TargetLowering.h revision d90ef9ef2b24047f46973a43390a3191fc1fee63
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/Type.h"
26#include "llvm/CodeGen/ValueTypes.h"
27#include "llvm/Support/DataTypes.h"
28#include <vector>
29
30namespace llvm {
31  class Value;
32  class Function;
33  class TargetMachine;
34  class TargetData;
35  class TargetRegisterClass;
36  class SDNode;
37  class SDOperand;
38  class SelectionDAG;
39  class MachineBasicBlock;
40  class MachineInstr;
41
42//===----------------------------------------------------------------------===//
43/// TargetLowering - This class defines information used to lower LLVM code to
44/// legal SelectionDAG operators that the target instruction selector can accept
45/// natively.
46///
47/// This class also defines callbacks that targets must implement to lower
48/// target-specific constructs to SelectionDAG operators.
49///
50class TargetLowering {
51public:
52  /// LegalizeAction - This enum indicates whether operations are valid for a
53  /// target, and if not, what action should be used to make them valid.
54  enum LegalizeAction {
55    Legal,      // The target natively supports this operation.
56    Promote,    // This operation should be executed in a larger type.
57    Expand,     // Try to expand this to other ops, otherwise use a libcall.
58    Custom,     // Use the LowerOperation hook to implement custom lowering.
59  };
60
61  enum OutOfRangeShiftAmount {
62    Undefined,  // Oversized shift amounts are undefined (default).
63    Mask,       // Shift amounts are auto masked (anded) to value size.
64    Extend,     // Oversized shift pulls in zeros or sign bits.
65  };
66
67  enum SetCCResultValue {
68    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
69    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
70    ZeroOrNegativeOneSetCCResult,  // SetCC returns a sign extended result.
71  };
72
73  TargetLowering(TargetMachine &TM);
74  virtual ~TargetLowering();
75
76  TargetMachine &getTargetMachine() const { return TM; }
77  const TargetData &getTargetData() const { return TD; }
78
79  bool isLittleEndian() const { return IsLittleEndian; }
80  MVT::ValueType getPointerTy() const { return PointerTy; }
81  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
82  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
83
84  /// isSetCCExpensive - Return true if the setcc operation is expensive for
85  /// this target.
86  bool isSetCCExpensive() const { return SetCCIsExpensive; }
87
88  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
89  /// a sequence of several shifts, adds, and multiplies for this target.
90  bool isIntDivCheap() const { return IntDivIsCheap; }
91
92  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
93  /// srl/add/sra.
94  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
95
96  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
97  ///
98  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
99
100  /// getSetCCResultContents - For targets without boolean registers, this flag
101  /// returns information about the contents of the high-bits in the setcc
102  /// result register.
103  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
104
105  /// getRegClassFor - Return the register class that should be used for the
106  /// specified value type.  This may only be called on legal types.
107  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
108    TargetRegisterClass *RC = RegClassForVT[VT];
109    assert(RC && "This value type is not natively supported!");
110    return RC;
111  }
112
113  /// isTypeLegal - Return true if the target has native support for the
114  /// specified value type.  This means that it has a register that directly
115  /// holds it without promotions or expansions.
116  bool isTypeLegal(MVT::ValueType VT) const {
117    return RegClassForVT[VT] != 0;
118  }
119
120  /// getTypeAction - Return how we should legalize values of this type, either
121  /// it is already legal (return 'Legal') or we need to promote it to a larger
122  /// type (return 'Promote'), or we need to expand it into multiple registers
123  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
124  LegalizeAction getTypeAction(MVT::ValueType VT) const {
125    return (LegalizeAction)((ValueTypeActions >> (2*VT)) & 3);
126  }
127  unsigned long long getValueTypeActions() const { return ValueTypeActions; }
128
129  /// getTypeToTransformTo - For types supported by the target, this is an
130  /// identity function.  For types that must be promoted to larger types, this
131  /// returns the larger type to promote to.  For types that are larger than the
132  /// largest integer register, this contains one step in the expansion to get
133  /// to the smaller register.
