TargetLowering.h revision fb384d61c78b60787ed65475d8403aee65023962
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/AddressingMode.h"
26#include "llvm/CallingConv.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Attributes.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/CodeGen/SelectionDAGNodes.h"
32#include "llvm/CodeGen/RuntimeLibcalls.h"
33#include "llvm/Support/DebugLoc.h"
34#include "llvm/Target/TargetCallingConv.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class CallInst;
42  class CCState;
43  class FastISel;
44  class FunctionLoweringInfo;
45  class ImmutableCallSite;
46  class IntrinsicInst;
47  class MachineBasicBlock;
48  class MachineFunction;
49  class MachineInstr;
50  class MachineJumpTableInfo;
51  class MCContext;
52  class MCExpr;
53  template<typename T> class SmallVectorImpl;
54  class DataLayout;
55  class TargetRegisterClass;
56  class TargetLibraryInfo;
57  class TargetLoweringObjectFile;
58  class Value;
59
60  namespace Sched {
61    enum Preference {
62      None,             // No preference
63      Source,           // Follow source order.
64      RegPressure,      // Scheduling for lowest register pressure.
65      Hybrid,           // Scheduling for both latency and register pressure.
66      ILP,              // Scheduling for ILP in low register pressure mode.
67      VLIW              // Scheduling for VLIW targets.
68    };
69  }
70
71
72//===----------------------------------------------------------------------===//
73/// TargetLowering - This class defines information used to lower LLVM code to
74/// legal SelectionDAG operators that the target instruction selector can accept
75/// natively.
76///
77/// This class also defines callbacks that targets must implement to lower
78/// target-specific constructs to SelectionDAG operators.
79///
80class TargetLowering {
81  TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
82  void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
83public:
84  /// LegalizeAction - This enum indicates whether operations are valid for a
85  /// target, and if not, what action should be used to make them valid.
86  enum LegalizeAction {
87    Legal,      // The target natively supports this operation.
88    Promote,    // This operation should be executed in a larger type.
89    Expand,     // Try to expand this to other ops, otherwise use a libcall.
90    Custom      // Use the LowerOperation hook to implement custom lowering.
91  };
92
93  /// LegalizeTypeAction - This enum indicates whether a types are legal for a
94  /// target, and if not, what action should be used to make them valid.
95  enum LegalizeTypeAction {
96    TypeLegal,           // The target natively supports this type.
97    TypePromoteInteger,  // Replace this integer with a larger one.
98    TypeExpandInteger,   // Split this integer into two of half the size.
99    TypeSoftenFloat,     // Convert this float to a same size integer type.
100    TypeExpandFloat,     // Split this float into two of half the size.
101    TypeScalarizeVector, // Replace this one-element vector with its element.
102    TypeSplitVector,     // Split this vector into two of half the size.
103    TypeWidenVector      // This vector should be widened into a larger vector.
104  };
105
106  enum BooleanContent { // How the target represents true/false values.
107    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
108    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
109    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
110  };
111
112  enum SelectSupportKind {
113    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
114    ScalarCondVectorVal,  // The target supports selects with a scalar condition
115                          // and vector values (ex: cmov).
116    VectorMaskSelect      // The target supports vector selects with a vector
117                          // mask (ex: x86 blends).
118  };
119
120  static ISD::NodeType getExtendForContent(BooleanContent Content) {
121    switch (Content) {
122    case UndefinedBooleanContent:
123      // Extend by adding rubbish bits.
124      return ISD::ANY_EXTEND;
125    case ZeroOrOneBooleanContent:
126      // Extend by adding zero bits.
127      return ISD::ZERO_EXTEND;
128    case ZeroOrNegativeOneBooleanContent:
129      // Extend by copying the sign bit.
130      return ISD::SIGN_EXTEND;
131    }
132    llvm_unreachable("Invalid content kind");
133  }
134
135  /// NOTE: The constructor takes ownership of TLOF.
136  explicit TargetLowering(const TargetMachine &TM,
137                          const TargetLoweringObjectFile *TLOF);
138  virtual ~TargetLowering();
139
140  const TargetMachine &getTargetMachine() const { return TM; }
141  const DataLayout *getDataLayout() const { return TD; }
142  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
143
144  bool isBigEndian() const { return !IsLittleEndian; }
145  bool isLittleEndian() const { return IsLittleEndian; }
146  // Return the pointer type for the given address space, defaults to
147  // the pointer type from the data layout.
148  // FIXME: The default needs to be removed once all the code is updated.
149  virtual MVT getPointerTy(uint32_t addrspace = 0) const { return PointerTy; }
150  virtual MVT getShiftAmountTy(EVT LHSTy) const;
151
152  /// isSelectExpensive - Return true if the select operation is expensive for
153  /// this target.
