TargetLowering.h revision eac6e1d0c748afc3d1496be0753ffbe5f5a4279b
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/CodeGen/SelectionDAGNodes.h"
29#include "llvm/CodeGen/RuntimeLibcalls.h"
30#include "llvm/ADT/APFloat.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/DebugLoc.h"
36#include "llvm/Target/TargetCallingConv.h"
37#include "llvm/Target/TargetMachine.h"
38#include <climits>
39#include <map>
40#include <vector>
41
42namespace llvm {
43  class AllocaInst;
44  class CallInst;
45  class Function;
46  class FastISel;
47  class FunctionLoweringInfo;
48  class ImmutableCallSite;
49  class MachineBasicBlock;
50  class MachineFunction;
51  class MachineFrameInfo;
52  class MachineInstr;
53  class MachineJumpTableInfo;
54  class MCContext;
55  class MCExpr;
56  class SDNode;
57  class SDValue;
58  class SelectionDAG;
59  class TargetData;
60  class TargetMachine;
61  class TargetRegisterClass;
62  class TargetLoweringObjectFile;
63  class Value;
64
65  // FIXME: should this be here?
66  namespace TLSModel {
67    enum Model {
68      GeneralDynamic,
69      LocalDynamic,
70      InitialExec,
71      LocalExec
72    };
73  }
74  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
75
76
77//===----------------------------------------------------------------------===//
78/// TargetLowering - This class defines information used to lower LLVM code to
79/// legal SelectionDAG operators that the target instruction selector can accept
80/// natively.
81///
82/// This class also defines callbacks that targets must implement to lower
83/// target-specific constructs to SelectionDAG operators.
84///
85class TargetLowering {
86  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
87  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
88public:
89  /// LegalizeAction - This enum indicates whether operations are valid for a
90  /// target, and if not, what action should be used to make them valid.
91  enum LegalizeAction {
92    Legal,      // The target natively supports this operation.
93    Promote,    // This operation should be executed in a larger type.
94    Expand,     // Try to expand this to other ops, otherwise use a libcall.
95    Custom      // Use the LowerOperation hook to implement custom lowering.
96  };
97
98  enum BooleanContent { // How the target represents true/false values.
99    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
100    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
101    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
102  };
103
104  /// NOTE: The constructor takes ownership of TLOF.
105  explicit TargetLowering(const TargetMachine &TM,
106                          const TargetLoweringObjectFile *TLOF);
107  virtual ~TargetLowering();
108
109  const TargetMachine &getTargetMachine() const { return TM; }
110  const TargetData *getTargetData() const { return TD; }
111  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
112
113  bool isBigEndian() const { return !IsLittleEndian; }
114  bool isLittleEndian() const { return IsLittleEndian; }
115  MVT getPointerTy() const { return PointerTy; }
116  MVT getShiftAmountTy() const { return ShiftAmountTy; }
117
118  /// isSelectExpensive - Return true if the select operation is expensive for
119  /// this target.
120  bool isSelectExpensive() const { return SelectIsExpensive; }
121
122  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
123  /// a sequence of several shifts, adds, and multiplies for this target.
124  bool isIntDivCheap() const { return IntDivIsCheap; }
125
126  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
127  /// srl/add/sra.
128  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
129
130  /// getSetCCResultType - Return the ValueType of the result of SETCC
131  /// operations.  Also used to obtain the target's preferred type for
132  /// the condition operand of SELECT and BRCOND nodes.  In the case of
133  /// BRCOND the argument passed is MVT::Other since there are no other
134  /// operands to get a type hint from.
135  virtual
136  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
137
138  /// getCmpLibcallReturnType - Return the ValueType for comparison
139  /// libcalls. Comparions libcalls include floating point comparion calls,
140  /// and Ordered/Unordered check calls on floating point numbers.
141  virtual
142  MVT::SimpleValueType getCmpLibcallReturnType() const;
143
144  /// getBooleanContents - For targets without i1 registers, this gives the
145  /// nature of the high-bits of boolean values held in types wider than i1.
146  /// "Boolean values" are special true/false values produced by nodes like
147  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
148  /// Not to be confused with general values promoted from i1.
149  BooleanContent getBooleanContents() const { return BooleanContents;}
150
151  /// getSchedulingPreference - Return target scheduling preference.
152  Sched::Preference getSchedulingPreference() const {
153    return SchedPreferenceInfo;
154  }
155
156  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
157  /// different scheduling heuristics for different nodes. This function returns
158  /// the preference (or none) for the given node.
159  virtual Sched::Preference getSchedulingPreference(SDNode *N) const {
160    return Sched::None;
161  }
162
163  /// getRegClassFor - Return the register class that should be used for the
164  /// specified value type.
165  virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
166    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
167    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
168    assert(RC && "This value type is not natively supported!");
169    return RC;
170  }
171
172  /// getRepRegClassFor - Return the 'representative' register class for the
173  /// specified value type. The 'representative' register class is the largest
174  /// legal super-reg register class for the register class of the value type.
175  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
176  /// while the rep register class is GR64 on x86_64.
177  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
178    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
179    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
180    return RC;
181  }
182
183  /// getRepRegClassCostFor - Return the cost of the 'representative' register
184  /// class for the specified value type.
185  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
186    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
187    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
188  }
189
190  /// getRegPressureLimit - Return the register pressure "high water mark" for
191  /// the specific register class. The scheduler is in high register pressure
192  /// mode (for the specific register class) if it goes over the limit.
193  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
194                                       MachineFunction &MF) const {
195    return 0;
196  }
197
198  /// isTypeLegal - Return true if the target has native support for the
199  /// specified value type.  This means that it has a register that directly
200  /// holds it without promotions or expansions.
201  bool isTypeLegal(EVT VT) const {
202    assert(!VT.isSimple() ||
203           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
204    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
205  }
206
207  /// isTypeSynthesizable - Return true if it's OK for the compiler to create
208  /// new operations of this type.  All Legal types are synthesizable except
209  /// MMX vector types on X86.  Non-Legal types are not synthesizable.
210  bool isTypeSynthesizable(EVT VT) const {
211    return isTypeLegal(VT) && Synthesizable[VT.getSimpleVT().SimpleTy];
212  }
213
214  class ValueTypeActionImpl {
215    /// ValueTypeActions - For each value type, keep a LegalizeAction enum
216    /// that indicates how instruction selection should deal with the type.
217    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
218
219    LegalizeAction getExtendedTypeAction(EVT VT) const {
220      // Handle non-vector integers.
221      if (!VT.isVector()) {
222        assert(VT.isInteger() && "Unsupported extended type!");
223        unsigned BitSize = VT.getSizeInBits();
224        // First promote to a power-of-two size, then expand if necessary.
225        if (BitSize < 8 || !isPowerOf2_32(BitSize))
226          return Promote;
227        return Expand;
228      }
229
230      // If this is a type smaller than a legal vector type, promote to that
231      // type, e.g. <2 x float> -> <4 x float>.
232      if (VT.getVectorElementType().isSimple() &&
233          VT.getVectorNumElements() != 1) {
234        MVT EltType = VT.getVectorElementType().getSimpleVT();
235        unsigned NumElts = VT.getVectorNumElements();
236        while (1) {
237          // Round up to the nearest power of 2.
238          NumElts = (unsigned)NextPowerOf2(NumElts);
239
240          MVT LargerVector = MVT::getVectorVT(EltType, NumElts);
241          if (LargerVector == MVT()) break;
242
243          // If this the larger type is legal, promote to it.
