal
1609  /// with a load of a specific value type and extension type.
1610  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1611
1612  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1613  /// indicates whether a truncating store of a specific value type and
1614  /// truncating type is legal.
1615  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1616
1617  /// IndexedModeActions - For each indexed mode and each value type,
1618  /// keep a pair of LegalizeAction that indicates how instruction
1619  /// selection should deal with the load / store.  The first dimension is the
1620  /// value_type for the reference. The second dimension represents the various
1621  /// modes for load store.
1622  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1623
1624  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1625  /// LegalizeAction that indicates how instruction selection should
1626  /// deal with the condition code.
1627  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1628
1629  ValueTypeActionImpl ValueTypeActions;
1630
1631  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1632
1633  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1634  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1635  /// which sets a bit in this array.
1636  unsigned char
1637  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1638
1639  /// PromoteToType - For operations that must be promoted to a specific type,
1640  /// this holds the destination type.  This map should be sparse, so don't hold
1641  /// it as an array.
1642  ///
1643  /// Targets add entries to this map with AddPromotedToType(..), clients access
1644  /// this with getTypeToPromoteTo(..).
1645  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1646    PromoteToType;
1647
1648  /// LibcallRoutineNames - Stores the name each libcall.
1649  ///
1650  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1651
1652  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1653  /// of each of the comparison libcall against zero.
1654  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1655
1656  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1657  /// libcall.
1658  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1659
1660protected:
1661  /// When lowering \@llvm.memset this field specifies the maximum number of
1662  /// store operations that may be substituted for the call to memset. Targets
1663  /// must set this value based on the cost threshold for that target. Targets
1664  /// should assume that the memset will be done using as many of the largest
1665  /// store operations first, followed by smaller ones, if necessary, per
1666  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1667  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1668  /// store.  This only applies to setting a constant array of a constant size.
1669  /// @brief Specify maximum number of store instructions per memset call.
1670  unsigned maxStoresPerMemset;
1671
1672  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1673  /// store operations that may be substituted for a call to memcpy. Targets
1674  /// must set this value based on the cost threshold for that target. Targets
1675  /// should assume that the memcpy will be done using as many of the largest
1676  /// store operations first, followed by smaller ones, if necessary, per
1677  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1678  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1679  /// and one 1-byte store. This only applies to copying a constant array of
1680  /// constant size.
1681  /// @brief Specify maximum bytes of store instructions per memcpy call.
1682  unsigned maxStoresPerMemcpy;
1683
1684  /// When lowering \@llvm.memmove this field specifies the maximum number of
1685  /// store instructions that may be substituted for a call to memmove. Targets
1686  /// must set this value based on the cost threshold for that target. Targets
1687  /// should assume that the memmove will be done using as many of the largest
1688  /// store operations first, followed by smaller ones, if necessary, per
1689  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1690  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1691  /// applies to copying a constant array of constant size.
1692  /// @brief Specify maximum bytes of store instructions per memmove call.
1693  unsigned maxStoresPerMemmove;
1694
1695  /// This field specifies whether the target can benefit from code placement
1696  /// optimization.
1697  bool benefitFromCodePlacementOpt;
1698
1699private:
1700  /// isLegalRC - Return true if the value types that can be represented by the
1701  /// specified register class are all legal.
1702  bool isLegalRC(const TargetRegisterClass *RC) const;
1703
1704  /// hasLegalSuperRegRegClasses - Return true if the specified register class
1705  /// has one or more super-reg register classes that are legal.
1706  bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
1707};
1708
1709/// GetReturnInfo - Given an LLVM IR type and return type attributes,
1710/// compute the return value EVTs and flags, and optionally also
1711/// the offsets, if the return value is being lowered to memory.
1712void GetReturnInfo(const Type* ReturnType, Attributes attr,
1713                   SmallVectorImpl<ISD::OutputArg> &Outs,
1714                   const TargetLowering &TLI,
1715                   SmallVectorImpl<uint64_t> *Offsets = 0);
1716
1717} // end llvm namespace
1718
1719#endif
1720