TargetLowering.h revision f48ae4630bdf5c58dfca8f4d82a1ee1a88c3a767
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CodeGen/SelectionDAGNodes.h"
26#include "llvm/CodeGen/RuntimeLibcalls.h"
27#include <map>
28#include <vector>
29
30namespace llvm {
31  class Value;
32  class Function;
33  class TargetMachine;
34  class TargetData;
35  class TargetRegisterClass;
36  class SDNode;
37  class SDOperand;
38  class SelectionDAG;
39  class MachineBasicBlock;
40  class MachineInstr;
41  class VectorType;
42
43//===----------------------------------------------------------------------===//
44/// TargetLowering - This class defines information used to lower LLVM code to
45/// legal SelectionDAG operators that the target instruction selector can accept
46/// natively.
47///
48/// This class also defines callbacks that targets must implement to lower
49/// target-specific constructs to SelectionDAG operators.
50///
51class TargetLowering {
52public:
53  /// LegalizeAction - This enum indicates whether operations are valid for a
54  /// target, and if not, what action should be used to make them valid.
55  enum LegalizeAction {
56    Legal,      // The target natively supports this operation.
57    Promote,    // This operation should be executed in a larger type.
58    Expand,     // Try to expand this to other ops, otherwise use a libcall.
59    Custom      // Use the LowerOperation hook to implement custom lowering.
60  };
61
62  enum OutOfRangeShiftAmount {
63    Undefined,  // Oversized shift amounts are undefined (default).
64    Mask,       // Shift amounts are auto masked (anded) to value size.
65    Extend      // Oversized shift pulls in zeros or sign bits.
66  };
67
68  enum SetCCResultValue {
69    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
70    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
71    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
72  };
73
74  enum SchedPreference {
75    SchedulingForLatency,          // Scheduling for shortest total latency.
76    SchedulingForRegPressure       // Scheduling for lowest register pressure.
77  };
78
79  TargetLowering(TargetMachine &TM);
80  virtual ~TargetLowering();
81
82  TargetMachine &getTargetMachine() const { return TM; }
83  const TargetData *getTargetData() const { return TD; }
84
85  bool isLittleEndian() const { return IsLittleEndian; }
86  MVT::ValueType getPointerTy() const { return PointerTy; }
87  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
88  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
89
90  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
91  /// codegen.
92  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
93
94  /// isSelectExpensive - Return true if the select operation is expensive for
95  /// this target.
96  bool isSelectExpensive() const { return SelectIsExpensive; }
97
98  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
99  /// a sequence of several shifts, adds, and multiplies for this target.
100  bool isIntDivCheap() const { return IntDivIsCheap; }
101
102  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
103  /// srl/add/sra.
104  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
105
106  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
107  ///
108  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
109
110  /// getSetCCResultContents - For targets without boolean registers, this flag
111  /// returns information about the contents of the high-bits in the setcc
112  /// result register.
113  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
114
115  /// getSchedulingPreference - Return target scheduling preference.
116  SchedPreference getSchedulingPreference() const {
117    return SchedPreferenceInfo;
118  }
119
120  /// getRegClassFor - Return the register class that should be used for the
121  /// specified value type.  This may only be called on legal types.
122  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
123    TargetRegisterClass *RC = RegClassForVT[VT];
124    assert(RC && "This value type is not natively supported!");
125    return RC;
126  }
127
128  /// isTypeLegal - Return true if the target has native support for the
129  /// specified value type.  This means that it has a register that directly
130  /// holds it without promotions or expansions.
131  bool isTypeLegal(MVT::ValueType VT) const {
132    return RegClassForVT[VT] != 0;
133  }
134
135  class ValueTypeActionImpl {
136    /// ValueTypeActions - This is a bitvector that contains two bits for each
137    /// value type, where the two bits correspond to the LegalizeAction enum.
138    /// This can be queried with "getTypeAction(VT)".
139    uint32_t ValueTypeActions[2];
140  public:
141    ValueTypeActionImpl() {
142      ValueTypeActions[0] = ValueTypeActions[1] = 0;
143    }
144    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
145      ValueTypeActions[0] = RHS.ValueTypeActions[0];
146      ValueTypeActions[1] = RHS.ValueTypeActions[1];
147    }
148
149    LegalizeAction getTypeAction(MVT::ValueType VT) const {
150      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
151    }
152    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
153      assert(unsigned(VT >> 4) <
154             sizeof(ValueTypeActions)/sizeof(ValueTypeActions[0]));
155      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
156    }
157  };
158
159  const ValueTypeActionImpl &getValueTypeActions() const {
160    return ValueTypeActions;
161  }
162
163  /// getTypeAction - Return how we should legalize values of this type, either
164  /// it is already legal (return 'Legal') or we need to promote it to a larger
165  /// type (return 'Promote'), or we need to expand it into multiple registers
166  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
167  LegalizeAction getTypeAction(MVT::ValueType VT) const {
168    return ValueTypeActions.getTypeAction(VT);
169  }
170
171  /// getTypeToTransformTo - For types supported by the target, this is an
172  /// identity function.  For types that must be promoted to larger types, this
173  /// returns the larger type to promote to.  For integer types that are larger
174  /// than the largest integer register, this contains one step in the expansion
175  /// to get to the smaller register. For illegal floating point types, this
176  /// returns the integer type to transform to.
