TargetLowering.h revision e754d3fb852abdeaf910c7331eed60f6303597c1
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/DebugLoc.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class AllocaInst;
42  class CallInst;
43  class Function;
44  class FastISel;
45  class MachineBasicBlock;
46  class MachineFunction;
47  class MachineFrameInfo;
48  class MachineInstr;
49  class MachineJumpTableInfo;
50  class MachineModuleInfo;
51  class MCContext;
52  class MCExpr;
53  class DwarfWriter;
54  class SDNode;
55  class SDValue;
56  class SelectionDAG;
57  class TargetData;
58  class TargetMachine;
59  class TargetRegisterClass;
60  class TargetSubtarget;
61  class TargetLoweringObjectFile;
62  class Value;
63
64  // FIXME: should this be here?
65  namespace TLSModel {
66    enum Model {
67      GeneralDynamic,
68      LocalDynamic,
69      InitialExec,
70      LocalExec
71    };
72  }
73  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
74
75
76//===----------------------------------------------------------------------===//
77/// TargetLowering - This class defines information used to lower LLVM code to
78/// legal SelectionDAG operators that the target instruction selector can accept
79/// natively.
80///
81/// This class also defines callbacks that targets must implement to lower
82/// target-specific constructs to SelectionDAG operators.
83///
84class TargetLowering {
85  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
86  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
87public:
88  /// LegalizeAction - This enum indicates whether operations are valid for a
89  /// target, and if not, what action should be used to make them valid.
90  enum LegalizeAction {
91    Legal,      // The target natively supports this operation.
92    Promote,    // This operation should be executed in a larger type.
93    Expand,     // Try to expand this to other ops, otherwise use a libcall.
94    Custom      // Use the LowerOperation hook to implement custom lowering.
95  };
96
97  enum BooleanContent { // How the target represents true/false values.
98    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
99    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
100    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
101  };
102
103  enum SchedPreference {
104    SchedulingForLatency,          // Scheduling for shortest total latency.
105    SchedulingForRegPressure       // Scheduling for lowest register pressure.
106  };
107
108  /// NOTE: The constructor takes ownership of TLOF.
109  explicit TargetLowering(TargetMachine &TM, TargetLoweringObjectFile *TLOF);
110  virtual ~TargetLowering();
111
112  TargetMachine &getTargetMachine() const { return TM; }
113  const TargetData *getTargetData() const { return TD; }
114  TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
115
116  bool isBigEndian() const { return !IsLittleEndian; }
117  bool isLittleEndian() const { return IsLittleEndian; }
118  MVT getPointerTy() const { return PointerTy; }
119  MVT getShiftAmountTy() const { return ShiftAmountTy; }
120
121  /// isSelectExpensive - Return true if the select operation is expensive for
122  /// this target.
123  bool isSelectExpensive() const { return SelectIsExpensive; }
124
125  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
126  /// a sequence of several shifts, adds, and multiplies for this target.
127  bool isIntDivCheap() const { return IntDivIsCheap; }
128
129  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
130  /// srl/add/sra.
131  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
132
133  /// getSetCCResultType - Return the ValueType of the result of SETCC
134  /// operations.  Also used to obtain the target's preferred type for
135  /// the condition operand of SELECT and BRCOND nodes.  In the case of
136  /// BRCOND the argument passed is MVT::Other since there are no other
137  /// operands to get a type hint from.
138  virtual
139  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
140
141  /// getCmpLibcallReturnType - Return the ValueType for comparison
142  /// libcalls. Comparions libcalls include floating point comparion calls,
143  /// and Ordered/Unordered check calls on floating point numbers.
144  virtual
145  MVT::SimpleValueType getCmpLibcallReturnType() const;
146
147  /// getBooleanContents - For targets without i1 registers, this gives the
148  /// nature of the high-bits of boolean values held in types wider than i1.
149  /// "Boolean values" are special true/false values produced by nodes like
150  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
151  /// Not to be confused with general values promoted from i1.
152  BooleanContent getBooleanContents() const { return BooleanContents;}
153
154  /// getSchedulingPreference - Return target scheduling preference.
155  SchedPreference getSchedulingPreference() const {
156    return SchedPreferenceInfo;
157  }
158
159  /// getRegClassFor - Return the register class that should be used for the
160  /// specified value type.  This may only be called on legal types.
161  TargetRegisterClass *getRegClassFor(EVT VT) const {
162    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
163    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
164    assert(RC && "This value type is not natively supported!");
165    return RC;
166  }
167
168  /// isTypeLegal - Return true if the target has native support for the
169  /// specified value type.  This means that it has a register that directly
170  /// holds it without promotions or expansions.
171  bool isTypeLegal(EVT VT) const {
172    assert(!VT.isSimple() ||
173           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
174    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
175  }
176
177  class ValueTypeActionImpl {
178    /// ValueTypeActions - This is a bitvector that contains two bits for each
179    /// value type, where the two bits correspond to the LegalizeAction enum.
180    /// This can be queried with "getTypeAction(VT)".
181    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
182    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
183  public:
184    ValueTypeActionImpl() {
185      ValueTypeActions[0] = ValueTypeActions[1] = 0;
186      ValueTypeActions[2] = ValueTypeActions[3] = 0;
187    }
188    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
189      ValueTypeActions[0] = RHS.ValueTypeActions[0];
190      ValueTypeActions[1] = RHS.ValueTypeActions[1];
191      ValueTypeActions[2] = RHS.ValueTypeActions[2];
192      ValueTypeActions[3] = RHS.ValueTypeActions[3];
193    }
194
195    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
196      if (VT.isExtended()) {
197        if (VT.isVector()) {
198          return VT.isPow2VectorType() ? Expand : Promote;
199        }
200        if (VT.isInteger())
201          // First promote to a power-of-two size, then expand if necessary.
202          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
203        assert(0 && "Unsupported extended type!");
204        return Legal;
205      }
206      unsigned I = VT.getSimpleVT().SimpleTy;
207      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
208      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
209    }
210    void setTypeAction(EVT VT, LegalizeAction Action) {
211      unsigned I = VT.getSimpleVT().SimpleTy;
212      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
213      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
214    }
215  };
216
217  const ValueTypeActionImpl &getValueTypeActions() const {
218    return ValueTypeActions;
219  }
220
221  /// getTypeAction - Return how we should legalize values of this type, either
222  /// it is already legal (return 'Legal') or we need to promote it to a larger
223  /// type (return 'Promote'), or we need to expand it into multiple registers
224  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
225  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
226    return ValueTypeActions.getTypeAction(Context, VT);
227  }
228
229  /// getTypeToTransformTo - For types supported by the target, this is an
230  /// identity function.  For types that must be promoted to larger types, this
231  /// returns the larger type to promote to.  For integer types that are larger
232  /// than the largest integer register, this contains one step in the expansion
233  /// to get to the smaller register. For illegal floating point types, this
234  /// returns the integer type to transform to.
235  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
236    if (VT.isSimple()) {
237      assert((unsigned)VT.getSimpleVT().SimpleTy <
238             array_lengthof(TransformToType));
239      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
240      assert(getTypeAction(Context, NVT) != Promote &&
241             "Promote may not follow Expand or Promote");
242      return NVT;
243    }
244
245    if (VT.isVector()) {
246      EVT NVT = VT.getPow2VectorType(Context);
247      if (NVT == VT) {
248        // Vector length is a power of 2 - split to half the size.
249        unsigned NumElts = VT.getVectorNumElements();
250        EVT EltVT = VT.getVectorElementType();
251        return (NumElts == 1) ?