134  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
135    return TransformToType[VT];
136  }
137
138  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
139  legal_fpimm_iterator legal_fpimm_begin() const {
140    return LegalFPImmediates.begin();
141  }
142  legal_fpimm_iterator legal_fpimm_end() const {
143    return LegalFPImmediates.end();
144  }
145
146  /// getOperationAction - Return how this operation should be treated: either
147  /// it is legal, needs to be promoted to a larger size, needs to be
148  /// expanded to some other code sequence, or the target has a custom expander
149  /// for it.
150  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
151    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
152  }
153
154  /// isOperationLegal - Return true if the specified operation is legal on this
155  /// target.
156  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
157    return getOperationAction(Op, VT) == Legal;
158  }
159
160  /// getTypeToPromoteTo - If the action for this operation is to promote, this
161  /// method returns the ValueType to promote to.
162  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
163    assert(getOperationAction(Op, VT) == Promote &&
164           "This operation isn't promoted!");
165    MVT::ValueType NVT = VT;
166    do {
167      NVT = (MVT::ValueType)(NVT+1);
168      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
169             "Didn't find type to promote to!");
170    } while (!isTypeLegal(NVT) ||
171              getOperationAction(Op, NVT) == Promote);
172    return NVT;
173  }
174
175  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
176  /// This is fixed by the LLVM operations except for the pointer size.
177  MVT::ValueType getValueType(const Type *Ty) const {
178    switch (Ty->getTypeID()) {
179    default: assert(0 && "Unknown type!");
180    case Type::VoidTyID:    return MVT::isVoid;
181    case Type::BoolTyID:    return MVT::i1;
182    case Type::UByteTyID:
183    case Type::SByteTyID:   return MVT::i8;
184    case Type::ShortTyID:
185    case Type::UShortTyID:  return MVT::i16;
186    case Type::IntTyID:
187    case Type::UIntTyID:    return MVT::i32;
188    case Type::LongTyID:
189    case Type::ULongTyID:   return MVT::i64;
190    case Type::FloatTyID:   return MVT::f32;
191    case Type::DoubleTyID:  return MVT::f64;
192    case Type::PointerTyID: return PointerTy;
193    case Type::PackedTyID:  return MVT::Vector;
194    }
195  }
196
197  /// getNumElements - Return the number of registers that this ValueType will
198  /// eventually require.  This is always one for all non-integer types, is
199  /// one for any types promoted to live in larger registers, but may be more
200  /// than one for types (like i64) that are split into pieces.
201  unsigned getNumElements(MVT::ValueType VT) const {
202    return NumElementsForVT[VT];
203  }
204
205  /// This function returns the maximum number of store operations permitted
206  /// to replace a call to llvm.memset. The value is set by the target at the
207  /// performance threshold for such a replacement.
208  /// @brief Get maximum # of store operations permitted for llvm.memset
209  unsigned getMaxStoresPerMemSet() const { return maxStoresPerMemSet; }
210
211  /// This function returns the maximum number of store operations permitted
212  /// to replace a call to llvm.memcpy. The value is set by the target at the
213  /// performance threshold for such a replacement.
214  /// @brief Get maximum # of store operations permitted for llvm.memcpy
215  unsigned getMaxStoresPerMemCpy() const { return maxStoresPerMemCpy; }
216
217  /// This function returns the maximum number of store operations permitted
218  /// to replace a call to llvm.memmove. The value is set by the target at the
219  /// performance threshold for such a replacement.
220  /// @brief Get maximum # of store operations permitted for llvm.memmove
221  unsigned getMaxStoresPerMemMove() const { return maxStoresPerMemMove; }
222
223  /// This function returns true if the target allows unaligned memory accesses.
224  /// This is used, for example, in situations where an array copy/move/set is
225  /// converted to a sequence of store operations. It's use helps to ensure that
226  /// such replacements don't generate code that causes an alignment error
227  /// (trap) on the target machine.
228  /// @brief Determine if the target supports unaligned memory accesses.
229  bool allowsUnalignedMemoryAccesses() const
230    { return allowUnalignedMemoryAccesses; }
231
232  /// usesUnderscoreSetJmpLongJmp - Determine if we should use _setjmp or setjmp
233  /// to implement llvm.setjmp.