177  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
178    return TransformToType[VT];
179  }
180
181  /// getTypeToExpandTo - For types supported by the target, this is an
182  /// identity function.  For types that must be expanded (i.e. integer types
183  /// that are larger than the largest integer register or illegal floating
184  /// point types), this returns the largest legal type it will be expanded to.
185  MVT::ValueType getTypeToExpandTo(MVT::ValueType VT) const {
186    while (true) {
187      switch (getTypeAction(VT)) {
188      case Legal:
189        return VT;
190      case Expand:
191        VT = TransformToType[VT];
192        break;
193      default:
194        assert(false && "Type is not legal nor is it to be expanded!");
195        return VT;
196      }
197    }
198    return VT;
199  }
200
201  /// getVectorTypeBreakdown - Vector types are broken down into some number of
202  /// legal first class types.  For example, <8 x float> maps to 2 MVT::v4f32
203  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
204  /// Similarly, <2 x long> turns into 4 MVT::i32 values with both PPC and X86.
205  ///
206  /// This method returns the number of registers needed, and the VT for each
207  /// register.  It also returns the VT of the VectorType elements before they
208  /// are promoted/expanded.
209  ///
210  unsigned getVectorTypeBreakdown(const VectorType *PTy,
211                                  MVT::ValueType &PTyElementVT,
212                                  MVT::ValueType &PTyLegalElementVT) const;
213
214  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
215  legal_fpimm_iterator legal_fpimm_begin() const {
216    return LegalFPImmediates.begin();
217  }
218  legal_fpimm_iterator legal_fpimm_end() const {
219    return LegalFPImmediates.end();
220  }
221
222  /// isShuffleMaskLegal - Targets can use this to indicate that they only
223  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
224  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
225  /// are assumed to be legal.
226  virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
227    return true;
228  }
229
230  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
231  /// used by Targets can use this to indicate if there is a suitable
232  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
233  /// pool entry.
234  virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
235                                      MVT::ValueType EVT,
236                                      SelectionDAG &DAG) const {
237    return false;
238  }
239
240  /// getOperationAction - Return how this operation should be treated: either
241  /// it is legal, needs to be promoted to a larger size, needs to be
242  /// expanded to some other code sequence, or the target has a custom expander
243  /// for it.
244  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
245    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
246  }
247
248  /// isOperationLegal - Return true if the specified operation is legal on this
249  /// target.
250  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
251    return getOperationAction(Op, VT) == Legal ||
252           getOperationAction(Op, VT) == Custom;
253  }
254
255  /// getLoadXAction - Return how this load with extension should be treated:
256  /// either it is legal, needs to be promoted to a larger size, needs to be
257  /// expanded to some other code sequence, or the target has a custom expander
258  /// for it.
259  LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const {
260    return (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3);
261  }
262
263  /// isLoadXLegal - Return true if the specified load with extension is legal
264  /// on this target.
265  bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const {
266    return getLoadXAction(LType, VT) == Legal ||
267           getLoadXAction(LType, VT) == Custom;
268  }
269
270  /// getStoreXAction - Return how this store with truncation should be treated:
271  /// either it is legal, needs to be promoted to a larger size, needs to be
272  /// expanded to some other code sequence, or the target has a custom expander
273  /// for it.
274  LegalizeAction getStoreXAction(MVT::ValueType VT) const {
275    return (LegalizeAction)((StoreXActions >> (2*VT)) & 3);
276  }
277
278  /// isStoreXLegal - Return true if the specified store with truncation is
279  /// legal on this target.
280  bool isStoreXLegal(MVT::ValueType VT) const {
281    return getStoreXAction(VT) == Legal || getStoreXAction(VT) == Custom;
282  }
283
284  /// getIndexedLoadAction - Return how the indexed load should be treated:
285  /// either it is legal, needs to be promoted to a larger size, needs to be
286  /// expanded to some other code sequence, or the target has a custom expander
287  /// for it.
288  LegalizeAction
289  getIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT) const {
290    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >> (2*VT)) & 3);
291  }
292
293  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
294  /// on this target.
295  bool isIndexedLoadLegal(unsigned IdxMode, MVT::ValueType VT) const {
296    return getIndexedLoadAction(IdxMode, VT) == Legal ||
297           getIndexedLoadAction(IdxMode, VT) == Custom;
298  }
299
300  /// getIndexedStoreAction - Return how the indexed store should be treated:
301  /// either it is legal, needs to be promoted to a larger size, needs to be
302  /// expanded to some other code sequence, or the target has a custom expander
303  /// for it.
