TargetLowering.h revision f9fd29ea34d841df7d43807e386c48c08bf83f13
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/CodeGen/RuntimeLibcalls.h"
31#include "llvm/Support/DebugLoc.h"
32#include "llvm/Target/TargetCallingConv.h"
33#include "llvm/Target/TargetMachine.h"
34#include <climits>
35#include <map>
36#include <vector>
37
38namespace llvm {
39  class AllocaInst;
40  class APFloat;
41  class CallInst;
42  class CCState;
43  class Function;
44  class FastISel;
45  class FunctionLoweringInfo;
46  class ImmutableCallSite;
47  class MachineBasicBlock;
48  class MachineFunction;
49  class MachineFrameInfo;
50  class MachineInstr;
51  class MachineJumpTableInfo;
52  class MCContext;
53  class MCExpr;
54  class SDNode;
55  class SDValue;
56  class SelectionDAG;
57  template<typename T> class SmallVectorImpl;
58  class TargetData;
59  class TargetMachine;
60  class TargetRegisterClass;
61  class TargetLoweringObjectFile;
62  class Value;
63
64  // FIXME: should this be here?
65  namespace TLSModel {
66    enum Model {
67      GeneralDynamic,
68      LocalDynamic,
69      InitialExec,
70      LocalExec
71    };
72  }
73  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
74
75
76//===----------------------------------------------------------------------===//
77/// TargetLowering - This class defines information used to lower LLVM code to
78/// legal SelectionDAG operators that the target instruction selector can accept
79/// natively.
80///
81/// This class also defines callbacks that targets must implement to lower
82/// target-specific constructs to SelectionDAG operators.
83///
84class TargetLowering {
85  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
86  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
87public:
88  /// LegalizeAction - This enum indicates whether operations are valid for a
89  /// target, and if not, what action should be used to make them valid.
90  enum LegalizeAction {
91    Legal,      // The target natively supports this operation.
92    Promote,    // This operation should be executed in a larger type.
93    Expand,     // Try to expand this to other ops, otherwise use a libcall.
94    Custom      // Use the LowerOperation hook to implement custom lowering.
95  };
96
97  /// LegalizeTypeAction - This enum indicates whether a types are legal for a
98  /// target, and if not, what action should be used to make them valid.
99  enum LegalizeTypeAction {
100    TypeLegal,           // The target natively supports this type.
101    TypePromoteInteger,  // Replace this integer with a larger one.
102    TypeExpandInteger,   // Split this integer into two of half the size.
103    TypeSoftenFloat,     // Convert this float to a same size integer type.
104    TypeExpandFloat,     // Split this float into two of half the size.
105    TypeScalarizeVector, // Replace this one-element vector with its element.
106    TypeSplitVector,     // Split this vector into two of half the size.
107    TypeWidenVector      // This vector should be widened into a larger vector.
108  };
109
110  enum BooleanContent { // How the target represents true/false values.
111    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
112    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
113    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
114  };
115
116  static ISD::NodeType getExtendForContent(BooleanContent Content) {
117    switch (Content) {
118    default:
119      assert(false && "Unknown BooleanContent!");
120    case UndefinedBooleanContent:
121      // Extend by adding rubbish bits.
122      return ISD::ANY_EXTEND;
123    case ZeroOrOneBooleanContent:
124      // Extend by adding zero bits.
125      return ISD::ZERO_EXTEND;
126    case ZeroOrNegativeOneBooleanContent:
127      // Extend by copying the sign bit.
128      return ISD::SIGN_EXTEND;
129    }
130  }
131
132  /// NOTE: The constructor takes ownership of TLOF.
133  explicit TargetLowering(const TargetMachine &TM,
134                          const TargetLoweringObjectFile *TLOF);
135  virtual ~TargetLowering();
136
137  const TargetMachine &getTargetMachine() const { return TM; }
138  const TargetData *getTargetData() const { return TD; }
139  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
140
141  bool isBigEndian() const { return !IsLittleEndian; }
142  bool isLittleEndian() const { return IsLittleEndian; }
143  MVT getPointerTy() const { return PointerTy; }
144  virtual MVT getShiftAmountTy(EVT LHSTy) const;
145
146  /// isSelectExpensive - Return true if the select operation is expensive for
147  /// this target.
148  bool isSelectExpensive() const { return SelectIsExpensive; }
149
150  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
151  /// a sequence of several shifts, adds, and multiplies for this target.
152  bool isIntDivCheap() const { return IntDivIsCheap; }
153
154  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
155  /// srl/add/sra.
156  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
157
158  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
159  /// that should be avoided.
160  bool isJumpExpensive() const { return JumpIsExpensive; }
161
162  /// getSetCCResultType - Return the ValueType of the result of SETCC
163  /// operations.  Also used to obtain the target's preferred type for
164  /// the condition operand of SELECT and BRCOND nodes.  In the case of
165  /// BRCOND the argument passed is MVT::Other since there are no other
166  /// operands to get a type hint from.
167  virtual EVT getSetCCResultType(EVT VT) const;
168
169  /// getCmpLibcallReturnType - Return the ValueType for comparison
170  /// libcalls. Comparions libcalls include floating point comparion calls,
171  /// and Ordered/Unordered check calls on floating point numbers.
172  virtual
173  MVT::SimpleValueType getCmpLibcallReturnType() const;
174
175  /// getBooleanContents - For targets without i1 registers, this gives the
176  /// nature of the high-bits of boolean values held in types wider than i1.
177  /// "Boolean values" are special true/false values produced by nodes like
178  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
179  /// Not to be confused with general values promoted from i1.
180  /// Some cpus distinguish between vectors of boolean and scalars; the isVec
181  /// parameter selects between the two kinds.  For example on X86 a scalar
182  /// boolean should be zero extended from i1, while the elements of a vector
183  /// of booleans should be sign extended from i1.
184  BooleanContent getBooleanContents(bool isVec) const {
185    return isVec ? BooleanVectorContents : BooleanContents;
186  }
187
188  /// getSchedulingPreference - Return target scheduling preference.
189  Sched::Preference getSchedulingPreference() const {
190    return SchedPreferenceInfo;
191  }
192
193  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
194  /// different scheduling heuristics for different nodes. This function returns
195  /// the preference (or none) for the given node.
196  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
197    return Sched::None;
198  }
199
200  /// getRegClassFor - Return the register class that should be used for the
201  /// specified value type.
202  virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
203    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
204    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
205    assert(RC && "This value type is not natively supported!");
206    return RC;
207  }
208
209  /// getRepRegClassFor - Return the 'representative' register class for the
210  /// specified value type. The 'representative' register class is the largest
211  /// legal super-reg register class for the register class of the value type.
212  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
213  /// while the rep register class is GR64 on x86_64.
214  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
215    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
216    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
217    return RC;
218  }
219
220  /// getRepRegClassCostFor - Return the cost of the 'representative' register
221  /// class for the specified value type.
222  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
223    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
224    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
225  }
226
227  /// isTypeLegal - Return true if the target has native support for the
228  /// specified value type.  This means that it has a register that directly
229  /// holds it without promotions or expansions.
230  bool isTypeLegal(EVT VT) const {
231    assert(!VT.isSimple() ||
232           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
233    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
234  }
235
236  class ValueTypeActionImpl {
237    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
238    /// that indicates how instruction selection should deal with the type.
239    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
240
241  public:
242    ValueTypeActionImpl() {
243      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
244    }
245
246    LegalizeTypeAction getTypeAction(MVT VT) const {
247      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
248    }
249
250    void setTypeAction(EVT VT, LegalizeTypeAction Action) {
251      unsigned I = VT.getSimpleVT().SimpleTy;
252      ValueTypeActions[I] = Action;
253    }
254  };
255
256  const ValueTypeActionImpl &getValueTypeActions() const {
257    return ValueTypeActions;
258  }
259
260  /// getTypeAction - Return how we should legalize values of this type, either
261  /// it is already legal (return 'Legal') or we need to promote it to a larger
262  /// type (return 'Promote'), or we need to expand it into multiple registers
263  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
264  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
265    return getTypeConversion(Context, VT).first;
266  }
267  LegalizeTypeAction getTypeAction(MVT VT) const {
268    return ValueTypeActions.getTypeAction(VT);
269  }
270
271  /// getTypeToTransformTo - For types supported by the target, this is an
272  /// identity function.  For types that must be promoted to larger types, this
273  /// returns the larger type to promote to.  For integer types that are larger
274  /// than the largest integer register, this contains one step in the expansion
275  /// to get to the smaller register. For illegal floating point types, this
276  /// returns the integer type to transform to.