234  bool usesUnderscoreSetJmpLongJmp() const {
235    return UseUnderscoreSetJmpLongJmp;
236  }
237
238  /// getStackPointerRegisterToSaveRestore - If a physical register, this
239  /// specifies the register that llvm.savestack/llvm.restorestack should save
240  /// and restore.
241  unsigned getStackPointerRegisterToSaveRestore() const {
242    return StackPointerRegisterToSaveRestore;
243  }
244
245  //===--------------------------------------------------------------------===//
246  // TargetLowering Configuration Methods - These methods should be invoked by
247  // the derived class constructor to configure this object for the target.
248  //
249
250protected:
251
252  /// setShiftAmountType - Describe the type that should be used for shift
253  /// amounts.  This type defaults to the pointer type.
254  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
255
256  /// setSetCCResultType - Describe the type that shoudl be used as the result
257  /// of a setcc operation.  This defaults to the pointer type.
258  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
259
260  /// setSetCCResultContents - Specify how the target extends the result of a
261  /// setcc operation in a register.
262  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
263
264  /// setShiftAmountFlavor - Describe how the target handles out of range shift
265  /// amounts.
266  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
267    ShiftAmtHandling = OORSA;
268  }
269
270  /// setUseUnderscoreSetJmpLongJmp - Indicate whether this target prefers to
271  /// use _setjmp and _longjmp to or implement llvm.setjmp/llvm.longjmp or
272  /// the non _ versions.  Defaults to false.
273  void setUseUnderscoreSetJmpLongJmp(bool Val) {
274    UseUnderscoreSetJmpLongJmp = Val;
275  }
276
277  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
278  /// specifies the register that llvm.savestack/llvm.restorestack should save
279  /// and restore.
280  void setStackPointerRegisterToSaveRestore(unsigned R) {
281    StackPointerRegisterToSaveRestore = R;
282  }
283
284  /// setSetCCIxExpensive - This is a short term hack for targets that codegen
285  /// setcc as a conditional branch.  This encourages the code generator to fold
286  /// setcc operations into other operations if possible.
287  void setSetCCIsExpensive() { SetCCIsExpensive = true; }
288
289  /// setIntDivIsCheap - Tells the code generator that integer divide is
290  /// expensive, and if possible, should be replaced by an alternate sequence
291  /// of instructions not containing an integer divide.
292  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
293
294  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
295  /// srl/add/sra for a signed divide by power of two, and let the target handle
296  /// it.
297  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
298
299  /// addRegisterClass - Add the specified register class as an available
300  /// regclass for the specified value type.  This indicates the selector can
301  /// handle values of that class natively.
302  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
303    AvailableRegClasses.push_back(std::make_pair(VT, RC));
304    RegClassForVT[VT] = RC;
305  }
306
307  /// computeRegisterProperties - Once all of the register classes are added,
308  /// this allows us to compute derived properties we expose.
309  void computeRegisterProperties();
310
311  /// setOperationAction - Indicate that the specified operation does not work
312  /// with the specified type and indicate what to do about it.
313  void setOperationAction(unsigned Op, MVT::ValueType VT,
314                          LegalizeAction Action) {
315    assert(VT < 16 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
316           "Table isn't big enough!");
317    OpActions[Op] |= Action << VT*2;
318  }
319
320  /// addLegalFPImmediate - Indicate that this target can instruction select
321  /// the specified FP immediate natively.
322  void addLegalFPImmediate(double Imm) {
323    LegalFPImmediates.push_back(Imm);
324  }
325
326public:
327
328  //===--------------------------------------------------------------------===//
329  // Lowering methods - These methods must be implemented by targets so that
330  // the SelectionDAGLowering code knows how to lower these.
331  //
332
333  /// LowerArguments - This hook must be implemented to indicate how we should
334  /// lower the arguments for the specified function, into the specified DAG.
335  virtual std::vector<SDOperand>
336  LowerArguments(Function &F, SelectionDAG &DAG) = 0;
337
338  /// LowerCallTo - This hook lowers an abstract call to a function into an
339  /// actual call.  This returns a pair of operands.  The first element is the
340  /// return value for the function (if RetTy is not VoidTy).  The second
341  /// element is the outgoing token chain.