304  LegalizeAction
305  getIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT) const {
306    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >> (2*VT)) & 3);
307  }
308
309  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
310  /// on this target.
311  bool isIndexedStoreLegal(unsigned IdxMode, MVT::ValueType VT) const {
312    return getIndexedStoreAction(IdxMode, VT) == Legal ||
313           getIndexedStoreAction(IdxMode, VT) == Custom;
314  }
315
316  /// getTypeToPromoteTo - If the action for this operation is to promote, this
317  /// method returns the ValueType to promote to.
318  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
319    assert(getOperationAction(Op, VT) == Promote &&
320           "This operation isn't promoted!");
321
322    // See if this has an explicit type specified.
323    std::map<std::pair<unsigned, MVT::ValueType>,
324             MVT::ValueType>::const_iterator PTTI =
325      PromoteToType.find(std::make_pair(Op, VT));
326    if (PTTI != PromoteToType.end()) return PTTI->second;
327
328    assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
329           "Cannot autopromote this type, add it with AddPromotedToType.");
330
331    MVT::ValueType NVT = VT;
332    do {
333      NVT = (MVT::ValueType)(NVT+1);
334      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
335             "Didn't find type to promote to!");
336    } while (!isTypeLegal(NVT) ||
337              getOperationAction(Op, NVT) == Promote);
338    return NVT;
339  }
340
341  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
342  /// This is fixed by the LLVM operations except for the pointer size.  If
343  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
344  /// counterpart (e.g. structs), otherwise it will assert.
345  MVT::ValueType getValueType(const Type *Ty, bool AllowUnknown = false) const {
346    MVT::ValueType VT = MVT::getValueType(Ty, AllowUnknown);
347    return VT == MVT::iPTR ? PointerTy : VT;
348  }
349
350  /// getNumElements - Return the number of registers that this ValueType will
351  /// eventually require.  This is one for any types promoted to live in larger
352  /// registers, but may be more than one for types (like i64) that are split
353  /// into pieces.
354  unsigned getNumElements(MVT::ValueType VT) const {
355    return NumElementsForVT[VT];
356  }
357
358  /// hasTargetDAGCombine - If true, the target has custom DAG combine
359  /// transformations that it can perform for the specified node.
360  bool hasTargetDAGCombine(ISD::NodeType NT) const {
361    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
362  }
363
364  /// This function returns the maximum number of store operations permitted
365  /// to replace a call to llvm.memset. The value is set by the target at the
366  /// performance threshold for such a replacement.
367  /// @brief Get maximum # of store operations permitted for llvm.memset
368  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
369
370  /// This function returns the maximum number of store operations permitted
371  /// to replace a call to llvm.memcpy. The value is set by the target at the
372  /// performance threshold for such a replacement.
373  /// @brief Get maximum # of store operations permitted for llvm.memcpy
374  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
375
376  /// This function returns the maximum number of store operations permitted
377  /// to replace a call to llvm.memmove. The value is set by the target at the
378  /// performance threshold for such a replacement.
379  /// @brief Get maximum # of store operations permitted for llvm.memmove
380  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
381
382  /// This function returns true if the target allows unaligned memory accesses.
383  /// This is used, for example, in situations where an array copy/move/set is
384  /// converted to a sequence of store operations. It's use helps to ensure that
385  /// such replacements don't generate code that causes an alignment error
386  /// (trap) on the target machine.
387  /// @brief Determine if the target supports unaligned memory accesses.
388  bool allowsUnalignedMemoryAccesses() const {
389    return allowUnalignedMemoryAccesses;
390  }
391
392  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
393  /// to implement llvm.setjmp.
394  bool usesUnderscoreSetJmp() const {
395    return UseUnderscoreSetJmp;
396  }
397
398  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
399  /// to implement llvm.longjmp.
400  bool usesUnderscoreLongJmp() const {
401    return UseUnderscoreLongJmp;
402  }
403
404  /// getStackPointerRegisterToSaveRestore - If a physical register, this
405  /// specifies the register that llvm.savestack/llvm.restorestack should save
406  /// and restore.
407  unsigned getStackPointerRegisterToSaveRestore() const {
408    return StackPointerRegisterToSaveRestore;
409  }
410
411  /// getExceptionAddressRegister - If a physical register, this returns
412  /// the register that receives the exception address on entry to a landing
413  /// pad.
414  unsigned getExceptionAddressRegister() const {
415    return ExceptionPointerRegister;
416  }
417
418  /// getExceptionSelectorRegister - If a physical register, this returns
419  /// the register that receives the exception typeid on entry to a landing
420  /// pad.
421  unsigned getExceptionSelectorRegister() const {
422    return ExceptionSelectorRegister;
423  }
424
425  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
426  /// set, the default is 200)
427  unsigned getJumpBufSize() const {
428    return JumpBufSize;
429  }
430
431  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
432  /// (if never set, the default is 0)
433  unsigned getJumpBufAlignment() const {
434    return JumpBufAlignment;
435  }
436
437  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
438  /// limit. Any block whose size is greater should not be predicated.