277  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
278    return getTypeConversion(Context, VT).second;
279  }
280
281  /// getTypeToExpandTo - For types supported by the target, this is an
282  /// identity function.  For types that must be expanded (i.e. integer types
283  /// that are larger than the largest integer register or illegal floating
284  /// point types), this returns the largest legal type it will be expanded to.
285  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
286    assert(!VT.isVector());
287    while (true) {
288      switch (getTypeAction(Context, VT)) {
289      case TypeLegal:
290        return VT;
291      case TypeExpandInteger:
292        VT = getTypeToTransformTo(Context, VT);
293        break;
294      default:
295        assert(false && "Type is not legal nor is it to be expanded!");
296        return VT;
297      }
298    }
299    return VT;
300  }
301
302  /// getVectorTypeBreakdown - Vector types are broken down into some number of
303  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
304  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
305  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
306  ///
307  /// This method returns the number of registers needed, and the VT for each
308  /// register.  It also returns the VT and quantity of the intermediate values
309  /// before they are promoted/expanded.
310  ///
311  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
312                                  EVT &IntermediateVT,
313                                  unsigned &NumIntermediates,
314                                  EVT &RegisterVT) const;
315
316  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
317  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
318  /// this is the case, it returns true and store the intrinsic
319  /// information into the IntrinsicInfo that was passed to the function.
320  struct IntrinsicInfo {
321    unsigned     opc;         // target opcode
322    EVT          memVT;       // memory VT
323    const Value* ptrVal;      // value representing memory location
324    int          offset;      // offset off of ptrVal
325    unsigned     align;       // alignment
326    bool         vol;         // is volatile?
327    bool         readMem;     // reads memory?
328    bool         writeMem;    // writes memory?
329  };
330
331  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
332                                  unsigned /*Intrinsic*/) const {
333    return false;
334  }
335
336  /// isFPImmLegal - Returns true if the target can instruction select the
337  /// specified FP immediate natively. If false, the legalizer will materialize
338  /// the FP immediate as a load from a constant pool.
339  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
340    return false;
341  }
342
343  /// isShuffleMaskLegal - Targets can use this to indicate that they only
344  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
345  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
346  /// are assumed to be legal.
347  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
348                                  EVT /*VT*/) const {
349    return true;
350  }
351
352  /// canOpTrap - Returns true if the operation can trap for the value type.
353  /// VT must be a legal type. By default, we optimistically assume most
354  /// operations don't trap except for divide and remainder.
355  virtual bool canOpTrap(unsigned Op, EVT VT) const;
356
357  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
358  /// used by Targets can use this to indicate if there is a suitable
359  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
360  /// pool entry.
361  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
362                                      EVT /*VT*/) const {
363    return false;
364  }
365
366  /// getOperationAction - Return how this operation should be treated: either
367  /// it is legal, needs to be promoted to a larger size, needs to be
368  /// expanded to some other code sequence, or the target has a custom expander
369  /// for it.
370  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
371    if (VT.isExtended()) return Expand;
372    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
373    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
374    return (LegalizeAction)OpActions[I][Op];
375  }
376
377  /// isOperationLegalOrCustom - Return true if the specified operation is
378  /// legal on this target or can be made legal with custom lowering. This
379  /// is used to help guide high-level lowering decisions.
380  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
381    return (VT == MVT::Other || isTypeLegal(VT)) &&
382      (getOperationAction(Op, VT) == Legal ||
383       getOperationAction(Op, VT) == Custom);
384  }
385
386  /// isOperationLegal - Return true if the specified operation is legal on this
387  /// target.
388  bool isOperationLegal(unsigned Op, EVT VT) const {
389    return (VT == MVT::Other || isTypeLegal(VT)) &&
390           getOperationAction(Op, VT) == Legal;
391  }
392
393  /// getLoadExtAction - Return how this load with extension should be treated:
394  /// either it is legal, needs to be promoted to a larger size, needs to be
395  /// expanded to some other code sequence, or the target has a custom expander
396  /// for it.
397  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
398    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
399           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
400           "Table isn't big enough!");
401    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
402  }
403
404  /// isLoadExtLegal - Return true if the specified load with extension is legal
405  /// on this target.
406  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
407    return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
408  }
409
410  /// getTruncStoreAction - Return how this store with truncation should be
411  /// treated: either it is legal, needs to be promoted to a larger size, needs
412  /// to be expanded to some other code sequence, or the target has a custom
413  /// expander for it.
414  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
415    assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
416           MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
417           "Table isn't big enough!");
418    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
419                                            [MemVT.getSimpleVT().SimpleTy];
420  }
421
422  /// isTruncStoreLegal - Return true if the specified store with truncation is
423  /// legal on this target.
424  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
425    return isTypeLegal(ValVT) && MemVT.isSimple() &&
426           getTruncStoreAction(ValVT, MemVT) == Legal;
427  }
428
429  /// getIndexedLoadAction - Return how the indexed load should be treated:
430  /// either it is legal, needs to be promoted to a larger size, needs to be
431  /// expanded to some other code sequence, or the target has a custom expander
432  /// for it.
433  LegalizeAction
434  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
435    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
436           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
437           "Table isn't big enough!");
438    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
439    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
440  }
441
442  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
443  /// on this target.
444  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
445    return VT.isSimple() &&
446      (getIndexedLoadAction(IdxMode, VT) == Legal ||
447       getIndexedLoadAction(IdxMode, VT) == Custom);
448  }
449
450  /// getIndexedStoreAction - Return how the indexed store should be treated:
451  /// either it is legal, needs to be promoted to a larger size, needs to be
452  /// expanded to some other code sequence, or the target has a custom expander
453  /// for it.
454  LegalizeAction
455  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
456    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
457           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
458           "Table isn't big enough!");
459    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
460    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
461  }
462
463  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
464  /// on this target.
465  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
466    return VT.isSimple() &&
467      (getIndexedStoreAction(IdxMode, VT) == Legal ||
468       getIndexedStoreAction(IdxMode, VT) == Custom);
469  }
470
471  /// getCondCodeAction - Return how the condition code should be treated:
472  /// either it is legal, needs to be expanded to some other code sequence,
473  /// or the target has a custom expander for it.
474  LegalizeAction
475  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
476    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
477           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
478           "Table isn't big enough!");
479    LegalizeAction Action = (LegalizeAction)
480      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
481    assert(Action != Promote && "Can't promote condition code!");
482    return Action;
483  }
484
485  /// isCondCodeLegal - Return true if the specified condition code is legal
486  /// on this target.
487  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
488    return getCondCodeAction(CC, VT) == Legal ||
489           getCondCodeAction(CC, VT) == Custom;
490  }
491
492
493  /// getTypeToPromoteTo - If the action for this operation is to promote, this
494  /// method returns the ValueType to promote to.
495  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
496    assert(getOperationAction(Op, VT) == Promote &&
497           "This operation isn't promoted!");
498
499    // See if this has an explicit type specified.
500    std::map<std::pair<unsigned, MVT::SimpleValueType>,
501             MVT::SimpleValueType>::const_iterator PTTI =
502      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
503    if (PTTI != PromoteToType.end()) return PTTI->second;
504
505    assert((VT.isInteger() || VT.isFloatingPoint()) &&
506           "Cannot autopromote this type, add it with AddPromotedToType.");
507
508    EVT NVT = VT;
509    do {
510      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
511      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
512             "Didn't find type to promote to!");
513    } while (!isTypeLegal(NVT) ||
514              getOperationAction(Op, NVT) == Promote);
515    return NVT;
516  }
517
518  /// getValueType - Return the EVT corresponding to this LLVM type.
519  /// This is fixed by the LLVM operations except for the pointer size.  If
520  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
521  /// counterpart (e.g. structs), otherwise it will assert.
522  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
523    EVT VT = EVT::getEVT(Ty, AllowUnknown);
524    return VT == MVT::iPTR ? PointerTy : VT;
525  }
526
527  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
528  /// function arguments in the caller parameter area.  This is the actual
529  /// alignment, not its logarithm.
530  virtual unsigned getByValTypeAlignment(Type *Ty) const;
531
532  /// getRegisterType - Return the type of registers that this ValueType will
533  /// eventually require.
534  EVT getRegisterType(MVT VT) const {
535    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
536    return RegisterTypeForVT[VT.SimpleTy];
537  }
538
539  /// getRegisterType - Return the type of registers that this ValueType will
540  /// eventually require.