252          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
253      }
254      // Promote to a power of two size, avoiding multi-step promotion.
255      return getTypeAction(Context, NVT) == Promote ?
256        getTypeToTransformTo(Context, NVT) : NVT;
257    } else if (VT.isInteger()) {
258      EVT NVT = VT.getRoundIntegerType(Context);
259      if (NVT == VT)
260        // Size is a power of two - expand to half the size.
261        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
262      else
263        // Promote to a power of two size, avoiding multi-step promotion.
264        return getTypeAction(Context, NVT) == Promote ?
265          getTypeToTransformTo(Context, NVT) : NVT;
266    }
267    assert(0 && "Unsupported extended type!");
268    return MVT(MVT::Other); // Not reached
269  }
270
271  /// getTypeToExpandTo - For types supported by the target, this is an
272  /// identity function.  For types that must be expanded (i.e. integer types
273  /// that are larger than the largest integer register or illegal floating
274  /// point types), this returns the largest legal type it will be expanded to.
275  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
276    assert(!VT.isVector());
277    while (true) {
278      switch (getTypeAction(Context, VT)) {
279      case Legal:
280        return VT;
281      case Expand:
282        VT = getTypeToTransformTo(Context, VT);
283        break;
284      default:
285        assert(false && "Type is not legal nor is it to be expanded!");
286        return VT;
287      }
288    }
289    return VT;
290  }
291
292  /// getVectorTypeBreakdown - Vector types are broken down into some number of
293  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
294  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
295  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
296  ///
297  /// This method returns the number of registers needed, and the VT for each
298  /// register.  It also returns the VT and quantity of the intermediate values
299  /// before they are promoted/expanded.
300  ///
301  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
302                                  EVT &IntermediateVT,
303                                  unsigned &NumIntermediates,
304                                  EVT &RegisterVT) const;
305
306  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
307  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
308  /// this is the case, it returns true and store the intrinsic
309  /// information into the IntrinsicInfo that was passed to the function.
310  struct IntrinsicInfo {
311    unsigned     opc;         // target opcode
312    EVT          memVT;       // memory VT
313    const Value* ptrVal;      // value representing memory location
314    int          offset;      // offset off of ptrVal
315    unsigned     align;       // alignment
316    bool         vol;         // is volatile?
317    bool         readMem;     // reads memory?
318    bool         writeMem;    // writes memory?
319  };
320
321  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
322                                  CallInst &I, unsigned Intrinsic) {
323    return false;
324  }
325
326  /// isFPImmLegal - Returns true if the target can instruction select the
327  /// specified FP immediate natively. If false, the legalizer will materialize
328  /// the FP immediate as a load from a constant pool.
329  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
330    return false;
331  }
332
333  /// isShuffleMaskLegal - Targets can use this to indicate that they only
334  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
335  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
336  /// are assumed to be legal.
337  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
338                                  EVT VT) const {
339    return true;
340  }
341
342  /// canOpTrap - Returns true if the operation can trap for the value type.
343  /// VT must be a legal type. By default, we optimistically assume most
344  /// operations don't trap except for divide and remainder.
345  virtual bool canOpTrap(unsigned Op, EVT VT) const;
346
347  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
348  /// used by Targets can use this to indicate if there is a suitable
349  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
350  /// pool entry.
351  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
352                                      EVT VT) const {
353    return false;
354  }
355
356  /// getOperationAction - Return how this operation should be treated: either
357  /// it is legal, needs to be promoted to a larger size, needs to be
358  /// expanded to some other code sequence, or the target has a custom expander
359  /// for it.
360  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
361    if (VT.isExtended()) return Expand;
362    assert(Op < array_lengthof(OpActions[0]) &&
363           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(OpActions[0][0])*8 &&
364           "Table isn't big enough!");
365    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
366    unsigned J = I & 31;
367    I = I >> 5;
368    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
369  }
370
371  /// isOperationLegalOrCustom - Return true if the specified operation is
372  /// legal on this target or can be made legal with custom lowering. This
373  /// is used to help guide high-level lowering decisions.
374  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
375    return (VT == MVT::Other || isTypeLegal(VT)) &&
376      (getOperationAction(Op, VT) == Legal ||
377       getOperationAction(Op, VT) == Custom);
378  }
379
380  /// isOperationLegal - Return true if the specified operation is legal on this
381  /// target.
382  bool isOperationLegal(unsigned Op, EVT VT) const {
383    return (VT == MVT::Other || isTypeLegal(VT)) &&
384           getOperationAction(Op, VT) == Legal;
385  }
386
387  /// getLoadExtAction - Return how this load with extension should be treated:
388  /// either it is legal, needs to be promoted to a larger size, needs to be
389  /// expanded to some other code sequence, or the target has a custom expander
390  /// for it.
391  LegalizeAction getLoadExtAction(unsigned LType, EVT VT) const {
392    assert(LType < array_lengthof(LoadExtActions) &&
393           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(LoadExtActions[0])*4 &&
394           "Table isn't big enough!");
395    return (LegalizeAction)((LoadExtActions[LType] >>
396              (2*VT.getSimpleVT().SimpleTy)) & 3);
397  }
398
399  /// isLoadExtLegal - Return true if the specified load with extension is legal
400  /// on this target.
401  bool isLoadExtLegal(unsigned LType, EVT VT) const {
402    return VT.isSimple() &&
403      (getLoadExtAction(LType, VT) == Legal ||
404       getLoadExtAction(LType, VT) == Custom);
405  }
406
407  /// getTruncStoreAction - Return how this store with truncation should be
408  /// treated: either it is legal, needs to be promoted to a larger size, needs
409  /// to be expanded to some other code sequence, or the target has a custom
410  /// expander for it.
411  LegalizeAction getTruncStoreAction(EVT ValVT,
412                                     EVT MemVT) const {
413    assert((unsigned)ValVT.getSimpleVT().SimpleTy <
414             array_lengthof(TruncStoreActions) &&
415           (unsigned)MemVT.getSimpleVT().SimpleTy <
416             sizeof(TruncStoreActions[0])*4 &&
417           "Table isn't big enough!");
418    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT().SimpleTy] >>
419                             (2*MemVT.getSimpleVT().SimpleTy)) & 3);
420  }
421
422  /// isTruncStoreLegal - Return true if the specified store with truncation is
423  /// legal on this target.
424  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
425    return isTypeLegal(ValVT) && MemVT.isSimple() &&
426      (getTruncStoreAction(ValVT, MemVT) == Legal ||
427       getTruncStoreAction(ValVT, MemVT) == Custom);
428  }
429
430  /// getIndexedLoadAction - Return how the indexed load should be treated:
431  /// either it is legal, needs to be promoted to a larger size, needs to be
432  /// expanded to some other code sequence, or the target has a custom expander
433  /// for it.
434  LegalizeAction
435  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
436    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
437           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
438           "Table isn't big enough!");
439    return (LegalizeAction)((IndexedModeActions[
440                             (unsigned)VT.getSimpleVT().SimpleTy][0][IdxMode]));
441  }
442
443  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
444  /// on this target.
445  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
446    return VT.isSimple() &&
447      (getIndexedLoadAction(IdxMode, VT) == Legal ||
448       getIndexedLoadAction(IdxMode, VT) == Custom);
449  }
450
451  /// getIndexedStoreAction - Return how the indexed store should be treated:
452  /// either it is legal, needs to be promoted to a larger size, needs to be
453  /// expanded to some other code sequence, or the target has a custom expander
454  /// for it.
