TargetLowering.h revision f17008844adfeb3716969a6004e28dcf176a38b2
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/InlineAsm.h"
26#include "llvm/CodeGen/SelectionDAGNodes.h"
27#include "llvm/CodeGen/RuntimeLibcalls.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/DebugLoc.h"
34#include "llvm/Target/TargetMachine.h"
35#include <climits>
36#include <map>
37#include <vector>
38
39namespace llvm {
40  class AllocaInst;
41  class CallInst;
42  class Function;
43  class FastISel;
44  class MachineBasicBlock;
45  class MachineFunction;
46  class MachineFrameInfo;
47  class MachineInstr;
48  class MachineModuleInfo;
49  class DwarfWriter;
50  class SDNode;
51  class SDValue;
52  class SelectionDAG;
53  class TargetData;
54  class TargetMachine;
55  class TargetRegisterClass;
56  class TargetSubtarget;
57  class TargetLoweringObjectFile;
58  class Value;
59
60  // FIXME: should this be here?
61  namespace TLSModel {
62    enum Model {
63      GeneralDynamic,
64      LocalDynamic,
65      InitialExec,
66      LocalExec
67    };
68  }
69  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
70
71
72//===----------------------------------------------------------------------===//
73/// TargetLowering - This class defines information used to lower LLVM code to
74/// legal SelectionDAG operators that the target instruction selector can accept
75/// natively.
76///
77/// This class also defines callbacks that targets must implement to lower
78/// target-specific constructs to SelectionDAG operators.
79///
80class TargetLowering {
81  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
82  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
83public:
84  /// LegalizeAction - This enum indicates whether operations are valid for a
85  /// target, and if not, what action should be used to make them valid.
86  enum LegalizeAction {
87    Legal,      // The target natively supports this operation.
88    Promote,    // This operation should be executed in a larger type.
89    Expand,     // Try to expand this to other ops, otherwise use a libcall.
90    Custom      // Use the LowerOperation hook to implement custom lowering.
91  };
92
93  enum BooleanContent { // How the target represents true/false values.
94    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
95    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
96    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
97  };
98
99  enum SchedPreference {
100    SchedulingForLatency,          // Scheduling for shortest total latency.
101    SchedulingForRegPressure       // Scheduling for lowest register pressure.
102  };
103
104  /// NOTE: The constructor takes ownership of TLOF.
105  explicit TargetLowering(TargetMachine &TM, TargetLoweringObjectFile *TLOF);
106  virtual ~TargetLowering();
107
108  TargetMachine &getTargetMachine() const { return TM; }
109  const TargetData *getTargetData() const { return TD; }
110  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
111
112  bool isBigEndian() const { return !IsLittleEndian; }
113  bool isLittleEndian() const { return IsLittleEndian; }
114  MVT getPointerTy() const { return PointerTy; }
115  MVT getShiftAmountTy() const { return ShiftAmountTy; }
116
117  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
118  /// codegen.
119  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
120
121  /// isSelectExpensive - Return true if the select operation is expensive for
122  /// this target.
123  bool isSelectExpensive() const { return SelectIsExpensive; }
124
125  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
126  /// a sequence of several shifts, adds, and multiplies for this target.
127  bool isIntDivCheap() const { return IntDivIsCheap; }
128
129  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
130  /// srl/add/sra.
131  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
132
133  /// getSetCCResultType - Return the ValueType of the result of SETCC
134  /// operations.  Also used to obtain the target's preferred type for
135  /// the condition operand of SELECT and BRCOND nodes.  In the case of
136  /// BRCOND the argument passed is MVT::Other since there are no other
137  /// operands to get a type hint from.
138  virtual MVT getSetCCResultType(MVT VT) const;
139
140  /// getBooleanContents - For targets without i1 registers, this gives the
141  /// nature of the high-bits of boolean values held in types wider than i1.
142  /// "Boolean values" are special true/false values produced by nodes like
143  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
144  /// Not to be confused with general values promoted from i1.
145  BooleanContent getBooleanContents() const { return BooleanContents;}
146
147  /// getSchedulingPreference - Return target scheduling preference.
148  SchedPreference getSchedulingPreference() const {
149    return SchedPreferenceInfo;
150  }
151
152  /// getRegClassFor - Return the register class that should be used for the
153  /// specified value type.  This may only be called on legal types.
154  TargetRegisterClass *getRegClassFor(MVT VT) const {
155    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
156    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT()];
157    assert(RC && "This value type is not natively supported!");
158    return RC;
159  }
160
161  /// isTypeLegal - Return true if the target has native support for the
162  /// specified value type.  This means that it has a register that directly
163  /// holds it without promotions or expansions.
164  bool isTypeLegal(MVT VT) const {
165    assert(!VT.isSimple() ||
166           (unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
167    return VT.isSimple() && RegClassForVT[VT.getSimpleVT()] != 0;
168  }
169
170  class ValueTypeActionImpl {
171    /// ValueTypeActions - This is a bitvector that contains two bits for each
172    /// value type, where the two bits correspond to the LegalizeAction enum.
173    /// This can be queried with "getTypeAction(VT)".
174    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
175    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
176  public:
177    ValueTypeActionImpl() {
178      ValueTypeActions[0] = ValueTypeActions[1] = 0;
179      ValueTypeActions[2] = ValueTypeActions[3] = 0;
180    }
181    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
182      ValueTypeActions[0] = RHS.ValueTypeActions[0];
183      ValueTypeActions[1] = RHS.ValueTypeActions[1];
184      ValueTypeActions[2] = RHS.ValueTypeActions[2];
185      ValueTypeActions[3] = RHS.ValueTypeActions[3];
186    }
187
188    LegalizeAction getTypeAction(MVT VT) const {
189      if (VT.isExtended()) {
190        if (VT.isVector()) {
191          return VT.isPow2VectorType() ? Expand : Promote;
192        }
193        if (VT.isInteger())
194          // First promote to a power-of-two size, then expand if necessary.
195          return VT == VT.getRoundIntegerType() ? Expand : Promote;
196        assert(0 && "Unsupported extended type!");
197        return Legal;
198      }
199      unsigned I = VT.getSimpleVT();
200      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
201      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
202    }
203    void setTypeAction(MVT VT, LegalizeAction Action) {
204      unsigned I = VT.getSimpleVT();
205      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
206      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
207    }
208  };
209
210  const ValueTypeActionImpl &getValueTypeActions() const {
211    return ValueTypeActions;
212  }
213
214  /// getTypeAction - Return how we should legalize values of this type, either
215  /// it is already legal (return 'Legal') or we need to promote it to a larger
216  /// type (return 'Promote'), or we need to expand it into multiple registers
217  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
218  LegalizeAction getTypeAction(MVT VT) const {
219    return ValueTypeActions.getTypeAction(VT);
220  }
221
222  /// getTypeToTransformTo - For types supported by the target, this is an
223  /// identity function.  For types that must be promoted to larger types, this
224  /// returns the larger type to promote to.  For integer types that are larger
225  /// than the largest integer register, this contains one step in the expansion
226  /// to get to the smaller register. For illegal floating point types, this
227  /// returns the integer type to transform to.
228  MVT getTypeToTransformTo(MVT VT) const {
229    if (VT.isSimple()) {
230      assert((unsigned)VT.getSimpleVT() < array_lengthof(TransformToType));
231      MVT NVT = TransformToType[VT.getSimpleVT()];
232      assert(getTypeAction(NVT) != Promote &&
233             "Promote may not follow Expand or Promote");
234      return NVT;
235    }
236
237    if (VT.isVector()) {
238      MVT NVT = VT.getPow2VectorType();
239      if (NVT == VT) {
240        // Vector length is a power of 2 - split to half the size.
