TargetLowering.h revision f2e19d5dcfa13472493bb18339555686182b7df9
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/InlineAsm.h"
26#include "llvm/CodeGen/SelectionDAGNodes.h"
27#include "llvm/CodeGen/RuntimeLibcalls.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/DebugLoc.h"
34#include "llvm/Target/TargetMachine.h"
35#include <climits>
36#include <map>
37#include <vector>
38
39namespace llvm {
40  class AllocaInst;
41  class CallInst;
42  class Function;
43  class FastISel;
44  class MachineBasicBlock;
45  class MachineFunction;
46  class MachineFrameInfo;
47  class MachineInstr;
48  class MachineModuleInfo;
49  class DwarfWriter;
50  class SDNode;
51  class SDValue;
52  class SelectionDAG;
53  class TargetData;
54  class TargetMachine;
55  class TargetRegisterClass;
56  class TargetSubtarget;
57  class Value;
58
59  // FIXME: should this be here?
60  namespace TLSModel {
61    enum Model {
62      GeneralDynamic,
63      LocalDynamic,
64      InitialExec,
65      LocalExec
66    };
67  }
68  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
69
70
71//===----------------------------------------------------------------------===//
72/// TargetLowering - This class defines information used to lower LLVM code to
73/// legal SelectionDAG operators that the target instruction selector can accept
74/// natively.
75///
76/// This class also defines callbacks that targets must implement to lower
77/// target-specific constructs to SelectionDAG operators.
78///
79class TargetLowering {
80public:
81  /// LegalizeAction - This enum indicates whether operations are valid for a
82  /// target, and if not, what action should be used to make them valid.
83  enum LegalizeAction {
84    Legal,      // The target natively supports this operation.
85    Promote,    // This operation should be executed in a larger type.
86    Expand,     // Try to expand this to other ops, otherwise use a libcall.
87    Custom      // Use the LowerOperation hook to implement custom lowering.
88  };
89
90  enum OutOfRangeShiftAmount {
91    Undefined,  // Oversized shift amounts are undefined (default).
92    Mask,       // Shift amounts are auto masked (anded) to value size.
93    Extend      // Oversized shift pulls in zeros or sign bits.
94  };
95
96  enum BooleanContent { // How the target represents true/false values.
97    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
98    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
99    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
100  };
101
102  enum SchedPreference {
103    SchedulingForLatency,          // Scheduling for shortest total latency.
104    SchedulingForRegPressure       // Scheduling for lowest register pressure.
105  };
106
107  explicit TargetLowering(TargetMachine &TM);
108  virtual ~TargetLowering();
109
110  TargetMachine &getTargetMachine() const { return TM; }
111  const TargetData *getTargetData() const { return TD; }
112
113  bool isBigEndian() const { return !IsLittleEndian; }
114  bool isLittleEndian() const { return IsLittleEndian; }
115  MVT getPointerTy() const { return PointerTy; }
116  MVT getShiftAmountTy() const { return ShiftAmountTy; }
117  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
118
119  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
120  /// codegen.
121  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
122
123  /// isSelectExpensive - Return true if the select operation is expensive for
124  /// this target.
125  bool isSelectExpensive() const { return SelectIsExpensive; }
126
127  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
128  /// a sequence of several shifts, adds, and multiplies for this target.
129  bool isIntDivCheap() const { return IntDivIsCheap; }
130
131  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
132  /// srl/add/sra.
133  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
134
135  /// getSetCCResultType - Return the ValueType of the result of SETCC
136  /// operations.  Also used to obtain the target's preferred type for
137  /// the condition operand of SELECT and BRCOND nodes.  In the case of
138  /// BRCOND the argument passed is MVT::Other since there are no other
139  /// operands to get a type hint from.
140  virtual MVT getSetCCResultType(MVT VT) const;
141
142  /// getBooleanContents - For targets without i1 registers, this gives the
143  /// nature of the high-bits of boolean values held in types wider than i1.
144  /// "Boolean values" are special true/false values produced by nodes like
145  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
146  /// Not to be confused with general values promoted from i1.
147  BooleanContent getBooleanContents() const { return BooleanContents;}
148
149  /// getSchedulingPreference - Return target scheduling preference.
150  SchedPreference getSchedulingPreference() const {
151    return SchedPreferenceInfo;
152  }
153
154  /// getRegClassFor - Return the register class that should be used for the
155  /// specified value type.  This may only be called on legal types.
156  TargetRegisterClass *getRegClassFor(MVT VT) const {
157    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
158    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT()];
159    assert(RC && "This value type is not natively supported!");
160    return RC;
161  }
162
163  /// isTypeLegal - Return true if the target has native support for the
164  /// specified value type.  This means that it has a register that directly
165  /// holds it without promotions or expansions.
166  bool isTypeLegal(MVT VT) const {
167    assert(!VT.isSimple() ||
168           (unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
169    return VT.isSimple() && RegClassForVT[VT.getSimpleVT()] != 0;
170  }
171
172  class ValueTypeActionImpl {
173    /// ValueTypeActions - This is a bitvector that contains two bits for each
174    /// value type, where the two bits correspond to the LegalizeAction enum.
175    /// This can be queried with "getTypeAction(VT)".
176    /// dimension by (MVT::MAX_ALLOWED_LAST_VALUETYPE/32) * 2
177    uint32_t ValueTypeActions[4];
178  public:
179    ValueTypeActionImpl() {
180      ValueTypeActions[0] = ValueTypeActions[1] = 0;
181      ValueTypeActions[2] = ValueTypeActions[3] = 0;
182    }
183    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
184      ValueTypeActions[0] = RHS.ValueTypeActions[0];
185      ValueTypeActions[1] = RHS.ValueTypeActions[1];
186      ValueTypeActions[2] = RHS.ValueTypeActions[2];
187      ValueTypeActions[3] = RHS.ValueTypeActions[3];
188    }
189
190    LegalizeAction getTypeAction(MVT VT) const {
191      if (VT.isExtended()) {
192        if (VT.isVector()) {
193          return VT.isPow2VectorType() ? Expand : Promote;
194        }
195        if (VT.isInteger())
196          // First promote to a power-of-two size, then expand if necessary.
197          return VT == VT.getRoundIntegerType() ? Expand : Promote;
198        assert(0 && "Unsupported extended type!");
199        return Legal;
200      }
201      unsigned I = VT.getSimpleVT();
202      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
203      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
204    }
205    void setTypeAction(MVT VT, LegalizeAction Action) {
206      unsigned I = VT.getSimpleVT();
207      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
208      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
209    }
210  };
211
212  const ValueTypeActionImpl &getValueTypeActions() const {
213    return ValueTypeActions;
214  }
215
216  /// getTypeAction - Return how we should legalize values of this type, either
217  /// it is already legal (return 'Legal') or we need to promote it to a larger
218  /// type (return 'Promote'), or we need to expand it into multiple registers
219  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
220  LegalizeAction getTypeAction(MVT VT) const {
221    return ValueTypeActions.getTypeAction(VT);
222  }
223
224  /// getTypeToTransformTo - For types supported by the target, this is an
225  /// identity function.  For types that must be promoted to larger types, this
226  /// returns the larger type to promote to.  For integer types that are larger
227  /// than the largest integer register, this contains one step in the expansion
228  /// to get to the smaller register. For illegal floating point types, this
229  /// returns the integer type to transform to.