541  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
542    if (VT.isSimple()) {
543      assert((unsigned)VT.getSimpleVT().SimpleTy <
544                array_lengthof(RegisterTypeForVT));
545      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
546    }
547    if (VT.isVector()) {
548      EVT VT1, RegisterVT;
549      unsigned NumIntermediates;
550      (void)getVectorTypeBreakdown(Context, VT, VT1,
551                                   NumIntermediates, RegisterVT);
552      return RegisterVT;
553    }
554    if (VT.isInteger()) {
555      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
556    }
557    assert(0 && "Unsupported extended type!");
558    return EVT(MVT::Other); // Not reached
559  }
560
561  /// getNumRegisters - Return the number of registers that this ValueType will
562  /// eventually require.  This is one for any types promoted to live in larger
563  /// registers, but may be more than one for types (like i64) that are split
564  /// into pieces.  For types like i140, which are first promoted then expanded,
565  /// it is the number of registers needed to hold all the bits of the original
566  /// type.  For an i140 on a 32 bit machine this means 5 registers.
567  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
568    if (VT.isSimple()) {
569      assert((unsigned)VT.getSimpleVT().SimpleTy <
570                array_lengthof(NumRegistersForVT));
571      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
572    }
573    if (VT.isVector()) {
574      EVT VT1, VT2;
575      unsigned NumIntermediates;
576      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
577    }
578    if (VT.isInteger()) {
579      unsigned BitWidth = VT.getSizeInBits();
580      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
581      return (BitWidth + RegWidth - 1) / RegWidth;
582    }
583    assert(0 && "Unsupported extended type!");
584    return 0; // Not reached
585  }
586
587  /// ShouldShrinkFPConstant - If true, then instruction selection should
588  /// seek to shrink the FP constant of the specified type to a smaller type
589  /// in order to save space and / or reduce runtime.
590  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
591
592  /// hasTargetDAGCombine - If true, the target has custom DAG combine
593  /// transformations that it can perform for the specified node.
594  bool hasTargetDAGCombine(ISD::NodeType NT) const {
595    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
596    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
597  }
598
599  /// This function returns the maximum number of store operations permitted
600  /// to replace a call to llvm.memset. The value is set by the target at the
601  /// performance threshold for such a replacement. If OptSize is true,
602  /// return the limit for functions that have OptSize attribute.
603  /// @brief Get maximum # of store operations permitted for llvm.memset
604  unsigned getMaxStoresPerMemset(bool OptSize) const {
605    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
606  }
607
608  /// This function returns the maximum number of store operations permitted
609  /// to replace a call to llvm.memcpy. The value is set by the target at the
610  /// performance threshold for such a replacement. If OptSize is true,
611  /// return the limit for functions that have OptSize attribute.
612  /// @brief Get maximum # of store operations permitted for llvm.memcpy
613  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
614    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
615  }
616
617  /// This function returns the maximum number of store operations permitted
618  /// to replace a call to llvm.memmove. The value is set by the target at the
619  /// performance threshold for such a replacement. If OptSize is true,
620  /// return the limit for functions that have OptSize attribute.
621  /// @brief Get maximum # of store operations permitted for llvm.memmove
622  unsigned getMaxStoresPerMemmove(bool OptSize) const {
623    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
624  }
625
626  /// This function returns true if the target allows unaligned memory accesses.
627  /// of the specified type. This is used, for example, in situations where an
628  /// array copy/move/set is  converted to a sequence of store operations. It's
629  /// use helps to ensure that such replacements don't generate code that causes
630  /// an alignment error  (trap) on the target machine.
631  /// @brief Determine if the target supports unaligned memory accesses.
632  virtual bool allowsUnalignedMemoryAccesses(EVT) const {
633    return false;
634  }
635
636  /// This function returns true if the target would benefit from code placement
637  /// optimization.
638  /// @brief Determine if the target should perform code placement optimization.
639  bool shouldOptimizeCodePlacement() const {
640    return benefitFromCodePlacementOpt;
641  }
642
643  /// getOptimalMemOpType - Returns the target specific optimal type for load
644  /// and store operations as a result of memset, memcpy, and memmove
645  /// lowering. If DstAlign is zero that means it's safe to destination
646  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
647  /// means there isn't a need to check it against alignment requirement,
648  /// probably because the source does not need to be loaded. If
649  /// 'IsZeroVal' is true, that means it's safe to return a
650  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
651  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
652  /// constant so it does not need to be loaded.
653  /// It returns EVT::Other if the type should be determined using generic
654  /// target-independent logic.
655  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
656                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
657                                  bool /*IsZeroVal*/,
658                                  bool /*MemcpyStrSrc*/,
659                                  MachineFunction &/*MF*/) const {
660    return MVT::Other;
661  }
662
663  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
664  /// to implement llvm.setjmp.
665  bool usesUnderscoreSetJmp() const {
666    return UseUnderscoreSetJmp;
667  }
668
669  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
670  /// to implement llvm.longjmp.
671  bool usesUnderscoreLongJmp() const {
672    return UseUnderscoreLongJmp;
673  }
674
675  /// getStackPointerRegisterToSaveRestore - If a physical register, this
676  /// specifies the register that llvm.savestack/llvm.restorestack should save
677  /// and restore.
678  unsigned getStackPointerRegisterToSaveRestore() const {
679    return StackPointerRegisterToSaveRestore;
680  }
681
682  /// getExceptionAddressRegister - If a physical register, this returns
683  /// the register that receives the exception address on entry to a landing
684  /// pad.
685  unsigned getExceptionAddressRegister() const {
686    return ExceptionPointerRegister;
687  }
688
689  /// getExceptionSelectorRegister - If a physical register, this returns
690  /// the register that receives the exception typeid on entry to a landing
691  /// pad.
692  unsigned getExceptionSelectorRegister() const {
693    return ExceptionSelectorRegister;
694  }
695
696  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
697  /// set, the default is 200)
698  unsigned getJumpBufSize() const {
699    return JumpBufSize;
700  }
701
702  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
703  /// (if never set, the default is 0)
704  unsigned getJumpBufAlignment() const {
705    return JumpBufAlignment;
706  }
707
708  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
709  /// argument.
710  unsigned getMinStackArgumentAlignment() const {
711    return MinStackArgumentAlignment;
712  }
713
714  /// getMinFunctionAlignment - return the minimum function alignment.
715  ///
716  unsigned getMinFunctionAlignment() const {
717    return MinFunctionAlignment;
718  }
719
720  /// getPrefFunctionAlignment - return the preferred function alignment.
721  ///
722  unsigned getPrefFunctionAlignment() const {
723    return PrefFunctionAlignment;
724  }
725
726  /// getPrefLoopAlignment - return the preferred loop alignment.
727  ///
728  unsigned getPrefLoopAlignment() const {
729    return PrefLoopAlignment;
730  }
731
732  /// getShouldFoldAtomicFences - return whether the combiner should fold
733  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
734  ///
735  bool getShouldFoldAtomicFences() const {
736    return ShouldFoldAtomicFences;
737  }
738
739  /// getInsertFencesFor - return whether the DAG builder should automatically
740  /// insert fences and reduce ordering for atomics.
741  ///
742  bool getInsertFencesForAtomic() const {
743    return InsertFencesForAtomic;
744  }
745
746  /// getPreIndexedAddressParts - returns true by value, base pointer and
747  /// offset pointer and addressing mode by reference if the node's address
748  /// can be legally represented as pre-indexed load / store address.
749  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
750                                         SDValue &/*Offset*/,
751                                         ISD::MemIndexedMode &/*AM*/,
752                                         SelectionDAG &/*DAG*/) const {
753    return false;
754  }
755
756  /// getPostIndexedAddressParts - returns true by value, base pointer and
757  /// offset pointer and addressing mode by reference if this node can be
758  /// combined with a load / store to form a post-indexed load / store.
759  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
760                                          SDValue &/*Base*/, SDValue &/*Offset*/,
761                                          ISD::MemIndexedMode &/*AM*/,
762                                          SelectionDAG &/*DAG*/) const {
763    return false;
764  }
765
766  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
767  /// current function.  The returned value is a member of the
768  /// MachineJumpTableInfo::JTEntryKind enum.
769  virtual unsigned getJumpTableEncoding() const;
770
771  virtual const MCExpr *
772  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
773                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
774                            MCContext &/*Ctx*/) const {
775    assert(0 && "Need to implement this hook if target has custom JTIs");
776    return 0;
777  }
778
779  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
780  /// jumptable.
781  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
782                                           SelectionDAG &DAG) const;
783
784  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
785  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
786  /// MCExpr.
787  virtual const MCExpr *
788  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
789                               unsigned JTI, MCContext &Ctx) const;
790
791  /// isOffsetFoldingLegal - Return true if folding a constant offset
792  /// with the given GlobalAddress is legal.  It is frequently not legal in
793  /// PIC relocation models.
794  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
795
796  /// getStackCookieLocation - Return true if the target stores stack
797  /// protector cookies at a fixed offset in some non-standard address
798  /// space, and populates the address space and offset as
799  /// appropriate.
800  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
801                                      unsigned &/*Offset*/) const {
802    return false;
803  }
804
805  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
806  /// used for loads / stores from the global.