241        unsigned NumElts = VT.getVectorNumElements();
242        MVT EltVT = VT.getVectorElementType();
243        return (NumElts == 1) ? EltVT : MVT::getVectorVT(EltVT, NumElts / 2);
244      }
245      // Promote to a power of two size, avoiding multi-step promotion.
246      return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
247    } else if (VT.isInteger()) {
248      MVT NVT = VT.getRoundIntegerType();
249      if (NVT == VT)
250        // Size is a power of two - expand to half the size.
251        return MVT::getIntegerVT(VT.getSizeInBits() / 2);
252      else
253        // Promote to a power of two size, avoiding multi-step promotion.
254        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
255    }
256    assert(0 && "Unsupported extended type!");
257    return MVT(MVT::Other); // Not reached
258  }
259
260  /// getTypeToExpandTo - For types supported by the target, this is an
261  /// identity function.  For types that must be expanded (i.e. integer types
262  /// that are larger than the largest integer register or illegal floating
263  /// point types), this returns the largest legal type it will be expanded to.
264  MVT getTypeToExpandTo(MVT VT) const {
265    assert(!VT.isVector());
266    while (true) {
267      switch (getTypeAction(VT)) {
268      case Legal:
269        return VT;
270      case Expand:
271        VT = getTypeToTransformTo(VT);
272        break;
273      default:
274        assert(false && "Type is not legal nor is it to be expanded!");
275        return VT;
276      }
277    }
278    return VT;
279  }
280
281  /// getVectorTypeBreakdown - Vector types are broken down into some number of
282  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
283  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
284  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
285  ///
286  /// This method returns the number of registers needed, and the VT for each
287  /// register.  It also returns the VT and quantity of the intermediate values
288  /// before they are promoted/expanded.
289  ///
290  unsigned getVectorTypeBreakdown(MVT VT,
291                                  MVT &IntermediateVT,
292                                  unsigned &NumIntermediates,
293                                  MVT &RegisterVT) const;
294
295  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
296  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
297  /// this is the case, it returns true and store the intrinsic
298  /// information into the IntrinsicInfo that was passed to the function.
299  typedef struct IntrinsicInfo {
300    unsigned     opc;         // target opcode
301    MVT          memVT;       // memory VT
302    const Value* ptrVal;      // value representing memory location
303    int          offset;      // offset off of ptrVal
304    unsigned     align;       // alignment
305    bool         vol;         // is volatile?
306    bool         readMem;     // reads memory?
307    bool         writeMem;    // writes memory?
308  } IntrinisicInfo;
309
310  virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
311                                  CallInst &I, unsigned Intrinsic) {
312    return false;
313  }
314
315  /// getWidenVectorType: given a vector type, returns the type to widen to
316  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
317  /// If there is no vector type that we want to widen to, returns MVT::Other
318  /// When and were to widen is target dependent based on the cost of
319  /// scalarizing vs using the wider vector type.
320  virtual MVT getWidenVectorType(MVT VT) const;
321
322  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
323  legal_fpimm_iterator legal_fpimm_begin() const {
324    return LegalFPImmediates.begin();
325  }
326  legal_fpimm_iterator legal_fpimm_end() const {
327    return LegalFPImmediates.end();
328  }
329
330  /// isShuffleMaskLegal - Targets can use this to indicate that they only
331  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
332  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
333  /// are assumed to be legal.
334  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
335                                  MVT VT) const {
336    return true;
337  }
338
339  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
340  /// used by Targets can use this to indicate if there is a suitable
341  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
342  /// pool entry.
343  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
344                                      MVT VT) const {
345    return false;
346  }
347
348  /// getOperationAction - Return how this operation should be treated: either
349  /// it is legal, needs to be promoted to a larger size, needs to be
350  /// expanded to some other code sequence, or the target has a custom expander
351  /// for it.
352  LegalizeAction getOperationAction(unsigned Op, MVT VT) const {
353    if (VT.isExtended()) return Expand;
354    assert(Op < array_lengthof(OpActions[0]) &&
355           (unsigned)VT.getSimpleVT() < sizeof(OpActions[0][0])*8 &&
356           "Table isn't big enough!");
357    unsigned I = (unsigned) VT.getSimpleVT();
358    unsigned J = I & 31;
359    I = I >> 5;
360    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
361  }
362
363  /// isOperationLegalOrCustom - Return true if the specified operation is
364  /// legal on this target or can be made legal with custom lowering. This
365  /// is used to help guide high-level lowering decisions.
366  bool isOperationLegalOrCustom(unsigned Op, MVT VT) const {
367    return (VT == MVT::Other || isTypeLegal(VT)) &&
368      (getOperationAction(Op, VT) == Legal ||
369       getOperationAction(Op, VT) == Custom);
370  }
371
372  /// isOperationLegal - Return true if the specified operation is legal on this
373  /// target.
374  bool isOperationLegal(unsigned Op, MVT VT) const {
375    return (VT == MVT::Other || isTypeLegal(VT)) &&
376           getOperationAction(Op, VT) == Legal;
377  }
378
379  /// getLoadExtAction - Return how this load with extension should be treated:
380  /// either it is legal, needs to be promoted to a larger size, needs to be
381  /// expanded to some other code sequence, or the target has a custom expander
382  /// for it.
383  LegalizeAction getLoadExtAction(unsigned LType, MVT VT) const {
384    assert(LType < array_lengthof(LoadExtActions) &&
385           (unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
386           "Table isn't big enough!");
387    return (LegalizeAction)((LoadExtActions[LType] >> (2*VT.getSimpleVT())) & 3);
388  }
389
390  /// isLoadExtLegal - Return true if the specified load with extension is legal
391  /// on this target.
392  bool isLoadExtLegal(unsigned LType, MVT VT) const {
393    return VT.isSimple() &&
394      (getLoadExtAction(LType, VT) == Legal ||
395       getLoadExtAction(LType, VT) == Custom);
396  }
397
398  /// getTruncStoreAction - Return how this store with truncation should be
399  /// treated: either it is legal, needs to be promoted to a larger size, needs
400  /// to be expanded to some other code sequence, or the target has a custom
401  /// expander for it.
402  LegalizeAction getTruncStoreAction(MVT ValVT,
403                                     MVT MemVT) const {
404    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
405           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
406           "Table isn't big enough!");
407    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT()] >>
408                             (2*MemVT.getSimpleVT())) & 3);
409  }
410
411  /// isTruncStoreLegal - Return true if the specified store with truncation is
412  /// legal on this target.
413  bool isTruncStoreLegal(MVT ValVT, MVT MemVT) const {
414    return isTypeLegal(ValVT) && MemVT.isSimple() &&
415      (getTruncStoreAction(ValVT, MemVT) == Legal ||
416       getTruncStoreAction(ValVT, MemVT) == Custom);
417  }
418
419  /// getIndexedLoadAction - Return how the indexed load should be treated:
420  /// either it is legal, needs to be promoted to a larger size, needs to be
421  /// expanded to some other code sequence, or the target has a custom expander
422  /// for it.
423  LegalizeAction
424  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
425    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
426           ((unsigned)VT.getSimpleVT()) < MVT::LAST_VALUETYPE &&
427           "Table isn't big enough!");
428    return (LegalizeAction)((IndexedModeActions[(unsigned)VT.getSimpleVT()][0][IdxMode]));
429  }
430
431  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
432  /// on this target.