244          if (getTypeAction(LargerVector) == Legal) return Promote;
245        }
246      }
247
248      return VT.isPow2VectorType() ? Expand : Promote;
249    }
250  public:
251    ValueTypeActionImpl() {
252      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
253    }
254
255    LegalizeAction getTypeAction(EVT VT) const {
256      if (!VT.isExtended())
257        return getTypeAction(VT.getSimpleVT());
258      return getExtendedTypeAction(VT);
259    }
260
261    LegalizeAction getTypeAction(MVT VT) const {
262      return (LegalizeAction)ValueTypeActions[VT.SimpleTy];
263    }
264
265    void setTypeAction(EVT VT, LegalizeAction Action) {
266      unsigned I = VT.getSimpleVT().SimpleTy;
267      ValueTypeActions[I] = Action;
268    }
269  };
270
271  const ValueTypeActionImpl &getValueTypeActions() const {
272    return ValueTypeActions;
273  }
274
275  /// getTypeAction - Return how we should legalize values of this type, either
276  /// it is already legal (return 'Legal') or we need to promote it to a larger
277  /// type (return 'Promote'), or we need to expand it into multiple registers
278  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
279  LegalizeAction getTypeAction(EVT VT) const {
280    return ValueTypeActions.getTypeAction(VT);
281  }
282  LegalizeAction getTypeAction(MVT VT) const {
283    return ValueTypeActions.getTypeAction(VT);
284  }
285
286  /// getTypeToTransformTo - For types supported by the target, this is an
287  /// identity function.  For types that must be promoted to larger types, this
288  /// returns the larger type to promote to.  For integer types that are larger
289  /// than the largest integer register, this contains one step in the expansion
290  /// to get to the smaller register. For illegal floating point types, this
291  /// returns the integer type to transform to.
292  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
293    if (VT.isSimple()) {
294      assert((unsigned)VT.getSimpleVT().SimpleTy <
295             array_lengthof(TransformToType));
296      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
297      assert(getTypeAction(NVT) != Promote &&
298             "Promote may not follow Expand or Promote");
299      return NVT;
300    }
301
302    if (VT.isVector()) {
303      EVT NVT = VT.getPow2VectorType(Context);
304      if (NVT == VT) {
305        // Vector length is a power of 2 - split to half the size.
306        unsigned NumElts = VT.getVectorNumElements();
307        EVT EltVT = VT.getVectorElementType();
308        return (NumElts == 1) ?
309          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
310      }
311      // Promote to a power of two size, avoiding multi-step promotion.
312      return getTypeAction(NVT) == Promote ?
313        getTypeToTransformTo(Context, NVT) : NVT;
314    } else if (VT.isInteger()) {
315      EVT NVT = VT.getRoundIntegerType(Context);
316      if (NVT == VT)      // Size is a power of two - expand to half the size.
317        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
318
319      // Promote to a power of two size, avoiding multi-step promotion.
320      return getTypeAction(NVT) == Promote ?
321        getTypeToTransformTo(Context, NVT) : NVT;
322    }
323    assert(0 && "Unsupported extended type!");
324    return MVT(MVT::Other); // Not reached
325  }
326
327  /// getTypeToExpandTo - For types supported by the target, this is an
328  /// identity function.  For types that must be expanded (i.e. integer types
329  /// that are larger than the largest integer register or illegal floating
330  /// point types), this returns the largest legal type it will be expanded to.
331  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
332    assert(!VT.isVector());
333    while (true) {
334      switch (getTypeAction(VT)) {
335      case Legal:
336        return VT;
337      case Expand:
338        VT = getTypeToTransformTo(Context, VT);
339        break;
340      default:
341        assert(false && "Type is not legal nor is it to be expanded!");
342        return VT;
343      }
344    }
345    return VT;
346  }
347
348  /// getVectorTypeBreakdown - Vector types are broken down into some number of
349  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
350  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
351  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
352  ///
353  /// This method returns the number of registers needed, and the VT for each
354  /// register.  It also returns the VT and quantity of the intermediate values
355  /// before they are promoted/expanded.
356  ///
357  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
358                                  EVT &IntermediateVT,
359                                  unsigned &NumIntermediates,
360                                  EVT &RegisterVT) const;
361
362  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
363  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
364  /// this is the case, it returns true and store the intrinsic
365  /// information into the IntrinsicInfo that was passed to the function.
366  struct IntrinsicInfo {
367    unsigned     opc;         // target opcode
368    EVT          memVT;       // memory VT
369    const Value* ptrVal;      // value representing memory location
370    int          offset;      // offset off of ptrVal
371    unsigned     align;       // alignment
372    bool         vol;         // is volatile?
373    bool         readMem;     // reads memory?
374    bool         writeMem;    // writes memory?
375  };
376
377  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
378                                  const CallInst &I, unsigned Intrinsic) const {
379    return false;
380  }
381
382  /// isFPImmLegal - Returns true if the target can instruction select the
383  /// specified FP immediate natively. If false, the legalizer will materialize
384  /// the FP immediate as a load from a constant pool.
385  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
386    return false;
387  }
388
389  /// isShuffleMaskLegal - Targets can use this to indicate that they only
390  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
391  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
392  /// are assumed to be legal.
393  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
394                                  EVT VT) const {
395    return true;
396  }
397
398  /// canOpTrap - Returns true if the operation can trap for the value type.
399  /// VT must be a legal type. By default, we optimistically assume most
400  /// operations don't trap except for divide and remainder.
401  virtual bool canOpTrap(unsigned Op, EVT VT) const;
402
403  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
404  /// used by Targets can use this to indicate if there is a suitable
405  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
406  /// pool entry.
407  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
408                                      EVT VT) const {
409    return false;
410  }
411
412  /// getOperationAction - Return how this operation should be treated: either
413  /// it is legal, needs to be promoted to a larger size, needs to be
414  /// expanded to some other code sequence, or the target has a custom expander
415  /// for it.
416  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
417    if (VT.isExtended()) return Expand;
418    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
419    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
420    return (LegalizeAction)OpActions[I][Op];
421  }
422
423  /// isOperationLegalOrCustom - Return true if the specified operation is
424  /// legal on this target or can be made legal with custom lowering. This
425  /// is used to help guide high-level lowering decisions.
426  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
427    return (VT == MVT::Other || isTypeLegal(VT)) &&
428      (getOperationAction(Op, VT) == Legal ||
429       getOperationAction(Op, VT) == Custom);
430  }
431
432  /// isOperationLegal - Return true if the specified operation is legal on this
433  /// target.
434  bool isOperationLegal(unsigned Op, EVT VT) const {
435    return (VT == MVT::Other || isTypeLegal(VT)) &&
436           getOperationAction(Op, VT) == Legal;
437  }
438
439  /// getLoadExtAction - Return how this load with extension should be treated:
440  /// either it is legal, needs to be promoted to a larger size, needs to be
441  /// expanded to some other code sequence, or the target has a custom expander
442  /// for it.
443  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
444    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
445           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
446           "Table isn't big enough!");
447    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
448  }
449
450  /// isLoadExtLegal - Return true if the specified load with extension is legal
451  /// on this target.
452  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
453    return VT.isSimple() &&
454      (getLoadExtAction(ExtType, VT) == Legal ||
455       getLoadExtAction(ExtType, VT) == Custom);
456  }
457
458  /// getTruncStoreAction - Return how this store with truncation should be
459  /// treated: either it is legal, needs to be promoted to a larger size, needs
460  /// to be expanded to some other code sequence, or the target has a custom
461  /// expander for it.
462  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
463    assert((unsigned)ValVT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
464           (unsigned)MemVT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
465           "Table isn't big enough!");
466    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
467                                            [MemVT.getSimpleVT().SimpleTy];
468  }
469
470  /// isTruncStoreLegal - Return true if the specified store with truncation is
471  /// legal on this target.
472  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
473    return isTypeLegal(ValVT) && MemVT.isSimple() &&
474      (getTruncStoreAction(ValVT, MemVT) == Legal ||
475       getTruncStoreAction(ValVT, MemVT) == Custom);
476  }
477
478  /// getIndexedLoadAction - Return how the indexed load should be treated:
479  /// either it is legal, needs to be promoted to a larger size, needs to be
480  /// expanded to some other code sequence, or the target has a custom expander
481  /// for it.