807  virtual unsigned getMaximalGlobalOffset() const {
808    return 0;
809  }
810
811  //===--------------------------------------------------------------------===//
812  // TargetLowering Optimization Methods
813  //
814
815  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
816  /// SDValues for returning information from TargetLowering to its clients
817  /// that want to combine
818  struct TargetLoweringOpt {
819    SelectionDAG &DAG;
820    bool LegalTys;
821    bool LegalOps;
822    SDValue Old;
823    SDValue New;
824
825    explicit TargetLoweringOpt(SelectionDAG &InDAG,
826                               bool LT, bool LO) :
827      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
828
829    bool LegalTypes() const { return LegalTys; }
830    bool LegalOperations() const { return LegalOps; }
831
832    bool CombineTo(SDValue O, SDValue N) {
833      Old = O;
834      New = N;
835      return true;
836    }
837
838    /// ShrinkDemandedConstant - Check to see if the specified operand of the
839    /// specified instruction is a constant integer.  If so, check to see if
840    /// there are any bits set in the constant that are not demanded.  If so,
841    /// shrink the constant and return true.
842    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
843
844    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
845    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
846    /// cast, but it could be generalized for targets with other types of
847    /// implicit widening casts.
848    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
849                          DebugLoc dl);
850  };
851
852  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
853  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
854  /// use this information to simplify Op, create a new simplified DAG node and
855  /// return true, returning the original and new nodes in Old and New.
856  /// Otherwise, analyze the expression and return a mask of KnownOne and
857  /// KnownZero bits for the expression (used to simplify the caller).
858  /// The KnownZero/One bits may only be accurate for those bits in the
859  /// DemandedMask.
860  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
861                            APInt &KnownZero, APInt &KnownOne,
862                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
863
864  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
865  /// Mask are known to be either zero or one and return them in the
866  /// KnownZero/KnownOne bitsets.
867  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
868                                              const APInt &Mask,
869                                              APInt &KnownZero,
870                                              APInt &KnownOne,
871                                              const SelectionDAG &DAG,
872                                              unsigned Depth = 0) const;
873
874  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
875  /// targets that want to expose additional information about sign bits to the
876  /// DAG Combiner.
877  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
878                                                   unsigned Depth = 0) const;
879
880  struct DAGCombinerInfo {
881    void *DC;  // The DAG Combiner object.
882    bool BeforeLegalize;
883    bool BeforeLegalizeOps;
884    bool CalledByLegalizer;
885  public:
886    SelectionDAG &DAG;
887
888    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
889      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
890        CalledByLegalizer(cl), DAG(dag) {}
891
892    bool isBeforeLegalize() const { return BeforeLegalize; }
893    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
894    bool isCalledByLegalizer() const { return CalledByLegalizer; }
895
896    void AddToWorklist(SDNode *N);
897    void RemoveFromWorklist(SDNode *N);
898    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
899                      bool AddTo = true);
900    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
901    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
902
903    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
904  };
905
906  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
907  /// and cc. If it is unable to simplify it, return a null SDValue.
908  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
909                          ISD::CondCode Cond, bool foldBooleans,
910                          DAGCombinerInfo &DCI, DebugLoc dl) const;
911
912  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
913  /// node is a GlobalAddress + offset.
914  virtual bool
915  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
916
917  /// PerformDAGCombine - This method will be invoked for all target nodes and
918  /// for any target-independent nodes that the target has registered with
919  /// invoke it for.
920  ///
921  /// The semantics are as follows:
922  /// Return Value:
923  ///   SDValue.Val == 0   - No change was made
924  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
925  ///   otherwise          - N should be replaced by the returned Operand.
926  ///
927  /// In addition, methods provided by DAGCombinerInfo may be used to perform
928  /// more complex transformations.
929  ///
930  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
931
932  /// isTypeDesirableForOp - Return true if the target has native support for
933  /// the specified value type and it is 'desirable' to use the type for the
934  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
935  /// instruction encodings are longer and some i16 instructions are slow.
936  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
937    // By default, assume all legal types are desirable.
938    return isTypeLegal(VT);
939  }
940
941  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
942  /// to transform a floating point op of specified opcode to a equivalent op of
943  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
944  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
945                                                 EVT /*VT*/) const {
946    return false;
947  }
948
949  /// IsDesirableToPromoteOp - This method query the target whether it is
950  /// beneficial for dag combiner to promote the specified node. If true, it
951  /// should return the desired promotion type by reference.
952  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
953    return false;
954  }
955
956  //===--------------------------------------------------------------------===//
957  // TargetLowering Configuration Methods - These methods should be invoked by
958  // the derived class constructor to configure this object for the target.
959  //
960
961protected:
962  /// setBooleanContents - Specify how the target extends the result of a
963  /// boolean value from i1 to a wider type.  See getBooleanContents.
964  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
965  /// setBooleanVectorContents - Specify how the target extends the result
966  /// of a vector boolean value from a vector of i1 to a wider type.  See
967  /// getBooleanContents.
968  void setBooleanVectorContents(BooleanContent Ty) {
969    BooleanVectorContents = Ty;
970  }
971
972  /// setSchedulingPreference - Specify the target scheduling preference.
973  void setSchedulingPreference(Sched::Preference Pref) {
974    SchedPreferenceInfo = Pref;
975  }
976
977  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
978  /// use _setjmp to implement llvm.setjmp or the non _ version.
979  /// Defaults to false.
980  void setUseUnderscoreSetJmp(bool Val) {
981    UseUnderscoreSetJmp = Val;
982  }
983
984  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
985  /// use _longjmp to implement llvm.longjmp or the non _ version.
986  /// Defaults to false.
987  void setUseUnderscoreLongJmp(bool Val) {
988    UseUnderscoreLongJmp = Val;
989  }
990
991  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
992  /// specifies the register that llvm.savestack/llvm.restorestack should save
993  /// and restore.
994  void setStackPointerRegisterToSaveRestore(unsigned R) {
995    StackPointerRegisterToSaveRestore = R;
996  }
997
998  /// setExceptionPointerRegister - If set to a physical register, this sets
999  /// the register that receives the exception address on entry to a landing
1000  /// pad.
1001  void setExceptionPointerRegister(unsigned R) {
1002    ExceptionPointerRegister = R;
1003  }
1004
1005  /// setExceptionSelectorRegister - If set to a physical register, this sets
1006  /// the register that receives the exception typeid on entry to a landing
1007  /// pad.
1008  void setExceptionSelectorRegister(unsigned R) {
1009    ExceptionSelectorRegister = R;
1010  }
1011
1012  /// SelectIsExpensive - Tells the code generator not to expand operations
1013  /// into sequences that use the select operations if possible.
1014  void setSelectIsExpensive(bool isExpensive = true) {
1015    SelectIsExpensive = isExpensive;
1016  }
1017
1018  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1019  /// operations into a separate sequences that increases the amount of
1020  /// flow control.
1021  void setJumpIsExpensive(bool isExpensive = true) {
1022    JumpIsExpensive = isExpensive;
1023  }
1024
1025  /// setIntDivIsCheap - Tells the code generator that integer divide is
1026  /// expensive, and if possible, should be replaced by an alternate sequence
1027  /// of instructions not containing an integer divide.
1028  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1029
1030  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1031  /// srl/add/sra for a signed divide by power of two, and let the target handle
1032  /// it.
1033  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1034
1035  /// addRegisterClass - Add the specified register class as an available
1036  /// regclass for the specified value type.  This indicates the selector can
1037  /// handle values of that class natively.
1038  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
1039    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1040    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1041    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1042  }
1043
1044  /// findRepresentativeClass - Return the largest legal super-reg register class
1045  /// of the register class for the specified type and its associated "cost".
1046  virtual std::pair<const TargetRegisterClass*, uint8_t>
1047  findRepresentativeClass(EVT VT) const;
1048
1049  /// computeRegisterProperties - Once all of the register classes are added,
1050  /// this allows us to compute derived properties we expose.
1051  void computeRegisterProperties();
1052
1053  /// setOperationAction - Indicate that the specified operation does not work
1054  /// with the specified type and indicate what to do about it.
1055  void setOperationAction(unsigned Op, MVT VT,
1056                          LegalizeAction Action) {
1057    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1058    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1059  }
1060
1061  /// setLoadExtAction - Indicate that the specified load with extension does
1062  /// not work with the specified type and indicate what to do about it.
1063  void setLoadExtAction(unsigned ExtType, MVT VT,
1064                        LegalizeAction Action) {
1065    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1066           "Table isn't big enough!");
1067    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1068  }
1069
1070  /// setTruncStoreAction - Indicate that the specified truncating store does
1071  /// not work with the specified type and indicate what to do about it.