433  bool isIndexedLoadLegal(unsigned IdxMode, MVT VT) const {
434    return VT.isSimple() &&
435      (getIndexedLoadAction(IdxMode, VT) == Legal ||
436       getIndexedLoadAction(IdxMode, VT) == Custom);
437  }
438
439  /// getIndexedStoreAction - Return how the indexed store should be treated:
440  /// either it is legal, needs to be promoted to a larger size, needs to be
441  /// expanded to some other code sequence, or the target has a custom expander
442  /// for it.
443  LegalizeAction
444  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
445    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
446           (unsigned)VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
447           "Table isn't big enough!");
448    return (LegalizeAction)((IndexedModeActions[(unsigned)VT.getSimpleVT()][1][IdxMode]));
449  }
450
451  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
452  /// on this target.
453  bool isIndexedStoreLegal(unsigned IdxMode, MVT VT) const {
454    return VT.isSimple() &&
455      (getIndexedStoreAction(IdxMode, VT) == Legal ||
456       getIndexedStoreAction(IdxMode, VT) == Custom);
457  }
458
459  /// getConvertAction - Return how the conversion should be treated:
460  /// either it is legal, needs to be promoted to a larger size, needs to be
461  /// expanded to some other code sequence, or the target has a custom expander
462  /// for it.
463  LegalizeAction
464  getConvertAction(MVT FromVT, MVT ToVT) const {
465    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
466           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
467           "Table isn't big enough!");
468    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT()] >>
469                             (2*ToVT.getSimpleVT())) & 3);
470  }
471
472  /// isConvertLegal - Return true if the specified conversion is legal
473  /// on this target.
474  bool isConvertLegal(MVT FromVT, MVT ToVT) const {
475    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
476      (getConvertAction(FromVT, ToVT) == Legal ||
477       getConvertAction(FromVT, ToVT) == Custom);
478  }
479
480  /// getCondCodeAction - Return how the condition code should be treated:
481  /// either it is legal, needs to be expanded to some other code sequence,
482  /// or the target has a custom expander for it.
483  LegalizeAction
484  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
485    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
486           (unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
487           "Table isn't big enough!");
488    LegalizeAction Action = (LegalizeAction)
489      ((CondCodeActions[CC] >> (2*VT.getSimpleVT())) & 3);
490    assert(Action != Promote && "Can't promote condition code!");
491    return Action;
492  }
493
494  /// isCondCodeLegal - Return true if the specified condition code is legal
495  /// on this target.
496  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
497    return getCondCodeAction(CC, VT) == Legal ||
498           getCondCodeAction(CC, VT) == Custom;
499  }
500
501
502  /// getTypeToPromoteTo - If the action for this operation is to promote, this
503  /// method returns the ValueType to promote to.
504  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
505    assert(getOperationAction(Op, VT) == Promote &&
506           "This operation isn't promoted!");
507
508    // See if this has an explicit type specified.
509    std::map<std::pair<unsigned, MVT::SimpleValueType>,
510             MVT::SimpleValueType>::const_iterator PTTI =
511      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT()));
512    if (PTTI != PromoteToType.end()) return PTTI->second;
513
514    assert((VT.isInteger() || VT.isFloatingPoint()) &&
515           "Cannot autopromote this type, add it with AddPromotedToType.");
516
517    MVT NVT = VT;
518    do {
519      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT()+1);
520      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
521             "Didn't find type to promote to!");
522    } while (!isTypeLegal(NVT) ||
523              getOperationAction(Op, NVT) == Promote);
524    return NVT;
525  }
526
527  /// getValueType - Return the MVT corresponding to this LLVM type.
528  /// This is fixed by the LLVM operations except for the pointer size.  If
529  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
530  /// counterpart (e.g. structs), otherwise it will assert.
531  MVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
532    MVT VT = MVT::getMVT(Ty, AllowUnknown);
533    return VT == MVT::iPTR ? PointerTy : VT;
534  }
535
536  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
537  /// function arguments in the caller parameter area.  This is the actual
538  /// alignment, not its logarithm.
539  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
540
541  /// getRegisterType - Return the type of registers that this ValueType will
542  /// eventually require.
543  MVT getRegisterType(MVT VT) const {
544    if (VT.isSimple()) {
545      assert((unsigned)VT.getSimpleVT() < array_lengthof(RegisterTypeForVT));
546      return RegisterTypeForVT[VT.getSimpleVT()];
547    }
548    if (VT.isVector()) {
549      MVT VT1, RegisterVT;
550      unsigned NumIntermediates;
551      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
552      return RegisterVT;
553    }
554    if (VT.isInteger()) {
555      return getRegisterType(getTypeToTransformTo(VT));
556    }
557    assert(0 && "Unsupported extended type!");
558    return MVT(MVT::Other); // Not reached
559  }
560
561  /// getNumRegisters - Return the number of registers that this ValueType will
562  /// eventually require.  This is one for any types promoted to live in larger
563  /// registers, but may be more than one for types (like i64) that are split
564  /// into pieces.  For types like i140, which are first promoted then expanded,
565  /// it is the number of registers needed to hold all the bits of the original
566  /// type.  For an i140 on a 32 bit machine this means 5 registers.
567  unsigned getNumRegisters(MVT VT) const {
568    if (VT.isSimple()) {
569      assert((unsigned)VT.getSimpleVT() < array_lengthof(NumRegistersForVT));
570      return NumRegistersForVT[VT.getSimpleVT()];
571    }
572    if (VT.isVector()) {
573      MVT VT1, VT2;
574      unsigned NumIntermediates;
575      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
576    }
577    if (VT.isInteger()) {
578      unsigned BitWidth = VT.getSizeInBits();
579      unsigned RegWidth = getRegisterType(VT).getSizeInBits();
580      return (BitWidth + RegWidth - 1) / RegWidth;
581    }
582    assert(0 && "Unsupported extended type!");
583    return 0; // Not reached
584  }
585
586  /// ShouldShrinkFPConstant - If true, then instruction selection should
587  /// seek to shrink the FP constant of the specified type to a smaller type
588  /// in order to save space and / or reduce runtime.
589  virtual bool ShouldShrinkFPConstant(MVT VT) const { return true; }
590
591  /// hasTargetDAGCombine - If true, the target has custom DAG combine
592  /// transformations that it can perform for the specified node.
593  bool hasTargetDAGCombine(ISD::NodeType NT) const {
594    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
595    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
596  }
597
598  /// This function returns the maximum number of store operations permitted
599  /// to replace a call to llvm.memset. The value is set by the target at the
600  /// performance threshold for such a replacement.
601  /// @brief Get maximum # of store operations permitted for llvm.memset
602  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
603
604  /// This function returns the maximum number of store operations permitted
605  /// to replace a call to llvm.memcpy. The value is set by the target at the
606  /// performance threshold for such a replacement.
607  /// @brief Get maximum # of store operations permitted for llvm.memcpy
608  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
609
610  /// This function returns the maximum number of store operations permitted
611  /// to replace a call to llvm.memmove. The value is set by the target at the
612  /// performance threshold for such a replacement.
613  /// @brief Get maximum # of store operations permitted for llvm.memmove
614  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
615
616  /// This function returns true if the target allows unaligned memory accesses.
617  /// This is used, for example, in situations where an array copy/move/set is
618  /// converted to a sequence of store operations. It's use helps to ensure that
619  /// such replacements don't generate code that causes an alignment error
620  /// (trap) on the target machine.
621  /// @brief Determine if the target supports unaligned memory accesses.
622  bool allowsUnalignedMemoryAccesses() const {
623    return allowUnalignedMemoryAccesses;
624  }
625
626  /// This function returns true if the target would benefit from code placement
627  /// optimization.
628  /// @brief Determine if the target should perform code placement optimization.