342  typedef std::vector<std::pair<SDOperand, const Type*> > ArgListTy;
343  virtual std::pair<SDOperand, SDOperand>
344  LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
345              unsigned CallingConv, bool isTailCall, SDOperand Callee,
346              ArgListTy &Args, SelectionDAG &DAG) = 0;
347
348  /// LowerReturnTo - This hook lowers a return instruction into the appropriate
349  /// legal ISD::RET node for the target's current ABI.  This method is optional
350  /// and is intended for targets that need non-standard behavior.
351  virtual SDOperand LowerReturnTo(SDOperand Chain, SDOperand Op,
352                                  SelectionDAG &DAG);
353
354  /// LowerVAStart - This lowers the llvm.va_start intrinsic.  If not
355  /// implemented, this method prints a message and aborts.  This method should
356  /// return the modified chain value.  Note that VAListPtr* correspond to the
357  /// llvm.va_start operand.
358  virtual SDOperand LowerVAStart(SDOperand Chain, SDOperand VAListP,
359                                 Value *VAListV, SelectionDAG &DAG);
360
361  /// LowerVAEnd - This lowers llvm.va_end and returns the resultant chain.  If
362  /// not implemented, this defaults to a noop.
363  virtual SDOperand LowerVAEnd(SDOperand Chain, SDOperand LP, Value *LV,
364                               SelectionDAG &DAG);
365
366  /// LowerVACopy - This lowers llvm.va_copy and returns the resultant chain.
367  /// If not implemented, this defaults to loading a pointer from the input and
368  /// storing it to the output.
369  virtual SDOperand LowerVACopy(SDOperand Chain, SDOperand SrcP, Value *SrcV,
370                                SDOperand DestP, Value *DestV,
371                                SelectionDAG &DAG);
372
373  /// LowerVAArg - This lowers the vaarg instruction.  If not implemented, this
374  /// prints a message and aborts.
375  virtual std::pair<SDOperand,SDOperand>
376  LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
377             const Type *ArgTy, SelectionDAG &DAG);
378
379  /// LowerFrameReturnAddress - This hook lowers a call to llvm.returnaddress or
380  /// llvm.frameaddress (depending on the value of the first argument).  The
381  /// return values are the result pointer and the resultant token chain.  If
382  /// not implemented, both of these intrinsics will return null.
383  virtual std::pair<SDOperand, SDOperand>
384  LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
385                          SelectionDAG &DAG);
386
387  /// LowerOperation - For operations that are unsupported by the target, and
388  /// which are registered to use 'custom' lowering.  This callback is invoked.
389  /// If the target has no operations that require custom lowering, it need not
390  /// implement this.  The default implementation of this aborts.
391  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
392
393  /// getTargetNodeName() - This method returns the name of a target specific
394  /// DAG node.
395  virtual const char *getTargetNodeName(unsigned Opcode) const;
396
397  /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
398  /// be zero. Op is expected to be a target specific node. Used by DAG
399  /// combiner.
400  virtual bool isMaskedValueZeroForTargetNode(const SDOperand &Op,
401                                              uint64_t Mask) const;
402
403  //===--------------------------------------------------------------------===//
404  // Scheduler hooks
405  //
406
407  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
408  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
409  // instructions are special in various ways, which require special support to
410  // insert.  The specified MachineInstr is created but not inserted into any
411  // basic blocks, and the scheduler passes ownership of it to this method.
412  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
413                                                     MachineBasicBlock *MBB);
414
415private:
416  TargetMachine &TM;
417  const TargetData &TD;
418
419  /// IsLittleEndian - True if this is a little endian target.
420  ///
421  bool IsLittleEndian;
422
423  /// PointerTy - The type to use for pointers, usually i32 or i64.
424  ///
425  MVT::ValueType PointerTy;
426
427  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
428  /// PointerTy is.
429  MVT::ValueType ShiftAmountTy;
430
431  OutOfRangeShiftAmount ShiftAmtHandling;
432
433  /// SetCCIsExpensive - This is a short term hack for targets that codegen
434  /// setcc as a conditional branch.  This encourages the code generator to fold
435  /// setcc operations into other operations if possible.
436  bool SetCCIsExpensive;
437
438  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
439  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
440  /// a real cost model is in place.  If we ever optimize for size, this will be
441  /// set to true unconditionally.