154  bool isSelectExpensive() const { return SelectIsExpensive; }
155
156  virtual bool isSelectSupported(SelectSupportKind kind) const { return true; }
157
158  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
159  /// a sequence of several shifts, adds, and multiplies for this target.
160  bool isIntDivCheap() const { return IntDivIsCheap; }
161
162  /// isSlowDivBypassed - Returns true if target has indicated at least one
163  /// type should be bypassed.
164  bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
165
166  /// getBypassSlowDivTypes - Returns map of slow types for division or
167  /// remainder with corresponding fast types
168  const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
169    return BypassSlowDivWidths;
170  }
171
172  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
173  /// srl/add/sra.
174  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
175
176  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
177  /// that should be avoided.
178  bool isJumpExpensive() const { return JumpIsExpensive; }
179
180  /// isPredictableSelectExpensive - Return true if selects are only cheaper
181  /// than branches if the branch is unlikely to be predicted right.
182  bool isPredictableSelectExpensive() const {
183    return predictableSelectIsExpensive;
184  }
185
186  /// getSetCCResultType - Return the ValueType of the result of SETCC
187  /// operations.  Also used to obtain the target's preferred type for
188  /// the condition operand of SELECT and BRCOND nodes.  In the case of
189  /// BRCOND the argument passed is MVT::Other since there are no other
190  /// operands to get a type hint from.
191  virtual EVT getSetCCResultType(EVT VT) const;
192
193  /// getCmpLibcallReturnType - Return the ValueType for comparison
194  /// libcalls. Comparions libcalls include floating point comparion calls,
195  /// and Ordered/Unordered check calls on floating point numbers.
196  virtual
197  MVT::SimpleValueType getCmpLibcallReturnType() const;
198
199  /// getBooleanContents - For targets without i1 registers, this gives the
200  /// nature of the high-bits of boolean values held in types wider than i1.
201  /// "Boolean values" are special true/false values produced by nodes like
202  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
203  /// Not to be confused with general values promoted from i1.
204  /// Some cpus distinguish between vectors of boolean and scalars; the isVec
205  /// parameter selects between the two kinds.  For example on X86 a scalar
206  /// boolean should be zero extended from i1, while the elements of a vector
207  /// of booleans should be sign extended from i1.
208  BooleanContent getBooleanContents(bool isVec) const {
209    return isVec ? BooleanVectorContents : BooleanContents;
210  }
211
212  /// getSchedulingPreference - Return target scheduling preference.
213  Sched::Preference getSchedulingPreference() const {
214    return SchedPreferenceInfo;
215  }
216
217  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
218  /// different scheduling heuristics for different nodes. This function returns
219  /// the preference (or none) for the given node.
220  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
221    return Sched::None;
222  }
223
224  /// getRegClassFor - Return the register class that should be used for the
225  /// specified value type.
226  virtual const TargetRegisterClass *getRegClassFor(EVT VT) const {
227    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
228    const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
229    assert(RC && "This value type is not natively supported!");
230    return RC;
231  }
232
233  /// getRepRegClassFor - Return the 'representative' register class for the
234  /// specified value type. The 'representative' register class is the largest
235  /// legal super-reg register class for the register class of the value type.
236  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
237  /// while the rep register class is GR64 on x86_64.
238  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
239    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
240    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
241    return RC;
242  }
243
244  /// getRepRegClassCostFor - Return the cost of the 'representative' register
245  /// class for the specified value type.
246  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
247    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
248    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
249  }
250
251  /// isTypeLegal - Return true if the target has native support for the
252  /// specified value type.  This means that it has a register that directly
253  /// holds it without promotions or expansions.
254  bool isTypeLegal(EVT VT) const {
255    assert(!VT.isSimple() ||
256           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
257    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
258  }
259
260  class ValueTypeActionImpl {
261    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
262    /// that indicates how instruction selection should deal with the type.
263    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
264
265  public:
266    ValueTypeActionImpl() {
267      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
268    }
269
270    LegalizeTypeAction getTypeAction(MVT VT) const {
271      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
272    }
273
274    void setTypeAction(EVT VT, LegalizeTypeAction Action) {
275      unsigned I = VT.getSimpleVT().SimpleTy;
276      ValueTypeActions[I] = Action;
277    }
278  };
279
280  const ValueTypeActionImpl &getValueTypeActions() const {
281    return ValueTypeActions;
282  }
283
284  /// getTypeAction - Return how we should legalize values of this type, either
285  /// it is already legal (return 'Legal') or we need to promote it to a larger
286  /// type (return 'Promote'), or we need to expand it into multiple registers
287  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
288  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
289    return getTypeConversion(Context, VT).first;
290  }
291  LegalizeTypeAction getTypeAction(MVT VT) const {
292    return ValueTypeActions.getTypeAction(VT);
293  }
294
295  /// getTypeToTransformTo - For types supported by the target, this is an
296  /// identity function.  For types that must be promoted to larger types, this
297  /// returns the larger type to promote to.  For integer types that are larger
298  /// than the largest integer register, this contains one step in the expansion
299  /// to get to the smaller register. For illegal floating point types, this
300  /// returns the integer type to transform to.