629  bool shouldOptimizeCodePlacement() const {
630    return benefitFromCodePlacementOpt;
631  }
632
633  /// getOptimalMemOpType - Returns the target specific optimal type for load
634  /// and store operations as a result of memset, memcpy, and memmove lowering.
635  /// It returns MVT::iAny if SelectionDAG should be responsible for
636  /// determining it.
637  virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
638                                  bool isSrcConst, bool isSrcStr,
639                                  SelectionDAG &DAG) const {
640    return MVT::iAny;
641  }
642
643  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
644  /// to implement llvm.setjmp.
645  bool usesUnderscoreSetJmp() const {
646    return UseUnderscoreSetJmp;
647  }
648
649  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
650  /// to implement llvm.longjmp.
651  bool usesUnderscoreLongJmp() const {
652    return UseUnderscoreLongJmp;
653  }
654
655  /// getStackPointerRegisterToSaveRestore - If a physical register, this
656  /// specifies the register that llvm.savestack/llvm.restorestack should save
657  /// and restore.
658  unsigned getStackPointerRegisterToSaveRestore() const {
659    return StackPointerRegisterToSaveRestore;
660  }
661
662  /// getExceptionAddressRegister - If a physical register, this returns
663  /// the register that receives the exception address on entry to a landing
664  /// pad.
665  unsigned getExceptionAddressRegister() const {
666    return ExceptionPointerRegister;
667  }
668
669  /// getExceptionSelectorRegister - If a physical register, this returns
670  /// the register that receives the exception typeid on entry to a landing
671  /// pad.
672  unsigned getExceptionSelectorRegister() const {
673    return ExceptionSelectorRegister;
674  }
675
676  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
677  /// set, the default is 200)
678  unsigned getJumpBufSize() const {
679    return JumpBufSize;
680  }
681
682  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
683  /// (if never set, the default is 0)
684  unsigned getJumpBufAlignment() const {
685    return JumpBufAlignment;
686  }
687
688  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
689  /// limit. Any block whose size is greater should not be predicated.
690  unsigned getIfCvtBlockSizeLimit() const {
691    return IfCvtBlockSizeLimit;
692  }
693
694  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
695  /// block to be considered for duplication. Any block whose size is greater
696  /// should not be duplicated to facilitate its predication.
697  unsigned getIfCvtDupBlockSizeLimit() const {
698    return IfCvtDupBlockSizeLimit;
699  }
700
701  /// getPrefLoopAlignment - return the preferred loop alignment.
702  ///
703  unsigned getPrefLoopAlignment() const {
704    return PrefLoopAlignment;
705  }
706
707  /// getPreIndexedAddressParts - returns true by value, base pointer and
708  /// offset pointer and addressing mode by reference if the node's address
709  /// can be legally represented as pre-indexed load / store address.
710  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
711                                         SDValue &Offset,
712                                         ISD::MemIndexedMode &AM,
713                                         SelectionDAG &DAG) const {
714    return false;
715  }
716
717  /// getPostIndexedAddressParts - returns true by value, base pointer and
718  /// offset pointer and addressing mode by reference if this node can be
719  /// combined with a load / store to form a post-indexed load / store.
720  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
721                                          SDValue &Base, SDValue &Offset,
722                                          ISD::MemIndexedMode &AM,
723                                          SelectionDAG &DAG) const {
724    return false;
725  }
726
727  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
728  /// jumptable.
729  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
730                                             SelectionDAG &DAG) const;
731
732  /// isOffsetFoldingLegal - Return true if folding a constant offset
733  /// with the given GlobalAddress is legal.  It is frequently not legal in
734  /// PIC relocation models.
735  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
736
737  /// getFunctionAlignment - Return the Log2 alignment of this function.
738  virtual unsigned getFunctionAlignment(const Function *) const = 0;
739
740  //===--------------------------------------------------------------------===//
741  // TargetLowering Optimization Methods
742  //
743
744  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
745  /// SDValues for returning information from TargetLowering to its clients
746  /// that want to combine
747  struct TargetLoweringOpt {
748    SelectionDAG &DAG;
749    SDValue Old;
750    SDValue New;
751
752    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
753
754    bool CombineTo(SDValue O, SDValue N) {
755      Old = O;
756      New = N;
757      return true;
758    }
759
760    /// ShrinkDemandedConstant - Check to see if the specified operand of the
761    /// specified instruction is a constant integer.  If so, check to see if
762    /// there are any bits set in the constant that are not demanded.  If so,
763    /// shrink the constant and return true.
764    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
765
766    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
767    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
768    /// cast, but it could be generalized for targets with other types of
769    /// implicit widening casts.
770    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
771                          DebugLoc dl);
772  };
773
774  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
775  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
776  /// use this information to simplify Op, create a new simplified DAG node and
777  /// return true, returning the original and new nodes in Old and New.
778  /// Otherwise, analyze the expression and return a mask of KnownOne and
779  /// KnownZero bits for the expression (used to simplify the caller).
780  /// The KnownZero/One bits may only be accurate for those bits in the
781  /// DemandedMask.
782  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
783                            APInt &KnownZero, APInt &KnownOne,
784                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
785
786  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
787  /// Mask are known to be either zero or one and return them in the
788  /// KnownZero/KnownOne bitsets.
789  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
790                                              const APInt &Mask,
791                                              APInt &KnownZero,
792                                              APInt &KnownOne,
793                                              const SelectionDAG &DAG,
794                                              unsigned Depth = 0) const;
795
796  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
797  /// targets that want to expose additional information about sign bits to the
798  /// DAG Combiner.
799  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
800                                                   unsigned Depth = 0) const;
801
802  struct DAGCombinerInfo {
803    void *DC;  // The DAG Combiner object.
804    bool BeforeLegalize;
805    bool BeforeLegalizeOps;
806    bool CalledByLegalizer;
807  public:
808    SelectionDAG &DAG;
809
810    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
811      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
812        CalledByLegalizer(cl), DAG(dag) {}
813
814    bool isBeforeLegalize() const { return BeforeLegalize; }
815    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
816    bool isCalledByLegalizer() const { return CalledByLegalizer; }
817
818    void AddToWorklist(SDNode *N);
819    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
820                      bool AddTo = true);
821    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
822    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
823
824    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
825  };
826
827  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
828  /// and cc. If it is unable to simplify it, return a null SDValue.
829  SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
830                          ISD::CondCode Cond, bool foldBooleans,
831                          DAGCombinerInfo &DCI, DebugLoc dl) const;
832
833  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
834  /// node is a GlobalAddress + offset.
835  virtual bool
836  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
837
838  /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
839  /// location that is 'Dist' units away from the location that the 'Base' load
840  /// is loading from.
841  bool isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes,
842                         int Dist, const MachineFrameInfo *MFI) const;
843
844  /// PerformDAGCombine - This method will be invoked for all target nodes and
845  /// for any target-independent nodes that the target has registered with
846  /// invoke it for.
847  ///
848  /// The semantics are as follows:
849  /// Return Value:
850  ///   SDValue.Val == 0   - No change was made
851  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
852  ///   otherwise          - N should be replaced by the returned Operand.
853  ///
854  /// In addition, methods provided by DAGCombinerInfo may be used to perform
855  /// more complex transformations.
856  ///
857  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
858
859  //===--------------------------------------------------------------------===//
860  // TargetLowering Configuration Methods - These methods should be invoked by
861  // the derived class constructor to configure this object for the target.
862  //
863
864protected:
865  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
866  /// GOT for PC-relative code.
867  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
868
869  /// setShiftAmountType - Describe the type that should be used for shift
870  /// amounts.  This type defaults to the pointer type.