230  MVT getTypeToTransformTo(MVT VT) const {
231    if (VT.isSimple()) {
232      assert((unsigned)VT.getSimpleVT() < array_lengthof(TransformToType));
233      MVT NVT = TransformToType[VT.getSimpleVT()];
234      assert(getTypeAction(NVT) != Promote &&
235             "Promote may not follow Expand or Promote");
236      return NVT;
237    }
238
239    if (VT.isVector()) {
240      MVT NVT = VT.getPow2VectorType();
241      if (NVT == VT) {
242        // Vector length is a power of 2 - split to half the size.
243        unsigned NumElts = VT.getVectorNumElements();
244        MVT EltVT = VT.getVectorElementType();
245        return (NumElts == 1) ? EltVT : MVT::getVectorVT(EltVT, NumElts / 2);
246      }
247      // Promote to a power of two size, avoiding multi-step promotion.
248      return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
249    } else if (VT.isInteger()) {
250      MVT NVT = VT.getRoundIntegerType();
251      if (NVT == VT)
252        // Size is a power of two - expand to half the size.
253        return MVT::getIntegerVT(VT.getSizeInBits() / 2);
254      else
255        // Promote to a power of two size, avoiding multi-step promotion.
256        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
257    }
258    assert(0 && "Unsupported extended type!");
259    return MVT(); // Not reached
260  }
261
262  /// getTypeToExpandTo - For types supported by the target, this is an
263  /// identity function.  For types that must be expanded (i.e. integer types
264  /// that are larger than the largest integer register or illegal floating
265  /// point types), this returns the largest legal type it will be expanded to.
266  MVT getTypeToExpandTo(MVT VT) const {
267    assert(!VT.isVector());
268    while (true) {
269      switch (getTypeAction(VT)) {
270      case Legal:
271        return VT;
272      case Expand:
273        VT = getTypeToTransformTo(VT);
274        break;
275      default:
276        assert(false && "Type is not legal nor is it to be expanded!");
277        return VT;
278      }
279    }
280    return VT;
281  }
282
283  /// getVectorTypeBreakdown - Vector types are broken down into some number of
284  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
285  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
286  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
287  ///
288  /// This method returns the number of registers needed, and the VT for each
289  /// register.  It also returns the VT and quantity of the intermediate values
290  /// before they are promoted/expanded.
291  ///
292  unsigned getVectorTypeBreakdown(MVT VT,
293                                  MVT &IntermediateVT,
294                                  unsigned &NumIntermediates,
295                                  MVT &RegisterVT) const;
296
297  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
298  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
299  /// this is the case, it returns true and store the intrinsic
300  /// information into the IntrinsicInfo that was passed to the function.
301  typedef struct IntrinsicInfo {
302    unsigned     opc;         // target opcode
303    MVT          memVT;       // memory VT
304    const Value* ptrVal;      // value representing memory location
305    int          offset;      // offset off of ptrVal
306    unsigned     align;       // alignment
307    bool         vol;         // is volatile?
308    bool         readMem;     // reads memory?
309    bool         writeMem;    // writes memory?
310  } IntrinisicInfo;
311
312  virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
313                                  CallInst &I, unsigned Intrinsic) {
314    return false;
315  }
316
317  /// getWidenVectorType: given a vector type, returns the type to widen to
318  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
319  /// If there is no vector type that we want to widen to, returns MVT::Other
320  /// When and were to widen is target dependent based on the cost of
321  /// scalarizing vs using the wider vector type.
322  virtual MVT getWidenVectorType(MVT VT) const;
323
324  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
325  legal_fpimm_iterator legal_fpimm_begin() const {
326    return LegalFPImmediates.begin();
327  }
328  legal_fpimm_iterator legal_fpimm_end() const {
329    return LegalFPImmediates.end();
330  }
331
332  /// isShuffleMaskLegal - Targets can use this to indicate that they only
333  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
334  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
335  /// are assumed to be legal.
336  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
337                                  MVT VT) const {
338    return true;
339  }
340
341  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
342  /// used by Targets can use this to indicate if there is a suitable
343  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
344  /// pool entry.
345  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
346                                      MVT VT) const {
347    return false;
348  }
349
350  /// getOperationAction - Return how this operation should be treated: either
351  /// it is legal, needs to be promoted to a larger size, needs to be
352  /// expanded to some other code sequence, or the target has a custom expander
353  /// for it.
354  LegalizeAction getOperationAction(unsigned Op, MVT VT) const {
355    if (VT.isExtended()) return Expand;
356    assert(Op < array_lengthof(OpActions) &&
357           (unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*8 &&
358           "Table isn't big enough!");
359    return (LegalizeAction)((OpActions[Op] >> (2*VT.getSimpleVT())) & 3);
360  }
361
362  /// isOperationLegalOrCustom - Return true if the specified operation is
363  /// legal on this target or can be made legal with custom lowering. This
364  /// is used to help guide high-level lowering decisions.
365  bool isOperationLegalOrCustom(unsigned Op, MVT VT) const {
366    return (VT == MVT::Other || isTypeLegal(VT)) &&
367      (getOperationAction(Op, VT) == Legal ||
368       getOperationAction(Op, VT) == Custom);
369  }
370
371  /// isOperationLegal - Return true if the specified operation is legal on this
372  /// target.
373  bool isOperationLegal(unsigned Op, MVT VT) const {
374    return (VT == MVT::Other || isTypeLegal(VT)) &&
375           getOperationAction(Op, VT) == Legal;
376  }
377
378  /// getLoadExtAction - Return how this load with extension should be treated:
379  /// either it is legal, needs to be promoted to a larger size, needs to be
380  /// expanded to some other code sequence, or the target has a custom expander
381  /// for it.
382  LegalizeAction getLoadExtAction(unsigned LType, MVT VT) const {
383    assert(LType < array_lengthof(LoadExtActions) &&
384           (unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
385           "Table isn't big enough!");
386    return (LegalizeAction)((LoadExtActions[LType] >> (2*VT.getSimpleVT())) & 3);
387  }
388
389  /// isLoadExtLegal - Return true if the specified load with extension is legal
390  /// on this target.
391  bool isLoadExtLegal(unsigned LType, MVT VT) const {
392    return VT.isSimple() &&
393      (getLoadExtAction(LType, VT) == Legal ||
394       getLoadExtAction(LType, VT) == Custom);
395  }
396
397  /// getTruncStoreAction - Return how this store with truncation should be
398  /// treated: either it is legal, needs to be promoted to a larger size, needs
399  /// to be expanded to some other code sequence, or the target has a custom
400  /// expander for it.
401  LegalizeAction getTruncStoreAction(MVT ValVT,
402                                     MVT MemVT) const {
403    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
404           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
405           "Table isn't big enough!");
406    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT()] >>
407                             (2*MemVT.getSimpleVT())) & 3);
408  }
409
410  /// isTruncStoreLegal - Return true if the specified store with truncation is
411  /// legal on this target.
412  bool isTruncStoreLegal(MVT ValVT, MVT MemVT) const {
413    return isTypeLegal(ValVT) && MemVT.isSimple() &&
414      (getTruncStoreAction(ValVT, MemVT) == Legal ||
415       getTruncStoreAction(ValVT, MemVT) == Custom);
416  }
417
418  /// getIndexedLoadAction - Return how the indexed load should be treated:
419  /// either it is legal, needs to be promoted to a larger size, needs to be
420  /// expanded to some other code sequence, or the target has a custom expander
421  /// for it.
422  LegalizeAction
423  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
424    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
425           ((unsigned)VT.getSimpleVT()) < MVT::LAST_VALUETYPE &&
426           "Table isn't big enough!");
427    return (LegalizeAction)((IndexedModeActions[(unsigned)VT.getSimpleVT()][0][IdxMode]));
428  }
429
430  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
431  /// on this target.