439  virtual unsigned getIfCvtBlockSizeLimit() const {
440    return IfCvtBlockSizeLimit;
441  }
442
443  /// getPreIndexedAddressParts - returns true by value, base pointer and
444  /// offset pointer and addressing mode by reference if the node's address
445  /// can be legally represented as pre-indexed load / store address.
446  virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
447                                         SDOperand &Offset,
448                                         ISD::MemIndexedMode &AM,
449                                         SelectionDAG &DAG) {
450    return false;
451  }
452
453  /// getPostIndexedAddressParts - returns true by value, base pointer and
454  /// offset pointer and addressing mode by reference if this node can be
455  /// combined with a load / store to form a post-indexed load / store.
456  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
457                                          SDOperand &Base, SDOperand &Offset,
458                                          ISD::MemIndexedMode &AM,
459                                          SelectionDAG &DAG) {
460    return false;
461  }
462
463  //===--------------------------------------------------------------------===//
464  // TargetLowering Optimization Methods
465  //
466
467  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
468  /// SDOperands for returning information from TargetLowering to its clients
469  /// that want to combine
470  struct TargetLoweringOpt {
471    SelectionDAG &DAG;
472    SDOperand Old;
473    SDOperand New;
474
475    TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
476
477    bool CombineTo(SDOperand O, SDOperand N) {
478      Old = O;
479      New = N;
480      return true;
481    }
482
483    /// ShrinkDemandedConstant - Check to see if the specified operand of the
484    /// specified instruction is a constant integer.  If so, check to see if there
485    /// are any bits set in the constant that are not demanded.  If so, shrink the
486    /// constant and return true.
487    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
488  };
489
490  /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero.  We
491  /// use this predicate to simplify operations downstream.  Op and Mask are
492  /// known to be the same type.
493  bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0)
494    const;
495
496  /// ComputeMaskedBits - Determine which of the bits specified in Mask are
497  /// known to be either zero or one and return them in the KnownZero/KnownOne
498  /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
499  /// processing.  Targets can implement the computeMaskedBitsForTargetNode
500  /// method, to allow target nodes to be understood.
501  void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero,
502                         uint64_t &KnownOne, unsigned Depth = 0) const;
503
504  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
505  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
506  /// use this information to simplify Op, create a new simplified DAG node and
507  /// return true, returning the original and new nodes in Old and New.
508  /// Otherwise, analyze the expression and return a mask of KnownOne and
509  /// KnownZero bits for the expression (used to simplify the caller).
510  /// The KnownZero/One bits may only be accurate for those bits in the
511  /// DemandedMask.
512  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
513                            uint64_t &KnownZero, uint64_t &KnownOne,
514                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
515
516  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
517  /// Mask are known to be either zero or one and return them in the
518  /// KnownZero/KnownOne bitsets.
519  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
520                                              uint64_t Mask,
521                                              uint64_t &KnownZero,
522                                              uint64_t &KnownOne,
523                                              unsigned Depth = 0) const;
524
525  /// ComputeNumSignBits - Return the number of times the sign bit of the
526  /// register is replicated into the other bits.  We know that at least 1 bit
527  /// is always equal to the sign bit (itself), but other cases can give us
528  /// information.  For example, immediately after an "SRA X, 2", we know that
529  /// the top 3 bits are all equal to each other, so we return 3.
530  unsigned ComputeNumSignBits(SDOperand Op, unsigned Depth = 0) const;
531
532  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
533  /// targets that want to expose additional information about sign bits to the
534  /// DAG Combiner.
535  virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
536                                                   unsigned Depth = 0) const;
537
538  struct DAGCombinerInfo {
539    void *DC;  // The DAG Combiner object.
540    bool BeforeLegalize;
541    bool CalledByLegalizer;
542  public:
543    SelectionDAG &DAG;
544
545    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
546      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
547
548    bool isBeforeLegalize() const { return BeforeLegalize; }
549    bool isCalledByLegalizer() const { return CalledByLegalizer; }
550
551    void AddToWorklist(SDNode *N);
552    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
553    SDOperand CombineTo(SDNode *N, SDOperand Res);
554    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
555  };
556
557  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
558  /// and cc. If it is unable to simplify it, return a null SDOperand.
559  SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
560                          ISD::CondCode Cond, bool foldBooleans,
561                          DAGCombinerInfo &DCI) const;
562
563  /// PerformDAGCombine - This method will be invoked for all target nodes and
564  /// for any target-independent nodes that the target has registered with
565  /// invoke it for.
566  ///
567  /// The semantics are as follows:
568  /// Return Value:
569  ///   SDOperand.Val == 0   - No change was made
570  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
571  ///   otherwise            - N should be replaced by the returned Operand.
572  ///
573  /// In addition, methods provided by DAGCombinerInfo may be used to perform
574  /// more complex transformations.