301  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
302    return getTypeConversion(Context, VT).second;
303  }
304
305  /// getTypeToExpandTo - For types supported by the target, this is an
306  /// identity function.  For types that must be expanded (i.e. integer types
307  /// that are larger than the largest integer register or illegal floating
308  /// point types), this returns the largest legal type it will be expanded to.
309  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
310    assert(!VT.isVector());
311    while (true) {
312      switch (getTypeAction(Context, VT)) {
313      case TypeLegal:
314        return VT;
315      case TypeExpandInteger:
316        VT = getTypeToTransformTo(Context, VT);
317        break;
318      default:
319        llvm_unreachable("Type is not legal nor is it to be expanded!");
320      }
321    }
322  }
323
324  /// getVectorTypeBreakdown - Vector types are broken down into some number of
325  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
326  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
327  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
328  ///
329  /// This method returns the number of registers needed, and the VT for each
330  /// register.  It also returns the VT and quantity of the intermediate values
331  /// before they are promoted/expanded.
332  ///
333  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
334                                  EVT &IntermediateVT,
335                                  unsigned &NumIntermediates,
336                                  EVT &RegisterVT) const;
337
338  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
339  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
340  /// this is the case, it returns true and store the intrinsic
341  /// information into the IntrinsicInfo that was passed to the function.
342  struct IntrinsicInfo {
343    unsigned     opc;         // target opcode
344    EVT          memVT;       // memory VT
345    const Value* ptrVal;      // value representing memory location
346    int          offset;      // offset off of ptrVal
347    unsigned     align;       // alignment
348    bool         vol;         // is volatile?
349    bool         readMem;     // reads memory?
350    bool         writeMem;    // writes memory?
351  };
352
353  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
354                                  unsigned /*Intrinsic*/) const {
355    return false;
356  }
357
358  /// isFPImmLegal - Returns true if the target can instruction select the
359  /// specified FP immediate natively. If false, the legalizer will materialize
360  /// the FP immediate as a load from a constant pool.
361  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
362    return false;
363  }
364
365  /// isShuffleMaskLegal - Targets can use this to indicate that they only
366  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
367  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
368  /// are assumed to be legal.
369  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
370                                  EVT /*VT*/) const {
371    return true;
372  }
373
374  /// canOpTrap - Returns true if the operation can trap for the value type.
375  /// VT must be a legal type. By default, we optimistically assume most
376  /// operations don't trap except for divide and remainder.
377  virtual bool canOpTrap(unsigned Op, EVT VT) const;
378
379  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
380  /// used by Targets can use this to indicate if there is a suitable
381  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
382  /// pool entry.
383  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
384                                      EVT /*VT*/) const {
385    return false;
386  }
387
388  /// getOperationAction - Return how this operation should be treated: either
389  /// it is legal, needs to be promoted to a larger size, needs to be
390  /// expanded to some other code sequence, or the target has a custom expander
391  /// for it.
392  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
393    if (VT.isExtended()) return Expand;
394    // If a target-specific SDNode requires legalization, require the target
395    // to provide custom legalization for it.
396    if (Op > array_lengthof(OpActions[0])) return Custom;
397    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
398    return (LegalizeAction)OpActions[I][Op];
399  }
400
401  /// isOperationLegalOrCustom - Return true if the specified operation is
402  /// legal on this target or can be made legal with custom lowering. This
403  /// is used to help guide high-level lowering decisions.
404  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
405    return (VT == MVT::Other || isTypeLegal(VT)) &&
406      (getOperationAction(Op, VT) == Legal ||
407       getOperationAction(Op, VT) == Custom);
408  }
409
410  /// isOperationLegal - Return true if the specified operation is legal on this
411  /// target.
412  bool isOperationLegal(unsigned Op, EVT VT) const {
413    return (VT == MVT::Other || isTypeLegal(VT)) &&
414           getOperationAction(Op, VT) == Legal;
415  }
416
417  /// getLoadExtAction - Return how this load with extension should be treated:
418  /// either it is legal, needs to be promoted to a larger size, needs to be
419  /// expanded to some other code sequence, or the target has a custom expander
420  /// for it.
421  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
422    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
423           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
424           "Table isn't big enough!");
425    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
426  }
427
428  /// isLoadExtLegal - Return true if the specified load with extension is legal
429  /// on this target.