432  bool isIndexedLoadLegal(unsigned IdxMode, MVT VT) const {
433    return VT.isSimple() &&
434      (getIndexedLoadAction(IdxMode, VT) == Legal ||
435       getIndexedLoadAction(IdxMode, VT) == Custom);
436  }
437
438  /// getIndexedStoreAction - Return how the indexed store should be treated:
439  /// either it is legal, needs to be promoted to a larger size, needs to be
440  /// expanded to some other code sequence, or the target has a custom expander
441  /// for it.
442  LegalizeAction
443  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
444    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
445           (unsigned)VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
446           "Table isn't big enough!");
447    return (LegalizeAction)((IndexedModeActions[(unsigned)VT.getSimpleVT()][1][IdxMode]));
448  }
449
450  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
451  /// on this target.
452  bool isIndexedStoreLegal(unsigned IdxMode, MVT VT) const {
453    return VT.isSimple() &&
454      (getIndexedStoreAction(IdxMode, VT) == Legal ||
455       getIndexedStoreAction(IdxMode, VT) == Custom);
456  }
457
458  /// getConvertAction - Return how the conversion should be treated:
459  /// either it is legal, needs to be promoted to a larger size, needs to be
460  /// expanded to some other code sequence, or the target has a custom expander
461  /// for it.
462  LegalizeAction
463  getConvertAction(MVT FromVT, MVT ToVT) const {
464    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
465           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
466           "Table isn't big enough!");
467    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT()] >>
468                             (2*ToVT.getSimpleVT())) & 3);
469  }
470
471  /// isConvertLegal - Return true if the specified conversion is legal
472  /// on this target.
473  bool isConvertLegal(MVT FromVT, MVT ToVT) const {
474    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
475      (getConvertAction(FromVT, ToVT) == Legal ||
476       getConvertAction(FromVT, ToVT) == Custom);
477  }
478
479  /// getCondCodeAction - Return how the condition code should be treated:
480  /// either it is legal, needs to be expanded to some other code sequence,
481  /// or the target has a custom expander for it.
482  LegalizeAction
483  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
484    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
485           (unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
486           "Table isn't big enough!");
487    LegalizeAction Action = (LegalizeAction)
488      ((CondCodeActions[CC] >> (2*VT.getSimpleVT())) & 3);
489    assert(Action != Promote && "Can't promote condition code!");
490    return Action;
491  }
492
493  /// isCondCodeLegal - Return true if the specified condition code is legal
494  /// on this target.
495  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
496    return getCondCodeAction(CC, VT) == Legal ||
497           getCondCodeAction(CC, VT) == Custom;
498  }
499
500
501  /// getTypeToPromoteTo - If the action for this operation is to promote, this
502  /// method returns the ValueType to promote to.
503  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
504    assert(getOperationAction(Op, VT) == Promote &&
505           "This operation isn't promoted!");
506
507    // See if this has an explicit type specified.
508    std::map<std::pair<unsigned, MVT::SimpleValueType>,
509             MVT::SimpleValueType>::const_iterator PTTI =
510      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT()));
511    if (PTTI != PromoteToType.end()) return PTTI->second;
512
513    assert((VT.isInteger() || VT.isFloatingPoint()) &&
514           "Cannot autopromote this type, add it with AddPromotedToType.");
515
516    MVT NVT = VT;
517    do {
518      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT()+1);
519      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
520             "Didn't find type to promote to!");
521    } while (!isTypeLegal(NVT) ||
522              getOperationAction(Op, NVT) == Promote);
523    return NVT;
524  }
525
526  /// getValueType - Return the MVT corresponding to this LLVM type.
527  /// This is fixed by the LLVM operations except for the pointer size.  If
528  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
529  /// counterpart (e.g. structs), otherwise it will assert.
530  MVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
531    MVT VT = MVT::getMVT(Ty, AllowUnknown);
532    return VT == MVT::iPTR ? PointerTy : VT;
533  }
534
535  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
536  /// function arguments in the caller parameter area.  This is the actual
537  /// alignment, not its logarithm.
538  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
539
540  /// getRegisterType - Return the type of registers that this ValueType will
541  /// eventually require.
542  MVT getRegisterType(MVT VT) const {
543    if (VT.isSimple()) {
544      assert((unsigned)VT.getSimpleVT() < array_lengthof(RegisterTypeForVT));
545      return RegisterTypeForVT[VT.getSimpleVT()];
546    }
547    if (VT.isVector()) {
548      MVT VT1, RegisterVT;
549      unsigned NumIntermediates;
550      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
551      return RegisterVT;
552    }
553    if (VT.isInteger()) {
554      return getRegisterType(getTypeToTransformTo(VT));
555    }
556    assert(0 && "Unsupported extended type!");
557    return MVT(); // Not reached
558  }
559
560  /// getNumRegisters - Return the number of registers that this ValueType will
561  /// eventually require.  This is one for any types promoted to live in larger
562  /// registers, but may be more than one for types (like i64) that are split
563  /// into pieces.  For types like i140, which are first promoted then expanded,
564  /// it is the number of registers needed to hold all the bits of the original
565  /// type.  For an i140 on a 32 bit machine this means 5 registers.
566  unsigned getNumRegisters(MVT VT) const {
567    if (VT.isSimple()) {
568      assert((unsigned)VT.getSimpleVT() < array_lengthof(NumRegistersForVT));
569      return NumRegistersForVT[VT.getSimpleVT()];
570    }
571    if (VT.isVector()) {
572      MVT VT1, VT2;
573      unsigned NumIntermediates;
574      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
575    }
576    if (VT.isInteger()) {
577      unsigned BitWidth = VT.getSizeInBits();
578      unsigned RegWidth = getRegisterType(VT).getSizeInBits();
579      return (BitWidth + RegWidth - 1) / RegWidth;
580    }
581    assert(0 && "Unsupported extended type!");
582    return 0; // Not reached
583  }
584
585  /// ShouldShrinkFPConstant - If true, then instruction selection should
586  /// seek to shrink the FP constant of the specified type to a smaller type
587  /// in order to save space and / or reduce runtime.
588  virtual bool ShouldShrinkFPConstant(MVT VT) const { return true; }
589
590  /// hasTargetDAGCombine - If true, the target has custom DAG combine
591  /// transformations that it can perform for the specified node.
592  bool hasTargetDAGCombine(ISD::NodeType NT) const {
593    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
594    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
595  }
596
597  /// This function returns the maximum number of store operations permitted
598  /// to replace a call to llvm.memset. The value is set by the target at the
599  /// performance threshold for such a replacement.
600  /// @brief Get maximum # of store operations permitted for llvm.memset
601  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
602
603  /// This function returns the maximum number of store operations permitted
604  /// to replace a call to llvm.memcpy. The value is set by the target at the
605  /// performance threshold for such a replacement.
606  /// @brief Get maximum # of store operations permitted for llvm.memcpy
607  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
608
609  /// This function returns the maximum number of store operations permitted
610  /// to replace a call to llvm.memmove. The value is set by the target at the
611  /// performance threshold for such a replacement.
612  /// @brief Get maximum # of store operations permitted for llvm.memmove
613  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
614
615  /// This function returns true if the target allows unaligned memory accesses.
616  /// This is used, for example, in situations where an array copy/move/set is
617  /// converted to a sequence of store operations. It's use helps to ensure that
618  /// such replacements don't generate code that causes an alignment error
619  /// (trap) on the target machine.
620  /// @brief Determine if the target supports unaligned memory accesses.
621  bool allowsUnalignedMemoryAccesses() const {
622    return allowUnalignedMemoryAccesses;
623  }
624
625  /// This function returns true if the target would benefit from code placement
626  /// optimization.