575  ///
576  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
577
578  //===--------------------------------------------------------------------===//
579  // TargetLowering Configuration Methods - These methods should be invoked by
580  // the derived class constructor to configure this object for the target.
581  //
582
583protected:
584  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
585  /// GOT for PC-relative code.
586  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
587
588  /// setShiftAmountType - Describe the type that should be used for shift
589  /// amounts.  This type defaults to the pointer type.
590  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
591
592  /// setSetCCResultType - Describe the type that shoudl be used as the result
593  /// of a setcc operation.  This defaults to the pointer type.
594  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
595
596  /// setSetCCResultContents - Specify how the target extends the result of a
597  /// setcc operation in a register.
598  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
599
600  /// setSchedulingPreference - Specify the target scheduling preference.
601  void setSchedulingPreference(SchedPreference Pref) {
602    SchedPreferenceInfo = Pref;
603  }
604
605  /// setShiftAmountFlavor - Describe how the target handles out of range shift
606  /// amounts.
607  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
608    ShiftAmtHandling = OORSA;
609  }
610
611  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
612  /// use _setjmp to implement llvm.setjmp or the non _ version.
613  /// Defaults to false.
614  void setUseUnderscoreSetJmp(bool Val) {
615    UseUnderscoreSetJmp = Val;
616  }
617
618  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
619  /// use _longjmp to implement llvm.longjmp or the non _ version.
620  /// Defaults to false.
621  void setUseUnderscoreLongJmp(bool Val) {
622    UseUnderscoreLongJmp = Val;
623  }
624
625  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
626  /// specifies the register that llvm.savestack/llvm.restorestack should save
627  /// and restore.
628  void setStackPointerRegisterToSaveRestore(unsigned R) {
629    StackPointerRegisterToSaveRestore = R;
630  }
631
632  /// setExceptionPointerRegister - If set to a physical register, this sets
633  /// the register that receives the exception address on entry to a landing
634  /// pad.
635  void setExceptionPointerRegister(unsigned R) {
636    ExceptionPointerRegister = R;
637  }
638
639  /// setExceptionSelectorRegister - If set to a physical register, this sets
640  /// the register that receives the exception typeid on entry to a landing
641  /// pad.
642  void setExceptionSelectorRegister(unsigned R) {
643    ExceptionSelectorRegister = R;
644  }
645
646  /// SelectIsExpensive - Tells the code generator not to expand operations
647  /// into sequences that use the select operations if possible.
648  void setSelectIsExpensive() { SelectIsExpensive = true; }
649
650  /// setIntDivIsCheap - Tells the code generator that integer divide is
651  /// expensive, and if possible, should be replaced by an alternate sequence
652  /// of instructions not containing an integer divide.
653  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
654
655  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
656  /// srl/add/sra for a signed divide by power of two, and let the target handle
657  /// it.
658  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
659
660  /// addRegisterClass - Add the specified register class as an available
661  /// regclass for the specified value type.  This indicates the selector can
662  /// handle values of that class natively.
663  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
664    AvailableRegClasses.push_back(std::make_pair(VT, RC));
665    RegClassForVT[VT] = RC;
666  }
667
668  /// computeRegisterProperties - Once all of the register classes are added,
669  /// this allows us to compute derived properties we expose.
670  void computeRegisterProperties();
671
672  /// setOperationAction - Indicate that the specified operation does not work
673  /// with the specified type and indicate what to do about it.
674  void setOperationAction(unsigned Op, MVT::ValueType VT,
675                          LegalizeAction Action) {
676    assert(VT < 32 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
677           "Table isn't big enough!");
678    OpActions[Op] &= ~(uint64_t(3UL) << VT*2);
679    OpActions[Op] |= (uint64_t)Action << VT*2;
680  }
681
682  /// setLoadXAction - Indicate that the specified load with extension does not
683  /// work with the with specified type and indicate what to do about it.
684  void setLoadXAction(unsigned ExtType, MVT::ValueType VT,
685                      LegalizeAction Action) {
686    assert(VT < 32 && ExtType < sizeof(LoadXActions)/sizeof(LoadXActions[0]) &&
687           "Table isn't big enough!");
688    LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2);
689    LoadXActions[ExtType] |= (uint64_t)Action << VT*2;
690  }
691
692  /// setStoreXAction - Indicate that the specified store with truncation does
693  /// not work with the with specified type and indicate what to do about it.