455  LegalizeAction
456  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
457    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
458           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
459           "Table isn't big enough!");
460    return (LegalizeAction)((IndexedModeActions[
461              (unsigned)VT.getSimpleVT().SimpleTy][1][IdxMode]));
462  }
463
464  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
465  /// on this target.
466  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
467    return VT.isSimple() &&
468      (getIndexedStoreAction(IdxMode, VT) == Legal ||
469       getIndexedStoreAction(IdxMode, VT) == Custom);
470  }
471
472  /// getCondCodeAction - Return how the condition code should be treated:
473  /// either it is legal, needs to be expanded to some other code sequence,
474  /// or the target has a custom expander for it.
475  LegalizeAction
476  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
477    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
478           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
479           "Table isn't big enough!");
480    LegalizeAction Action = (LegalizeAction)
481      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
482    assert(Action != Promote && "Can't promote condition code!");
483    return Action;
484  }
485
486  /// isCondCodeLegal - Return true if the specified condition code is legal
487  /// on this target.
488  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
489    return getCondCodeAction(CC, VT) == Legal ||
490           getCondCodeAction(CC, VT) == Custom;
491  }
492
493
494  /// getTypeToPromoteTo - If the action for this operation is to promote, this
495  /// method returns the ValueType to promote to.
496  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
497    assert(getOperationAction(Op, VT) == Promote &&
498           "This operation isn't promoted!");
499
500    // See if this has an explicit type specified.
501    std::map<std::pair<unsigned, MVT::SimpleValueType>,
502             MVT::SimpleValueType>::const_iterator PTTI =
503      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
504    if (PTTI != PromoteToType.end()) return PTTI->second;
505
506    assert((VT.isInteger() || VT.isFloatingPoint()) &&
507           "Cannot autopromote this type, add it with AddPromotedToType.");
508
509    EVT NVT = VT;
510    do {
511      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
512      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
513             "Didn't find type to promote to!");
514    } while (!isTypeLegal(NVT) ||
515              getOperationAction(Op, NVT) == Promote);
516    return NVT;
517  }
518
519  /// getValueType - Return the EVT corresponding to this LLVM type.
520  /// This is fixed by the LLVM operations except for the pointer size.  If
521  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
522  /// counterpart (e.g. structs), otherwise it will assert.
523  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
524    EVT VT = EVT::getEVT(Ty, AllowUnknown);
525    return VT == MVT::iPTR ? PointerTy : VT;
526  }
527
528  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
529  /// function arguments in the caller parameter area.  This is the actual
530  /// alignment, not its logarithm.
531  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
532
533  /// getRegisterType - Return the type of registers that this ValueType will
534  /// eventually require.
535  EVT getRegisterType(MVT VT) const {
536    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
537    return RegisterTypeForVT[VT.SimpleTy];
538  }
539
540  /// getRegisterType - Return the type of registers that this ValueType will
541  /// eventually require.
542  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
543    if (VT.isSimple()) {
544      assert((unsigned)VT.getSimpleVT().SimpleTy <
545                array_lengthof(RegisterTypeForVT));
546      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
547    }
548    if (VT.isVector()) {
549      EVT VT1, RegisterVT;
550      unsigned NumIntermediates;
551      (void)getVectorTypeBreakdown(Context, VT, VT1,
552                                   NumIntermediates, RegisterVT);
553      return RegisterVT;
554    }
555    if (VT.isInteger()) {
556      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
557    }
558    assert(0 && "Unsupported extended type!");
559    return EVT(MVT::Other); // Not reached
560  }
561
562  /// getNumRegisters - Return the number of registers that this ValueType will
563  /// eventually require.  This is one for any types promoted to live in larger
564  /// registers, but may be more than one for types (like i64) that are split
565  /// into pieces.  For types like i140, which are first promoted then expanded,
566  /// it is the number of registers needed to hold all the bits of the original
567  /// type.  For an i140 on a 32 bit machine this means 5 registers.
568  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
569    if (VT.isSimple()) {
570      assert((unsigned)VT.getSimpleVT().SimpleTy <
571                array_lengthof(NumRegistersForVT));
572      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
573    }
574    if (VT.isVector()) {
575      EVT VT1, VT2;
576      unsigned NumIntermediates;
577      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
578    }
579    if (VT.isInteger()) {
580      unsigned BitWidth = VT.getSizeInBits();
581      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
582      return (BitWidth + RegWidth - 1) / RegWidth;
583    }
584    assert(0 && "Unsupported extended type!");
585    return 0; // Not reached
586  }
587
588  /// ShouldShrinkFPConstant - If true, then instruction selection should
589  /// seek to shrink the FP constant of the specified type to a smaller type
590  /// in order to save space and / or reduce runtime.
591  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
592
593  /// hasTargetDAGCombine - If true, the target has custom DAG combine
594  /// transformations that it can perform for the specified node.
595  bool hasTargetDAGCombine(ISD::NodeType NT) const {
596    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
597    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
598  }
599
600  /// This function returns the maximum number of store operations permitted
601  /// to replace a call to llvm.memset. The value is set by the target at the
602  /// performance threshold for such a replacement.
603  /// @brief Get maximum # of store operations permitted for llvm.memset
604  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
605
606  /// This function returns the maximum number of store operations permitted
607  /// to replace a call to llvm.memcpy. The value is set by the target at the
608  /// performance threshold for such a replacement.
609  /// @brief Get maximum # of store operations permitted for llvm.memcpy
610  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
611
612  /// This function returns the maximum number of store operations permitted
613  /// to replace a call to llvm.memmove. The value is set by the target at the
614  /// performance threshold for such a replacement.
615  /// @brief Get maximum # of store operations permitted for llvm.memmove
616  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
617
618  /// This function returns true if the target allows unaligned memory accesses.
619  /// of the specified type. This is used, for example, in situations where an
620  /// array copy/move/set is  converted to a sequence of store operations. It's
621  /// use helps to ensure that such replacements don't generate code that causes
622  /// an alignment error  (trap) on the target machine.
623  /// @brief Determine if the target supports unaligned memory accesses.
624  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
625    return false;
626  }
627
628  /// This function returns true if the target would benefit from code placement
629  /// optimization.
630  /// @brief Determine if the target should perform code placement optimization.
631  bool shouldOptimizeCodePlacement() const {
632    return benefitFromCodePlacementOpt;
633  }
634
635  /// getOptimalMemOpType - Returns the target specific optimal type for load
636  /// and store operations as a result of memset, memcpy, and memmove lowering.
637  /// If DstAlign is zero that means it's safe to destination alignment can
638  /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
639  /// a need to check it against alignment requirement, probably because the
640  /// source does not need to be loaded. It returns EVT::Other if SelectionDAG
641  /// should be responsible for determining it.
642  virtual EVT getOptimalMemOpType(uint64_t Size,
643                                  unsigned DstAlign, unsigned SrcAlign,
644                                  bool SafeToUseFP, SelectionDAG &DAG) const {
645    return MVT::Other;
646  }
647
648  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
649  /// to implement llvm.setjmp.
650  bool usesUnderscoreSetJmp() const {
651    return UseUnderscoreSetJmp;
652  }
653
654  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
655  /// to implement llvm.longjmp.
656  bool usesUnderscoreLongJmp() const {
657    return UseUnderscoreLongJmp;
658  }
659
660  /// getStackPointerRegisterToSaveRestore - If a physical register, this
661  /// specifies the register that llvm.savestack/llvm.restorestack should save
662  /// and restore.