627  /// @brief Determine if the target should perform code placement optimization.
628  bool shouldOptimizeCodePlacement() const {
629    return benefitFromCodePlacementOpt;
630  }
631
632  /// getOptimalMemOpType - Returns the target specific optimal type for load
633  /// and store operations as a result of memset, memcpy, and memmove lowering.
634  /// It returns MVT::iAny if SelectionDAG should be responsible for
635  /// determining it.
636  virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
637                                  bool isSrcConst, bool isSrcStr,
638                                  SelectionDAG &DAG) const {
639    return MVT::iAny;
640  }
641
642  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
643  /// to implement llvm.setjmp.
644  bool usesUnderscoreSetJmp() const {
645    return UseUnderscoreSetJmp;
646  }
647
648  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
649  /// to implement llvm.longjmp.
650  bool usesUnderscoreLongJmp() const {
651    return UseUnderscoreLongJmp;
652  }
653
654  /// getStackPointerRegisterToSaveRestore - If a physical register, this
655  /// specifies the register that llvm.savestack/llvm.restorestack should save
656  /// and restore.
657  unsigned getStackPointerRegisterToSaveRestore() const {
658    return StackPointerRegisterToSaveRestore;
659  }
660
661  /// getExceptionAddressRegister - If a physical register, this returns
662  /// the register that receives the exception address on entry to a landing
663  /// pad.
664  unsigned getExceptionAddressRegister() const {
665    return ExceptionPointerRegister;
666  }
667
668  /// getExceptionSelectorRegister - If a physical register, this returns
669  /// the register that receives the exception typeid on entry to a landing
670  /// pad.
671  unsigned getExceptionSelectorRegister() const {
672    return ExceptionSelectorRegister;
673  }
674
675  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
676  /// set, the default is 200)
677  unsigned getJumpBufSize() const {
678    return JumpBufSize;
679  }
680
681  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
682  /// (if never set, the default is 0)
683  unsigned getJumpBufAlignment() const {
684    return JumpBufAlignment;
685  }
686
687  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
688  /// limit. Any block whose size is greater should not be predicated.
689  unsigned getIfCvtBlockSizeLimit() const {
690    return IfCvtBlockSizeLimit;
691  }
692
693  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
694  /// block to be considered for duplication. Any block whose size is greater
695  /// should not be duplicated to facilitate its predication.
696  unsigned getIfCvtDupBlockSizeLimit() const {
697    return IfCvtDupBlockSizeLimit;
698  }
699
700  /// getPrefLoopAlignment - return the preferred loop alignment.
701  ///
702  unsigned getPrefLoopAlignment() const {
703    return PrefLoopAlignment;
704  }
705
706  /// getPreIndexedAddressParts - returns true by value, base pointer and
707  /// offset pointer and addressing mode by reference if the node's address
708  /// can be legally represented as pre-indexed load / store address.
709  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
710                                         SDValue &Offset,
711                                         ISD::MemIndexedMode &AM,
712                                         SelectionDAG &DAG) const {
713    return false;
714  }
715
716  /// getPostIndexedAddressParts - returns true by value, base pointer and
717  /// offset pointer and addressing mode by reference if this node can be
718  /// combined with a load / store to form a post-indexed load / store.
719  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
720                                          SDValue &Base, SDValue &Offset,
721                                          ISD::MemIndexedMode &AM,
722                                          SelectionDAG &DAG) const {
723    return false;
724  }
725
726  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
727  /// jumptable.
728  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
729                                             SelectionDAG &DAG) const;
730
731  /// isOffsetFoldingLegal - Return true if folding a constant offset
732  /// with the given GlobalAddress is legal.  It is frequently not legal in
733  /// PIC relocation models.
734  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
735
736  //===--------------------------------------------------------------------===//
737  // TargetLowering Optimization Methods
738  //
739
740  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
741  /// SDValues for returning information from TargetLowering to its clients
742  /// that want to combine
743  struct TargetLoweringOpt {
744    SelectionDAG &DAG;
745    SDValue Old;
746    SDValue New;
747
748    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
749
750    bool CombineTo(SDValue O, SDValue N) {
751      Old = O;
752      New = N;
753      return true;
754    }
755
756    /// ShrinkDemandedConstant - Check to see if the specified operand of the
757    /// specified instruction is a constant integer.  If so, check to see if
758    /// there are any bits set in the constant that are not demanded.  If so,
759    /// shrink the constant and return true.
760    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
761
762    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
763    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
764    /// cast, but it could be generalized for targets with other types of
765    /// implicit widening casts.
766    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
767                          DebugLoc dl);
768  };
769
770  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
771  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
772  /// use this information to simplify Op, create a new simplified DAG node and
773  /// return true, returning the original and new nodes in Old and New.
774  /// Otherwise, analyze the expression and return a mask of KnownOne and
775  /// KnownZero bits for the expression (used to simplify the caller).
776  /// The KnownZero/One bits may only be accurate for those bits in the
777  /// DemandedMask.
778  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
779                            APInt &KnownZero, APInt &KnownOne,
780                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
781
782  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
783  /// Mask are known to be either zero or one and return them in the
784  /// KnownZero/KnownOne bitsets.
785  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
786                                              const APInt &Mask,
787                                              APInt &KnownZero,
788                                              APInt &KnownOne,
789                                              const SelectionDAG &DAG,
790                                              unsigned Depth = 0) const;
791
792  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
793  /// targets that want to expose additional information about sign bits to the
794  /// DAG Combiner.
795  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
796                                                   unsigned Depth = 0) const;
797
798  struct DAGCombinerInfo {
799    void *DC;  // The DAG Combiner object.
800    bool BeforeLegalize;
801    bool CalledByLegalizer;
802  public:
803    SelectionDAG &DAG;
804
805    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
806      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
807
808    bool isBeforeLegalize() const { return BeforeLegalize; }
809    bool isCalledByLegalizer() const { return CalledByLegalizer; }
810
811    void AddToWorklist(SDNode *N);
812    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
813                      bool AddTo = true);
814    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
815    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
816
817    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
818  };
819
820  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
821  /// and cc. If it is unable to simplify it, return a null SDValue.
822  SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
823                          ISD::CondCode Cond, bool foldBooleans,
824                          DAGCombinerInfo &DCI, DebugLoc dl) const;
825
826  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
827  /// node is a GlobalAddress + offset.
828  virtual bool
829  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
830
831  /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
832  /// location that is 'Dist' units away from the location that the 'Base' load
833  /// is loading from.
834  bool isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes,
835                         int Dist, const MachineFrameInfo *MFI) const;
836
837  /// PerformDAGCombine - This method will be invoked for all target nodes and
838  /// for any target-independent nodes that the target has registered with
839  /// invoke it for.
840  ///
841  /// The semantics are as follows:
842  /// Return Value:
843  ///   SDValue.Val == 0   - No change was made
844  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
845  ///   otherwise          - N should be replaced by the returned Operand.
846  ///
847  /// In addition, methods provided by DAGCombinerInfo may be used to perform
848  /// more complex transformations.
849  ///
850  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
851
852  //===--------------------------------------------------------------------===//
853  // TargetLowering Configuration Methods - These methods should be invoked by
854  // the derived class constructor to configure this object for the target.
855  //
856
857protected:
858  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
859  /// GOT for PC-relative code.
860  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
861
862  /// setShiftAmountType - Describe the type that should be used for shift
863  /// amounts.  This type defaults to the pointer type.