482  LegalizeAction
483  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
484    assert( IdxMode < ISD::LAST_INDEXED_MODE &&
485           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
486           "Table isn't big enough!");
487    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
488    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
489  }
490
491  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
492  /// on this target.
493  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
494    return VT.isSimple() &&
495      (getIndexedLoadAction(IdxMode, VT) == Legal ||
496       getIndexedLoadAction(IdxMode, VT) == Custom);
497  }
498
499  /// getIndexedStoreAction - Return how the indexed store should be treated:
500  /// either it is legal, needs to be promoted to a larger size, needs to be
501  /// expanded to some other code sequence, or the target has a custom expander
502  /// for it.
503  LegalizeAction
504  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
505    assert( IdxMode < ISD::LAST_INDEXED_MODE &&
506           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
507           "Table isn't big enough!");
508    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
509    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
510  }
511
512  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
513  /// on this target.
514  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
515    return VT.isSimple() &&
516      (getIndexedStoreAction(IdxMode, VT) == Legal ||
517       getIndexedStoreAction(IdxMode, VT) == Custom);
518  }
519
520  /// getCondCodeAction - Return how the condition code should be treated:
521  /// either it is legal, needs to be expanded to some other code sequence,
522  /// or the target has a custom expander for it.
523  LegalizeAction
524  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
525    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
526           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
527           "Table isn't big enough!");
528    LegalizeAction Action = (LegalizeAction)
529      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
530    assert(Action != Promote && "Can't promote condition code!");
531    return Action;
532  }
533
534  /// isCondCodeLegal - Return true if the specified condition code is legal
535  /// on this target.
536  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
537    return getCondCodeAction(CC, VT) == Legal ||
538           getCondCodeAction(CC, VT) == Custom;
539  }
540
541
542  /// getTypeToPromoteTo - If the action for this operation is to promote, this
543  /// method returns the ValueType to promote to.
544  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
545    assert(getOperationAction(Op, VT) == Promote &&
546           "This operation isn't promoted!");
547
548    // See if this has an explicit type specified.
549    std::map<std::pair<unsigned, MVT::SimpleValueType>,
550             MVT::SimpleValueType>::const_iterator PTTI =
551      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
552    if (PTTI != PromoteToType.end()) return PTTI->second;
553
554    assert((VT.isInteger() || VT.isFloatingPoint()) &&
555           "Cannot autopromote this type, add it with AddPromotedToType.");
556
557    EVT NVT = VT;
558    do {
559      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
560      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
561             "Didn't find type to promote to!");
562    } while (!isTypeLegal(NVT) ||
563              getOperationAction(Op, NVT) == Promote);
564    return NVT;
565  }
566
567  /// getValueType - Return the EVT corresponding to this LLVM type.
568  /// This is fixed by the LLVM operations except for the pointer size.  If
569  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
570  /// counterpart (e.g. structs), otherwise it will assert.
571  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
572    EVT VT = EVT::getEVT(Ty, AllowUnknown);
573    return VT == MVT::iPTR ? PointerTy : VT;
574  }
575
576  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
577  /// function arguments in the caller parameter area.  This is the actual
578  /// alignment, not its logarithm.
579  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
580
581  /// getRegisterType - Return the type of registers that this ValueType will
582  /// eventually require.
583  EVT getRegisterType(MVT VT) const {
584    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
585    return RegisterTypeForVT[VT.SimpleTy];
586  }
587
588  /// getRegisterType - Return the type of registers that this ValueType will
589  /// eventually require.
590  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
591    if (VT.isSimple()) {
592      assert((unsigned)VT.getSimpleVT().SimpleTy <
593                array_lengthof(RegisterTypeForVT));
594      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
595    }
596    if (VT.isVector()) {
597      EVT VT1, RegisterVT;
598      unsigned NumIntermediates;
599      (void)getVectorTypeBreakdown(Context, VT, VT1,
600                                   NumIntermediates, RegisterVT);
601      return RegisterVT;
602    }
603    if (VT.isInteger()) {
604      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
605    }
606    assert(0 && "Unsupported extended type!");
607    return EVT(MVT::Other); // Not reached
608  }
609
610  /// getNumRegisters - Return the number of registers that this ValueType will
611  /// eventually require.  This is one for any types promoted to live in larger
612  /// registers, but may be more than one for types (like i64) that are split
613  /// into pieces.  For types like i140, which are first promoted then expanded,
614  /// it is the number of registers needed to hold all the bits of the original
615  /// type.  For an i140 on a 32 bit machine this means 5 registers.
616  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
617    if (VT.isSimple()) {
618      assert((unsigned)VT.getSimpleVT().SimpleTy <
619                array_lengthof(NumRegistersForVT));
620      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
621    }
622    if (VT.isVector()) {
623      EVT VT1, VT2;
624      unsigned NumIntermediates;
625      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
626    }
627    if (VT.isInteger()) {
628      unsigned BitWidth = VT.getSizeInBits();
629      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
630      return (BitWidth + RegWidth - 1) / RegWidth;
631    }
632    assert(0 && "Unsupported extended type!");
633    return 0; // Not reached
634  }
635
636  /// ShouldShrinkFPConstant - If true, then instruction selection should
637  /// seek to shrink the FP constant of the specified type to a smaller type
638  /// in order to save space and / or reduce runtime.
639  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
640
641  /// hasTargetDAGCombine - If true, the target has custom DAG combine
642  /// transformations that it can perform for the specified node.
643  bool hasTargetDAGCombine(ISD::NodeType NT) const {
644    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
645    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
646  }
647
648  /// This function returns the maximum number of store operations permitted
649  /// to replace a call to llvm.memset. The value is set by the target at the
650  /// performance threshold for such a replacement.
651  /// @brief Get maximum # of store operations permitted for llvm.memset
652  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
653
654  /// This function returns the maximum number of store operations permitted
655  /// to replace a call to llvm.memcpy. The value is set by the target at the
656  /// performance threshold for such a replacement.
657  /// @brief Get maximum # of store operations permitted for llvm.memcpy
658  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
659
660  /// This function returns the maximum number of store operations permitted
661  /// to replace a call to llvm.memmove. The value is set by the target at the
662  /// performance threshold for such a replacement.
663  /// @brief Get maximum # of store operations permitted for llvm.memmove
664  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
665
666  /// This function returns true if the target allows unaligned memory accesses.
667  /// of the specified type. This is used, for example, in situations where an
668  /// array copy/move/set is  converted to a sequence of store operations. It's
669  /// use helps to ensure that such replacements don't generate code that causes
670  /// an alignment error  (trap) on the target machine.
671  /// @brief Determine if the target supports unaligned memory accesses.
672  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
673    return false;
674  }
675
676  /// This function returns true if the target would benefit from code placement
677  /// optimization.
678  /// @brief Determine if the target should perform code placement optimization.
679  bool shouldOptimizeCodePlacement() const {
680    return benefitFromCodePlacementOpt;
681  }
682
683  /// getOptimalMemOpType - Returns the target specific optimal type for load
684  /// and store operations as a result of memset, memcpy, and memmove
685  /// lowering. If DstAlign is zero that means it's safe to destination
686  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
687  /// means there isn't a need to check it against alignment requirement,
688  /// probably because the source does not need to be loaded. If
689  /// 'NonScalarIntSafe' is true, that means it's safe to return a
690  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
691  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
692  /// constant so it does not need to be loaded.
693  /// It returns EVT::Other if the type should be determined using generic
694  /// target-independent logic.