1072  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1073                           LegalizeAction Action) {
1074    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1075           "Table isn't big enough!");
1076    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1077  }
1078
1079  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1080  /// does not work with the specified type and indicate what to do abort
1081  /// it. NOTE: All indexed mode loads are initialized to Expand in
1082  /// TargetLowering.cpp
1083  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1084                            LegalizeAction Action) {
1085    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1086           (unsigned)Action < 0xf && "Table isn't big enough!");
1087    // Load action are kept in the upper half.
1088    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1089    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1090  }
1091
1092  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1093  /// does not work with the specified type and indicate what to do about
1094  /// it. NOTE: All indexed mode stores are initialized to Expand in
1095  /// TargetLowering.cpp
1096  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1097                             LegalizeAction Action) {
1098    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1099           (unsigned)Action < 0xf && "Table isn't big enough!");
1100    // Store action are kept in the lower half.
1101    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1102    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1103  }
1104
1105  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1106  /// supported on the target and indicate what to do about it.
1107  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1108                         LegalizeAction Action) {
1109    assert(VT < MVT::LAST_VALUETYPE &&
1110           (unsigned)CC < array_lengthof(CondCodeActions) &&
1111           "Table isn't big enough!");
1112    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1113    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1114  }
1115
1116  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1117  /// promotion code defaults to trying a larger integer/fp until it can find
1118  /// one that works.  If that default is insufficient, this method can be used
1119  /// by the target to override the default.
1120  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1121    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1122  }
1123
1124  /// setTargetDAGCombine - Targets should invoke this method for each target
1125  /// independent node that they want to provide a custom DAG combiner for by
1126  /// implementing the PerformDAGCombine virtual method.
1127  void setTargetDAGCombine(ISD::NodeType NT) {
1128    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1129    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1130  }
1131
1132  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1133  /// bytes); default is 200
1134  void setJumpBufSize(unsigned Size) {
1135    JumpBufSize = Size;
1136  }
1137
1138  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1139  /// alignment (in bytes); default is 0
1140  void setJumpBufAlignment(unsigned Align) {
1141    JumpBufAlignment = Align;
1142  }
1143
1144  /// setMinFunctionAlignment - Set the target's minimum function alignment (in
1145  /// log2(bytes))
1146  void setMinFunctionAlignment(unsigned Align) {
1147    MinFunctionAlignment = Align;
1148  }
1149
1150  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1151  /// This should be set if there is a performance benefit to
1152  /// higher-than-minimum alignment (in log2(bytes))
1153  void setPrefFunctionAlignment(unsigned Align) {
1154    PrefFunctionAlignment = Align;
1155  }
1156
1157  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1158  /// alignment is zero, it means the target does not care about loop alignment.
1159  /// The alignment is specified in log2(bytes).
1160  void setPrefLoopAlignment(unsigned Align) {
1161    PrefLoopAlignment = Align;
1162  }
1163
1164  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1165  /// argument (in log2(bytes)).
1166  void setMinStackArgumentAlignment(unsigned Align) {
1167    MinStackArgumentAlignment = Align;
1168  }
1169
1170  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1171  /// atomic operation intrinsics includes locking. Default is false.
1172  void setShouldFoldAtomicFences(bool fold) {
1173    ShouldFoldAtomicFences = fold;
1174  }
1175
1176  /// setInsertFencesForAtomic - Set if the the DAG builder should
1177  /// automatically insert fences and reduce the order of atomic memory
1178  /// operations to Monotonic.
1179  void setInsertFencesForAtomic(bool fence) {
1180    InsertFencesForAtomic = fence;
1181  }
1182
1183public:
1184  //===--------------------------------------------------------------------===//
1185  // Lowering methods - These methods must be implemented by targets so that
1186  // the SelectionDAGLowering code knows how to lower these.
1187  //
1188
1189  /// LowerFormalArguments - This hook must be implemented to lower the
1190  /// incoming (formal) arguments, described by the Ins array, into the
1191  /// specified DAG. The implementation should fill in the InVals array
1192  /// with legal-type argument values, and return the resulting token
1193  /// chain value.
1194  ///
1195  virtual SDValue
1196    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1197                         bool /*isVarArg*/,
1198                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1199                         DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1200                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1201    assert(0 && "Not Implemented");
1202    return SDValue();    // this is here to silence compiler errors
1203  }
1204
1205  /// LowerCallTo - This function lowers an abstract call to a function into an
1206  /// actual call.  This returns a pair of operands.  The first element is the
1207  /// return value for the function (if RetTy is not VoidTy).  The second
1208  /// element is the outgoing token chain. It calls LowerCall to do the actual
1209  /// lowering.
1210  struct ArgListEntry {
1211    SDValue Node;
1212    Type* Ty;
1213    bool isSExt  : 1;
1214    bool isZExt  : 1;
1215    bool isInReg : 1;
1216    bool isSRet  : 1;
1217    bool isNest  : 1;
1218    bool isByVal : 1;
1219    uint16_t Alignment;
1220
1221    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1222      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1223  };
1224  typedef std::vector<ArgListEntry> ArgListTy;
1225  std::pair<SDValue, SDValue>
1226  LowerCallTo(SDValue Chain, Type *RetTy, bool RetSExt, bool RetZExt,
1227              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1228              CallingConv::ID CallConv, bool isTailCall,
1229              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1230              SelectionDAG &DAG, DebugLoc dl) const;
1231
1232  /// LowerCall - This hook must be implemented to lower calls into the
1233  /// the specified DAG. The outgoing arguments to the call are described
1234  /// by the Outs array, and the values to be returned by the call are
1235  /// described by the Ins array. The implementation should fill in the
1236  /// InVals array with legal-type return values from the call, and return
1237  /// the resulting token chain value.
1238  virtual SDValue
1239    LowerCall(SDValue /*Chain*/, SDValue /*Callee*/,
1240              CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
1241              bool &/*isTailCall*/,
1242              const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1243              const SmallVectorImpl<SDValue> &/*OutVals*/,
1244              const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1245              DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1246              SmallVectorImpl<SDValue> &/*InVals*/) const {
1247    assert(0 && "Not Implemented");
1248    return SDValue();    // this is here to silence compiler errors
1249  }
1250
1251  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1252  virtual void HandleByVal(CCState *, unsigned &) const {}
1253
1254  /// CanLowerReturn - This hook should be implemented to check whether the
1255  /// return values described by the Outs array can fit into the return
1256  /// registers.  If false is returned, an sret-demotion is performed.
1257  ///
1258  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
1259			      MachineFunction &/*MF*/, bool /*isVarArg*/,
1260               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1261               LLVMContext &/*Context*/) const
1262  {
1263    // Return true by default to get preexisting behavior.
1264    return true;
1265  }
1266
1267  /// LowerReturn - This hook must be implemented to lower outgoing
1268  /// return values, described by the Outs array, into the specified
1269  /// DAG. The implementation should return the resulting token chain
1270  /// value.
1271  ///
1272  virtual SDValue
1273    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1274                bool /*isVarArg*/,
1275                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1276                const SmallVectorImpl<SDValue> &/*OutVals*/,
1277                DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
1278    assert(0 && "Not Implemented");
1279    return SDValue();    // this is here to silence compiler errors
1280  }
1281
1282  /// isUsedByReturnOnly - Return true if result of the specified node is used
1283  /// by a return node only. This is used to determine whether it is possible
1284  /// to codegen a libcall as tail call at legalization time.
1285  virtual bool isUsedByReturnOnly(SDNode *) const {
1286    return false;
1287  }
1288
1289  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1290  /// call instruction as a tail call. This is used by optimization passes to
1291  /// determine if it's profitable to duplicate return instructions to enable
1292  /// tailcall optimization.
1293  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
1294    return false;
1295  }
1296
1297  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1298  /// sign extend a zeroext/signext integer argument or return value.
1299  /// FIXME: Most C calling convention requires the return type to be promoted,
1300  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1301  /// necessary for non-C calling conventions. The frontend should handle this
1302  /// and include all of the necessary information.
1303  virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1304                                       ISD::NodeType /*ExtendKind*/) const {
1305    EVT MinVT = getRegisterType(Context, MVT::i32);
1306    return VT.bitsLT(MinVT) ? MinVT : VT;
1307  }
1308
1309  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1310  /// to legalize nodes with an illegal operand type but legal result types.
1311  /// It replaces the LowerOperation callback in the type Legalizer.
1312  /// The reason we can not do away with LowerOperation entirely is that
1313  /// LegalizeDAG isn't yet ready to use this callback.
1314  /// TODO: Consider merging with ReplaceNodeResults.
1315
1316  /// The target places new result values for the node in Results (their number
1317  /// and types must exactly match those of the original return values of
1318  /// the node), or leaves Results empty, which indicates that the node is not
1319  /// to be custom lowered after all.
1320  /// The default implementation calls LowerOperation.