663  unsigned getStackPointerRegisterToSaveRestore() const {
664    return StackPointerRegisterToSaveRestore;
665  }
666
667  /// getExceptionAddressRegister - If a physical register, this returns
668  /// the register that receives the exception address on entry to a landing
669  /// pad.
670  unsigned getExceptionAddressRegister() const {
671    return ExceptionPointerRegister;
672  }
673
674  /// getExceptionSelectorRegister - If a physical register, this returns
675  /// the register that receives the exception typeid on entry to a landing
676  /// pad.
677  unsigned getExceptionSelectorRegister() const {
678    return ExceptionSelectorRegister;
679  }
680
681  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
682  /// set, the default is 200)
683  unsigned getJumpBufSize() const {
684    return JumpBufSize;
685  }
686
687  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
688  /// (if never set, the default is 0)
689  unsigned getJumpBufAlignment() const {
690    return JumpBufAlignment;
691  }
692
693  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
694  /// limit. Any block whose size is greater should not be predicated.
695  unsigned getIfCvtBlockSizeLimit() const {
696    return IfCvtBlockSizeLimit;
697  }
698
699  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
700  /// block to be considered for duplication. Any block whose size is greater
701  /// should not be duplicated to facilitate its predication.
702  unsigned getIfCvtDupBlockSizeLimit() const {
703    return IfCvtDupBlockSizeLimit;
704  }
705
706  /// getPrefLoopAlignment - return the preferred loop alignment.
707  ///
708  unsigned getPrefLoopAlignment() const {
709    return PrefLoopAlignment;
710  }
711
712  /// getPreIndexedAddressParts - returns true by value, base pointer and
713  /// offset pointer and addressing mode by reference if the node's address
714  /// can be legally represented as pre-indexed load / store address.
715  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
716                                         SDValue &Offset,
717                                         ISD::MemIndexedMode &AM,
718                                         SelectionDAG &DAG) const {
719    return false;
720  }
721
722  /// getPostIndexedAddressParts - returns true by value, base pointer and
723  /// offset pointer and addressing mode by reference if this node can be
724  /// combined with a load / store to form a post-indexed load / store.
725  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
726                                          SDValue &Base, SDValue &Offset,
727                                          ISD::MemIndexedMode &AM,
728                                          SelectionDAG &DAG) const {
729    return false;
730  }
731
732  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
733  /// current function.  The returned value is a member of the
734  /// MachineJumpTableInfo::JTEntryKind enum.
735  virtual unsigned getJumpTableEncoding() const;
736
737  virtual const MCExpr *
738  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
739                            const MachineBasicBlock *MBB, unsigned uid,
740                            MCContext &Ctx) const {
741    assert(0 && "Need to implement this hook if target has custom JTIs");
742    return 0;
743  }
744
745  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
746  /// jumptable.
747  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
748                                           SelectionDAG &DAG) const;
749
750  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
751  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
752  /// MCExpr.
753  virtual const MCExpr *
754  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
755                               unsigned JTI, MCContext &Ctx) const;
756
757  /// isOffsetFoldingLegal - Return true if folding a constant offset
758  /// with the given GlobalAddress is legal.  It is frequently not legal in
759  /// PIC relocation models.
760  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
761
762  /// getFunctionAlignment - Return the Log2 alignment of this function.
763  virtual unsigned getFunctionAlignment(const Function *) const = 0;
764
765  //===--------------------------------------------------------------------===//
766  // TargetLowering Optimization Methods
767  //
768
769  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
770  /// SDValues for returning information from TargetLowering to its clients
771  /// that want to combine
772  struct TargetLoweringOpt {
773    SelectionDAG &DAG;
774    bool ShrinkOps;
775    SDValue Old;
776    SDValue New;
777
778    explicit TargetLoweringOpt(SelectionDAG &InDAG, bool Shrink = false) :
779      DAG(InDAG), ShrinkOps(Shrink) {}
780
781    bool CombineTo(SDValue O, SDValue N) {
782      Old = O;
783      New = N;
784      return true;
785    }
786
787    /// ShrinkDemandedConstant - Check to see if the specified operand of the
788    /// specified instruction is a constant integer.  If so, check to see if
789    /// there are any bits set in the constant that are not demanded.  If so,
790    /// shrink the constant and return true.
791    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
792
793    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
794    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
795    /// cast, but it could be generalized for targets with other types of
796    /// implicit widening casts.
797    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
798                          DebugLoc dl);
799  };
800
801  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
802  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
803  /// use this information to simplify Op, create a new simplified DAG node and
804  /// return true, returning the original and new nodes in Old and New.
805  /// Otherwise, analyze the expression and return a mask of KnownOne and
806  /// KnownZero bits for the expression (used to simplify the caller).
807  /// The KnownZero/One bits may only be accurate for those bits in the
808  /// DemandedMask.
809  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
810                            APInt &KnownZero, APInt &KnownOne,
811                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
812
813  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
814  /// Mask are known to be either zero or one and return them in the
815  /// KnownZero/KnownOne bitsets.
816  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
817                                              const APInt &Mask,
818                                              APInt &KnownZero,
819                                              APInt &KnownOne,
820                                              const SelectionDAG &DAG,
821                                              unsigned Depth = 0) const;
822
823  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
824  /// targets that want to expose additional information about sign bits to the
825  /// DAG Combiner.
826  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
827                                                   unsigned Depth = 0) const;
828
829  struct DAGCombinerInfo {
830    void *DC;  // The DAG Combiner object.
831    bool BeforeLegalize;
832    bool BeforeLegalizeOps;
833    bool CalledByLegalizer;
834  public:
835    SelectionDAG &DAG;
836
837    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
838      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
839        CalledByLegalizer(cl), DAG(dag) {}
840
841    bool isBeforeLegalize() const { return BeforeLegalize; }
842    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
843    bool isCalledByLegalizer() const { return CalledByLegalizer; }
844
845    void AddToWorklist(SDNode *N);
846    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
847                      bool AddTo = true);
848    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
849    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
850
851    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
852  };
853
854  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
855  /// and cc. If it is unable to simplify it, return a null SDValue.
856  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
857                          ISD::CondCode Cond, bool foldBooleans,
858                          DAGCombinerInfo &DCI, DebugLoc dl) const;
859
860  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
861  /// node is a GlobalAddress + offset.
862  virtual bool
863  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
864
865  /// PerformDAGCombine - This method will be invoked for all target nodes and
866  /// for any target-independent nodes that the target has registered with
867  /// invoke it for.
868  ///
869  /// The semantics are as follows:
870  /// Return Value:
871  ///   SDValue.Val == 0   - No change was made
872  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
873  ///   otherwise          - N should be replaced by the returned Operand.
874  ///
875  /// In addition, methods provided by DAGCombinerInfo may be used to perform
876  /// more complex transformations.
877  ///
878  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
879
880  //===--------------------------------------------------------------------===//
881  // TargetLowering Configuration Methods - These methods should be invoked by
882  // the derived class constructor to configure this object for the target.
883  //
884
885protected:
886  /// setShiftAmountType - Describe the type that should be used for shift
887  /// amounts.  This type defaults to the pointer type.
888  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
889
890  /// setBooleanContents - Specify how the target extends the result of a
891  /// boolean value from i1 to a wider type.  See getBooleanContents.
892  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
893
894  /// setSchedulingPreference - Specify the target scheduling preference.