695  virtual EVT getOptimalMemOpType(uint64_t Size,
696                                  unsigned DstAlign, unsigned SrcAlign,
697                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
698                                  MachineFunction &MF) const {
699    return MVT::Other;
700  }
701
702  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
703  /// to implement llvm.setjmp.
704  bool usesUnderscoreSetJmp() const {
705    return UseUnderscoreSetJmp;
706  }
707
708  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
709  /// to implement llvm.longjmp.
710  bool usesUnderscoreLongJmp() const {
711    return UseUnderscoreLongJmp;
712  }
713
714  /// getStackPointerRegisterToSaveRestore - If a physical register, this
715  /// specifies the register that llvm.savestack/llvm.restorestack should save
716  /// and restore.
717  unsigned getStackPointerRegisterToSaveRestore() const {
718    return StackPointerRegisterToSaveRestore;
719  }
720
721  /// getExceptionAddressRegister - If a physical register, this returns
722  /// the register that receives the exception address on entry to a landing
723  /// pad.
724  unsigned getExceptionAddressRegister() const {
725    return ExceptionPointerRegister;
726  }
727
728  /// getExceptionSelectorRegister - If a physical register, this returns
729  /// the register that receives the exception typeid on entry to a landing
730  /// pad.
731  unsigned getExceptionSelectorRegister() const {
732    return ExceptionSelectorRegister;
733  }
734
735  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
736  /// set, the default is 200)
737  unsigned getJumpBufSize() const {
738    return JumpBufSize;
739  }
740
741  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
742  /// (if never set, the default is 0)
743  unsigned getJumpBufAlignment() const {
744    return JumpBufAlignment;
745  }
746
747  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
748  /// argument.
749  unsigned getMinStackArgumentAlignment() const {
750    return MinStackArgumentAlignment;
751  }
752
753  /// getPrefLoopAlignment - return the preferred loop alignment.
754  ///
755  unsigned getPrefLoopAlignment() const {
756    return PrefLoopAlignment;
757  }
758
759  /// getShouldFoldAtomicFences - return whether the combiner should fold
760  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
761  ///
762  bool getShouldFoldAtomicFences() const {
763    return ShouldFoldAtomicFences;
764  }
765
766  /// getPreIndexedAddressParts - returns true by value, base pointer and
767  /// offset pointer and addressing mode by reference if the node's address
768  /// can be legally represented as pre-indexed load / store address.
769  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
770                                         SDValue &Offset,
771                                         ISD::MemIndexedMode &AM,
772                                         SelectionDAG &DAG) const {
773    return false;
774  }
775
776  /// getPostIndexedAddressParts - returns true by value, base pointer and
777  /// offset pointer and addressing mode by reference if this node can be
778  /// combined with a load / store to form a post-indexed load / store.
779  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
780                                          SDValue &Base, SDValue &Offset,
781                                          ISD::MemIndexedMode &AM,
782                                          SelectionDAG &DAG) const {
783    return false;
784  }
785
786  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
787  /// current function.  The returned value is a member of the
788  /// MachineJumpTableInfo::JTEntryKind enum.
789  virtual unsigned getJumpTableEncoding() const;
790
791  virtual const MCExpr *
792  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
793                            const MachineBasicBlock *MBB, unsigned uid,
794                            MCContext &Ctx) const {
795    assert(0 && "Need to implement this hook if target has custom JTIs");
796    return 0;
797  }
798
799  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
800  /// jumptable.
801  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
802                                           SelectionDAG &DAG) const;
803
804  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
805  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
806  /// MCExpr.
807  virtual const MCExpr *
808  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
809                               unsigned JTI, MCContext &Ctx) const;
810
811  /// isOffsetFoldingLegal - Return true if folding a constant offset
812  /// with the given GlobalAddress is legal.  It is frequently not legal in
813  /// PIC relocation models.
814  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
815
816  /// getFunctionAlignment - Return the Log2 alignment of this function.
817  virtual unsigned getFunctionAlignment(const Function *) const = 0;
818
819  /// getStackCookieLocation - Return true if the target stores stack
820  /// protector cookies at a fixed offset in some non-standard address
821  /// space, and populates the address space and offset as
822  /// appropriate.
823  virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const {
824    return false;
825  }
826
827  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
828  /// used for loads / stores from the global.
829  virtual unsigned getMaximalGlobalOffset() const {
830    return 0;
831  }
832
833  //===--------------------------------------------------------------------===//
834  // TargetLowering Optimization Methods
835  //
836
837  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
838  /// SDValues for returning information from TargetLowering to its clients
839  /// that want to combine
840  struct TargetLoweringOpt {
841    SelectionDAG &DAG;
842    bool LegalTys;
843    bool LegalOps;
844    SDValue Old;
845    SDValue New;
846
847    explicit TargetLoweringOpt(SelectionDAG &InDAG,
848                               bool LT, bool LO) :
849      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
850
851    bool LegalTypes() const { return LegalTys; }
852    bool LegalOperations() const { return LegalOps; }
853
854    bool CombineTo(SDValue O, SDValue N) {
855      Old = O;
856      New = N;
857      return true;
858    }
859
860    /// ShrinkDemandedConstant - Check to see if the specified operand of the
861    /// specified instruction is a constant integer.  If so, check to see if
862    /// there are any bits set in the constant that are not demanded.  If so,
863    /// shrink the constant and return true.
864    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
865
866    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
867    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
868    /// cast, but it could be generalized for targets with other types of
869    /// implicit widening casts.
870    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
871                          DebugLoc dl);
872  };
873
874  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
875  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
876  /// use this information to simplify Op, create a new simplified DAG node and
877  /// return true, returning the original and new nodes in Old and New.
878  /// Otherwise, analyze the expression and return a mask of KnownOne and
879  /// KnownZero bits for the expression (used to simplify the caller).
880  /// The KnownZero/One bits may only be accurate for those bits in the
881  /// DemandedMask.
882  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
883                            APInt &KnownZero, APInt &KnownOne,
884                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
885
886  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
887  /// Mask are known to be either zero or one and return them in the
888  /// KnownZero/KnownOne bitsets.
889  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
890                                              const APInt &Mask,
891                                              APInt &KnownZero,
892                                              APInt &KnownOne,
893                                              const SelectionDAG &DAG,
894                                              unsigned Depth = 0) const;
895
896  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
897  /// targets that want to expose additional information about sign bits to the
898  /// DAG Combiner.
899  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
900                                                   unsigned Depth = 0) const;
901
902  struct DAGCombinerInfo {
903    void *DC;  // The DAG Combiner object.
904    bool BeforeLegalize;
905    bool BeforeLegalizeOps;
906    bool CalledByLegalizer;
907  public:
908    SelectionDAG &DAG;
909
910    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
911      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
912        CalledByLegalizer(cl), DAG(dag) {}
913
914    bool isBeforeLegalize() const { return BeforeLegalize; }
915    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
916    bool isCalledByLegalizer() const { return CalledByLegalizer; }
917
918    void AddToWorklist(SDNode *N);
919    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
920                      bool AddTo = true);
921    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
922    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
923
924    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
925  };
926
927  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
928  /// and cc. If it is unable to simplify it, return a null SDValue.
929  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
930                          ISD::CondCode Cond, bool foldBooleans,
931                          DAGCombinerInfo &DCI, DebugLoc dl) const;
932
933  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
934  /// node is a GlobalAddress + offset.
935  virtual bool
936  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
937
938  /// PerformDAGCombine - This method will be invoked for all target nodes and
939  /// for any target-independent nodes that the target has registered with
940  /// invoke it for.
941  ///
942  /// The semantics are as follows:
943  /// Return Value:
944  ///   SDValue.Val == 0   - No change was made
945  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
946  ///   otherwise          - N should be replaced by the returned Operand.
947  ///
948  /// In addition, methods provided by DAGCombinerInfo may be used to perform
949  /// more complex transformations.