871  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
872
873  /// setBooleanContents - Specify how the target extends the result of a
874  /// boolean value from i1 to a wider type.  See getBooleanContents.
875  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
876
877  /// setSchedulingPreference - Specify the target scheduling preference.
878  void setSchedulingPreference(SchedPreference Pref) {
879    SchedPreferenceInfo = Pref;
880  }
881
882  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
883  /// use _setjmp to implement llvm.setjmp or the non _ version.
884  /// Defaults to false.
885  void setUseUnderscoreSetJmp(bool Val) {
886    UseUnderscoreSetJmp = Val;
887  }
888
889  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
890  /// use _longjmp to implement llvm.longjmp or the non _ version.
891  /// Defaults to false.
892  void setUseUnderscoreLongJmp(bool Val) {
893    UseUnderscoreLongJmp = Val;
894  }
895
896  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
897  /// specifies the register that llvm.savestack/llvm.restorestack should save
898  /// and restore.
899  void setStackPointerRegisterToSaveRestore(unsigned R) {
900    StackPointerRegisterToSaveRestore = R;
901  }
902
903  /// setExceptionPointerRegister - If set to a physical register, this sets
904  /// the register that receives the exception address on entry to a landing
905  /// pad.
906  void setExceptionPointerRegister(unsigned R) {
907    ExceptionPointerRegister = R;
908  }
909
910  /// setExceptionSelectorRegister - If set to a physical register, this sets
911  /// the register that receives the exception typeid on entry to a landing
912  /// pad.
913  void setExceptionSelectorRegister(unsigned R) {
914    ExceptionSelectorRegister = R;
915  }
916
917  /// SelectIsExpensive - Tells the code generator not to expand operations
918  /// into sequences that use the select operations if possible.
919  void setSelectIsExpensive() { SelectIsExpensive = true; }
920
921  /// setIntDivIsCheap - Tells the code generator that integer divide is
922  /// expensive, and if possible, should be replaced by an alternate sequence
923  /// of instructions not containing an integer divide.
924  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
925
926  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
927  /// srl/add/sra for a signed divide by power of two, and let the target handle
928  /// it.
929  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
930
931  /// addRegisterClass - Add the specified register class as an available
932  /// regclass for the specified value type.  This indicates the selector can
933  /// handle values of that class natively.
934  void addRegisterClass(MVT VT, TargetRegisterClass *RC) {
935    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
936    AvailableRegClasses.push_back(std::make_pair(VT, RC));
937    RegClassForVT[VT.getSimpleVT()] = RC;
938  }
939
940  /// computeRegisterProperties - Once all of the register classes are added,
941  /// this allows us to compute derived properties we expose.
942  void computeRegisterProperties();
943
944  /// setOperationAction - Indicate that the specified operation does not work
945  /// with the specified type and indicate what to do about it.
946  void setOperationAction(unsigned Op, MVT VT,
947                          LegalizeAction Action) {
948    assert((unsigned)VT.getSimpleVT() < sizeof(OpActions[0][0])*8 &&
949           Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
950    unsigned I = (unsigned) VT.getSimpleVT();
951    unsigned J = I & 31;
952    I = I >> 5;
953    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
954    OpActions[I][Op] |= (uint64_t)Action << (J*2);
955  }
956
957  /// setLoadExtAction - Indicate that the specified load with extension does
958  /// not work with the with specified type and indicate what to do about it.
959  void setLoadExtAction(unsigned ExtType, MVT VT,
960                      LegalizeAction Action) {
961    assert((unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
962           ExtType < array_lengthof(LoadExtActions) &&
963           "Table isn't big enough!");
964    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
965    LoadExtActions[ExtType] |= (uint64_t)Action << VT.getSimpleVT()*2;
966  }
967
968  /// setTruncStoreAction - Indicate that the specified truncating store does
969  /// not work with the with specified type and indicate what to do about it.
970  void setTruncStoreAction(MVT ValVT, MVT MemVT,
971                           LegalizeAction Action) {
972    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
973           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
974           "Table isn't big enough!");
975    TruncStoreActions[ValVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
976                                                MemVT.getSimpleVT()*2);
977    TruncStoreActions[ValVT.getSimpleVT()] |= (uint64_t)Action <<
978      MemVT.getSimpleVT()*2;
979  }
980
981  /// setIndexedLoadAction - Indicate that the specified indexed load does or
982  /// does not work with the with specified type and indicate what to do abort
983  /// it. NOTE: All indexed mode loads are initialized to Expand in
984  /// TargetLowering.cpp
985  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
986                            LegalizeAction Action) {
987    assert((unsigned)VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
988           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
989           "Table isn't big enough!");
990    IndexedModeActions[(unsigned)VT.getSimpleVT()][0][IdxMode] = (uint8_t)Action;
991  }
992
993  /// setIndexedStoreAction - Indicate that the specified indexed store does or
994  /// does not work with the with specified type and indicate what to do about
995  /// it. NOTE: All indexed mode stores are initialized to Expand in
996  /// TargetLowering.cpp
997  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
998                             LegalizeAction Action) {
999    assert((unsigned)VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
1000           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
1001           "Table isn't big enough!");
1002    IndexedModeActions[(unsigned)VT.getSimpleVT()][1][IdxMode] = (uint8_t)Action;
1003  }
1004
1005  /// setConvertAction - Indicate that the specified conversion does or does
1006  /// not work with the with specified type and indicate what to do about it.
1007  void setConvertAction(MVT FromVT, MVT ToVT,
1008                        LegalizeAction Action) {
1009    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
1010           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
1011           "Table isn't big enough!");
1012    ConvertActions[FromVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
1013                                              ToVT.getSimpleVT()*2);
1014    ConvertActions[FromVT.getSimpleVT()] |= (uint64_t)Action <<
1015      ToVT.getSimpleVT()*2;
1016  }
1017
1018  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1019  /// supported on the target and indicate what to do about it.
1020  void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) {
1021    assert((unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
1022           (unsigned)CC < array_lengthof(CondCodeActions) &&
1023           "Table isn't big enough!");
1024    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
1025    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.getSimpleVT()*2;
1026  }
1027
1028  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1029  /// promotion code defaults to trying a larger integer/fp until it can find
1030  /// one that works.  If that default is insufficient, this method can be used
1031  /// by the target to override the default.
1032  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1033    PromoteToType[std::make_pair(Opc, OrigVT.getSimpleVT())] =
1034      DestVT.getSimpleVT();
1035  }
1036
1037  /// addLegalFPImmediate - Indicate that this target can instruction select
1038  /// the specified FP immediate natively.
1039  void addLegalFPImmediate(const APFloat& Imm) {
1040    LegalFPImmediates.push_back(Imm);
1041  }
1042
1043  /// setTargetDAGCombine - Targets should invoke this method for each target
1044  /// independent node that they want to provide a custom DAG combiner for by
1045  /// implementing the PerformDAGCombine virtual method.
1046  void setTargetDAGCombine(ISD::NodeType NT) {
1047    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1048    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1049  }
1050
1051  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1052  /// bytes); default is 200
1053  void setJumpBufSize(unsigned Size) {
1054    JumpBufSize = Size;
1055  }
1056
1057  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1058  /// alignment (in bytes); default is 0
1059  void setJumpBufAlignment(unsigned Align) {
1060    JumpBufAlignment = Align;
1061  }
1062
1063  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1064  /// limit (in number of instructions); default is 2.
1065  void setIfCvtBlockSizeLimit(unsigned Limit) {
1066    IfCvtBlockSizeLimit = Limit;
1067  }
1068
1069  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1070  /// of instructions) to be considered for code duplication during
1071  /// if-conversion; default is 2.