895  void setSchedulingPreference(SchedPreference Pref) {
896    SchedPreferenceInfo = Pref;
897  }
898
899  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
900  /// use _setjmp to implement llvm.setjmp or the non _ version.
901  /// Defaults to false.
902  void setUseUnderscoreSetJmp(bool Val) {
903    UseUnderscoreSetJmp = Val;
904  }
905
906  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
907  /// use _longjmp to implement llvm.longjmp or the non _ version.
908  /// Defaults to false.
909  void setUseUnderscoreLongJmp(bool Val) {
910    UseUnderscoreLongJmp = Val;
911  }
912
913  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
914  /// specifies the register that llvm.savestack/llvm.restorestack should save
915  /// and restore.
916  void setStackPointerRegisterToSaveRestore(unsigned R) {
917    StackPointerRegisterToSaveRestore = R;
918  }
919
920  /// setExceptionPointerRegister - If set to a physical register, this sets
921  /// the register that receives the exception address on entry to a landing
922  /// pad.
923  void setExceptionPointerRegister(unsigned R) {
924    ExceptionPointerRegister = R;
925  }
926
927  /// setExceptionSelectorRegister - If set to a physical register, this sets
928  /// the register that receives the exception typeid on entry to a landing
929  /// pad.
930  void setExceptionSelectorRegister(unsigned R) {
931    ExceptionSelectorRegister = R;
932  }
933
934  /// SelectIsExpensive - Tells the code generator not to expand operations
935  /// into sequences that use the select operations if possible.
936  void setSelectIsExpensive() { SelectIsExpensive = true; }
937
938  /// setIntDivIsCheap - Tells the code generator that integer divide is
939  /// expensive, and if possible, should be replaced by an alternate sequence
940  /// of instructions not containing an integer divide.
941  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
942
943  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
944  /// srl/add/sra for a signed divide by power of two, and let the target handle
945  /// it.
946  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
947
948  /// addRegisterClass - Add the specified register class as an available
949  /// regclass for the specified value type.  This indicates the selector can
950  /// handle values of that class natively.
951  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
952    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
953    AvailableRegClasses.push_back(std::make_pair(VT, RC));
954    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
955  }
956
957  /// computeRegisterProperties - Once all of the register classes are added,
958  /// this allows us to compute derived properties we expose.
959  void computeRegisterProperties();
960
961  /// setOperationAction - Indicate that the specified operation does not work
962  /// with the specified type and indicate what to do about it.
963  void setOperationAction(unsigned Op, MVT VT,
964                          LegalizeAction Action) {
965    unsigned I = (unsigned)VT.SimpleTy;
966    unsigned J = I & 31;
967    I = I >> 5;
968    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
969    OpActions[I][Op] |= (uint64_t)Action << (J*2);
970  }
971
972  /// setLoadExtAction - Indicate that the specified load with extension does
973  /// not work with the specified type and indicate what to do about it.
974  void setLoadExtAction(unsigned ExtType, MVT VT,
975                      LegalizeAction Action) {
976    assert((unsigned)VT.SimpleTy*2 < 63 &&
977           ExtType < array_lengthof(LoadExtActions) &&
978           "Table isn't big enough!");
979    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.SimpleTy*2);
980    LoadExtActions[ExtType] |= (uint64_t)Action << VT.SimpleTy*2;
981  }
982
983  /// setTruncStoreAction - Indicate that the specified truncating store does
984  /// not work with the specified type and indicate what to do about it.
985  void setTruncStoreAction(MVT ValVT, MVT MemVT,
986                           LegalizeAction Action) {
987    assert((unsigned)ValVT.SimpleTy < array_lengthof(TruncStoreActions) &&
988           (unsigned)MemVT.SimpleTy*2 < 63 &&
989           "Table isn't big enough!");
990    TruncStoreActions[ValVT.SimpleTy] &= ~(uint64_t(3UL)  << MemVT.SimpleTy*2);
991    TruncStoreActions[ValVT.SimpleTy] |= (uint64_t)Action << MemVT.SimpleTy*2;
992  }
993
994  /// setIndexedLoadAction - Indicate that the specified indexed load does or
995  /// does not work with the specified type and indicate what to do abort
996  /// it. NOTE: All indexed mode loads are initialized to Expand in
997  /// TargetLowering.cpp
998  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
999                            LegalizeAction Action) {
1000    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1001           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
1002           "Table isn't big enough!");
1003    IndexedModeActions[(unsigned)VT.SimpleTy][0][IdxMode] = (uint8_t)Action;
1004  }
1005
1006  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1007  /// does not work with the specified type and indicate what to do about
1008  /// it. NOTE: All indexed mode stores are initialized to Expand in
1009  /// TargetLowering.cpp
1010  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1011                             LegalizeAction Action) {
1012    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1013           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
1014           "Table isn't big enough!");
1015    IndexedModeActions[(unsigned)VT.SimpleTy][1][IdxMode] = (uint8_t)Action;
1016  }
1017
1018  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1019  /// supported on the target and indicate what to do about it.
1020  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1021                         LegalizeAction Action) {
1022    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1023           (unsigned)CC < array_lengthof(CondCodeActions) &&
1024           "Table isn't big enough!");
1025    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1026    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1027  }
1028
1029  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1030  /// promotion code defaults to trying a larger integer/fp until it can find
1031  /// one that works.  If that default is insufficient, this method can be used
1032  /// by the target to override the default.
1033  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1034    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1035  }
1036
1037  /// setTargetDAGCombine - Targets should invoke this method for each target
1038  /// independent node that they want to provide a custom DAG combiner for by
1039  /// implementing the PerformDAGCombine virtual method.
1040  void setTargetDAGCombine(ISD::NodeType NT) {
1041    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1042    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1043  }
1044
1045  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1046  /// bytes); default is 200
1047  void setJumpBufSize(unsigned Size) {
1048    JumpBufSize = Size;
1049  }
1050
1051  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1052  /// alignment (in bytes); default is 0
1053  void setJumpBufAlignment(unsigned Align) {
1054    JumpBufAlignment = Align;
1055  }
1056
1057  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1058  /// limit (in number of instructions); default is 2.
1059  void setIfCvtBlockSizeLimit(unsigned Limit) {
1060    IfCvtBlockSizeLimit = Limit;
1061  }
1062
1063  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1064  /// of instructions) to be considered for code duplication during
1065  /// if-conversion; default is 2.
1066  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1067    IfCvtDupBlockSizeLimit = Limit;
1068  }
1069
1070  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1071  /// alignment is zero, it means the target does not care about loop alignment.
1072  void setPrefLoopAlignment(unsigned Align) {
1073    PrefLoopAlignment = Align;
1074  }
1075
1076public:
1077
1078  virtual const TargetSubtarget *getSubtarget() {
1079    assert(0 && "Not Implemented");
1080    return NULL;    // this is here to silence compiler errors
1081  }
1082
1083  //===--------------------------------------------------------------------===//
1084  // Lowering methods - These methods must be implemented by targets so that
1085  // the SelectionDAGLowering code knows how to lower these.
1086  //
1087
1088  /// LowerFormalArguments - This hook must be implemented to lower the
1089  /// incoming (formal) arguments, described by the Ins array, into the
1090  /// specified DAG. The implementation should fill in the InVals array
1091  /// with legal-type argument values, and return the resulting token
1092  /// chain value.