430  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
431    return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
432  }
433
434  /// getTruncStoreAction - Return how this store with truncation should be
435  /// treated: either it is legal, needs to be promoted to a larger size, needs
436  /// to be expanded to some other code sequence, or the target has a custom
437  /// expander for it.
438  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
439    assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
440           MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
441           "Table isn't big enough!");
442    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
443                                            [MemVT.getSimpleVT().SimpleTy];
444  }
445
446  /// isTruncStoreLegal - Return true if the specified store with truncation is
447  /// legal on this target.
448  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
449    return isTypeLegal(ValVT) && MemVT.isSimple() &&
450           getTruncStoreAction(ValVT, MemVT) == Legal;
451  }
452
453  /// getIndexedLoadAction - Return how the indexed load should be treated:
454  /// either it is legal, needs to be promoted to a larger size, needs to be
455  /// expanded to some other code sequence, or the target has a custom expander
456  /// for it.
457  LegalizeAction
458  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
459    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
460           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
461           "Table isn't big enough!");
462    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
463    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
464  }
465
466  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
467  /// on this target.
468  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
469    return VT.isSimple() &&
470      (getIndexedLoadAction(IdxMode, VT) == Legal ||
471       getIndexedLoadAction(IdxMode, VT) == Custom);
472  }
473
474  /// getIndexedStoreAction - Return how the indexed store should be treated:
475  /// either it is legal, needs to be promoted to a larger size, needs to be
476  /// expanded to some other code sequence, or the target has a custom expander
477  /// for it.
478  LegalizeAction
479  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
480    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
481           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
482           "Table isn't big enough!");
483    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
484    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
485  }
486
487  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
488  /// on this target.
489  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
490    return VT.isSimple() &&
491      (getIndexedStoreAction(IdxMode, VT) == Legal ||
492       getIndexedStoreAction(IdxMode, VT) == Custom);
493  }
494
495  /// getCondCodeAction - Return how the condition code should be treated:
496  /// either it is legal, needs to be expanded to some other code sequence,
497  /// or the target has a custom expander for it.
498  LegalizeAction
499  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
500    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
501           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
502           "Table isn't big enough!");
503    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
504    /// value and the upper 27 bits index into the second dimension of the
505    /// array to select what 64bit value to use.
506    LegalizeAction Action = (LegalizeAction)
507      ((CondCodeActions[CC][VT.getSimpleVT().SimpleTy >> 5]
508        >> (2*(VT.getSimpleVT().SimpleTy & 0x1F))) & 3);
509    assert(Action != Promote && "Can't promote condition code!");
510    return Action;
511  }
512
513  /// isCondCodeLegal - Return true if the specified condition code is legal
514  /// on this target.
515  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
516    return getCondCodeAction(CC, VT) == Legal ||
517           getCondCodeAction(CC, VT) == Custom;
518  }
519
520
521  /// getTypeToPromoteTo - If the action for this operation is to promote, this
522  /// method returns the ValueType to promote to.
523  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
524    assert(getOperationAction(Op, VT) == Promote &&
525           "This operation isn't promoted!");
526
527    // See if this has an explicit type specified.
528    std::map<std::pair<unsigned, MVT::SimpleValueType>,
529             MVT::SimpleValueType>::const_iterator PTTI =
530      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
531    if (PTTI != PromoteToType.end()) return PTTI->second;
532
533    assert((VT.isInteger() || VT.isFloatingPoint()) &&
534           "Cannot autopromote this type, add it with AddPromotedToType.");
535
536    EVT NVT = VT;
537    do {
538      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
539      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
540             "Didn't find type to promote to!");
541    } while (!isTypeLegal(NVT) ||
542              getOperationAction(Op, NVT) == Promote);
543    return NVT;
544  }
545
546  /// getValueType - Return the EVT corresponding to this LLVM type.
547  /// This is fixed by the LLVM operations except for the pointer size.  If
548  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
549  /// counterpart (e.g. structs), otherwise it will assert.
550  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
551    // Lower scalar pointers to native pointer types.
552    if (Ty->isPointerTy()) return PointerTy;
553
554    if (Ty->isVectorTy()) {
555      VectorType *VTy = cast<VectorType>(Ty);
556      Type *Elm = VTy->getElementType();
557      // Lower vectors of pointers to native pointer types.
558      if (Elm->isPointerTy())
559        Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
560      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
561                       VTy->getNumElements());
562    }
563    return EVT::getEVT(Ty, AllowUnknown);
564  }
565
566
567  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
568  /// function arguments in the caller parameter area.  This is the actual
569  /// alignment, not its logarithm.