1072  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1073    IfCvtDupBlockSizeLimit = Limit;
1074  }
1075
1076  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1077  /// alignment is zero, it means the target does not care about loop alignment.
1078  void setPrefLoopAlignment(unsigned Align) {
1079    PrefLoopAlignment = Align;
1080  }
1081
1082public:
1083
1084  virtual const TargetSubtarget *getSubtarget() {
1085    assert(0 && "Not Implemented");
1086    return NULL;    // this is here to silence compiler errors
1087  }
1088
1089  //===--------------------------------------------------------------------===//
1090  // Lowering methods - These methods must be implemented by targets so that
1091  // the SelectionDAGLowering code knows how to lower these.
1092  //
1093
1094  /// LowerArguments - This hook must be implemented to indicate how we should
1095  /// lower the arguments for the specified function, into the specified DAG.
1096  virtual void
1097  LowerArguments(Function &F, SelectionDAG &DAG,
1098                 SmallVectorImpl<SDValue>& ArgValues, DebugLoc dl);
1099
1100  /// LowerCallTo - This hook lowers an abstract call to a function into an
1101  /// actual call.  This returns a pair of operands.  The first element is the
1102  /// return value for the function (if RetTy is not VoidTy).  The second
1103  /// element is the outgoing token chain.
1104  struct ArgListEntry {
1105    SDValue Node;
1106    const Type* Ty;
1107    bool isSExt  : 1;
1108    bool isZExt  : 1;
1109    bool isInReg : 1;
1110    bool isSRet  : 1;
1111    bool isNest  : 1;
1112    bool isByVal : 1;
1113    uint16_t Alignment;
1114
1115    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1116      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1117  };
1118  typedef std::vector<ArgListEntry> ArgListTy;
1119  virtual std::pair<SDValue, SDValue>
1120  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1121              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1122              unsigned CallingConv, bool isTailCall, SDValue Callee,
1123              ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl);
1124
1125  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1126  /// memcpy. This can be used by targets to provide code sequences for cases
1127  /// that don't fit the target's parameters for simple loads/stores and can be
1128  /// more efficient than using a library call. This function can return a null
1129  /// SDValue if the target declines to use custom code and a different
1130  /// lowering strategy should be used.
1131  ///
1132  /// If AlwaysInline is true, the size is constant and the target should not
1133  /// emit any calls and is strongly encouraged to attempt to emit inline code
1134  /// even if it is beyond the usual threshold because this intrinsic is being
1135  /// expanded in a place where calls are not feasible (e.g. within the prologue
1136  /// for another call). If the target chooses to decline an AlwaysInline
1137  /// request here, legalize will resort to using simple loads and stores.
1138  virtual SDValue
1139  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1140                          SDValue Chain,
1141                          SDValue Op1, SDValue Op2,
1142                          SDValue Op3, unsigned Align,
1143                          bool AlwaysInline,
1144                          const Value *DstSV, uint64_t DstOff,
1145                          const Value *SrcSV, uint64_t SrcOff) {
1146    return SDValue();
1147  }
1148
1149  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1150  /// memmove. This can be used by targets to provide code sequences for cases
1151  /// that don't fit the target's parameters for simple loads/stores and can be
1152  /// more efficient than using a library call. This function can return a null
1153  /// SDValue if the target declines to use custom code and a different
1154  /// lowering strategy should be used.
1155  virtual SDValue
1156  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1157                           SDValue Chain,
1158                           SDValue Op1, SDValue Op2,
1159                           SDValue Op3, unsigned Align,
1160                           const Value *DstSV, uint64_t DstOff,
1161                           const Value *SrcSV, uint64_t SrcOff) {
1162    return SDValue();
1163  }
1164
1165  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1166  /// memset. This can be used by targets to provide code sequences for cases
1167  /// that don't fit the target's parameters for simple stores and can be more
1168  /// efficient than using a library call. This function can return a null
1169  /// SDValue if the target declines to use custom code and a different
1170  /// lowering strategy should be used.
1171  virtual SDValue
1172  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1173                          SDValue Chain,
1174                          SDValue Op1, SDValue Op2,
1175                          SDValue Op3, unsigned Align,
1176                          const Value *DstSV, uint64_t DstOff) {
1177    return SDValue();
1178  }
1179
1180  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1181  /// to legalize nodes with an illegal operand type but legal result types.
1182  /// It replaces the LowerOperation callback in the type Legalizer.
1183  /// The reason we can not do away with LowerOperation entirely is that
1184  /// LegalizeDAG isn't yet ready to use this callback.
1185  /// TODO: Consider merging with ReplaceNodeResults.
1186
1187  /// The target places new result values for the node in Results (their number
1188  /// and types must exactly match those of the original return values of
1189  /// the node), or leaves Results empty, which indicates that the node is not
1190  /// to be custom lowered after all.
1191  /// The default implementation calls LowerOperation.
1192  virtual void LowerOperationWrapper(SDNode *N,
1193                                     SmallVectorImpl<SDValue> &Results,
1194                                     SelectionDAG &DAG);
1195
1196  /// LowerOperation - This callback is invoked for operations that are
1197  /// unsupported by the target, which are registered to use 'custom' lowering,
1198  /// and whose defined values are all legal.
1199  /// If the target has no operations that require custom lowering, it need not
1200  /// implement this.  The default implementation of this aborts.
1201  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1202
1203  /// ReplaceNodeResults - This callback is invoked when a node result type is
1204  /// illegal for the target, and the operation was registered to use 'custom'
1205  /// lowering for that result type.  The target places new result values for
1206  /// the node in Results (their number and types must exactly match those of
1207  /// the original return values of the node), or leaves Results empty, which
1208  /// indicates that the node is not to be custom lowered after all.
1209  ///
1210  /// If the target has no operations that require custom lowering, it need not
1211  /// implement this.  The default implementation aborts.
1212  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1213                                  SelectionDAG &DAG) {
1214    assert(0 && "ReplaceNodeResults not implemented for this target!");
1215  }
1216
1217  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
1218  /// tail call optimization. Targets which want to do tail call optimization
1219  /// should override this function.
1220  virtual bool IsEligibleForTailCallOptimization(CallSDNode *Call,
1221                                                 SDValue Ret,
1222                                                 SelectionDAG &DAG) const {
1223    return false;
1224  }
1225
1226  /// CheckTailCallReturnConstraints - Check whether CALL node immediatly
1227  /// preceeds the RET node and whether the return uses the result of the node
1228  /// or is a void return. This function can be used by the target to determine
1229  /// eligiblity of tail call optimization.
1230  static bool CheckTailCallReturnConstraints(CallSDNode *TheCall, SDValue Ret);
1231
1232  /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
1233  /// it exists. Skip a possible ISD::TokenFactor.
1234  static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
1235                                                 unsigned TailCallNodeOpCode) {
1236    if (Chain.getOpcode() == TailCallNodeOpCode) {
1237      return Chain;
1238    } else if (Chain.getOpcode() == ISD::TokenFactor) {
1239      if (Chain.getNumOperands() &&
1240          Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
1241        return Chain.getOperand(0);
1242    }
1243    return Chain;
1244  }
1245
1246  /// getTargetNodeName() - This method returns the name of a target specific
1247  /// DAG node.
1248  virtual const char *getTargetNodeName(unsigned Opcode) const;
1249
1250  /// createFastISel - This method returns a target specific FastISel object,
1251  /// or null if the target does not support "fast" ISel.