950  ///
951  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
952
953  /// isTypeDesirableForOp - Return true if the target has native support for
954  /// the specified value type and it is 'desirable' to use the type for the
955  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
956  /// instruction encodings are longer and some i16 instructions are slow.
957  virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
958    // By default, assume all legal types are desirable.
959    return isTypeLegal(VT);
960  }
961
962  /// IsDesirableToPromoteOp - This method query the target whether it is
963  /// beneficial for dag combiner to promote the specified node. If true, it
964  /// should return the desired promotion type by reference.
965  virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
966    return false;
967  }
968
969  //===--------------------------------------------------------------------===//
970  // TargetLowering Configuration Methods - These methods should be invoked by
971  // the derived class constructor to configure this object for the target.
972  //
973
974protected:
975  /// setShiftAmountType - Describe the type that should be used for shift
976  /// amounts.  This type defaults to the pointer type.
977  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
978
979  /// setBooleanContents - Specify how the target extends the result of a
980  /// boolean value from i1 to a wider type.  See getBooleanContents.
981  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
982
983  /// setSchedulingPreference - Specify the target scheduling preference.
984  void setSchedulingPreference(Sched::Preference Pref) {
985    SchedPreferenceInfo = Pref;
986  }
987
988  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
989  /// use _setjmp to implement llvm.setjmp or the non _ version.
990  /// Defaults to false.
991  void setUseUnderscoreSetJmp(bool Val) {
992    UseUnderscoreSetJmp = Val;
993  }
994
995  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
996  /// use _longjmp to implement llvm.longjmp or the non _ version.
997  /// Defaults to false.
998  void setUseUnderscoreLongJmp(bool Val) {
999    UseUnderscoreLongJmp = Val;
1000  }
1001
1002  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
1003  /// specifies the register that llvm.savestack/llvm.restorestack should save
1004  /// and restore.
1005  void setStackPointerRegisterToSaveRestore(unsigned R) {
1006    StackPointerRegisterToSaveRestore = R;
1007  }
1008
1009  /// setExceptionPointerRegister - If set to a physical register, this sets
1010  /// the register that receives the exception address on entry to a landing
1011  /// pad.
1012  void setExceptionPointerRegister(unsigned R) {
1013    ExceptionPointerRegister = R;
1014  }
1015
1016  /// setExceptionSelectorRegister - If set to a physical register, this sets
1017  /// the register that receives the exception typeid on entry to a landing
1018  /// pad.
1019  void setExceptionSelectorRegister(unsigned R) {
1020    ExceptionSelectorRegister = R;
1021  }
1022
1023  /// SelectIsExpensive - Tells the code generator not to expand operations
1024  /// into sequences that use the select operations if possible.
1025  void setSelectIsExpensive() { SelectIsExpensive = true; }
1026
1027  /// setIntDivIsCheap - Tells the code generator that integer divide is
1028  /// expensive, and if possible, should be replaced by an alternate sequence
1029  /// of instructions not containing an integer divide.
1030  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1031
1032  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1033  /// srl/add/sra for a signed divide by power of two, and let the target handle
1034  /// it.
1035  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1036
1037  /// addRegisterClass - Add the specified register class as an available
1038  /// regclass for the specified value type.  This indicates the selector can
1039  /// handle values of that class natively.
1040  void addRegisterClass(EVT VT, TargetRegisterClass *RC,
1041                        bool isSynthesizable = true) {
1042    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1043    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1044    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1045    Synthesizable[VT.getSimpleVT().SimpleTy] = isSynthesizable;
1046  }
1047
1048  /// findRepresentativeClass - Return the largest legal super-reg register class
1049  /// of the register class for the specified type and its associated "cost".
1050  virtual std::pair<const TargetRegisterClass*, uint8_t>
1051  findRepresentativeClass(EVT VT) const;
1052
1053  /// computeRegisterProperties - Once all of the register classes are added,
1054  /// this allows us to compute derived properties we expose.
1055  void computeRegisterProperties();
1056
1057  /// setOperationAction - Indicate that the specified operation does not work
1058  /// with the specified type and indicate what to do about it.
1059  void setOperationAction(unsigned Op, MVT VT,
1060                          LegalizeAction Action) {
1061    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1062    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1063  }
1064
1065  /// setLoadExtAction - Indicate that the specified load with extension does
1066  /// not work with the specified type and indicate what to do about it.
1067  void setLoadExtAction(unsigned ExtType, MVT VT,
1068                        LegalizeAction Action) {
1069    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
1070           (unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1071           "Table isn't big enough!");
1072    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1073  }
1074
1075  /// setTruncStoreAction - Indicate that the specified truncating store does
1076  /// not work with the specified type and indicate what to do about it.
1077  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1078                           LegalizeAction Action) {
1079    assert((unsigned)ValVT.SimpleTy < MVT::LAST_VALUETYPE &&
1080           (unsigned)MemVT.SimpleTy < MVT::LAST_VALUETYPE &&
1081           "Table isn't big enough!");
1082    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1083  }
1084
1085  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1086  /// does not work with the specified type and indicate what to do abort
1087  /// it. NOTE: All indexed mode loads are initialized to Expand in
1088  /// TargetLowering.cpp
1089  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1090                            LegalizeAction Action) {
1091    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1092           IdxMode < ISD::LAST_INDEXED_MODE &&
1093           (unsigned)Action < 0xf &&
1094           "Table isn't big enough!");
1095    // Load action are kept in the upper half.
1096    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1097    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1098  }
1099
1100  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1101  /// does not work with the specified type and indicate what to do about
1102  /// it. NOTE: All indexed mode stores are initialized to Expand in
1103  /// TargetLowering.cpp
1104  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1105                             LegalizeAction Action) {
1106    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1107           IdxMode < ISD::LAST_INDEXED_MODE &&
1108           (unsigned)Action < 0xf &&
1109           "Table isn't big enough!");
1110    // Store action are kept in the lower half.
1111    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1112    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1113  }
1114
1115  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1116  /// supported on the target and indicate what to do about it.
1117  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1118                         LegalizeAction Action) {
1119    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1120           (unsigned)CC < array_lengthof(CondCodeActions) &&
1121           "Table isn't big enough!");
1122    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1123    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1124  }
1125
1126  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1127  /// promotion code defaults to trying a larger integer/fp until it can find
1128  /// one that works.  If that default is insufficient, this method can be used
1129  /// by the target to override the default.
1130  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1131    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1132  }
1133
1134  /// setTargetDAGCombine - Targets should invoke this method for each target
1135  /// independent node that they want to provide a custom DAG combiner for by
1136  /// implementing the PerformDAGCombine virtual method.
1137  void setTargetDAGCombine(ISD::NodeType NT) {
1138    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1139    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1140  }
1141
1142  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1143  /// bytes); default is 200
1144  void setJumpBufSize(unsigned Size) {
1145    JumpBufSize = Size;
1146  }
1147
1148  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1149  /// alignment (in bytes); default is 0
1150  void setJumpBufAlignment(unsigned Align) {
1151    JumpBufAlignment = Align;
1152  }
1153
1154  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1155  /// alignment is zero, it means the target does not care about loop alignment.
1156  void setPrefLoopAlignment(unsigned Align) {
1157    PrefLoopAlignment = Align;
1158  }
1159
1160  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1161  /// argument.
1162  void setMinStackArgumentAlignment(unsigned Align) {
1163    MinStackArgumentAlignment = Align;
1164  }
1165
1166  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1167  /// atomic operation intrinsics includes locking. Default is false.
1168  void setShouldFoldAtomicFences(bool fold) {
1169    ShouldFoldAtomicFences = fold;
1170  }
1171
1172public:
1173  //===--------------------------------------------------------------------===//
1174  // Lowering methods - These methods must be implemented by targets so that
1175  // the SelectionDAGLowering code knows how to lower these.