694  void setStoreXAction(MVT::ValueType VT, LegalizeAction Action) {
695    assert(VT < 32 && "Table isn't big enough!");
696    StoreXActions &= ~(uint64_t(3UL) << VT*2);
697    StoreXActions |= (uint64_t)Action << VT*2;
698  }
699
700  /// setIndexedLoadAction - Indicate that the specified indexed load does or
701  /// does not work with the with specified type and indicate what to do abort
702  /// it. NOTE: All indexed mode loads are initialized to Expand in
703  /// TargetLowering.cpp
704  void setIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT,
705                            LegalizeAction Action) {
706    assert(VT < 32 && IdxMode <
707           sizeof(IndexedModeActions[0]) / sizeof(IndexedModeActions[0][0]) &&
708           "Table isn't big enough!");
709    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT*2);
710    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT*2;
711  }
712
713  /// setIndexedStoreAction - Indicate that the specified indexed store does or
714  /// does not work with the with specified type and indicate what to do about
715  /// it. NOTE: All indexed mode stores are initialized to Expand in
716  /// TargetLowering.cpp
717  void setIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT,
718                             LegalizeAction Action) {
719    assert(VT < 32 && IdxMode <
720           sizeof(IndexedModeActions[1]) / sizeof(IndexedModeActions[1][0]) &&
721           "Table isn't big enough!");
722    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT*2);
723    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT*2;
724  }
725
726  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
727  /// promotion code defaults to trying a larger integer/fp until it can find
728  /// one that works.  If that default is insufficient, this method can be used
729  /// by the target to override the default.
730  void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT,
731                         MVT::ValueType DestVT) {
732    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
733  }
734
735  /// addLegalFPImmediate - Indicate that this target can instruction select
736  /// the specified FP immediate natively.
737  void addLegalFPImmediate(double Imm) {
738    LegalFPImmediates.push_back(Imm);
739  }
740
741  /// setTargetDAGCombine - Targets should invoke this method for each target
742  /// independent node that they want to provide a custom DAG combiner for by
743  /// implementing the PerformDAGCombine virtual method.
744  void setTargetDAGCombine(ISD::NodeType NT) {
745    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
746  }
747
748  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
749  /// bytes); default is 200
750  void setJumpBufSize(unsigned Size) {
751    JumpBufSize = Size;
752  }
753
754  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
755  /// alignment (in bytes); default is 0
756  void setJumpBufAlignment(unsigned Align) {
757    JumpBufAlignment = Align;
758  }
759
760  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
761  /// (in number of instructions); default is 2.
762  void setIfCvtBlockSizeLimit(unsigned Limit) {
763    IfCvtBlockSizeLimit = Limit;
764  }
765
766public:
767
768  //===--------------------------------------------------------------------===//
769  // Lowering methods - These methods must be implemented by targets so that
770  // the SelectionDAGLowering code knows how to lower these.
771  //
772
773  /// LowerArguments - This hook must be implemented to indicate how we should
774  /// lower the arguments for the specified function, into the specified DAG.
775  virtual std::vector<SDOperand>
776  LowerArguments(Function &F, SelectionDAG &DAG);
777
778  /// LowerCallTo - This hook lowers an abstract call to a function into an
779  /// actual call.  This returns a pair of operands.  The first element is the
780  /// return value for the function (if RetTy is not VoidTy).  The second
781  /// element is the outgoing token chain.
782  struct ArgListEntry {
783    SDOperand Node;
784    const Type* Ty;
785    bool isSExt;
786    bool isZExt;
787    bool isInReg;
788    bool isSRet;
789
790    ArgListEntry():isSExt(false), isZExt(false), isInReg(false), isSRet(false) { };
791  };
792  typedef std::vector<ArgListEntry> ArgListTy;
793  virtual std::pair<SDOperand, SDOperand>
794  LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetTyIsSigned,
795              bool isVarArg, unsigned CallingConv, bool isTailCall,
796              SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
797
798  /// LowerOperation - This callback is invoked for operations that are
799  /// unsupported by the target, which are registered to use 'custom' lowering,
800  /// and whose defined values are all legal.
801  /// If the target has no operations that require custom lowering, it need not
802  /// implement this.  The default implementation of this aborts.
803  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
804
805  /// CustomPromoteOperation - This callback is invoked for operations that are
806  /// unsupported by the target, are registered to use 'custom' lowering, and
807  /// whose type needs to be promoted.
808  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
809
810  /// getTargetNodeName() - This method returns the name of a target specific
811  /// DAG node.
812  virtual const char *getTargetNodeName(unsigned Opcode) const;
813
814  //===--------------------------------------------------------------------===//
815  // Inline Asm Support hooks
816  //
817
818  enum ConstraintType {
819    C_Register,            // Constraint represents a single register.
820    C_RegisterClass,       // Constraint represents one or more registers.
821    C_Memory,              // Memory constraint.
822    C_Other,               // Something else.
823    C_Unknown              // Unsupported constraint.
824  };
825
826  /// getConstraintType - Given a constraint, return the type of constraint it
827  /// is for this target.
828  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
829
830
831  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
832  /// return a list of registers that can be used to satisfy the constraint.
833  /// This should only be used for C_RegisterClass constraints.
834  virtual std::vector<unsigned>
835  getRegClassForInlineAsmConstraint(const std::string &Constraint,
836                                    MVT::ValueType VT) const;
837
838  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
839  /// {edx}), return the register number and the register class for the
840  /// register.