1093  ///
1094  virtual SDValue
1095    LowerFormalArguments(SDValue Chain,
1096                         CallingConv::ID CallConv, bool isVarArg,
1097                         const SmallVectorImpl<ISD::InputArg> &Ins,
1098                         DebugLoc dl, SelectionDAG &DAG,
1099                         SmallVectorImpl<SDValue> &InVals) {
1100    assert(0 && "Not Implemented");
1101    return SDValue();    // this is here to silence compiler errors
1102  }
1103
1104  /// LowerCallTo - This function lowers an abstract call to a function into an
1105  /// actual call.  This returns a pair of operands.  The first element is the
1106  /// return value for the function (if RetTy is not VoidTy).  The second
1107  /// element is the outgoing token chain. It calls LowerCall to do the actual
1108  /// lowering.
1109  struct ArgListEntry {
1110    SDValue Node;
1111    const Type* Ty;
1112    bool isSExt  : 1;
1113    bool isZExt  : 1;
1114    bool isInReg : 1;
1115    bool isSRet  : 1;
1116    bool isNest  : 1;
1117    bool isByVal : 1;
1118    uint16_t Alignment;
1119
1120    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1121      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1122  };
1123  typedef std::vector<ArgListEntry> ArgListTy;
1124  std::pair<SDValue, SDValue>
1125  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1126              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1127              CallingConv::ID CallConv, bool isTailCall,
1128              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1129              SelectionDAG &DAG, DebugLoc dl);
1130
1131  /// LowerCall - This hook must be implemented to lower calls into the
1132  /// the specified DAG. The outgoing arguments to the call are described
1133  /// by the Outs array, and the values to be returned by the call are
1134  /// described by the Ins array. The implementation should fill in the
1135  /// InVals array with legal-type return values from the call, and return
1136  /// the resulting token chain value.
1137  virtual SDValue
1138    LowerCall(SDValue Chain, SDValue Callee,
1139              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1140              const SmallVectorImpl<ISD::OutputArg> &Outs,
1141              const SmallVectorImpl<ISD::InputArg> &Ins,
1142              DebugLoc dl, SelectionDAG &DAG,
1143              SmallVectorImpl<SDValue> &InVals) {
1144    assert(0 && "Not Implemented");
1145    return SDValue();    // this is here to silence compiler errors
1146  }
1147
1148  /// CanLowerReturn - This hook should be implemented to check whether the
1149  /// return values described by the Outs array can fit into the return
1150  /// registers.  If false is returned, an sret-demotion is performed.
1151  ///
1152  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1153               const SmallVectorImpl<EVT> &OutTys,
1154               const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1155               SelectionDAG &DAG)
1156  {
1157    // Return true by default to get preexisting behavior.
1158    return true;
1159  }
1160  /// LowerReturn - This hook must be implemented to lower outgoing
1161  /// return values, described by the Outs array, into the specified
1162  /// DAG. The implementation should return the resulting token chain
1163  /// value.
1164  ///
1165  virtual SDValue
1166    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1167                const SmallVectorImpl<ISD::OutputArg> &Outs,
1168                DebugLoc dl, SelectionDAG &DAG) {
1169    assert(0 && "Not Implemented");
1170    return SDValue();    // this is here to silence compiler errors
1171  }
1172
1173  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1174  /// memcpy. This can be used by targets to provide code sequences for cases
1175  /// that don't fit the target's parameters for simple loads/stores and can be
1176  /// more efficient than using a library call. This function can return a null
1177  /// SDValue if the target declines to use custom code and a different
1178  /// lowering strategy should be used.
1179  ///
1180  /// If AlwaysInline is true, the size is constant and the target should not
1181  /// emit any calls and is strongly encouraged to attempt to emit inline code
1182  /// even if it is beyond the usual threshold because this intrinsic is being
1183  /// expanded in a place where calls are not feasible (e.g. within the prologue
1184  /// for another call). If the target chooses to decline an AlwaysInline
1185  /// request here, legalize will resort to using simple loads and stores.
1186  virtual SDValue
1187  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1188                          SDValue Chain,
1189                          SDValue Op1, SDValue Op2,
1190                          SDValue Op3, unsigned Align,
1191                          bool AlwaysInline,
1192                          const Value *DstSV, uint64_t DstOff,
1193                          const Value *SrcSV, uint64_t SrcOff) {
1194    return SDValue();
1195  }
1196
1197  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1198  /// memmove. This can be used by targets to provide code sequences for cases
1199  /// that don't fit the target's parameters for simple loads/stores and can be
1200  /// more efficient than using a library call. This function can return a null
1201  /// SDValue if the target declines to use custom code and a different
1202  /// lowering strategy should be used.
1203  virtual SDValue
1204  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1205                           SDValue Chain,
1206                           SDValue Op1, SDValue Op2,
1207                           SDValue Op3, unsigned Align,
1208                           const Value *DstSV, uint64_t DstOff,
1209                           const Value *SrcSV, uint64_t SrcOff) {
1210    return SDValue();
1211  }
1212
1213  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1214  /// memset. This can be used by targets to provide code sequences for cases
1215  /// that don't fit the target's parameters for simple stores and can be more
1216  /// efficient than using a library call. This function can return a null
1217  /// SDValue if the target declines to use custom code and a different
1218  /// lowering strategy should be used.
1219  virtual SDValue
1220  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1221                          SDValue Chain,
1222                          SDValue Op1, SDValue Op2,
1223                          SDValue Op3, unsigned Align,
1224                          const Value *DstSV, uint64_t DstOff) {
1225    return SDValue();
1226  }
1227
1228  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1229  /// to legalize nodes with an illegal operand type but legal result types.
1230  /// It replaces the LowerOperation callback in the type Legalizer.
1231  /// The reason we can not do away with LowerOperation entirely is that
1232  /// LegalizeDAG isn't yet ready to use this callback.
1233  /// TODO: Consider merging with ReplaceNodeResults.
1234
1235  /// The target places new result values for the node in Results (their number
1236  /// and types must exactly match those of the original return values of
1237  /// the node), or leaves Results empty, which indicates that the node is not
1238  /// to be custom lowered after all.
1239  /// The default implementation calls LowerOperation.
1240  virtual void LowerOperationWrapper(SDNode *N,
1241                                     SmallVectorImpl<SDValue> &Results,
1242                                     SelectionDAG &DAG);
1243
1244  /// LowerOperation - This callback is invoked for operations that are
1245  /// unsupported by the target, which are registered to use 'custom' lowering,
1246  /// and whose defined values are all legal.
1247  /// If the target has no operations that require custom lowering, it need not
1248  /// implement this.  The default implementation of this aborts.
1249  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1250
1251  /// ReplaceNodeResults - This callback is invoked when a node result type is
1252  /// illegal for the target, and the operation was registered to use 'custom'
1253  /// lowering for that result type.  The target places new result values for
1254  /// the node in Results (their number and types must exactly match those of
1255  /// the original return values of the node), or leaves Results empty, which
1256  /// indicates that the node is not to be custom lowered after all.
1257  ///
1258  /// If the target has no operations that require custom lowering, it need not
1259  /// implement this.  The default implementation aborts.
1260  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1261                                  SelectionDAG &DAG) {
1262    assert(0 && "ReplaceNodeResults not implemented for this target!");
1263  }
1264
1265  /// getTargetNodeName() - This method returns the name of a target specific
1266  /// DAG node.
1267  virtual const char *getTargetNodeName(unsigned Opcode) const;
1268
1269  /// createFastISel - This method returns a target specific FastISel object,
1270  /// or null if the target does not support "fast" ISel.