1176  //
1177
1178  /// LowerFormalArguments - This hook must be implemented to lower the
1179  /// incoming (formal) arguments, described by the Ins array, into the
1180  /// specified DAG. The implementation should fill in the InVals array
1181  /// with legal-type argument values, and return the resulting token
1182  /// chain value.
1183  ///
1184  virtual SDValue
1185    LowerFormalArguments(SDValue Chain,
1186                         CallingConv::ID CallConv, bool isVarArg,
1187                         const SmallVectorImpl<ISD::InputArg> &Ins,
1188                         DebugLoc dl, SelectionDAG &DAG,
1189                         SmallVectorImpl<SDValue> &InVals) const {
1190    assert(0 && "Not Implemented");
1191    return SDValue();    // this is here to silence compiler errors
1192  }
1193
1194  /// LowerCallTo - This function lowers an abstract call to a function into an
1195  /// actual call.  This returns a pair of operands.  The first element is the
1196  /// return value for the function (if RetTy is not VoidTy).  The second
1197  /// element is the outgoing token chain. It calls LowerCall to do the actual
1198  /// lowering.
1199  struct ArgListEntry {
1200    SDValue Node;
1201    const Type* Ty;
1202    bool isSExt  : 1;
1203    bool isZExt  : 1;
1204    bool isInReg : 1;
1205    bool isSRet  : 1;
1206    bool isNest  : 1;
1207    bool isByVal : 1;
1208    uint16_t Alignment;
1209
1210    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1211      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1212  };
1213  typedef std::vector<ArgListEntry> ArgListTy;
1214  std::pair<SDValue, SDValue>
1215  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1216              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1217              CallingConv::ID CallConv, bool isTailCall,
1218              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1219              SelectionDAG &DAG, DebugLoc dl) const;
1220
1221  /// LowerCall - This hook must be implemented to lower calls into the
1222  /// the specified DAG. The outgoing arguments to the call are described
1223  /// by the Outs array, and the values to be returned by the call are
1224  /// described by the Ins array. The implementation should fill in the
1225  /// InVals array with legal-type return values from the call, and return
1226  /// the resulting token chain value.
1227  virtual SDValue
1228    LowerCall(SDValue Chain, SDValue Callee,
1229              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1230              const SmallVectorImpl<ISD::OutputArg> &Outs,
1231              const SmallVectorImpl<SDValue> &OutVals,
1232              const SmallVectorImpl<ISD::InputArg> &Ins,
1233              DebugLoc dl, SelectionDAG &DAG,
1234              SmallVectorImpl<SDValue> &InVals) const {
1235    assert(0 && "Not Implemented");
1236    return SDValue();    // this is here to silence compiler errors
1237  }
1238
1239  /// CanLowerReturn - This hook should be implemented to check whether the
1240  /// return values described by the Outs array can fit into the return
1241  /// registers.  If false is returned, an sret-demotion is performed.
1242  ///
1243  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1244               const SmallVectorImpl<ISD::OutputArg> &Outs,
1245               LLVMContext &Context) const
1246  {
1247    // Return true by default to get preexisting behavior.
1248    return true;
1249  }
1250
1251  /// LowerReturn - This hook must be implemented to lower outgoing
1252  /// return values, described by the Outs array, into the specified
1253  /// DAG. The implementation should return the resulting token chain
1254  /// value.
1255  ///
1256  virtual SDValue
1257    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1258                const SmallVectorImpl<ISD::OutputArg> &Outs,
1259                const SmallVectorImpl<SDValue> &OutVals,
1260                DebugLoc dl, SelectionDAG &DAG) const {
1261    assert(0 && "Not Implemented");
1262    return SDValue();    // this is here to silence compiler errors
1263  }
1264
1265  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1266  /// to legalize nodes with an illegal operand type but legal result types.
1267  /// It replaces the LowerOperation callback in the type Legalizer.
1268  /// The reason we can not do away with LowerOperation entirely is that
1269  /// LegalizeDAG isn't yet ready to use this callback.
1270  /// TODO: Consider merging with ReplaceNodeResults.
1271
1272  /// The target places new result values for the node in Results (their number
1273  /// and types must exactly match those of the original return values of
1274  /// the node), or leaves Results empty, which indicates that the node is not
1275  /// to be custom lowered after all.
1276  /// The default implementation calls LowerOperation.
1277  virtual void LowerOperationWrapper(SDNode *N,
1278                                     SmallVectorImpl<SDValue> &Results,
1279                                     SelectionDAG &DAG) const;
1280
1281  /// LowerOperation - This callback is invoked for operations that are
1282  /// unsupported by the target, which are registered to use 'custom' lowering,
1283  /// and whose defined values are all legal.
1284  /// If the target has no operations that require custom lowering, it need not
1285  /// implement this.  The default implementation of this aborts.
1286  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1287
1288  /// ReplaceNodeResults - This callback is invoked when a node result type is
1289  /// illegal for the target, and the operation was registered to use 'custom'
1290  /// lowering for that result type.  The target places new result values for
1291  /// the node in Results (their number and types must exactly match those of
1292  /// the original return values of the node), or leaves Results empty, which
1293  /// indicates that the node is not to be custom lowered after all.
1294  ///
1295  /// If the target has no operations that require custom lowering, it need not
1296  /// implement this.  The default implementation aborts.
1297  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1298                                  SelectionDAG &DAG) const {
1299    assert(0 && "ReplaceNodeResults not implemented for this target!");
1300  }
1301
1302  /// getTargetNodeName() - This method returns the name of a target specific
1303  /// DAG node.
1304  virtual const char *getTargetNodeName(unsigned Opcode) const;
1305
1306  /// createFastISel - This method returns a target specific FastISel object,
1307  /// or null if the target does not support "fast" ISel.
1308  virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const {
1309    return 0;
1310  }
1311
1312  //===--------------------------------------------------------------------===//
1313  // Inline Asm Support hooks
1314  //
1315
1316  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1317  /// call to be explicit llvm code if it wants to.  This is useful for
1318  /// turning simple inline asms into LLVM intrinsics, which gives the
1319  /// compiler more information about the behavior of the code.
1320  virtual bool ExpandInlineAsm(CallInst *CI) const {
1321    return false;
1322  }
1323
1324  enum ConstraintType {
1325    C_Register,            // Constraint represents specific register(s).
1326    C_RegisterClass,       // Constraint represents any of register(s) in class.
1327    C_Memory,              // Memory constraint.
1328    C_Other,               // Something else.
1329    C_Unknown              // Unsupported constraint.
1330  };
1331
1332  /// AsmOperandInfo - This contains information for each constraint that we are
1333  /// lowering.
1334  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1335    /// ConstraintCode - This contains the actual string for the code, like "m".
1336    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1337    /// most closely matches the operand.
1338    std::string ConstraintCode;
1339
1340    /// ConstraintType - Information about the constraint code, e.g. Register,
1341    /// RegisterClass, Memory, Other, Unknown.
1342    TargetLowering::ConstraintType ConstraintType;
1343
1344    /// CallOperandval - If this is the result output operand or a
1345    /// clobber, this is null, otherwise it is the incoming operand to the
1346    /// CallInst.  This gets modified as the asm is processed.
1347    Value *CallOperandVal;
1348
1349    /// ConstraintVT - The ValueType for the operand value.
1350    EVT ConstraintVT;
1351
1352    /// isMatchingInputConstraint - Return true of this is an input operand that
1353    /// is a matching constraint like "4".
1354    bool isMatchingInputConstraint() const;
1355
1356    /// getMatchedOperand - If this is an input matching constraint, this method
1357    /// returns the output operand it matches.
1358    unsigned getMatchedOperand() const;
1359
1360    /// Copy constructor for copying from an AsmOperandInfo.