864  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
865
866  /// setBooleanContents - Specify how the target extends the result of a
867  /// boolean value from i1 to a wider type.  See getBooleanContents.
868  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
869
870  /// setSchedulingPreference - Specify the target scheduling preference.
871  void setSchedulingPreference(SchedPreference Pref) {
872    SchedPreferenceInfo = Pref;
873  }
874
875  /// setShiftAmountFlavor - Describe how the target handles out of range shift
876  /// amounts.
877  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
878    ShiftAmtHandling = OORSA;
879  }
880
881  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
882  /// use _setjmp to implement llvm.setjmp or the non _ version.
883  /// Defaults to false.
884  void setUseUnderscoreSetJmp(bool Val) {
885    UseUnderscoreSetJmp = Val;
886  }
887
888  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
889  /// use _longjmp to implement llvm.longjmp or the non _ version.
890  /// Defaults to false.
891  void setUseUnderscoreLongJmp(bool Val) {
892    UseUnderscoreLongJmp = Val;
893  }
894
895  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
896  /// specifies the register that llvm.savestack/llvm.restorestack should save
897  /// and restore.
898  void setStackPointerRegisterToSaveRestore(unsigned R) {
899    StackPointerRegisterToSaveRestore = R;
900  }
901
902  /// setExceptionPointerRegister - If set to a physical register, this sets
903  /// the register that receives the exception address on entry to a landing
904  /// pad.
905  void setExceptionPointerRegister(unsigned R) {
906    ExceptionPointerRegister = R;
907  }
908
909  /// setExceptionSelectorRegister - If set to a physical register, this sets
910  /// the register that receives the exception typeid on entry to a landing
911  /// pad.
912  void setExceptionSelectorRegister(unsigned R) {
913    ExceptionSelectorRegister = R;
914  }
915
916  /// SelectIsExpensive - Tells the code generator not to expand operations
917  /// into sequences that use the select operations if possible.
918  void setSelectIsExpensive() { SelectIsExpensive = true; }
919
920  /// setIntDivIsCheap - Tells the code generator that integer divide is
921  /// expensive, and if possible, should be replaced by an alternate sequence
922  /// of instructions not containing an integer divide.
923  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
924
925  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
926  /// srl/add/sra for a signed divide by power of two, and let the target handle
927  /// it.
928  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
929
930  /// addRegisterClass - Add the specified register class as an available
931  /// regclass for the specified value type.  This indicates the selector can
932  /// handle values of that class natively.
933  void addRegisterClass(MVT VT, TargetRegisterClass *RC) {
934    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
935    AvailableRegClasses.push_back(std::make_pair(VT, RC));
936    RegClassForVT[VT.getSimpleVT()] = RC;
937  }
938
939  /// computeRegisterProperties - Once all of the register classes are added,
940  /// this allows us to compute derived properties we expose.
941  void computeRegisterProperties();
942
943  /// setOperationAction - Indicate that the specified operation does not work
944  /// with the specified type and indicate what to do about it.
945  void setOperationAction(unsigned Op, MVT VT,
946                          LegalizeAction Action) {
947    assert((unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*8 &&
948           Op < array_lengthof(OpActions) && "Table isn't big enough!");
949    OpActions[Op] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
950    OpActions[Op] |= (uint64_t)Action << VT.getSimpleVT()*2;
951  }
952
953  /// setLoadExtAction - Indicate that the specified load with extension does
954  /// not work with the with specified type and indicate what to do about it.
955  void setLoadExtAction(unsigned ExtType, MVT VT,
956                      LegalizeAction Action) {
957    assert((unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
958           ExtType < array_lengthof(LoadExtActions) &&
959           "Table isn't big enough!");
960    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
961    LoadExtActions[ExtType] |= (uint64_t)Action << VT.getSimpleVT()*2;
962  }
963
964  /// setTruncStoreAction - Indicate that the specified truncating store does
965  /// not work with the with specified type and indicate what to do about it.
966  void setTruncStoreAction(MVT ValVT, MVT MemVT,
967                           LegalizeAction Action) {
968    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
969           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
970           "Table isn't big enough!");
971    TruncStoreActions[ValVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
972                                                MemVT.getSimpleVT()*2);
973    TruncStoreActions[ValVT.getSimpleVT()] |= (uint64_t)Action <<
974      MemVT.getSimpleVT()*2;
975  }
976
977  /// setIndexedLoadAction - Indicate that the specified indexed load does or
978  /// does not work with the with specified type and indicate what to do abort
979  /// it. NOTE: All indexed mode loads are initialized to Expand in
980  /// TargetLowering.cpp
981  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
982                            LegalizeAction Action) {
983    assert((unsigned)VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
984           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
985           "Table isn't big enough!");
986    IndexedModeActions[(unsigned)VT.getSimpleVT()][0][IdxMode] = (uint8_t)Action;
987  }
988
989  /// setIndexedStoreAction - Indicate that the specified indexed store does or
990  /// does not work with the with specified type and indicate what to do about
991  /// it. NOTE: All indexed mode stores are initialized to Expand in
992  /// TargetLowering.cpp
993  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
994                             LegalizeAction Action) {
995    assert((unsigned)VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
996           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
997           "Table isn't big enough!");
998    IndexedModeActions[(unsigned)VT.getSimpleVT()][1][IdxMode] = (uint8_t)Action;
999  }
1000
1001  /// setConvertAction - Indicate that the specified conversion does or does
1002  /// not work with the with specified type and indicate what to do about it.
1003  void setConvertAction(MVT FromVT, MVT ToVT,
1004                        LegalizeAction Action) {
1005    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
1006           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
1007           "Table isn't big enough!");
1008    ConvertActions[FromVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
1009                                              ToVT.getSimpleVT()*2);
1010    ConvertActions[FromVT.getSimpleVT()] |= (uint64_t)Action <<
1011      ToVT.getSimpleVT()*2;
1012  }
1013
1014  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1015  /// supported on the target and indicate what to do about it.
1016  void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) {
1017    assert((unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
1018           (unsigned)CC < array_lengthof(CondCodeActions) &&
1019           "Table isn't big enough!");
1020    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
1021    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.getSimpleVT()*2;
1022  }
1023
1024  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1025  /// promotion code defaults to trying a larger integer/fp until it can find
1026  /// one that works.  If that default is insufficient, this method can be used
1027  /// by the target to override the default.
1028  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1029    PromoteToType[std::make_pair(Opc, OrigVT.getSimpleVT())] =
1030      DestVT.getSimpleVT();
1031  }
1032
1033  /// addLegalFPImmediate - Indicate that this target can instruction select
1034  /// the specified FP immediate natively.
1035  void addLegalFPImmediate(const APFloat& Imm) {
1036    LegalFPImmediates.push_back(Imm);
1037  }
1038
1039  /// setTargetDAGCombine - Targets should invoke this method for each target
1040  /// independent node that they want to provide a custom DAG combiner for by
1041  /// implementing the PerformDAGCombine virtual method.
1042  void setTargetDAGCombine(ISD::NodeType NT) {
1043    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1044    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1045  }
1046
1047  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1048  /// bytes); default is 200
1049  void setJumpBufSize(unsigned Size) {
1050    JumpBufSize = Size;
1051  }
1052
1053  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1054  /// alignment (in bytes); default is 0
1055  void setJumpBufAlignment(unsigned Align) {
1056    JumpBufAlignment = Align;
1057  }
1058
1059  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1060  /// limit (in number of instructions); default is 2.
1061  void setIfCvtBlockSizeLimit(unsigned Limit) {
1062    IfCvtBlockSizeLimit = Limit;
1063  }
1064
1065  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1066  /// of instructions) to be considered for code duplication during
1067  /// if-conversion; default is 2.