1271  virtual FastISel *
1272  createFastISel(MachineFunction &,
1273                 MachineModuleInfo *, DwarfWriter *,
1274                 DenseMap<const Value *, unsigned> &,
1275                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1276                 DenseMap<const AllocaInst *, int> &
1277#ifndef NDEBUG
1278                 , SmallSet<Instruction*, 8> &CatchInfoLost
1279#endif
1280                 ) {
1281    return 0;
1282  }
1283
1284  //===--------------------------------------------------------------------===//
1285  // Inline Asm Support hooks
1286  //
1287
1288  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1289  /// call to be explicit llvm code if it wants to.  This is useful for
1290  /// turning simple inline asms into LLVM intrinsics, which gives the
1291  /// compiler more information about the behavior of the code.
1292  virtual bool ExpandInlineAsm(CallInst *CI) const {
1293    return false;
1294  }
1295
1296  enum ConstraintType {
1297    C_Register,            // Constraint represents specific register(s).
1298    C_RegisterClass,       // Constraint represents any of register(s) in class.
1299    C_Memory,              // Memory constraint.
1300    C_Other,               // Something else.
1301    C_Unknown              // Unsupported constraint.
1302  };
1303
1304  /// AsmOperandInfo - This contains information for each constraint that we are
1305  /// lowering.
1306  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1307    /// ConstraintCode - This contains the actual string for the code, like "m".
1308    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1309    /// most closely matches the operand.
1310    std::string ConstraintCode;
1311
1312    /// ConstraintType - Information about the constraint code, e.g. Register,
1313    /// RegisterClass, Memory, Other, Unknown.
1314    TargetLowering::ConstraintType ConstraintType;
1315
1316    /// CallOperandval - If this is the result output operand or a
1317    /// clobber, this is null, otherwise it is the incoming operand to the
1318    /// CallInst.  This gets modified as the asm is processed.
1319    Value *CallOperandVal;
1320
1321    /// ConstraintVT - The ValueType for the operand value.
1322    EVT ConstraintVT;
1323
1324    /// isMatchingInputConstraint - Return true of this is an input operand that
1325    /// is a matching constraint like "4".
1326    bool isMatchingInputConstraint() const;
1327
1328    /// getMatchedOperand - If this is an input matching constraint, this method
1329    /// returns the output operand it matches.
1330    unsigned getMatchedOperand() const;
1331
1332    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1333      : InlineAsm::ConstraintInfo(info),
1334        ConstraintType(TargetLowering::C_Unknown),
1335        CallOperandVal(0), ConstraintVT(MVT::Other) {
1336    }
1337  };
1338
1339  /// ComputeConstraintToUse - Determines the constraint code and constraint
1340  /// type to use for the specific AsmOperandInfo, setting
1341  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1342  /// being passed in is available, it can be passed in as Op, otherwise an
1343  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1344  /// constraint of the inline asm instruction being processed is 'm'.
1345  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1346                                      SDValue Op,
1347                                      bool hasMemory,
1348                                      SelectionDAG *DAG = 0) const;
1349
1350  /// getConstraintType - Given a constraint, return the type of constraint it
1351  /// is for this target.
1352  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1353
1354  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1355  /// return a list of registers that can be used to satisfy the constraint.
1356  /// This should only be used for C_RegisterClass constraints.
1357  virtual std::vector<unsigned>
1358  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1359                                    EVT VT) const;
1360
1361  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1362  /// {edx}), return the register number and the register class for the
1363  /// register.
1364  ///
1365  /// Given a register class constraint, like 'r', if this corresponds directly
1366  /// to an LLVM register class, return a register of 0 and the register class
1367  /// pointer.
1368  ///
1369  /// This should only be used for C_Register constraints.  On error,
1370  /// this returns a register number of 0 and a null register class pointer..
1371  virtual std::pair<unsigned, const TargetRegisterClass*>
1372    getRegForInlineAsmConstraint(const std::string &Constraint,
1373                                 EVT VT) const;
1374
1375  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1376  /// with another that has more specific requirements based on the type of the
1377  /// corresponding operand.  This returns null if there is no replacement to
1378  /// make.
1379  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1380
1381  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1382  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1383  /// it means one of the asm constraint of the inline asm instruction being
1384  /// processed is 'm'.
1385  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1386                                            bool hasMemory,
1387                                            std::vector<SDValue> &Ops,
1388                                            SelectionDAG &DAG) const;
1389
1390  //===--------------------------------------------------------------------===//
1391  // Instruction Emitting Hooks
1392  //
1393
1394  // EmitInstrWithCustomInserter - This method should be implemented by targets
1395  // that mark instructions with the 'usesCustomInserter' flag.  These
1396  // instructions are special in various ways, which require special support to
1397  // insert.  The specified MachineInstr is created but not inserted into any
1398  // basic blocks, and this method is called to expand it into a sequence of
1399  // instructions, potentially also creating new basic blocks and control flow.
1400  // When new basic blocks are inserted and the edges from MBB to its successors
1401  // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
1402  // DenseMap.
1403  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1404                                                         MachineBasicBlock *MBB,
1405                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
1406
1407  //===--------------------------------------------------------------------===//
1408  // Addressing mode description hooks (used by LSR etc).
1409  //
1410
1411  /// AddrMode - This represents an addressing mode of:
1412  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1413  /// If BaseGV is null,  there is no BaseGV.
1414  /// If BaseOffs is zero, there is no base offset.
1415  /// If HasBaseReg is false, there is no base register.
1416  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1417  /// no scale.
1418  ///
1419  struct AddrMode {
1420    GlobalValue *BaseGV;
1421    int64_t      BaseOffs;
1422    bool         HasBaseReg;
1423    int64_t      Scale;
1424    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1425  };
1426
1427  /// isLegalAddressingMode - Return true if the addressing mode represented by
1428  /// AM is legal for this target, for a load/store of the specified type.
1429  /// The type may be VoidTy, in which case only return true if the addressing
1430  /// mode is legal for a load/store of any legal type.
1431  /// TODO: Handle pre/postinc as well.
1432  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1433
1434  /// isTruncateFree - Return true if it's free to truncate a value of
1435  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1436  /// register EAX to i16 by referencing its sub-register AX.
1437  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1438    return false;
1439  }
1440
1441  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1442    return false;
1443  }
1444
1445  /// isZExtFree - Return true if any actual instruction that defines a
1446  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1447  /// register. This does not necessarily include registers defined in
1448  /// unknown ways, such as incoming arguments, or copies from unknown
1449  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1450  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1451  /// all instructions that define 32-bit values implicit zero-extend the
1452  /// result out to 64 bits.
1453  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1454    return false;
1455  }
1456
1457  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1458    return false;
1459  }
1460
1461  /// isNarrowingProfitable - Return true if it's profitable to narrow
1462  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1463  /// from i32 to i8 but not from i32 to i16.
1464  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1465    return false;
1466  }
1467
1468  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1469  /// icmp immediate, that is the target has icmp instructions which can compare
1470  /// a register against the immediate without having to materialize the
1471  /// immediate into a register.
1472  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1473    return true;
1474  }
1475
1476  //===--------------------------------------------------------------------===//
1477  // Div utility functions
1478  //
1479  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1480                      std::vector<SDNode*>* Created) const;
1481  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1482                      std::vector<SDNode*>* Created) const;
1483
1484
1485  //===--------------------------------------------------------------------===//
1486  // Runtime Library hooks
1487  //
1488
1489  /// setLibcallName - Rename the default libcall routine name for the specified
1490  /// libcall.