841  ///
842  /// Given a register class constraint, like 'r', if this corresponds directly
843  /// to an LLVM register class, return a register of 0 and the register class
844  /// pointer.
845  ///
846  /// This should only be used for C_Register constraints.  On error,
847  /// this returns a register number of 0 and a null register class pointer..
848  virtual std::pair<unsigned, const TargetRegisterClass*>
849    getRegForInlineAsmConstraint(const std::string &Constraint,
850                                 MVT::ValueType VT) const;
851
852
853  /// isOperandValidForConstraint - Return the specified operand (possibly
854  /// modified) if the specified SDOperand is valid for the specified target
855  /// constraint letter, otherwise return null.
856  virtual SDOperand
857    isOperandValidForConstraint(SDOperand Op, char ConstraintLetter,
858                                SelectionDAG &DAG);
859
860  //===--------------------------------------------------------------------===//
861  // Scheduler hooks
862  //
863
864  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
865  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
866  // instructions are special in various ways, which require special support to
867  // insert.  The specified MachineInstr is created but not inserted into any
868  // basic blocks, and the scheduler passes ownership of it to this method.
869  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
870                                                     MachineBasicBlock *MBB);
871
872  //===--------------------------------------------------------------------===//
873  // Addressing mode description hooks (used by LSR etc).
874  //
875
876  /// AddrMode - This represents an addressing mode of:
877  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
878  /// If BaseGV is null,  there is no BaseGV.
879  /// If BaseOffs is zero, there is no base offset.
880  /// If HasBaseReg is false, there is no base register.
881  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
882  /// no scale.
883  ///
884  struct AddrMode {
885    GlobalValue *BaseGV;
886    int64_t      BaseOffs;
887    bool         HasBaseReg;
888    int64_t      Scale;
889    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
890  };
891
892  /// isLegalAddressingMode - Return true if the addressing mode represented by
893  /// AM is legal for this target, for a load/store of the specified type.
894  /// TODO: Handle pre/postinc as well.
895  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
896
897  //===--------------------------------------------------------------------===//
898  // Div utility functions
899  //
900  SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG,
901                      std::vector<SDNode*>* Created) const;
902  SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG,
903                      std::vector<SDNode*>* Created) const;
904
905
906  //===--------------------------------------------------------------------===//
907  // Runtime Library hooks
908  //
909
910  /// setLibcallName - Rename the default libcall routine name for the specified
911  /// libcall.
912  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
913    LibcallRoutineNames[Call] = Name;
914  }
915
916  /// getLibcallName - Get the libcall routine name for the specified libcall.
917  ///
918  const char *getLibcallName(RTLIB::Libcall Call) const {
919    return LibcallRoutineNames[Call];
920  }
921
922  /// setCmpLibcallCC - Override the default CondCode to be used to test the
923  /// result of the comparison libcall against zero.
924  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
925    CmpLibcallCCs[Call] = CC;
926  }
927
928  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
929  /// the comparison libcall against zero.
930  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
931    return CmpLibcallCCs[Call];
932  }
933
934private:
935  TargetMachine &TM;
936  const TargetData *TD;
937
938  /// IsLittleEndian - True if this is a little endian target.
939  ///
940  bool IsLittleEndian;
941
942  /// PointerTy - The type to use for pointers, usually i32 or i64.
943  ///
944  MVT::ValueType PointerTy;
945
946  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
947  ///
948  bool UsesGlobalOffsetTable;
949
950  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
951  /// PointerTy is.
952  MVT::ValueType ShiftAmountTy;
953
954  OutOfRangeShiftAmount ShiftAmtHandling;
955
956  /// SelectIsExpensive - Tells the code generator not to expand operations
957  /// into sequences that use the select operations if possible.
958  bool SelectIsExpensive;
959
960  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
961  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
962  /// a real cost model is in place.  If we ever optimize for size, this will be
963  /// set to true unconditionally.
964  bool IntDivIsCheap;
965
966  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
967  /// srl/add/sra for a signed divide by power of two, and let the target handle
968  /// it.
969  bool Pow2DivIsCheap;
970
971  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
972  /// PointerTy.
973  MVT::ValueType SetCCResultTy;
974
975  /// SetCCResultContents - Information about the contents of the high-bits in
976  /// the result of a setcc comparison operation.
977  SetCCResultValue SetCCResultContents;
978
979  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
980  /// total cycles or lowest register usage.
981  SchedPreference SchedPreferenceInfo;
982
983  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
984  /// llvm.setjmp.  Defaults to false.
985  bool UseUnderscoreSetJmp;
986
987  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
988  /// llvm.longjmp.  Defaults to false.
989  bool UseUnderscoreLongJmp;
990
991  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
992  unsigned JumpBufSize;
993
994  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
995  /// buffers
996  unsigned JumpBufAlignment;
997
998  /// IfCvtBlockSizeLimit - The maximum allowed block size for if-conversion.