570  virtual unsigned getByValTypeAlignment(Type *Ty) const;
571
572  /// getRegisterType - Return the type of registers that this ValueType will
573  /// eventually require.
574  EVT getRegisterType(MVT VT) const {
575    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
576    return RegisterTypeForVT[VT.SimpleTy];
577  }
578
579  /// getRegisterType - Return the type of registers that this ValueType will
580  /// eventually require.
581  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
582    if (VT.isSimple()) {
583      assert((unsigned)VT.getSimpleVT().SimpleTy <
584                array_lengthof(RegisterTypeForVT));
585      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
586    }
587    if (VT.isVector()) {
588      EVT VT1, RegisterVT;
589      unsigned NumIntermediates;
590      (void)getVectorTypeBreakdown(Context, VT, VT1,
591                                   NumIntermediates, RegisterVT);
592      return RegisterVT;
593    }
594    if (VT.isInteger()) {
595      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
596    }
597    llvm_unreachable("Unsupported extended type!");
598  }
599
600  /// getNumRegisters - Return the number of registers that this ValueType will
601  /// eventually require.  This is one for any types promoted to live in larger
602  /// registers, but may be more than one for types (like i64) that are split
603  /// into pieces.  For types like i140, which are first promoted then expanded,
604  /// it is the number of registers needed to hold all the bits of the original
605  /// type.  For an i140 on a 32 bit machine this means 5 registers.
606  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
607    if (VT.isSimple()) {
608      assert((unsigned)VT.getSimpleVT().SimpleTy <
609                array_lengthof(NumRegistersForVT));
610      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
611    }
612    if (VT.isVector()) {
613      EVT VT1, VT2;
614      unsigned NumIntermediates;
615      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
616    }
617    if (VT.isInteger()) {
618      unsigned BitWidth = VT.getSizeInBits();
619      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
620      return (BitWidth + RegWidth - 1) / RegWidth;
621    }
622    llvm_unreachable("Unsupported extended type!");
623  }
624
625  /// ShouldShrinkFPConstant - If true, then instruction selection should
626  /// seek to shrink the FP constant of the specified type to a smaller type
627  /// in order to save space and / or reduce runtime.
628  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
629
630  /// hasTargetDAGCombine - If true, the target has custom DAG combine
631  /// transformations that it can perform for the specified node.
632  bool hasTargetDAGCombine(ISD::NodeType NT) const {
633    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
634    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
635  }
636
637  /// This function returns the maximum number of store operations permitted
638  /// to replace a call to llvm.memset. The value is set by the target at the
639  /// performance threshold for such a replacement. If OptSize is true,
640  /// return the limit for functions that have OptSize attribute.
641  /// @brief Get maximum # of store operations permitted for llvm.memset
642  unsigned getMaxStoresPerMemset(bool OptSize) const {
643    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
644  }
645
646  /// This function returns the maximum number of store operations permitted
647  /// to replace a call to llvm.memcpy. The value is set by the target at the
648  /// performance threshold for such a replacement. If OptSize is true,
649  /// return the limit for functions that have OptSize attribute.
650  /// @brief Get maximum # of store operations permitted for llvm.memcpy
651  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
652    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
653  }
654
655  /// This function returns the maximum number of store operations permitted
656  /// to replace a call to llvm.memmove. The value is set by the target at the
657  /// performance threshold for such a replacement. If OptSize is true,
658  /// return the limit for functions that have OptSize attribute.
659  /// @brief Get maximum # of store operations permitted for llvm.memmove
660  unsigned getMaxStoresPerMemmove(bool OptSize) const {
661    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
662  }
663
664  /// This function returns true if the target allows unaligned memory accesses.
665  /// of the specified type. This is used, for example, in situations where an
666  /// array copy/move/set is  converted to a sequence of store operations. It's
667  /// use helps to ensure that such replacements don't generate code that causes
668  /// an alignment error  (trap) on the target machine.
669  /// @brief Determine if the target supports unaligned memory accesses.
670  virtual bool allowsUnalignedMemoryAccesses(EVT) const {
671    return false;
672  }
673
674  /// This function returns true if the target would benefit from code placement
675  /// optimization.
676  /// @brief Determine if the target should perform code placement optimization.
677  bool shouldOptimizeCodePlacement() const {
678    return benefitFromCodePlacementOpt;
679  }
680
681  /// getOptimalMemOpType - Returns the target specific optimal type for load
682  /// and store operations as a result of memset, memcpy, and memmove
683  /// lowering. If DstAlign is zero that means it's safe to destination
684  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
685  /// means there isn't a need to check it against alignment requirement,
686  /// probably because the source does not need to be loaded. If
687  /// 'IsZeroVal' is true, that means it's safe to return a
688  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
689  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
690  /// constant so it does not need to be loaded.