1361    AsmOperandInfo(const AsmOperandInfo &info)
1362      : InlineAsm::ConstraintInfo(info),
1363        ConstraintCode(info.ConstraintCode),
1364        ConstraintType(info.ConstraintType),
1365        CallOperandVal(info.CallOperandVal),
1366        ConstraintVT(info.ConstraintVT) {
1367    }
1368
1369    /// Copy constructor for copying from a ConstraintInfo.
1370    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1371      : InlineAsm::ConstraintInfo(info),
1372        ConstraintType(TargetLowering::C_Unknown),
1373        CallOperandVal(0), ConstraintVT(MVT::Other) {
1374    }
1375  };
1376
1377  /// ParseConstraints - Split up the constraint string from the inline
1378  /// assembly value into the specific constraints and their prefixes,
1379  /// and also tie in the associated operand values.
1380  /// If this returns an empty vector, and if the constraint string itself
1381  /// isn't empty, there was an error parsing.
1382  virtual std::vector<AsmOperandInfo> ParseConstraints(
1383    ImmutableCallSite CS) const;
1384
1385  /// Examine constraint type and operand type and determine a weight value,
1386  /// where: -1 = invalid match, and 0 = so-so match to 5 = good match.
1387  /// The operand object must already have been set up with the operand type.
1388  virtual int getMultipleConstraintMatchWeight(
1389      AsmOperandInfo &info, int maIndex) const;
1390
1391  /// Examine constraint string and operand type and determine a weight value,
1392  /// where: -1 = invalid match, and 0 = so-so match to 3 = good match.
1393  /// The operand object must already have been set up with the operand type.
1394  virtual int getSingleConstraintMatchWeight(
1395      AsmOperandInfo &info, const char *constraint) const;
1396
1397  /// ComputeConstraintToUse - Determines the constraint code and constraint
1398  /// type to use for the specific AsmOperandInfo, setting
1399  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1400  /// being passed in is available, it can be passed in as Op, otherwise an
1401  /// empty SDValue can be passed.
1402  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1403                                      SDValue Op,
1404                                      SelectionDAG *DAG = 0) const;
1405
1406  /// getConstraintType - Given a constraint, return the type of constraint it
1407  /// is for this target.
1408  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1409
1410  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1411  /// return a list of registers that can be used to satisfy the constraint.
1412  /// This should only be used for C_RegisterClass constraints.
1413  virtual std::vector<unsigned>
1414  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1415                                    EVT VT) const;
1416
1417  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1418  /// {edx}), return the register number and the register class for the
1419  /// register.
1420  ///
1421  /// Given a register class constraint, like 'r', if this corresponds directly
1422  /// to an LLVM register class, return a register of 0 and the register class
1423  /// pointer.
1424  ///
1425  /// This should only be used for C_Register constraints.  On error,
1426  /// this returns a register number of 0 and a null register class pointer..
1427  virtual std::pair<unsigned, const TargetRegisterClass*>
1428    getRegForInlineAsmConstraint(const std::string &Constraint,
1429                                 EVT VT) const;
1430
1431  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1432  /// with another that has more specific requirements based on the type of the
1433  /// corresponding operand.  This returns null if there is no replacement to
1434  /// make.
1435  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1436
1437  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1438  /// vector.  If it is invalid, don't add anything to Ops.
1439  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1440                                            std::vector<SDValue> &Ops,
1441                                            SelectionDAG &DAG) const;
1442
1443  //===--------------------------------------------------------------------===//
1444  // Instruction Emitting Hooks
1445  //
1446
1447  // EmitInstrWithCustomInserter - This method should be implemented by targets
1448  // that mark instructions with the 'usesCustomInserter' flag.  These
1449  // instructions are special in various ways, which require special support to
1450  // insert.  The specified MachineInstr is created but not inserted into any
1451  // basic blocks, and this method is called to expand it into a sequence of
1452  // instructions, potentially also creating new basic blocks and control flow.
1453  virtual MachineBasicBlock *
1454    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1455
1456  //===--------------------------------------------------------------------===//
1457  // Addressing mode description hooks (used by LSR etc).
1458  //
1459
1460  /// AddrMode - This represents an addressing mode of:
1461  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1462  /// If BaseGV is null,  there is no BaseGV.
1463  /// If BaseOffs is zero, there is no base offset.
1464  /// If HasBaseReg is false, there is no base register.
1465  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1466  /// no scale.
1467  ///
1468  struct AddrMode {
1469    GlobalValue *BaseGV;
1470    int64_t      BaseOffs;
1471    bool         HasBaseReg;
1472    int64_t      Scale;
1473    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1474  };
1475
1476  /// isLegalAddressingMode - Return true if the addressing mode represented by
1477  /// AM is legal for this target, for a load/store of the specified type.
1478  /// The type may be VoidTy, in which case only return true if the addressing
1479  /// mode is legal for a load/store of any legal type.
1480  /// TODO: Handle pre/postinc as well.
1481  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1482
1483  /// isTruncateFree - Return true if it's free to truncate a value of
1484  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1485  /// register EAX to i16 by referencing its sub-register AX.
1486  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1487    return false;
1488  }
1489
1490  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1491    return false;
1492  }
1493
1494  /// isZExtFree - Return true if any actual instruction that defines a
1495  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1496  /// register. This does not necessarily include registers defined in
1497  /// unknown ways, such as incoming arguments, or copies from unknown
1498  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1499  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1500  /// all instructions that define 32-bit values implicit zero-extend the
1501  /// result out to 64 bits.
1502  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1503    return false;
1504  }
1505
1506  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1507    return false;
1508  }
1509
1510  /// isNarrowingProfitable - Return true if it's profitable to narrow
1511  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1512  /// from i32 to i8 but not from i32 to i16.
1513  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1514    return false;
1515  }
1516
1517  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1518  /// icmp immediate, that is the target has icmp instructions which can compare
1519  /// a register against the immediate without having to materialize the
1520  /// immediate into a register.
1521  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1522    return true;
1523  }
1524
1525  //===--------------------------------------------------------------------===//
1526  // Div utility functions
1527  //
1528  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1529                      std::vector<SDNode*>* Created) const;
1530  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1531                      std::vector<SDNode*>* Created) const;
1532
1533
1534  //===--------------------------------------------------------------------===//
1535  // Runtime Library hooks
1536  //
1537
1538  /// setLibcallName - Rename the default libcall routine name for the specified
1539  /// libcall.
1540  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1541    LibcallRoutineNames[Call] = Name;
1542  }
1543
1544  /// getLibcallName - Get the libcall routine name for the specified libcall.
1545  ///
1546  const char *getLibcallName(RTLIB::Libcall Call) const {
1547    return LibcallRoutineNames[Call];
1548  }
1549
1550  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1551  /// result of the comparison libcall against zero.
1552  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1553    CmpLibcallCCs[Call] = CC;
1554  }
1555
1556  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1557  /// the comparison libcall against zero.
1558  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1559    return CmpLibcallCCs[Call];
1560  }
1561
1562  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1563  /// specified libcall.
1564  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1565    LibcallCallingConvs[Call] = CC;
1566  }
1567
1568  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1569  /// specified libcall.
1570  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1571    return LibcallCallingConvs[Call];
1572  }
1573
1574private:
1575  const TargetMachine &TM;
1576  const TargetData *TD;
1577  const TargetLoweringObjectFile &TLOF;
1578
1579  /// PointerTy - The type to use for pointers, usually i32 or i64.
1580  ///
1581  MVT PointerTy;
1582
1583  /// IsLittleEndian - True if this is a little endian target.
1584  ///
1585  bool IsLittleEndian;
1586
1587  /// SelectIsExpensive - Tells the code generator not to expand operations
1588  /// into sequences that use the select operations if possible.