1321  virtual void LowerOperationWrapper(SDNode *N,
1322                                     SmallVectorImpl<SDValue> &Results,
1323                                     SelectionDAG &DAG) const;
1324
1325  /// LowerOperation - This callback is invoked for operations that are
1326  /// unsupported by the target, which are registered to use 'custom' lowering,
1327  /// and whose defined values are all legal.
1328  /// If the target has no operations that require custom lowering, it need not
1329  /// implement this.  The default implementation of this aborts.
1330  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1331
1332  /// ReplaceNodeResults - This callback is invoked when a node result type is
1333  /// illegal for the target, and the operation was registered to use 'custom'
1334  /// lowering for that result type.  The target places new result values for
1335  /// the node in Results (their number and types must exactly match those of
1336  /// the original return values of the node), or leaves Results empty, which
1337  /// indicates that the node is not to be custom lowered after all.
1338  ///
1339  /// If the target has no operations that require custom lowering, it need not
1340  /// implement this.  The default implementation aborts.
1341  virtual void ReplaceNodeResults(SDNode * /*N*/,
1342                                  SmallVectorImpl<SDValue> &/*Results*/,
1343                                  SelectionDAG &/*DAG*/) const {
1344    assert(0 && "ReplaceNodeResults not implemented for this target!");
1345  }
1346
1347  /// getTargetNodeName() - This method returns the name of a target specific
1348  /// DAG node.
1349  virtual const char *getTargetNodeName(unsigned Opcode) const;
1350
1351  /// createFastISel - This method returns a target specific FastISel object,
1352  /// or null if the target does not support "fast" ISel.
1353  virtual FastISel *createFastISel(FunctionLoweringInfo &) const {
1354    return 0;
1355  }
1356
1357  //===--------------------------------------------------------------------===//
1358  // Inline Asm Support hooks
1359  //
1360
1361  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1362  /// call to be explicit llvm code if it wants to.  This is useful for
1363  /// turning simple inline asms into LLVM intrinsics, which gives the
1364  /// compiler more information about the behavior of the code.
1365  virtual bool ExpandInlineAsm(CallInst *) const {
1366    return false;
1367  }
1368
1369  enum ConstraintType {
1370    C_Register,            // Constraint represents specific register(s).
1371    C_RegisterClass,       // Constraint represents any of register(s) in class.
1372    C_Memory,              // Memory constraint.
1373    C_Other,               // Something else.
1374    C_Unknown              // Unsupported constraint.
1375  };
1376
1377  enum ConstraintWeight {
1378    // Generic weights.
1379    CW_Invalid  = -1,     // No match.
1380    CW_Okay     = 0,      // Acceptable.
1381    CW_Good     = 1,      // Good weight.
1382    CW_Better   = 2,      // Better weight.
1383    CW_Best     = 3,      // Best weight.
1384
1385    // Well-known weights.
1386    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1387    CW_Register     = CW_Good,    // Register operands.
1388    CW_Memory       = CW_Better,  // Memory operands.
1389    CW_Constant     = CW_Best,    // Constant operand.
1390    CW_Default      = CW_Okay     // Default or don't know type.
1391  };
1392
1393  /// AsmOperandInfo - This contains information for each constraint that we are
1394  /// lowering.
1395  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1396    /// ConstraintCode - This contains the actual string for the code, like "m".
1397    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1398    /// most closely matches the operand.
1399    std::string ConstraintCode;
1400
1401    /// ConstraintType - Information about the constraint code, e.g. Register,
1402    /// RegisterClass, Memory, Other, Unknown.
1403    TargetLowering::ConstraintType ConstraintType;
1404
1405    /// CallOperandval - If this is the result output operand or a
1406    /// clobber, this is null, otherwise it is the incoming operand to the
1407    /// CallInst.  This gets modified as the asm is processed.
1408    Value *CallOperandVal;
1409
1410    /// ConstraintVT - The ValueType for the operand value.
1411    EVT ConstraintVT;
1412
1413    /// isMatchingInputConstraint - Return true of this is an input operand that
1414    /// is a matching constraint like "4".
1415    bool isMatchingInputConstraint() const;
1416
1417    /// getMatchedOperand - If this is an input matching constraint, this method
1418    /// returns the output operand it matches.
1419    unsigned getMatchedOperand() const;
1420
1421    /// Copy constructor for copying from an AsmOperandInfo.
1422    AsmOperandInfo(const AsmOperandInfo &info)
1423      : InlineAsm::ConstraintInfo(info),
1424        ConstraintCode(info.ConstraintCode),
1425        ConstraintType(info.ConstraintType),
1426        CallOperandVal(info.CallOperandVal),
1427        ConstraintVT(info.ConstraintVT) {
1428    }
1429
1430    /// Copy constructor for copying from a ConstraintInfo.
1431    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1432      : InlineAsm::ConstraintInfo(info),
1433        ConstraintType(TargetLowering::C_Unknown),
1434        CallOperandVal(0), ConstraintVT(MVT::Other) {
1435    }
1436  };
1437
1438  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1439
1440  /// ParseConstraints - Split up the constraint string from the inline
1441  /// assembly value into the specific constraints and their prefixes,
1442  /// and also tie in the associated operand values.
1443  /// If this returns an empty vector, and if the constraint string itself
1444  /// isn't empty, there was an error parsing.
1445  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1446
1447  /// Examine constraint type and operand type and determine a weight value.
1448  /// The operand object must already have been set up with the operand type.
1449  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1450      AsmOperandInfo &info, int maIndex) const;
1451
1452  /// Examine constraint string and operand type and determine a weight value.
1453  /// The operand object must already have been set up with the operand type.
1454  virtual ConstraintWeight getSingleConstraintMatchWeight(
1455      AsmOperandInfo &info, const char *constraint) const;
1456
1457  /// ComputeConstraintToUse - Determines the constraint code and constraint
1458  /// type to use for the specific AsmOperandInfo, setting
1459  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1460  /// being passed in is available, it can be passed in as Op, otherwise an
1461  /// empty SDValue can be passed.
1462  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1463                                      SDValue Op,
1464                                      SelectionDAG *DAG = 0) const;
1465
1466  /// getConstraintType - Given a constraint, return the type of constraint it
1467  /// is for this target.
1468  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1469
1470  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1471  /// {edx}), return the register number and the register class for the
1472  /// register.
1473  ///
1474  /// Given a register class constraint, like 'r', if this corresponds directly
1475  /// to an LLVM register class, return a register of 0 and the register class
1476  /// pointer.
1477  ///
1478  /// This should only be used for C_Register constraints.  On error,
1479  /// this returns a register number of 0 and a null register class pointer..
1480  virtual std::pair<unsigned, const TargetRegisterClass*>
1481    getRegForInlineAsmConstraint(const std::string &Constraint,
1482                                 EVT VT) const;
1483
1484  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1485  /// with another that has more specific requirements based on the type of the
1486  /// corresponding operand.  This returns null if there is no replacement to
1487  /// make.
1488  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1489
1490  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1491  /// vector.  If it is invalid, don't add anything to Ops.
1492  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1493                                            std::vector<SDValue> &Ops,
1494                                            SelectionDAG &DAG) const;
1495
1496  //===--------------------------------------------------------------------===//
1497  // Instruction Emitting Hooks
1498  //
1499
1500  // EmitInstrWithCustomInserter - This method should be implemented by targets
1501  // that mark instructions with the 'usesCustomInserter' flag.  These
1502  // instructions are special in various ways, which require special support to
1503  // insert.  The specified MachineInstr is created but not inserted into any
1504  // basic blocks, and this method is called to expand it into a sequence of
1505  // instructions, potentially also creating new basic blocks and control flow.
1506  virtual MachineBasicBlock *
1507    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1508
1509  /// AdjustInstrPostInstrSelection - This method should be implemented by
1510  /// targets that mark instructions with the 'hasPostISelHook' flag. These
1511  /// instructions must be adjusted after instruction selection by target hooks.
1512  /// e.g. To fill in optional defs for ARM 's' setting instructions.
1513  virtual void
1514  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
1515
1516  //===--------------------------------------------------------------------===//
1517  // Addressing mode description hooks (used by LSR etc).
1518  //
1519
1520  /// AddrMode - This represents an addressing mode of:
1521  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1522  /// If BaseGV is null,  there is no BaseGV.
1523  /// If BaseOffs is zero, there is no base offset.
1524  /// If HasBaseReg is false, there is no base register.
1525  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1526  /// no scale.
1527  ///
1528  struct AddrMode {
1529    GlobalValue *BaseGV;
1530    int64_t      BaseOffs;
1531    bool         HasBaseReg;
1532    int64_t      Scale;
1533    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1534  };
1535
1536  /// isLegalAddressingMode - Return true if the addressing mode represented by
1537  /// AM is legal for this target, for a load/store of the specified type.