1068  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1069    IfCvtDupBlockSizeLimit = Limit;
1070  }
1071
1072  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1073  /// alignment is zero, it means the target does not care about loop alignment.
1074  void setPrefLoopAlignment(unsigned Align) {
1075    PrefLoopAlignment = Align;
1076  }
1077
1078public:
1079
1080  virtual const TargetSubtarget *getSubtarget() {
1081    assert(0 && "Not Implemented");
1082    return NULL;    // this is here to silence compiler errors
1083  }
1084  //===--------------------------------------------------------------------===//
1085  // Lowering methods - These methods must be implemented by targets so that
1086  // the SelectionDAGLowering code knows how to lower these.
1087  //
1088
1089  /// LowerArguments - This hook must be implemented to indicate how we should
1090  /// lower the arguments for the specified function, into the specified DAG.
1091  virtual void
1092  LowerArguments(Function &F, SelectionDAG &DAG,
1093                 SmallVectorImpl<SDValue>& ArgValues, DebugLoc dl);
1094
1095  /// LowerCallTo - This hook lowers an abstract call to a function into an
1096  /// actual call.  This returns a pair of operands.  The first element is the
1097  /// return value for the function (if RetTy is not VoidTy).  The second
1098  /// element is the outgoing token chain.
1099  struct ArgListEntry {
1100    SDValue Node;
1101    const Type* Ty;
1102    bool isSExt  : 1;
1103    bool isZExt  : 1;
1104    bool isInReg : 1;
1105    bool isSRet  : 1;
1106    bool isNest  : 1;
1107    bool isByVal : 1;
1108    uint16_t Alignment;
1109
1110    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1111      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1112  };
1113  typedef std::vector<ArgListEntry> ArgListTy;
1114  virtual std::pair<SDValue, SDValue>
1115  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1116              bool isVarArg, bool isInreg, unsigned CallingConv,
1117              bool isTailCall, SDValue Callee, ArgListTy &Args,
1118              SelectionDAG &DAG, DebugLoc dl);
1119
1120  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1121  /// memcpy. This can be used by targets to provide code sequences for cases
1122  /// that don't fit the target's parameters for simple loads/stores and can be
1123  /// more efficient than using a library call. This function can return a null
1124  /// SDValue if the target declines to use custom code and a different
1125  /// lowering strategy should be used.
1126  ///
1127  /// If AlwaysInline is true, the size is constant and the target should not
1128  /// emit any calls and is strongly encouraged to attempt to emit inline code
1129  /// even if it is beyond the usual threshold because this intrinsic is being
1130  /// expanded in a place where calls are not feasible (e.g. within the prologue
1131  /// for another call). If the target chooses to decline an AlwaysInline
1132  /// request here, legalize will resort to using simple loads and stores.
1133  virtual SDValue
1134  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1135                          SDValue Chain,
1136                          SDValue Op1, SDValue Op2,
1137                          SDValue Op3, unsigned Align,
1138                          bool AlwaysInline,
1139                          const Value *DstSV, uint64_t DstOff,
1140                          const Value *SrcSV, uint64_t SrcOff) {
1141    return SDValue();
1142  }
1143
1144  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1145  /// memmove. This can be used by targets to provide code sequences for cases
1146  /// that don't fit the target's parameters for simple loads/stores and can be
1147  /// more efficient than using a library call. This function can return a null
1148  /// SDValue if the target declines to use custom code and a different
1149  /// lowering strategy should be used.
1150  virtual SDValue
1151  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1152                           SDValue Chain,
1153                           SDValue Op1, SDValue Op2,
1154                           SDValue Op3, unsigned Align,
1155                           const Value *DstSV, uint64_t DstOff,
1156                           const Value *SrcSV, uint64_t SrcOff) {
1157    return SDValue();
1158  }
1159
1160  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1161  /// memset. This can be used by targets to provide code sequences for cases
1162  /// that don't fit the target's parameters for simple stores and can be more
1163  /// efficient than using a library call. This function can return a null
1164  /// SDValue if the target declines to use custom code and a different
1165  /// lowering strategy should be used.
1166  virtual SDValue
1167  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1168                          SDValue Chain,
1169                          SDValue Op1, SDValue Op2,
1170                          SDValue Op3, unsigned Align,
1171                          const Value *DstSV, uint64_t DstOff) {
1172    return SDValue();
1173  }
1174
1175  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1176  /// to legalize nodes with an illegal operand type but legal result types.
1177  /// It replaces the LowerOperation callback in the type Legalizer.
1178  /// The reason we can not do away with LowerOperation entirely is that
1179  /// LegalizeDAG isn't yet ready to use this callback.
1180  /// TODO: Consider merging with ReplaceNodeResults.
1181
1182  /// The target places new result values for the node in Results (their number
1183  /// and types must exactly match those of the original return values of
1184  /// the node), or leaves Results empty, which indicates that the node is not
1185  /// to be custom lowered after all.
1186  /// The default implementation calls LowerOperation.
1187  virtual void LowerOperationWrapper(SDNode *N,
1188                                     SmallVectorImpl<SDValue> &Results,
1189                                     SelectionDAG &DAG);
1190
1191  /// LowerOperation - This callback is invoked for operations that are
1192  /// unsupported by the target, which are registered to use 'custom' lowering,
1193  /// and whose defined values are all legal.
1194  /// If the target has no operations that require custom lowering, it need not
1195  /// implement this.  The default implementation of this aborts.
1196  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1197
1198  /// ReplaceNodeResults - This callback is invoked when a node result type is
1199  /// illegal for the target, and the operation was registered to use 'custom'
1200  /// lowering for that result type.  The target places new result values for
1201  /// the node in Results (their number and types must exactly match those of
1202  /// the original return values of the node), or leaves Results empty, which
1203  /// indicates that the node is not to be custom lowered after all.
1204  ///
1205  /// If the target has no operations that require custom lowering, it need not
1206  /// implement this.  The default implementation aborts.
1207  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1208                                  SelectionDAG &DAG) {
1209    assert(0 && "ReplaceNodeResults not implemented for this target!");
1210  }
1211
1212  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
1213  /// tail call optimization. Targets which want to do tail call optimization
1214  /// should override this function.
1215  virtual bool IsEligibleForTailCallOptimization(CallSDNode *Call,
1216                                                 SDValue Ret,
1217                                                 SelectionDAG &DAG) const {
1218    return false;
1219  }
1220
1221  /// CheckTailCallReturnConstraints - Check whether CALL node immediatly
1222  /// preceeds the RET node and whether the return uses the result of the node
1223  /// or is a void return. This function can be used by the target to determine
1224  /// eligiblity of tail call optimization.
1225  static bool CheckTailCallReturnConstraints(CallSDNode *TheCall, SDValue Ret);
1226
1227  /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
1228  /// it exists. Skip a possible ISD::TokenFactor.
1229  static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
1230                                                 unsigned TailCallNodeOpCode) {
1231    if (Chain.getOpcode() == TailCallNodeOpCode) {
1232      return Chain;
1233    } else if (Chain.getOpcode() == ISD::TokenFactor) {
1234      if (Chain.getNumOperands() &&
1235          Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
1236        return Chain.getOperand(0);
1237    }
1238    return Chain;
1239  }
1240
1241  /// getTargetNodeName() - This method returns the name of a target specific
1242  /// DAG node.
1243  virtual const char *getTargetNodeName(unsigned Opcode) const;
1244
1245  /// createFastISel - This method returns a target specific FastISel object,
1246  /// or null if the target does not support "fast" ISel.