1252  virtual FastISel *
1253  createFastISel(MachineFunction &,
1254                 MachineModuleInfo *, DwarfWriter *,
1255                 DenseMap<const Value *, unsigned> &,
1256                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1257                 DenseMap<const AllocaInst *, int> &
1258#ifndef NDEBUG
1259                 , SmallSet<Instruction*, 8> &CatchInfoLost
1260#endif
1261                 ) {
1262    return 0;
1263  }
1264
1265  //===--------------------------------------------------------------------===//
1266  // Inline Asm Support hooks
1267  //
1268
1269  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1270  /// call to be explicit llvm code if it wants to.  This is useful for
1271  /// turning simple inline asms into LLVM intrinsics, which gives the
1272  /// compiler more information about the behavior of the code.
1273  virtual bool ExpandInlineAsm(CallInst *CI) const {
1274    return false;
1275  }
1276
1277  enum ConstraintType {
1278    C_Register,            // Constraint represents specific register(s).
1279    C_RegisterClass,       // Constraint represents any of register(s) in class.
1280    C_Memory,              // Memory constraint.
1281    C_Other,               // Something else.
1282    C_Unknown              // Unsupported constraint.
1283  };
1284
1285  /// AsmOperandInfo - This contains information for each constraint that we are
1286  /// lowering.
1287  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1288    /// ConstraintCode - This contains the actual string for the code, like "m".
1289    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1290    /// most closely matches the operand.
1291    std::string ConstraintCode;
1292
1293    /// ConstraintType - Information about the constraint code, e.g. Register,
1294    /// RegisterClass, Memory, Other, Unknown.
1295    TargetLowering::ConstraintType ConstraintType;
1296
1297    /// CallOperandval - If this is the result output operand or a
1298    /// clobber, this is null, otherwise it is the incoming operand to the
1299    /// CallInst.  This gets modified as the asm is processed.
1300    Value *CallOperandVal;
1301
1302    /// ConstraintVT - The ValueType for the operand value.
1303    MVT ConstraintVT;
1304
1305    /// isMatchingInputConstraint - Return true of this is an input operand that
1306    /// is a matching constraint like "4".
1307    bool isMatchingInputConstraint() const;
1308
1309    /// getMatchedOperand - If this is an input matching constraint, this method
1310    /// returns the output operand it matches.
1311    unsigned getMatchedOperand() const;
1312
1313    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1314      : InlineAsm::ConstraintInfo(info),
1315        ConstraintType(TargetLowering::C_Unknown),
1316        CallOperandVal(0), ConstraintVT(MVT::Other) {
1317    }
1318  };
1319
1320  /// ComputeConstraintToUse - Determines the constraint code and constraint
1321  /// type to use for the specific AsmOperandInfo, setting
1322  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1323  /// being passed in is available, it can be passed in as Op, otherwise an
1324  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1325  /// constraint of the inline asm instruction being processed is 'm'.
1326  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1327                                      SDValue Op,
1328                                      bool hasMemory,
1329                                      SelectionDAG *DAG = 0) const;
1330
1331  /// getConstraintType - Given a constraint, return the type of constraint it
1332  /// is for this target.
1333  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1334
1335  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1336  /// return a list of registers that can be used to satisfy the constraint.
1337  /// This should only be used for C_RegisterClass constraints.
1338  virtual std::vector<unsigned>
1339  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1340                                    MVT VT) const;
1341
1342  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1343  /// {edx}), return the register number and the register class for the
1344  /// register.
1345  ///
1346  /// Given a register class constraint, like 'r', if this corresponds directly
1347  /// to an LLVM register class, return a register of 0 and the register class
1348  /// pointer.
1349  ///
1350  /// This should only be used for C_Register constraints.  On error,
1351  /// this returns a register number of 0 and a null register class pointer..
1352  virtual std::pair<unsigned, const TargetRegisterClass*>
1353    getRegForInlineAsmConstraint(const std::string &Constraint,
1354                                 MVT VT) const;
1355
1356  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1357  /// with another that has more specific requirements based on the type of the
1358  /// corresponding operand.  This returns null if there is no replacement to
1359  /// make.
1360  virtual const char *LowerXConstraint(MVT ConstraintVT) const;
1361
1362  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1363  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1364  /// it means one of the asm constraint of the inline asm instruction being
1365  /// processed is 'm'.
1366  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1367                                            bool hasMemory,
1368                                            std::vector<SDValue> &Ops,
1369                                            SelectionDAG &DAG) const;
1370
1371  //===--------------------------------------------------------------------===//
1372  // Scheduler hooks
1373  //
1374
1375  // EmitInstrWithCustomInserter - This method should be implemented by targets
1376  // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1377  // instructions are special in various ways, which require special support to
1378  // insert.  The specified MachineInstr is created but not inserted into any
1379  // basic blocks, and the scheduler passes ownership of it to this method.
1380  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1381                                                  MachineBasicBlock *MBB) const;
1382
1383  //===--------------------------------------------------------------------===//
1384  // Addressing mode description hooks (used by LSR etc).
1385  //
1386
1387  /// AddrMode - This represents an addressing mode of:
1388  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1389  /// If BaseGV is null,  there is no BaseGV.
1390  /// If BaseOffs is zero, there is no base offset.
1391  /// If HasBaseReg is false, there is no base register.
1392  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1393  /// no scale.
1394  ///
1395  struct AddrMode {
1396    GlobalValue *BaseGV;
1397    int64_t      BaseOffs;
1398    bool         HasBaseReg;
1399    int64_t      Scale;
1400    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1401  };
1402
1403  /// isLegalAddressingMode - Return true if the addressing mode represented by
1404  /// AM is legal for this target, for a load/store of the specified type.
1405  /// The type may be VoidTy, in which case only return true if the addressing
1406  /// mode is legal for a load/store of any legal type.
1407  /// TODO: Handle pre/postinc as well.
1408  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1409
1410  /// isTruncateFree - Return true if it's free to truncate a value of
1411  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1412  /// register EAX to i16 by referencing its sub-register AX.
1413  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1414    return false;
1415  }
1416
1417  virtual bool isTruncateFree(MVT VT1, MVT VT2) const {
1418    return false;
1419  }
1420
1421  /// isZExtFree - Return true if any actual instruction that defines a
1422  /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1423  /// register. This does not necessarily include registers defined in
1424  /// unknown ways, such as incoming arguments, or copies from unknown
1425  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1426  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1427  /// all instructions that define 32-bit values implicit zero-extend the
1428  /// result out to 64 bits.
1429  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1430    return false;
1431  }
1432
1433  virtual bool isZExtFree(MVT VT1, MVT VT2) const {
1434    return false;
1435  }
1436
1437  /// isNarrowingProfitable - Return true if it's profitable to narrow
1438  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1439  /// from i32 to i8 but not from i32 to i16.
1440  virtual bool isNarrowingProfitable(MVT VT1, MVT VT2) const {
1441    return false;
1442  }
1443
1444  //===--------------------------------------------------------------------===//
1445  // Div utility functions
1446  //
1447  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1448                      std::vector<SDNode*>* Created) const;
1449  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1450                      std::vector<SDNode*>* Created) const;
1451
1452
1453  //===--------------------------------------------------------------------===//
1454  // Runtime Library hooks
1455  //
1456
1457  /// setLibcallName - Rename the default libcall routine name for the specified
1458  /// libcall.
1459  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1460    LibcallRoutineNames[Call] = Name;
1461  }
1462
1463  /// getLibcallName - Get the libcall routine name for the specified libcall.
1464  ///
1465  const char *getLibcallName(RTLIB::Libcall Call) const {
1466    return LibcallRoutineNames[Call];
1467  }
1468
1469  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1470  /// result of the comparison libcall against zero.
1471  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1472    CmpLibcallCCs[Call] = CC;
1473  }
1474
1475  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1476  /// the comparison libcall against zero.