1538  /// The type may be VoidTy, in which case only return true if the addressing
1539  /// mode is legal for a load/store of any legal type.
1540  /// TODO: Handle pre/postinc as well.
1541  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1542
1543  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1544  /// icmp immediate, that is the target has icmp instructions which can compare
1545  /// a register against the immediate without having to materialize the
1546  /// immediate into a register.
1547  virtual bool isLegalICmpImmediate(int64_t) const {
1548    return true;
1549  }
1550
1551  /// isLegalAddImmediate - Return true if the specified immediate is legal
1552  /// add immediate, that is the target has add instructions which can add
1553  /// a register with the immediate without having to materialize the
1554  /// immediate into a register.
1555  virtual bool isLegalAddImmediate(int64_t) const {
1556    return true;
1557  }
1558
1559  /// isTruncateFree - Return true if it's free to truncate a value of
1560  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1561  /// register EAX to i16 by referencing its sub-register AX.
1562  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1563    return false;
1564  }
1565
1566  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1567    return false;
1568  }
1569
1570  /// isZExtFree - Return true if any actual instruction that defines a
1571  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1572  /// register. This does not necessarily include registers defined in
1573  /// unknown ways, such as incoming arguments, or copies from unknown
1574  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1575  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1576  /// all instructions that define 32-bit values implicit zero-extend the
1577  /// result out to 64 bits.
1578  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1579    return false;
1580  }
1581
1582  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1583    return false;
1584  }
1585
1586  /// isNarrowingProfitable - Return true if it's profitable to narrow
1587  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1588  /// from i32 to i8 but not from i32 to i16.
1589  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1590    return false;
1591  }
1592
1593  //===--------------------------------------------------------------------===//
1594  // Div utility functions
1595  //
1596  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1597                         SelectionDAG &DAG) const;
1598  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1599                      std::vector<SDNode*>* Created) const;
1600  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1601                      std::vector<SDNode*>* Created) const;
1602
1603
1604  //===--------------------------------------------------------------------===//
1605  // Runtime Library hooks
1606  //
1607
1608  /// setLibcallName - Rename the default libcall routine name for the specified
1609  /// libcall.
1610  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1611    LibcallRoutineNames[Call] = Name;
1612  }
1613
1614  /// getLibcallName - Get the libcall routine name for the specified libcall.
1615  ///
1616  const char *getLibcallName(RTLIB::Libcall Call) const {
1617    return LibcallRoutineNames[Call];
1618  }
1619
1620  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1621  /// result of the comparison libcall against zero.
1622  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1623    CmpLibcallCCs[Call] = CC;
1624  }
1625
1626  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1627  /// the comparison libcall against zero.
1628  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1629    return CmpLibcallCCs[Call];
1630  }
1631
1632  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1633  /// specified libcall.
1634  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1635    LibcallCallingConvs[Call] = CC;
1636  }
1637
1638  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1639  /// specified libcall.
1640  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1641    return LibcallCallingConvs[Call];
1642  }
1643
1644private:
1645  const TargetMachine &TM;
1646  const TargetData *TD;
1647  const TargetLoweringObjectFile &TLOF;
1648
1649  /// We are in the process of implementing a new TypeLegalization action
1650  /// which is the promotion of vector elements. This feature is under
1651  /// development. Until this feature is complete, it is only enabled using a
1652  /// flag. We pass this flag using a member because of circular dep issues.
1653  /// This member will be removed with the flag once we complete the transition.
1654  bool mayPromoteElements;
1655
1656  /// PointerTy - The type to use for pointers, usually i32 or i64.
1657  ///
1658  MVT PointerTy;
1659
1660  /// IsLittleEndian - True if this is a little endian target.
1661  ///
1662  bool IsLittleEndian;
1663
1664  /// SelectIsExpensive - Tells the code generator not to expand operations
1665  /// into sequences that use the select operations if possible.
1666  bool SelectIsExpensive;
1667
1668  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1669  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1670  /// a real cost model is in place.  If we ever optimize for size, this will be
1671  /// set to true unconditionally.
1672  bool IntDivIsCheap;
1673
1674  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1675  /// srl/add/sra for a signed divide by power of two, and let the target handle
1676  /// it.
1677  bool Pow2DivIsCheap;
1678
1679  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1680  /// extra flow control instructions and should attempt to combine flow
1681  /// control instructions via predication.
1682  bool JumpIsExpensive;
1683
1684  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1685  /// llvm.setjmp.  Defaults to false.
1686  bool UseUnderscoreSetJmp;
1687
1688  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1689  /// llvm.longjmp.  Defaults to false.
1690  bool UseUnderscoreLongJmp;
1691
1692  /// BooleanContents - Information about the contents of the high-bits in
1693  /// boolean values held in a type wider than i1.  See getBooleanContents.
1694  BooleanContent BooleanContents;
1695  /// BooleanVectorContents - Information about the contents of the high-bits
1696  /// in boolean vector values when the element type is wider than i1.  See
1697  /// getBooleanContents.
1698  BooleanContent BooleanVectorContents;
1699
1700  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1701  /// total cycles or lowest register usage.
1702  Sched::Preference SchedPreferenceInfo;
1703
1704  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1705  unsigned JumpBufSize;
1706
1707  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1708  /// buffers
1709  unsigned JumpBufAlignment;
1710
1711  /// MinStackArgumentAlignment - The minimum alignment that any argument
1712  /// on the stack needs to have.
1713  ///
1714  unsigned MinStackArgumentAlignment;
1715
1716  /// MinFunctionAlignment - The minimum function alignment (used when
1717  /// optimizing for size, and to prevent explicitly provided alignment
1718  /// from leading to incorrect code).
1719  ///
1720  unsigned MinFunctionAlignment;
1721
1722  /// PrefFunctionAlignment - The preferred function alignment (used when
1723  /// alignment unspecified and optimizing for speed).
1724  ///
1725  unsigned PrefFunctionAlignment;
1726
1727  /// PrefLoopAlignment - The preferred loop alignment.
1728  ///
1729  unsigned PrefLoopAlignment;
1730
1731  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1732  /// be folded into the enclosed atomic intrinsic instruction by the
1733  /// combiner.
1734  bool ShouldFoldAtomicFences;
1735
1736  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1737  /// insert fences and reduce ordering for atomics.  (This will be set for
1738  /// for most architectures with weak memory ordering.)
1739  bool InsertFencesForAtomic;
1740
1741  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1742  /// specifies the register that llvm.savestack/llvm.restorestack should save
1743  /// and restore.
1744  unsigned StackPointerRegisterToSaveRestore;
1745
1746  /// ExceptionPointerRegister - If set to a physical register, this specifies
1747  /// the register that receives the exception address on entry to a landing
1748  /// pad.
1749  unsigned ExceptionPointerRegister;
1750
1751  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1752  /// the register that receives the exception typeid on entry to a landing
1753  /// pad.
1754  unsigned ExceptionSelectorRegister;
1755
1756  /// RegClassForVT - This indicates the default register class to use for
1757  /// each ValueType the target supports natively.
1758  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1759  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1760  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1761
1762  /// RepRegClassForVT - This indicates the "representative" register class to
1763  /// use for each ValueType the target supports natively. This information is
1764  /// used by the scheduler to track register pressure. By default, the
1765  /// representative register class is the largest legal super-reg register
1766  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1767  /// and i32's representative class would be GR32.
1768  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1769
1770  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1771  /// register class for each ValueType. The cost is used by the scheduler to
1772  /// approximate register pressure.
1773  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1774
1775  /// TransformToType - For any value types we are promoting or expanding, this
1776  /// contains the value type that we are changing to.  For Expanded types, this
1777  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1778  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1779  /// by the system, this holds the same type (e.g. i32 -> i32).
1780  EVT TransformToType[MVT::LAST_VALUETYPE];
1781
1782  /// OpActions - For each operation and each value type, keep a LegalizeAction
1783  /// that indicates how instruction selection should deal with the operation.
1784  /// Most operations are Legal (aka, supported natively by the target), but
1785  /// operations that are not should be described.  Note that operations on
1786  /// non-legal value types are not described here.
1787  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1788
1789  /// LoadExtActions - For each load extension type and each value type,
1790  /// keep a LegalizeAction that indicates how instruction selection should deal
1791  /// with a load of a specific value type and extension type.
1792  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1793
1794  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1795  /// indicates whether a truncating store of a specific value type and
1796  /// truncating type is legal.
1797  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1798
1799  /// IndexedModeActions - For each indexed mode and each value type,
1800  /// keep a pair of LegalizeAction that indicates how instruction
1801  /// selection should deal with the load / store.  The first dimension is the
1802  /// value_type for the reference. The second dimension represents the various
1803  /// modes for load store.