691  /// It returns EVT::Other if the type should be determined using generic
692  /// target-independent logic.
693  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
694                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
695                                  bool /*IsZeroVal*/,
696                                  bool /*MemcpyStrSrc*/,
697                                  MachineFunction &/*MF*/) const {
698    return MVT::Other;
699  }
700
701  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
702  /// to implement llvm.setjmp.
703  bool usesUnderscoreSetJmp() const {
704    return UseUnderscoreSetJmp;
705  }
706
707  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
708  /// to implement llvm.longjmp.
709  bool usesUnderscoreLongJmp() const {
710    return UseUnderscoreLongJmp;
711  }
712
713  /// supportJumpTables - return whether the target can generate code for
714  /// jump tables.
715  bool supportJumpTables() const {
716    return SupportJumpTables;
717  }
718
719  /// getMinimumJumpTableEntries - return integer threshold on number of
720  /// blocks to use jump tables rather than if sequence.
721  int getMinimumJumpTableEntries() const {
722    return MinimumJumpTableEntries;
723  }
724
725  /// getStackPointerRegisterToSaveRestore - If a physical register, this
726  /// specifies the register that llvm.savestack/llvm.restorestack should save
727  /// and restore.
728  unsigned getStackPointerRegisterToSaveRestore() const {
729    return StackPointerRegisterToSaveRestore;
730  }
731
732  /// getExceptionPointerRegister - If a physical register, this returns
733  /// the register that receives the exception address on entry to a landing
734  /// pad.
735  unsigned getExceptionPointerRegister() const {
736    return ExceptionPointerRegister;
737  }
738
739  /// getExceptionSelectorRegister - If a physical register, this returns
740  /// the register that receives the exception typeid on entry to a landing
741  /// pad.
742  unsigned getExceptionSelectorRegister() const {
743    return ExceptionSelectorRegister;
744  }
745
746  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
747  /// set, the default is 200)
748  unsigned getJumpBufSize() const {
749    return JumpBufSize;
750  }
751
752  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
753  /// (if never set, the default is 0)
754  unsigned getJumpBufAlignment() const {
755    return JumpBufAlignment;
756  }
757
758  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
759  /// argument.
760  unsigned getMinStackArgumentAlignment() const {
761    return MinStackArgumentAlignment;
762  }
763
764  /// getMinFunctionAlignment - return the minimum function alignment.
765  ///
766  unsigned getMinFunctionAlignment() const {
767    return MinFunctionAlignment;
768  }
769
770  /// getPrefFunctionAlignment - return the preferred function alignment.
771  ///
772  unsigned getPrefFunctionAlignment() const {
773    return PrefFunctionAlignment;
774  }
775
776  /// getPrefLoopAlignment - return the preferred loop alignment.
777  ///
778  unsigned getPrefLoopAlignment() const {
779    return PrefLoopAlignment;
780  }
781
782  /// getShouldFoldAtomicFences - return whether the combiner should fold
783  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
784  ///
785  bool getShouldFoldAtomicFences() const {
786    return ShouldFoldAtomicFences;
787  }
788
789  /// getInsertFencesFor - return whether the DAG builder should automatically
790  /// insert fences and reduce ordering for atomics.
791  ///
792  bool getInsertFencesForAtomic() const {
793    return InsertFencesForAtomic;
794  }
795
796  /// getPreIndexedAddressParts - returns true by value, base pointer and
797  /// offset pointer and addressing mode by reference if the node's address
798  /// can be legally represented as pre-indexed load / store address.
799  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
800                                         SDValue &/*Offset*/,
801                                         ISD::MemIndexedMode &/*AM*/,
802                                         SelectionDAG &/*DAG*/) const {
803    return false;
804  }
805
806  /// getPostIndexedAddressParts - returns true by value, base pointer and
807  /// offset pointer and addressing mode by reference if this node can be
808  /// combined with a load / store to form a post-indexed load / store.
809  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
810                                          SDValue &/*Base*/, SDValue &/*Offset*/,
811                                          ISD::MemIndexedMode &/*AM*/,
812                                          SelectionDAG &/*DAG*/) const {
813    return false;
814  }
815
816  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
817  /// current function.  The returned value is a member of the
818  /// MachineJumpTableInfo::JTEntryKind enum.
819  virtual unsigned getJumpTableEncoding() const;
820
821  virtual const MCExpr *
822  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
823                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
824                            MCContext &/*Ctx*/) const {
825    llvm_unreachable("Need to implement this hook if target has custom JTIs");
826  }
827
828  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
829  /// jumptable.
830  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
831                                           SelectionDAG &DAG) const;
832
833  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
834  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
835  /// MCExpr.