1477  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1478    return CmpLibcallCCs[Call];
1479  }
1480
1481private:
1482  TargetMachine &TM;
1483  const TargetData *TD;
1484  TargetLoweringObjectFile &TLOF;
1485
1486  /// PointerTy - The type to use for pointers, usually i32 or i64.
1487  ///
1488  MVT PointerTy;
1489
1490  /// IsLittleEndian - True if this is a little endian target.
1491  ///
1492  bool IsLittleEndian;
1493
1494  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1495  ///
1496  bool UsesGlobalOffsetTable;
1497
1498  /// SelectIsExpensive - Tells the code generator not to expand operations
1499  /// into sequences that use the select operations if possible.
1500  bool SelectIsExpensive;
1501
1502  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1503  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1504  /// a real cost model is in place.  If we ever optimize for size, this will be
1505  /// set to true unconditionally.
1506  bool IntDivIsCheap;
1507
1508  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1509  /// srl/add/sra for a signed divide by power of two, and let the target handle
1510  /// it.
1511  bool Pow2DivIsCheap;
1512
1513  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1514  /// llvm.setjmp.  Defaults to false.
1515  bool UseUnderscoreSetJmp;
1516
1517  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1518  /// llvm.longjmp.  Defaults to false.
1519  bool UseUnderscoreLongJmp;
1520
1521  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1522  /// PointerTy is.
1523  MVT ShiftAmountTy;
1524
1525  /// BooleanContents - Information about the contents of the high-bits in
1526  /// boolean values held in a type wider than i1.  See getBooleanContents.
1527  BooleanContent BooleanContents;
1528
1529  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1530  /// total cycles or lowest register usage.
1531  SchedPreference SchedPreferenceInfo;
1532
1533  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1534  unsigned JumpBufSize;
1535
1536  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1537  /// buffers
1538  unsigned JumpBufAlignment;
1539
1540  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1541  /// if-converted.
1542  unsigned IfCvtBlockSizeLimit;
1543
1544  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1545  /// duplicated during if-conversion.
1546  unsigned IfCvtDupBlockSizeLimit;
1547
1548  /// PrefLoopAlignment - The perferred loop alignment.
1549  ///
1550  unsigned PrefLoopAlignment;
1551
1552  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1553  /// specifies the register that llvm.savestack/llvm.restorestack should save
1554  /// and restore.
1555  unsigned StackPointerRegisterToSaveRestore;
1556
1557  /// ExceptionPointerRegister - If set to a physical register, this specifies
1558  /// the register that receives the exception address on entry to a landing
1559  /// pad.
1560  unsigned ExceptionPointerRegister;
1561
1562  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1563  /// the register that receives the exception typeid on entry to a landing
1564  /// pad.
1565  unsigned ExceptionSelectorRegister;
1566
1567  /// RegClassForVT - This indicates the default register class to use for
1568  /// each ValueType the target supports natively.
1569  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1570  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1571  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1572
1573  /// TransformToType - For any value types we are promoting or expanding, this
1574  /// contains the value type that we are changing to.  For Expanded types, this
1575  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1576  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1577  /// by the system, this holds the same type (e.g. i32 -> i32).
1578  MVT TransformToType[MVT::LAST_VALUETYPE];
1579
1580  /// OpActions - For each operation and each value type, keep a LegalizeAction
1581  /// that indicates how instruction selection should deal with the operation.
1582  /// Most operations are Legal (aka, supported natively by the target), but
1583  /// operations that are not should be described.  Note that operations on
1584  /// non-legal value types are not described here.
1585  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1586  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1587  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)][ISD::BUILTIN_OP_END];
1588
1589  /// LoadExtActions - For each load of load extension type and each value type,
1590  /// keep a LegalizeAction that indicates how instruction selection should deal
1591  /// with the load.
1592  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1593
1594  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1595  /// indicates how instruction selection should deal with the store.
1596  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1597
1598  /// IndexedModeActions - For each indexed mode and each value type,
1599  /// keep a pair of LegalizeAction that indicates how instruction
1600  /// selection should deal with the load / store.  The first
1601  /// dimension is now the value_type for the reference.  The second
1602  /// dimension is the load [0] vs. store[1].  The third dimension
1603  /// represents the various modes for load store.
1604  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1605
1606  /// ConvertActions - For each conversion from source type to destination type,
1607  /// keep a LegalizeAction that indicates how instruction selection should
1608  /// deal with the conversion.
1609  /// Currently, this is used only for floating->floating conversions
1610  /// (FP_EXTEND and FP_ROUND).
1611  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1612
1613  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1614  /// LegalizeAction that indicates how instruction selection should
1615  /// deal with the condition code.
1616  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1617
1618  ValueTypeActionImpl ValueTypeActions;
1619
1620  std::vector<APFloat> LegalFPImmediates;
1621
1622  std::vector<std::pair<MVT, TargetRegisterClass*> > AvailableRegClasses;
1623
1624  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1625  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1626  /// which sets a bit in this array.
1627  unsigned char
1628  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1629
1630  /// PromoteToType - For operations that must be promoted to a specific type,
1631  /// this holds the destination type.  This map should be sparse, so don't hold
1632  /// it as an array.
1633  ///
1634  /// Targets add entries to this map with AddPromotedToType(..), clients access
1635  /// this with getTypeToPromoteTo(..).
1636  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1637    PromoteToType;
1638
1639  /// LibcallRoutineNames - Stores the name each libcall.
1640  ///
1641  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1642
1643  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1644  /// of each of the comparison libcall against zero.
1645  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1646
1647protected:
1648  /// When lowering \@llvm.memset this field specifies the maximum number of
1649  /// store operations that may be substituted for the call to memset. Targets
1650  /// must set this value based on the cost threshold for that target. Targets
1651  /// should assume that the memset will be done using as many of the largest
1652  /// store operations first, followed by smaller ones, if necessary, per
1653  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1654  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1655  /// store.  This only applies to setting a constant array of a constant size.
1656  /// @brief Specify maximum number of store instructions per memset call.
1657  unsigned maxStoresPerMemset;
1658
1659  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1660  /// store operations that may be substituted for a call to memcpy. Targets
1661  /// must set this value based on the cost threshold for that target. Targets
1662  /// should assume that the memcpy will be done using as many of the largest
1663  /// store operations first, followed by smaller ones, if necessary, per
1664  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1665  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1666  /// and one 1-byte store. This only applies to copying a constant array of
1667  /// constant size.
1668  /// @brief Specify maximum bytes of store instructions per memcpy call.
1669  unsigned maxStoresPerMemcpy;
1670
1671  /// When lowering \@llvm.memmove this field specifies the maximum number of
1672  /// store instructions that may be substituted for a call to memmove. Targets
1673  /// must set this value based on the cost threshold for that target. Targets
1674  /// should assume that the memmove will be done using as many of the largest
1675  /// store operations first, followed by smaller ones, if necessary, per
1676  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1677  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1678  /// applies to copying a constant array of constant size.
1679  /// @brief Specify maximum bytes of store instructions per memmove call.
1680  unsigned maxStoresPerMemmove;
1681
1682  /// This field specifies whether the target machine permits unaligned memory
1683  /// accesses.  This is used, for example, to determine the size of store
1684  /// operations when copying small arrays and other similar tasks.
1685  /// @brief Indicate whether the target permits unaligned memory accesses.
1686  bool allowUnalignedMemoryAccesses;
1687
1688  /// This field specifies whether the target can benefit from code placement
1689  /// optimization.
1690  bool benefitFromCodePlacementOpt;
1691};
1692} // end llvm namespace
1693
1694#endif
1695