1804  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1805
1806  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1807  /// LegalizeAction that indicates how instruction selection should
1808  /// deal with the condition code.
1809  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1810
1811  ValueTypeActionImpl ValueTypeActions;
1812
1813  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
1814
1815  LegalizeKind
1816  getTypeConversion(LLVMContext &Context, EVT VT) const {
1817    // If this is a simple type, use the ComputeRegisterProp mechanism.
1818    if (VT.isSimple()) {
1819      assert((unsigned)VT.getSimpleVT().SimpleTy <
1820             array_lengthof(TransformToType));
1821      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
1822      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
1823
1824      assert(
1825        (!(NVT.isSimple() && LA != TypeLegal) ||
1826         ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
1827         && "Promote may not follow Expand or Promote");
1828
1829      return LegalizeKind(LA, NVT);
1830    }
1831
1832    // Handle Extended Scalar Types.
1833    if (!VT.isVector()) {
1834      assert(VT.isInteger() && "Float types must be simple");
1835      unsigned BitSize = VT.getSizeInBits();
1836      // First promote to a power-of-two size, then expand if necessary.
1837      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1838        EVT NVT = VT.getRoundIntegerType(Context);
1839        assert(NVT != VT && "Unable to round integer VT");
1840        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1841        // Avoid multi-step promotion.
1842        if (NextStep.first == TypePromoteInteger) return NextStep;
1843        // Return rounded integer type.
1844        return LegalizeKind(TypePromoteInteger, NVT);
1845      }
1846
1847      return LegalizeKind(TypeExpandInteger,
1848                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1849    }
1850
1851    // Handle vector types.
1852    unsigned NumElts = VT.getVectorNumElements();
1853    EVT EltVT = VT.getVectorElementType();
1854
1855    // Vectors with only one element are always scalarized.
1856    if (NumElts == 1)
1857      return LegalizeKind(TypeScalarizeVector, EltVT);
1858
1859    // If we allow the promotion of vector elements using a flag,
1860    // then try to widen vector elements until a legal type is found.
1861    if (mayPromoteElements && EltVT.isInteger()) {
1862      // Vectors with a number of elements that is not a power of two are always
1863      // widened, for example <3 x float> -> <4 x float>.
1864      if (!VT.isPow2VectorType()) {
1865        NumElts = (unsigned)NextPowerOf2(NumElts);
1866        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1867        return LegalizeKind(TypeWidenVector, NVT);
1868      }
1869
1870      // Examine the element type.
1871      LegalizeKind LK = getTypeConversion(Context, EltVT);
1872
1873      // If type is to be expanded, split the vector.
1874      //  <4 x i140> -> <2 x i140>
1875      if (LK.first == TypeExpandInteger)
1876        return LegalizeKind(TypeSplitVector,
1877                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
1878
1879      // Promote the integer element types until a legal vector type is found
1880      // or until the element integer type is too big. If a legal type was not
1881      // found, fallback to the usual mechanism of widening/splitting the
1882      // vector.
1883      while (1) {
1884        // Increase the bitwidth of the element to the next pow-of-two
1885        // (which is greater than 8 bits).
1886        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
1887                                 ).getRoundIntegerType(Context);
1888
1889        // Stop trying when getting a non-simple element type.
1890        // Note that vector elements may be greater than legal vector element
1891        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
1892        if (!EltVT.isSimple()) break;
1893
1894        // Build a new vector type and check if it is legal.
1895        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1896        // Found a legal promoted vector type.
1897        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1898          return LegalizeKind(TypePromoteInteger,
1899                              EVT::getVectorVT(Context, EltVT, NumElts));
1900      }
1901    }
1902
1903    // Try to widen the vector until a legal type is found.
1904    // If there is no wider legal type, split the vector.
1905    while (1) {
1906      // Round up to the next power of 2.
1907      NumElts = (unsigned)NextPowerOf2(NumElts);
1908
1909      // If there is no simple vector type with this many elements then there
1910      // cannot be a larger legal vector type.  Note that this assumes that
1911      // there are no skipped intermediate vector types in the simple types.
1912      if (!EltVT.isSimple()) break;
1913      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1914      if (LargerVector == MVT()) break;
1915
1916      // If this type is legal then widen the vector.
1917      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1918        return LegalizeKind(TypeWidenVector, LargerVector);
1919    }
1920
1921    // Widen odd vectors to next power of two.
1922    if (!VT.isPow2VectorType()) {
1923      EVT NVT = VT.getPow2VectorType(Context);
1924      return LegalizeKind(TypeWidenVector, NVT);
1925    }
1926
1927    // Vectors with illegal element types are expanded.
1928    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1929    return LegalizeKind(TypeSplitVector, NVT);
1930
1931    assert(false && "Unable to handle this kind of vector type");
1932    return LegalizeKind(TypeLegal, VT);
1933  }
1934
1935  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1936
1937  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1938  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1939  /// which sets a bit in this array.
1940  unsigned char
1941  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1942
1943  /// PromoteToType - For operations that must be promoted to a specific type,
1944  /// this holds the destination type.  This map should be sparse, so don't hold
1945  /// it as an array.
1946  ///
1947  /// Targets add entries to this map with AddPromotedToType(..), clients access
1948  /// this with getTypeToPromoteTo(..).
1949  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1950    PromoteToType;
1951
1952  /// LibcallRoutineNames - Stores the name each libcall.
1953  ///
1954  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1955
1956  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1957  /// of each of the comparison libcall against zero.
1958  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1959
1960  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1961  /// libcall.
1962  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1963
1964protected:
1965  /// When lowering \@llvm.memset this field specifies the maximum number of
1966  /// store operations that may be substituted for the call to memset. Targets
1967  /// must set this value based on the cost threshold for that target. Targets
1968  /// should assume that the memset will be done using as many of the largest
1969  /// store operations first, followed by smaller ones, if necessary, per
1970  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1971  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1972  /// store.  This only applies to setting a constant array of a constant size.
1973  /// @brief Specify maximum number of store instructions per memset call.
1974  unsigned maxStoresPerMemset;
1975
1976  /// Maximum number of stores operations that may be substituted for the call
1977  /// to memset, used for functions with OptSize attribute.
1978  unsigned maxStoresPerMemsetOptSize;
1979
1980  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1981  /// store operations that may be substituted for a call to memcpy. Targets
1982  /// must set this value based on the cost threshold for that target. Targets
1983  /// should assume that the memcpy will be done using as many of the largest
1984  /// store operations first, followed by smaller ones, if necessary, per
1985  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1986  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1987  /// and one 1-byte store. This only applies to copying a constant array of
1988  /// constant size.
1989  /// @brief Specify maximum bytes of store instructions per memcpy call.
1990  unsigned maxStoresPerMemcpy;
1991
1992  /// Maximum number of store operations that may be substituted for a call
1993  /// to memcpy, used for functions with OptSize attribute.
1994  unsigned maxStoresPerMemcpyOptSize;
1995
1996  /// When lowering \@llvm.memmove this field specifies the maximum number of
1997  /// store instructions that may be substituted for a call to memmove. Targets
1998  /// must set this value based on the cost threshold for that target. Targets
1999  /// should assume that the memmove will be done using as many of the largest
2000  /// store operations first, followed by smaller ones, if necessary, per
2001  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2002  /// with 8-bit alignment would result in nine 1-byte stores.  This only
2003  /// applies to copying a constant array of constant size.
2004  /// @brief Specify maximum bytes of store instructions per memmove call.
2005  unsigned maxStoresPerMemmove;
2006
2007  /// Maximum number of store instructions that may be substituted for a call
2008  /// to memmove, used for functions with OpSize attribute.
2009  unsigned maxStoresPerMemmoveOptSize;
2010
2011  /// This field specifies whether the target can benefit from code placement
2012  /// optimization.
2013  bool benefitFromCodePlacementOpt;
2014
2015private:
2016  /// isLegalRC - Return true if the value types that can be represented by the
2017  /// specified register class are all legal.
2018  bool isLegalRC(const TargetRegisterClass *RC) const;
2019
2020  /// hasLegalSuperRegRegClasses - Return true if the specified register class
2021  /// has one or more super-reg register classes that are legal.
2022  bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
2023};
2024
2025/// GetReturnInfo - Given an LLVM IR type and return type attributes,
2026/// compute the return value EVTs and flags, and optionally also
2027/// the offsets, if the return value is being lowered to memory.
2028void GetReturnInfo(Type* ReturnType, Attributes attr,
2029                   SmallVectorImpl<ISD::OutputArg> &Outs,
2030                   const TargetLowering &TLI,
2031                   SmallVectorImpl<uint64_t> *Offsets = 0);
2032
2033} // end llvm namespace
2034
2035#endif
2036