836  virtual const MCExpr *
837  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
838                               unsigned JTI, MCContext &Ctx) const;
839
840  /// isOffsetFoldingLegal - Return true if folding a constant offset
841  /// with the given GlobalAddress is legal.  It is frequently not legal in
842  /// PIC relocation models.
843  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
844
845  /// getStackCookieLocation - Return true if the target stores stack
846  /// protector cookies at a fixed offset in some non-standard address
847  /// space, and populates the address space and offset as
848  /// appropriate.
849  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
850                                      unsigned &/*Offset*/) const {
851    return false;
852  }
853
854  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
855  /// used for loads / stores from the global.
856  virtual unsigned getMaximalGlobalOffset() const {
857    return 0;
858  }
859
860  //===--------------------------------------------------------------------===//
861  // TargetLowering Optimization Methods
862  //
863
864  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
865  /// SDValues for returning information from TargetLowering to its clients
866  /// that want to combine
867  struct TargetLoweringOpt {
868    SelectionDAG &DAG;
869    bool LegalTys;
870    bool LegalOps;
871    SDValue Old;
872    SDValue New;
873
874    explicit TargetLoweringOpt(SelectionDAG &InDAG,
875                               bool LT, bool LO) :
876      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
877
878    bool LegalTypes() const { return LegalTys; }
879    bool LegalOperations() const { return LegalOps; }
880
881    bool CombineTo(SDValue O, SDValue N) {
882      Old = O;
883      New = N;
884      return true;
885    }
886
887    /// ShrinkDemandedConstant - Check to see if the specified operand of the
888    /// specified instruction is a constant integer.  If so, check to see if
889    /// there are any bits set in the constant that are not demanded.  If so,
890    /// shrink the constant and return true.
891    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
892
893    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
894    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
895    /// cast, but it could be generalized for targets with other types of
896    /// implicit widening casts.
897    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
898                          DebugLoc dl);
899  };
900
901  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
902  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
903  /// use this information to simplify Op, create a new simplified DAG node and
904  /// return true, returning the original and new nodes in Old and New.
905  /// Otherwise, analyze the expression and return a mask of KnownOne and
906  /// KnownZero bits for the expression (used to simplify the caller).
907  /// The KnownZero/One bits may only be accurate for those bits in the
908  /// DemandedMask.
909  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
910                            APInt &KnownZero, APInt &KnownOne,
911                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
912
913  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
914  /// Mask are known to be either zero or one and return them in the
915  /// KnownZero/KnownOne bitsets.
916  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
917                                              APInt &KnownZero,
918                                              APInt &KnownOne,
919                                              const SelectionDAG &DAG,
920                                              unsigned Depth = 0) const;
921
922  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
923  /// targets that want to expose additional information about sign bits to the
924  /// DAG Combiner.
925  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
926                                                   unsigned Depth = 0) const;
927
928  struct DAGCombinerInfo {
929    void *DC;  // The DAG Combiner object.
930    bool BeforeLegalize;
931    bool BeforeLegalizeOps;
932    bool CalledByLegalizer;
933  public:
934    SelectionDAG &DAG;
935
936    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
937      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
938        CalledByLegalizer(cl), DAG(dag) {}
939
940    bool isBeforeLegalize() const { return BeforeLegalize; }
941    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
942    bool isCalledByLegalizer() const { return CalledByLegalizer; }
943
944    void AddToWorklist(SDNode *N);
945    void RemoveFromWorklist(SDNode *N);
946    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
947                      bool AddTo = true);
948    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
949    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
950
951    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
952  };
953
954  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
955  /// and cc. If it is unable to simplify it, return a null SDValue.
956  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
957                          ISD::CondCode Cond, bool foldBooleans,
958                          DAGCombinerInfo &DCI, DebugLoc dl) const;
959
960  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
961  /// node is a GlobalAddress + offset.
962  virtual bool
963  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
964
965  /// PerformDAGCombine - This method will be invoked for all target nodes and
966  /// for any target-independent nodes that the target has registered with
967  /// invoke it for.
968  ///
969  /// The semantics are as follows:
970  /// Return Value:
971  ///   SDValue.Val == 0   - No change was made
972  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
973  ///   otherwise          - N should be replaced by the returned Operand.
974  ///
975  /// In addition, methods provided by DAGCombinerInfo may be used to perform
976  /// more complex transformations.
977  ///
978  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
979
980  /// isTypeDesirableForOp - Return true if the target has native support for
981  /// the specified value type and it is 'desirable' to use the type for the
982  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
983  /// instruction encodings are longer and some i16 instructions are slow.
984  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
985    // By default, assume all legal types are desirable.