442  bool IntDivIsCheap;
443
444  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
445  /// srl/add/sra for a signed divide by power of two, and let the target handle
446  /// it.
447  bool Pow2DivIsCheap;
448
449  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
450  /// PointerTy.
451  MVT::ValueType SetCCResultTy;
452
453  /// SetCCResultContents - Information about the contents of the high-bits in
454  /// the result of a setcc comparison operation.
455  SetCCResultValue SetCCResultContents;
456
457  /// UseUnderscoreSetJmpLongJmp - This target prefers to use _setjmp and
458  /// _longjmp to implement llvm.setjmp/llvm.longjmp.  Defaults to false.
459  bool UseUnderscoreSetJmpLongJmp;
460
461  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
462  /// specifies the register that llvm.savestack/llvm.restorestack should save
463  /// and restore.
464  unsigned StackPointerRegisterToSaveRestore;
465
466  /// RegClassForVT - This indicates the default register class to use for
467  /// each ValueType the target supports natively.
468  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
469  unsigned char NumElementsForVT[MVT::LAST_VALUETYPE];
470
471  /// ValueTypeActions - This is a bitvector that contains two bits for each
472  /// value type, where the two bits correspond to the LegalizeAction enum.
473  /// This can be queried with "getTypeAction(VT)".
474  unsigned long long ValueTypeActions;
475
476  /// TransformToType - For any value types we are promoting or expanding, this
477  /// contains the value type that we are changing to.  For Expanded types, this
478  /// contains one step of the expand (e.g. i64 -> i32), even if there are
479  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
480  /// by the system, this holds the same type (e.g. i32 -> i32).
481  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
482
483  /// OpActions - For each operation and each value type, keep a LegalizeAction
484  /// that indicates how instruction selection should deal with the operation.
485  /// Most operations are Legal (aka, supported natively by the target), but
486  /// operations that are not should be described.  Note that operations on
487  /// non-legal value types are not described here.
488  unsigned OpActions[128];
489
490  std::vector<double> LegalFPImmediates;
491
492  std::vector<std::pair<MVT::ValueType,
493                        TargetRegisterClass*> > AvailableRegClasses;
494
495protected:
496  /// When lowering %llvm.memset this field specifies the maximum number of
497  /// store operations that may be substituted for the call to memset. Targets
498  /// must set this value based on the cost threshold for that target. Targets
499  /// should assume that the memset will be done using as many of the largest
500  /// store operations first, followed by smaller ones, if necessary, per
501  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
502  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
503  /// store.  This only applies to setting a constant array of a constant size.
504  /// @brief Specify maximum number of store instructions per memset call.
505  unsigned maxStoresPerMemSet;
506
507  /// When lowering %llvm.memcpy this field specifies the maximum number of
508  /// store operations that may be substituted for a call to memcpy. Targets
509  /// must set this value based on the cost threshold for that target. Targets
510  /// should assume that the memcpy will be done using as many of the largest
511  /// store operations first, followed by smaller ones, if necessary, per
512  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
513  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
514  /// and one 1-byte store. This only applies to copying a constant array of
515  /// constant size.
516  /// @brief Specify maximum bytes of store instructions per memcpy call.
517  unsigned maxStoresPerMemCpy;
518
519  /// When lowering %llvm.memmove this field specifies the maximum number of
520  /// store instructions that may be substituted for a call to memmove. Targets
521  /// must set this value based on the cost threshold for that target. Targets
522  /// should assume that the memmove will be done using as many of the largest
523  /// store operations first, followed by smaller ones, if necessary, per
524  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
525  /// with 8-bit alignment would result in nine 1-byte stores.  This only
526  /// applies to copying a constant array of constant size.
527  /// @brief Specify maximum bytes of store instructions per memmove call.
528  unsigned maxStoresPerMemMove;
529
530  /// This field specifies whether the target machine permits unaligned memory
531  /// accesses.  This is used, for example, to determine the size of store
532  /// operations when copying small arrays and other similar tasks.
533  /// @brief Indicate whether the target permits unaligned memory accesses.
534  bool allowUnalignedMemoryAccesses;
535};
536} // end llvm namespace
537
538#endif
539