1247  virtual FastISel *
1248  createFastISel(MachineFunction &,
1249                 MachineModuleInfo *, DwarfWriter *,
1250                 DenseMap<const Value *, unsigned> &,
1251                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1252                 DenseMap<const AllocaInst *, int> &
1253#ifndef NDEBUG
1254                 , SmallSet<Instruction*, 8> &CatchInfoLost
1255#endif
1256                 ) {
1257    return 0;
1258  }
1259
1260  //===--------------------------------------------------------------------===//
1261  // Inline Asm Support hooks
1262  //
1263
1264  enum ConstraintType {
1265    C_Register,            // Constraint represents specific register(s).
1266    C_RegisterClass,       // Constraint represents any of register(s) in class.
1267    C_Memory,              // Memory constraint.
1268    C_Other,               // Something else.
1269    C_Unknown              // Unsupported constraint.
1270  };
1271
1272  /// AsmOperandInfo - This contains information for each constraint that we are
1273  /// lowering.
1274  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1275    /// ConstraintCode - This contains the actual string for the code, like "m".
1276    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1277    /// most closely matches the operand.
1278    std::string ConstraintCode;
1279
1280    /// ConstraintType - Information about the constraint code, e.g. Register,
1281    /// RegisterClass, Memory, Other, Unknown.
1282    TargetLowering::ConstraintType ConstraintType;
1283
1284    /// CallOperandval - If this is the result output operand or a
1285    /// clobber, this is null, otherwise it is the incoming operand to the
1286    /// CallInst.  This gets modified as the asm is processed.
1287    Value *CallOperandVal;
1288
1289    /// ConstraintVT - The ValueType for the operand value.
1290    MVT ConstraintVT;
1291
1292    /// isMatchingInputConstraint - Return true of this is an input operand that
1293    /// is a matching constraint like "4".
1294    bool isMatchingInputConstraint() const;
1295
1296    /// getMatchedOperand - If this is an input matching constraint, this method
1297    /// returns the output operand it matches.
1298    unsigned getMatchedOperand() const;
1299
1300    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1301      : InlineAsm::ConstraintInfo(info),
1302        ConstraintType(TargetLowering::C_Unknown),
1303        CallOperandVal(0), ConstraintVT(MVT::Other) {
1304    }
1305  };
1306
1307  /// ComputeConstraintToUse - Determines the constraint code and constraint
1308  /// type to use for the specific AsmOperandInfo, setting
1309  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1310  /// being passed in is available, it can be passed in as Op, otherwise an
1311  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1312  /// constraint of the inline asm instruction being processed is 'm'.
1313  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1314                                      SDValue Op,
1315                                      bool hasMemory,
1316                                      SelectionDAG *DAG = 0) const;
1317
1318  /// getConstraintType - Given a constraint, return the type of constraint it
1319  /// is for this target.
1320  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1321
1322  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1323  /// return a list of registers that can be used to satisfy the constraint.
1324  /// This should only be used for C_RegisterClass constraints.
1325  virtual std::vector<unsigned>
1326  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1327                                    MVT VT) const;
1328
1329  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1330  /// {edx}), return the register number and the register class for the
1331  /// register.
1332  ///
1333  /// Given a register class constraint, like 'r', if this corresponds directly
1334  /// to an LLVM register class, return a register of 0 and the register class
1335  /// pointer.
1336  ///
1337  /// This should only be used for C_Register constraints.  On error,
1338  /// this returns a register number of 0 and a null register class pointer..
1339  virtual std::pair<unsigned, const TargetRegisterClass*>
1340    getRegForInlineAsmConstraint(const std::string &Constraint,
1341                                 MVT VT) const;
1342
1343  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1344  /// with another that has more specific requirements based on the type of the
1345  /// corresponding operand.  This returns null if there is no replacement to
1346  /// make.
1347  virtual const char *LowerXConstraint(MVT ConstraintVT) const;
1348
1349  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1350  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1351  /// it means one of the asm constraint of the inline asm instruction being
1352  /// processed is 'm'.
1353  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1354                                            bool hasMemory,
1355                                            std::vector<SDValue> &Ops,
1356                                            SelectionDAG &DAG) const;
1357
1358  //===--------------------------------------------------------------------===//
1359  // Scheduler hooks
1360  //
1361
1362  // EmitInstrWithCustomInserter - This method should be implemented by targets
1363  // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1364  // instructions are special in various ways, which require special support to
1365  // insert.  The specified MachineInstr is created but not inserted into any
1366  // basic blocks, and the scheduler passes ownership of it to this method.
1367  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1368                                                  MachineBasicBlock *MBB) const;
1369
1370  //===--------------------------------------------------------------------===//
1371  // Addressing mode description hooks (used by LSR etc).
1372  //
1373
1374  /// AddrMode - This represents an addressing mode of:
1375  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1376  /// If BaseGV is null,  there is no BaseGV.
1377  /// If BaseOffs is zero, there is no base offset.
1378  /// If HasBaseReg is false, there is no base register.
1379  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1380  /// no scale.
1381  ///
1382  struct AddrMode {
1383    GlobalValue *BaseGV;
1384    int64_t      BaseOffs;
1385    bool         HasBaseReg;
1386    int64_t      Scale;
1387    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1388  };
1389
1390  /// isLegalAddressingMode - Return true if the addressing mode represented by
1391  /// AM is legal for this target, for a load/store of the specified type.
1392  /// The type may be VoidTy, in which case only return true if the addressing
1393  /// mode is legal for a load/store of any legal type.
1394  /// TODO: Handle pre/postinc as well.
1395  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1396
1397  /// isTruncateFree - Return true if it's free to truncate a value of
1398  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1399  /// register EAX to i16 by referencing its sub-register AX.
1400  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1401    return false;
1402  }
1403
1404  virtual bool isTruncateFree(MVT VT1, MVT VT2) const {
1405    return false;
1406  }
1407
1408  /// isZExtFree - Return true if any actual instruction that defines a
1409  /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1410  /// register. This does not necessarily include registers defined in
1411  /// unknown ways, such as incoming arguments, or copies from unknown
1412  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1413  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1414  /// all instructions that define 32-bit values implicit zero-extend the
1415  /// result out to 64 bits.
1416  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1417    return false;
1418  }
1419
1420  virtual bool isZExtFree(MVT VT1, MVT VT2) const {
1421    return false;
1422  }
1423
1424  /// isNarrowingProfitable - Return true if it's profitable to narrow
1425  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1426  /// from i32 to i8 but not from i32 to i16.
1427  virtual bool isNarrowingProfitable(MVT VT1, MVT VT2) const {
1428    return false;
1429  }
1430
1431  //===--------------------------------------------------------------------===//
1432  // Div utility functions
1433  //
1434  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1435                      std::vector<SDNode*>* Created) const;
1436  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1437                      std::vector<SDNode*>* Created) const;
1438
1439
1440  //===--------------------------------------------------------------------===//
1441  // Runtime Library hooks
1442  //
1443
1444  /// setLibcallName - Rename the default libcall routine name for the specified
1445  /// libcall.
1446  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1447    LibcallRoutineNames[Call] = Name;
1448  }
1449
1450  /// getLibcallName - Get the libcall routine name for the specified libcall.
1451  ///
1452  const char *getLibcallName(RTLIB::Libcall Call) const {
1453    return LibcallRoutineNames[Call];
1454  }
1455
1456  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1457  /// result of the comparison libcall against zero.
1458  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1459    CmpLibcallCCs[Call] = CC;
1460  }
1461
1462  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1463  /// the comparison libcall against zero.