1589  bool SelectIsExpensive;
1590
1591  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1592  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1593  /// a real cost model is in place.  If we ever optimize for size, this will be
1594  /// set to true unconditionally.
1595  bool IntDivIsCheap;
1596
1597  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1598  /// srl/add/sra for a signed divide by power of two, and let the target handle
1599  /// it.
1600  bool Pow2DivIsCheap;
1601
1602  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1603  /// llvm.setjmp.  Defaults to false.
1604  bool UseUnderscoreSetJmp;
1605
1606  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1607  /// llvm.longjmp.  Defaults to false.
1608  bool UseUnderscoreLongJmp;
1609
1610  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1611  /// PointerTy is.
1612  MVT ShiftAmountTy;
1613
1614  /// BooleanContents - Information about the contents of the high-bits in
1615  /// boolean values held in a type wider than i1.  See getBooleanContents.
1616  BooleanContent BooleanContents;
1617
1618  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1619  /// total cycles or lowest register usage.
1620  Sched::Preference SchedPreferenceInfo;
1621
1622  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1623  unsigned JumpBufSize;
1624
1625  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1626  /// buffers
1627  unsigned JumpBufAlignment;
1628
1629  /// MinStackArgumentAlignment - The minimum alignment that any argument
1630  /// on the stack needs to have.
1631  ///
1632  unsigned MinStackArgumentAlignment;
1633
1634  /// PrefLoopAlignment - The perferred loop alignment.
1635  ///
1636  unsigned PrefLoopAlignment;
1637
1638  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1639  /// be folded into the enclosed atomic intrinsic instruction by the
1640  /// combiner.
1641  bool ShouldFoldAtomicFences;
1642
1643  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1644  /// specifies the register that llvm.savestack/llvm.restorestack should save
1645  /// and restore.
1646  unsigned StackPointerRegisterToSaveRestore;
1647
1648  /// ExceptionPointerRegister - If set to a physical register, this specifies
1649  /// the register that receives the exception address on entry to a landing
1650  /// pad.
1651  unsigned ExceptionPointerRegister;
1652
1653  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1654  /// the register that receives the exception typeid on entry to a landing
1655  /// pad.
1656  unsigned ExceptionSelectorRegister;
1657
1658  /// RegClassForVT - This indicates the default register class to use for
1659  /// each ValueType the target supports natively.
1660  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1661  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1662  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1663
1664  /// RepRegClassForVT - This indicates the "representative" register class to
1665  /// use for each ValueType the target supports natively. This information is
1666  /// used by the scheduler to track register pressure. By default, the
1667  /// representative register class is the largest legal super-reg register
1668  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1669  /// and i32's representative class would be GR32.
1670  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1671
1672  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1673  /// register class for each ValueType. The cost is used by the scheduler to
1674  /// approximate register pressure.
1675  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1676
1677  /// Synthesizable indicates whether it is OK for the compiler to create new
1678  /// operations using this type.  All Legal types are Synthesizable except
1679  /// MMX types on X86.  Non-Legal types are not Synthesizable.
1680  bool Synthesizable[MVT::LAST_VALUETYPE];
1681
1682  /// TransformToType - For any value types we are promoting or expanding, this
1683  /// contains the value type that we are changing to.  For Expanded types, this
1684  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1685  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1686  /// by the system, this holds the same type (e.g. i32 -> i32).
1687  EVT TransformToType[MVT::LAST_VALUETYPE];
1688
1689  /// OpActions - For each operation and each value type, keep a LegalizeAction
1690  /// that indicates how instruction selection should deal with the operation.
1691  /// Most operations are Legal (aka, supported natively by the target), but
1692  /// operations that are not should be described.  Note that operations on
1693  /// non-legal value types are not described here.
1694  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1695
1696  /// LoadExtActions - For each load extension type and each value type,
1697  /// keep a LegalizeAction that indicates how instruction selection should deal
1698  /// with a load of a specific value type and extension type.
1699  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1700
1701  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1702  /// indicates whether a truncating store of a specific value type and
1703  /// truncating type is legal.
1704  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1705
1706  /// IndexedModeActions - For each indexed mode and each value type,
1707  /// keep a pair of LegalizeAction that indicates how instruction
1708  /// selection should deal with the load / store.  The first dimension is the
1709  /// value_type for the reference. The second dimension represents the various
1710  /// modes for load store.
1711  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1712
1713  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1714  /// LegalizeAction that indicates how instruction selection should
1715  /// deal with the condition code.
1716  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1717
1718  ValueTypeActionImpl ValueTypeActions;
1719
1720  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1721
1722  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1723  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1724  /// which sets a bit in this array.
1725  unsigned char
1726  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1727
1728  /// PromoteToType - For operations that must be promoted to a specific type,
1729  /// this holds the destination type.  This map should be sparse, so don't hold
1730  /// it as an array.
1731  ///
1732  /// Targets add entries to this map with AddPromotedToType(..), clients access
1733  /// this with getTypeToPromoteTo(..).
1734  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1735    PromoteToType;
1736
1737  /// LibcallRoutineNames - Stores the name each libcall.
1738  ///
1739  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1740
1741  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1742  /// of each of the comparison libcall against zero.
1743  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1744
1745  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1746  /// libcall.
1747  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1748
1749protected:
1750  /// When lowering \@llvm.memset this field specifies the maximum number of
1751  /// store operations that may be substituted for the call to memset. Targets
1752  /// must set this value based on the cost threshold for that target. Targets
1753  /// should assume that the memset will be done using as many of the largest
1754  /// store operations first, followed by smaller ones, if necessary, per
1755  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1756  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1757  /// store.  This only applies to setting a constant array of a constant size.
1758  /// @brief Specify maximum number of store instructions per memset call.
1759  unsigned maxStoresPerMemset;
1760
1761  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1762  /// store operations that may be substituted for a call to memcpy. Targets
1763  /// must set this value based on the cost threshold for that target. Targets
1764  /// should assume that the memcpy will be done using as many of the largest
1765  /// store operations first, followed by smaller ones, if necessary, per
1766  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1767  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1768  /// and one 1-byte store. This only applies to copying a constant array of
1769  /// constant size.
1770  /// @brief Specify maximum bytes of store instructions per memcpy call.
1771  unsigned maxStoresPerMemcpy;
1772
1773  /// When lowering \@llvm.memmove this field specifies the maximum number of
1774  /// store instructions that may be substituted for a call to memmove. Targets
1775  /// must set this value based on the cost threshold for that target. Targets
1776  /// should assume that the memmove will be done using as many of the largest
1777  /// store operations first, followed by smaller ones, if necessary, per
1778  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1779  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1780  /// applies to copying a constant array of constant size.
1781  /// @brief Specify maximum bytes of store instructions per memmove call.
1782  unsigned maxStoresPerMemmove;
1783
1784  /// This field specifies whether the target can benefit from code placement
1785  /// optimization.
1786  bool benefitFromCodePlacementOpt;
1787
1788private:
1789  /// isLegalRC - Return true if the value types that can be represented by the
1790  /// specified register class are all legal.
1791  bool isLegalRC(const TargetRegisterClass *RC) const;
1792
1793  /// hasLegalSuperRegRegClasses - Return true if the specified register class
1794  /// has one or more super-reg register classes that are legal.
1795  bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
1796};
1797
1798/// GetReturnInfo - Given an LLVM IR type and return type attributes,
1799/// compute the return value EVTs and flags, and optionally also
1800/// the offsets, if the return value is being lowered to memory.
1801void GetReturnInfo(const Type* ReturnType, Attributes attr,
1802                   SmallVectorImpl<ISD::OutputArg> &Outs,
1803                   const TargetLowering &TLI,
1804                   SmallVectorImpl<uint64_t> *Offsets = 0);
1805
1806} // end llvm namespace
1807
1808#endif
1809