1491  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1492    LibcallRoutineNames[Call] = Name;
1493  }
1494
1495  /// getLibcallName - Get the libcall routine name for the specified libcall.
1496  ///
1497  const char *getLibcallName(RTLIB::Libcall Call) const {
1498    return LibcallRoutineNames[Call];
1499  }
1500
1501  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1502  /// result of the comparison libcall against zero.
1503  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1504    CmpLibcallCCs[Call] = CC;
1505  }
1506
1507  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1508  /// the comparison libcall against zero.
1509  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1510    return CmpLibcallCCs[Call];
1511  }
1512
1513  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1514  /// specified libcall.
1515  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1516    LibcallCallingConvs[Call] = CC;
1517  }
1518
1519  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1520  /// specified libcall.
1521  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1522    return LibcallCallingConvs[Call];
1523  }
1524
1525private:
1526  TargetMachine &TM;
1527  const TargetData *TD;
1528  TargetLoweringObjectFile &TLOF;
1529
1530  /// PointerTy - The type to use for pointers, usually i32 or i64.
1531  ///
1532  MVT PointerTy;
1533
1534  /// IsLittleEndian - True if this is a little endian target.
1535  ///
1536  bool IsLittleEndian;
1537
1538  /// SelectIsExpensive - Tells the code generator not to expand operations
1539  /// into sequences that use the select operations if possible.
1540  bool SelectIsExpensive;
1541
1542  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1543  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1544  /// a real cost model is in place.  If we ever optimize for size, this will be
1545  /// set to true unconditionally.
1546  bool IntDivIsCheap;
1547
1548  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1549  /// srl/add/sra for a signed divide by power of two, and let the target handle
1550  /// it.
1551  bool Pow2DivIsCheap;
1552
1553  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1554  /// llvm.setjmp.  Defaults to false.
1555  bool UseUnderscoreSetJmp;
1556
1557  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1558  /// llvm.longjmp.  Defaults to false.
1559  bool UseUnderscoreLongJmp;
1560
1561  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1562  /// PointerTy is.
1563  MVT ShiftAmountTy;
1564
1565  /// BooleanContents - Information about the contents of the high-bits in
1566  /// boolean values held in a type wider than i1.  See getBooleanContents.
1567  BooleanContent BooleanContents;
1568
1569  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1570  /// total cycles or lowest register usage.
1571  SchedPreference SchedPreferenceInfo;
1572
1573  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1574  unsigned JumpBufSize;
1575
1576  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1577  /// buffers
1578  unsigned JumpBufAlignment;
1579
1580  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1581  /// if-converted.
1582  unsigned IfCvtBlockSizeLimit;
1583
1584  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1585  /// duplicated during if-conversion.
1586  unsigned IfCvtDupBlockSizeLimit;
1587
1588  /// PrefLoopAlignment - The perferred loop alignment.
1589  ///
1590  unsigned PrefLoopAlignment;
1591
1592  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1593  /// specifies the register that llvm.savestack/llvm.restorestack should save
1594  /// and restore.
1595  unsigned StackPointerRegisterToSaveRestore;
1596
1597  /// ExceptionPointerRegister - If set to a physical register, this specifies
1598  /// the register that receives the exception address on entry to a landing
1599  /// pad.
1600  unsigned ExceptionPointerRegister;
1601
1602  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1603  /// the register that receives the exception typeid on entry to a landing
1604  /// pad.
1605  unsigned ExceptionSelectorRegister;
1606
1607  /// RegClassForVT - This indicates the default register class to use for
1608  /// each ValueType the target supports natively.
1609  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1610  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1611  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1612
1613  /// TransformToType - For any value types we are promoting or expanding, this
1614  /// contains the value type that we are changing to.  For Expanded types, this
1615  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1616  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1617  /// by the system, this holds the same type (e.g. i32 -> i32).
1618  EVT TransformToType[MVT::LAST_VALUETYPE];
1619
1620  /// OpActions - For each operation and each value type, keep a LegalizeAction
1621  /// that indicates how instruction selection should deal with the operation.
1622  /// Most operations are Legal (aka, supported natively by the target), but
1623  /// operations that are not should be described.  Note that operations on
1624  /// non-legal value types are not described here.
1625  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1626  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1627  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)][ISD::BUILTIN_OP_END];
1628
1629  /// LoadExtActions - For each load of load extension type and each value type,
1630  /// keep a LegalizeAction that indicates how instruction selection should deal
1631  /// with the load.
1632  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1633
1634  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1635  /// indicates how instruction selection should deal with the store.
1636  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1637
1638  /// IndexedModeActions - For each indexed mode and each value type,
1639  /// keep a pair of LegalizeAction that indicates how instruction
1640  /// selection should deal with the load / store.  The first
1641  /// dimension is now the value_type for the reference.  The second
1642  /// dimension is the load [0] vs. store[1].  The third dimension
1643  /// represents the various modes for load store.
1644  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1645
1646  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1647  /// LegalizeAction that indicates how instruction selection should
1648  /// deal with the condition code.
1649  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1650
1651  ValueTypeActionImpl ValueTypeActions;
1652
1653  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1654
1655  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1656  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1657  /// which sets a bit in this array.
1658  unsigned char
1659  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1660
1661  /// PromoteToType - For operations that must be promoted to a specific type,
1662  /// this holds the destination type.  This map should be sparse, so don't hold
1663  /// it as an array.
1664  ///
1665  /// Targets add entries to this map with AddPromotedToType(..), clients access
1666  /// this with getTypeToPromoteTo(..).
1667  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1668    PromoteToType;
1669
1670  /// LibcallRoutineNames - Stores the name each libcall.
1671  ///
1672  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1673
1674  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1675  /// of each of the comparison libcall against zero.
1676  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1677
1678  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1679  /// libcall.
1680  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1681
1682protected:
1683  /// When lowering \@llvm.memset this field specifies the maximum number of
1684  /// store operations that may be substituted for the call to memset. Targets
1685  /// must set this value based on the cost threshold for that target. Targets
1686  /// should assume that the memset will be done using as many of the largest
1687  /// store operations first, followed by smaller ones, if necessary, per
1688  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1689  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1690  /// store.  This only applies to setting a constant array of a constant size.
1691  /// @brief Specify maximum number of store instructions per memset call.
1692  unsigned maxStoresPerMemset;
1693
1694  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1695  /// store operations that may be substituted for a call to memcpy. Targets
1696  /// must set this value based on the cost threshold for that target. Targets
1697  /// should assume that the memcpy will be done using as many of the largest
1698  /// store operations first, followed by smaller ones, if necessary, per
1699  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1700  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1701  /// and one 1-byte store. This only applies to copying a constant array of
1702  /// constant size.
1703  /// @brief Specify maximum bytes of store instructions per memcpy call.
1704  unsigned maxStoresPerMemcpy;
1705
1706  /// When lowering \@llvm.memmove this field specifies the maximum number of
1707  /// store instructions that may be substituted for a call to memmove. Targets
1708  /// must set this value based on the cost threshold for that target. Targets
1709  /// should assume that the memmove will be done using as many of the largest
1710  /// store operations first, followed by smaller ones, if necessary, per
1711  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1712  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1713  /// applies to copying a constant array of constant size.
1714  /// @brief Specify maximum bytes of store instructions per memmove call.
1715  unsigned maxStoresPerMemmove;
1716
1717  /// This field specifies whether the target can benefit from code placement
1718  /// optimization.
1719  bool benefitFromCodePlacementOpt;
1720};
1721} // end llvm namespace
1722
1723#endif
1724