999  ///
1000  unsigned IfCvtBlockSizeLimit;
1001
1002  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1003  /// specifies the register that llvm.savestack/llvm.restorestack should save
1004  /// and restore.
1005  unsigned StackPointerRegisterToSaveRestore;
1006
1007  /// ExceptionPointerRegister - If set to a physical register, this specifies
1008  /// the register that receives the exception address on entry to a landing
1009  /// pad.
1010  unsigned ExceptionPointerRegister;
1011
1012  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1013  /// the register that receives the exception typeid on entry to a landing
1014  /// pad.
1015  unsigned ExceptionSelectorRegister;
1016
1017  /// RegClassForVT - This indicates the default register class to use for
1018  /// each ValueType the target supports natively.
1019  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1020  unsigned char NumElementsForVT[MVT::LAST_VALUETYPE];
1021
1022  /// TransformToType - For any value types we are promoting or expanding, this
1023  /// contains the value type that we are changing to.  For Expanded types, this
1024  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1025  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1026  /// by the system, this holds the same type (e.g. i32 -> i32).
1027  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
1028
1029  /// OpActions - For each operation and each value type, keep a LegalizeAction
1030  /// that indicates how instruction selection should deal with the operation.
1031  /// Most operations are Legal (aka, supported natively by the target), but
1032  /// operations that are not should be described.  Note that operations on
1033  /// non-legal value types are not described here.
1034  uint64_t OpActions[156];
1035
1036  /// LoadXActions - For each load of load extension type and each value type,
1037  /// keep a LegalizeAction that indicates how instruction selection should deal
1038  /// with the load.
1039  uint64_t LoadXActions[ISD::LAST_LOADX_TYPE];
1040
1041  /// StoreXActions - For each store with truncation of each value type, keep a
1042  /// LegalizeAction that indicates how instruction selection should deal with
1043  /// the store.
1044  uint64_t StoreXActions;
1045
1046  /// IndexedModeActions - For each indexed mode and each value type, keep a
1047  /// pair of LegalizeAction that indicates how instruction selection should
1048  /// deal with the load / store.
1049  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1050
1051  ValueTypeActionImpl ValueTypeActions;
1052
1053  std::vector<double> LegalFPImmediates;
1054
1055  std::vector<std::pair<MVT::ValueType,
1056                        TargetRegisterClass*> > AvailableRegClasses;
1057
1058  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1059  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1060  /// which sets a bit in this array.
1061  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
1062
1063  /// PromoteToType - For operations that must be promoted to a specific type,
1064  /// this holds the destination type.  This map should be sparse, so don't hold
1065  /// it as an array.
1066  ///
1067  /// Targets add entries to this map with AddPromotedToType(..), clients access
1068  /// this with getTypeToPromoteTo(..).
1069  std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
1070
1071  /// LibcallRoutineNames - Stores the name each libcall.
1072  ///
1073  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1074
1075  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1076  /// of each of the comparison libcall against zero.
1077  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1078
1079protected:
1080  /// When lowering %llvm.memset this field specifies the maximum number of
1081  /// store operations that may be substituted for the call to memset. Targets
1082  /// must set this value based on the cost threshold for that target. Targets
1083  /// should assume that the memset will be done using as many of the largest
1084  /// store operations first, followed by smaller ones, if necessary, per
1085  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1086  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1087  /// store.  This only applies to setting a constant array of a constant size.
1088  /// @brief Specify maximum number of store instructions per memset call.
1089  unsigned maxStoresPerMemset;
1090
1091  /// When lowering %llvm.memcpy this field specifies the maximum number of
1092  /// store operations that may be substituted for a call to memcpy. Targets
1093  /// must set this value based on the cost threshold for that target. Targets
1094  /// should assume that the memcpy will be done using as many of the largest
1095  /// store operations first, followed by smaller ones, if necessary, per
1096  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1097  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1098  /// and one 1-byte store. This only applies to copying a constant array of
1099  /// constant size.
1100  /// @brief Specify maximum bytes of store instructions per memcpy call.
1101  unsigned maxStoresPerMemcpy;
1102
1103  /// When lowering %llvm.memmove this field specifies the maximum number of
1104  /// store instructions that may be substituted for a call to memmove. Targets
1105  /// must set this value based on the cost threshold for that target. Targets
1106  /// should assume that the memmove will be done using as many of the largest
1107  /// store operations first, followed by smaller ones, if necessary, per
1108  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1109  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1110  /// applies to copying a constant array of constant size.
1111  /// @brief Specify maximum bytes of store instructions per memmove call.
1112  unsigned maxStoresPerMemmove;
1113
1114  /// This field specifies whether the target machine permits unaligned memory
1115  /// accesses.  This is used, for example, to determine the size of store
1116  /// operations when copying small arrays and other similar tasks.
1117  /// @brief Indicate whether the target permits unaligned memory accesses.
1118  bool allowUnalignedMemoryAccesses;
1119};
1120} // end llvm namespace
1121
1122#endif
1123