1464  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1465    return CmpLibcallCCs[Call];
1466  }
1467
1468private:
1469  TargetMachine &TM;
1470  const TargetData *TD;
1471
1472  /// PointerTy - The type to use for pointers, usually i32 or i64.
1473  ///
1474  MVT PointerTy;
1475
1476  /// IsLittleEndian - True if this is a little endian target.
1477  ///
1478  bool IsLittleEndian;
1479
1480  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1481  ///
1482  bool UsesGlobalOffsetTable;
1483
1484  /// SelectIsExpensive - Tells the code generator not to expand operations
1485  /// into sequences that use the select operations if possible.
1486  bool SelectIsExpensive;
1487
1488  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1489  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1490  /// a real cost model is in place.  If we ever optimize for size, this will be
1491  /// set to true unconditionally.
1492  bool IntDivIsCheap;
1493
1494  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1495  /// srl/add/sra for a signed divide by power of two, and let the target handle
1496  /// it.
1497  bool Pow2DivIsCheap;
1498
1499  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1500  /// llvm.setjmp.  Defaults to false.
1501  bool UseUnderscoreSetJmp;
1502
1503  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1504  /// llvm.longjmp.  Defaults to false.
1505  bool UseUnderscoreLongJmp;
1506
1507  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1508  /// PointerTy is.
1509  MVT ShiftAmountTy;
1510
1511  OutOfRangeShiftAmount ShiftAmtHandling;
1512
1513  /// BooleanContents - Information about the contents of the high-bits in
1514  /// boolean values held in a type wider than i1.  See getBooleanContents.
1515  BooleanContent BooleanContents;
1516
1517  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1518  /// total cycles or lowest register usage.
1519  SchedPreference SchedPreferenceInfo;
1520
1521  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1522  unsigned JumpBufSize;
1523
1524  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1525  /// buffers
1526  unsigned JumpBufAlignment;
1527
1528  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1529  /// if-converted.
1530  unsigned IfCvtBlockSizeLimit;
1531
1532  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1533  /// duplicated during if-conversion.
1534  unsigned IfCvtDupBlockSizeLimit;
1535
1536  /// PrefLoopAlignment - The perferred loop alignment.
1537  ///
1538  unsigned PrefLoopAlignment;
1539
1540  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1541  /// specifies the register that llvm.savestack/llvm.restorestack should save
1542  /// and restore.
1543  unsigned StackPointerRegisterToSaveRestore;
1544
1545  /// ExceptionPointerRegister - If set to a physical register, this specifies
1546  /// the register that receives the exception address on entry to a landing
1547  /// pad.
1548  unsigned ExceptionPointerRegister;
1549
1550  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1551  /// the register that receives the exception typeid on entry to a landing
1552  /// pad.
1553  unsigned ExceptionSelectorRegister;
1554
1555  /// RegClassForVT - This indicates the default register class to use for
1556  /// each ValueType the target supports natively.
1557  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1558  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1559  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1560
1561  /// TransformToType - For any value types we are promoting or expanding, this
1562  /// contains the value type that we are changing to.  For Expanded types, this
1563  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1564  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1565  /// by the system, this holds the same type (e.g. i32 -> i32).
1566  MVT TransformToType[MVT::LAST_VALUETYPE];
1567
1568  /// OpActions - For each operation and each value type, keep a LegalizeAction
1569  /// that indicates how instruction selection should deal with the operation.
1570  /// Most operations are Legal (aka, supported natively by the target), but
1571  /// operations that are not should be described.  Note that operations on
1572  /// non-legal value types are not described here.
1573  uint64_t OpActions[ISD::BUILTIN_OP_END];
1574
1575  /// LoadExtActions - For each load of load extension type and each value type,
1576  /// keep a LegalizeAction that indicates how instruction selection should deal
1577  /// with the load.
1578  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1579
1580  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1581  /// indicates how instruction selection should deal with the store.
1582  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1583
1584  /// IndexedModeActions - For each indexed mode and each value type,
1585  /// keep a pair of LegalizeAction that indicates how instruction
1586  /// selection should deal with the load / store.  The first
1587  /// dimension is now the value_type for the reference.  The second
1588  /// dimension is the load [0] vs. store[1].  The third dimension
1589  /// represents the various modes for load store.
1590  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1591
1592  /// ConvertActions - For each conversion from source type to destination type,
1593  /// keep a LegalizeAction that indicates how instruction selection should
1594  /// deal with the conversion.
1595  /// Currently, this is used only for floating->floating conversions
1596  /// (FP_EXTEND and FP_ROUND).
1597  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1598
1599  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1600  /// LegalizeAction that indicates how instruction selection should
1601  /// deal with the condition code.
1602  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1603
1604  ValueTypeActionImpl ValueTypeActions;
1605
1606  std::vector<APFloat> LegalFPImmediates;
1607
1608  std::vector<std::pair<MVT, TargetRegisterClass*> > AvailableRegClasses;
1609
1610  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1611  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1612  /// which sets a bit in this array.
1613  unsigned char
1614  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1615
1616  /// PromoteToType - For operations that must be promoted to a specific type,
1617  /// this holds the destination type.  This map should be sparse, so don't hold
1618  /// it as an array.
1619  ///
1620  /// Targets add entries to this map with AddPromotedToType(..), clients access
1621  /// this with getTypeToPromoteTo(..).
1622  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1623    PromoteToType;
1624
1625  /// LibcallRoutineNames - Stores the name each libcall.
1626  ///
1627  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1628
1629  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1630  /// of each of the comparison libcall against zero.
1631  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1632
1633protected:
1634  /// When lowering \@llvm.memset this field specifies the maximum number of
1635  /// store operations that may be substituted for the call to memset. Targets
1636  /// must set this value based on the cost threshold for that target. Targets
1637  /// should assume that the memset will be done using as many of the largest
1638  /// store operations first, followed by smaller ones, if necessary, per
1639  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1640  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1641  /// store.  This only applies to setting a constant array of a constant size.
1642  /// @brief Specify maximum number of store instructions per memset call.
1643  unsigned maxStoresPerMemset;
1644
1645  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1646  /// store operations that may be substituted for a call to memcpy. Targets
1647  /// must set this value based on the cost threshold for that target. Targets
1648  /// should assume that the memcpy will be done using as many of the largest
1649  /// store operations first, followed by smaller ones, if necessary, per
1650  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1651  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1652  /// and one 1-byte store. This only applies to copying a constant array of
1653  /// constant size.
1654  /// @brief Specify maximum bytes of store instructions per memcpy call.
1655  unsigned maxStoresPerMemcpy;
1656
1657  /// When lowering \@llvm.memmove this field specifies the maximum number of
1658  /// store instructions that may be substituted for a call to memmove. Targets
1659  /// must set this value based on the cost threshold for that target. Targets
1660  /// should assume that the memmove will be done using as many of the largest
1661  /// store operations first, followed by smaller ones, if necessary, per
1662  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1663  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1664  /// applies to copying a constant array of constant size.
1665  /// @brief Specify maximum bytes of store instructions per memmove call.
1666  unsigned maxStoresPerMemmove;
1667
1668  /// This field specifies whether the target machine permits unaligned memory
1669  /// accesses.  This is used, for example, to determine the size of store
1670  /// operations when copying small arrays and other similar tasks.
1671  /// @brief Indicate whether the target permits unaligned memory accesses.
1672  bool allowUnalignedMemoryAccesses;
1673
1674  /// This field specifies whether the target can benefit from code placement
1675  /// optimization.
1676  bool benefitFromCodePlacementOpt;
1677};
1678} // end llvm namespace
1679
1680#endif
1681