986    return isTypeLegal(VT);
987  }
988
989  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
990  /// to transform a floating point op of specified opcode to a equivalent op of
991  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
992  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
993                                                 EVT /*VT*/) const {
994    return false;
995  }
996
997  /// IsDesirableToPromoteOp - This method query the target whether it is
998  /// beneficial for dag combiner to promote the specified node. If true, it
999  /// should return the desired promotion type by reference.
1000  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
1001    return false;
1002  }
1003
1004  //===--------------------------------------------------------------------===//
1005  // TargetLowering Configuration Methods - These methods should be invoked by
1006  // the derived class constructor to configure this object for the target.
1007  //
1008
1009protected:
1010  /// setBooleanContents - Specify how the target extends the result of a
1011  /// boolean value from i1 to a wider type.  See getBooleanContents.
1012  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
1013  /// setBooleanVectorContents - Specify how the target extends the result
1014  /// of a vector boolean value from a vector of i1 to a wider type.  See
1015  /// getBooleanContents.
1016  void setBooleanVectorContents(BooleanContent Ty) {
1017    BooleanVectorContents = Ty;
1018  }
1019
1020  /// setSchedulingPreference - Specify the target scheduling preference.
1021  void setSchedulingPreference(Sched::Preference Pref) {
1022    SchedPreferenceInfo = Pref;
1023  }
1024
1025  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
1026  /// use _setjmp to implement llvm.setjmp or the non _ version.
1027  /// Defaults to false.
1028  void setUseUnderscoreSetJmp(bool Val) {
1029    UseUnderscoreSetJmp = Val;
1030  }
1031
1032  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
1033  /// use _longjmp to implement llvm.longjmp or the non _ version.
1034  /// Defaults to false.
1035  void setUseUnderscoreLongJmp(bool Val) {
1036    UseUnderscoreLongJmp = Val;
1037  }
1038
1039  /// setSupportJumpTables - Indicate whether the target can generate code for
1040  /// jump tables.
1041  void setSupportJumpTables(bool Val) {
1042    SupportJumpTables = Val;
1043  }
1044
1045  /// setMinimumJumpTableEntries - Indicate the number of blocks to generate
1046  /// jump tables rather than if sequence.
1047  void setMinimumJumpTableEntries(int Val) {
1048    MinimumJumpTableEntries = Val;
1049  }
1050
1051  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
1052  /// specifies the register that llvm.savestack/llvm.restorestack should save
1053  /// and restore.
1054  void setStackPointerRegisterToSaveRestore(unsigned R) {
1055    StackPointerRegisterToSaveRestore = R;
1056  }
1057
1058  /// setExceptionPointerRegister - If set to a physical register, this sets
1059  /// the register that receives the exception address on entry to a landing
1060  /// pad.
1061  void setExceptionPointerRegister(unsigned R) {
1062    ExceptionPointerRegister = R;
1063  }
1064
1065  /// setExceptionSelectorRegister - If set to a physical register, this sets
1066  /// the register that receives the exception typeid on entry to a landing
1067  /// pad.
1068  void setExceptionSelectorRegister(unsigned R) {
1069    ExceptionSelectorRegister = R;
1070  }
1071
1072  /// SelectIsExpensive - Tells the code generator not to expand operations
1073  /// into sequences that use the select operations if possible.
1074  void setSelectIsExpensive(bool isExpensive = true) {
1075    SelectIsExpensive = isExpensive;
1076  }
1077
1078  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1079  /// operations into a separate sequences that increases the amount of
1080  /// flow control.
1081  void setJumpIsExpensive(bool isExpensive = true) {
1082    JumpIsExpensive = isExpensive;
1083  }
1084
1085  /// setIntDivIsCheap - Tells the code generator that integer divide is
1086  /// expensive, and if possible, should be replaced by an alternate sequence
1087  /// of instructions not containing an integer divide.
1088  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1089
1090  /// addBypassSlowDiv - Tells the code generator which bitwidths to bypass.
1091  void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1092    BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1093  }
1094
1095  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1096  /// srl/add/sra for a signed divide by power of two, and let the target handle
1097  /// it.
1098  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1099
1100  /// addRegisterClass - Add the specified register class as an available
1101  /// regclass for the specified value type.  This indicates the selector can
1102  /// handle values of that class natively.
1103  void addRegisterClass(EVT VT, const TargetRegisterClass *RC) {
1104    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1105    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1106    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1107  }
1108
1109  /// findRepresentativeClass - Return the largest legal super-reg register class
1110  /// of the register class for the specified type and its associated "cost".
1111  virtual std::pair<const TargetRegisterClass*, uint8_t>
1112  findRepresentativeClass(EVT VT) const;
1113
1114  /// computeRegisterProperties - Once all of the register classes are added,
1115  /// this allows us to compute derived properties we expose.
1116  void computeRegisterProperties();
1117
1118  /// setOperationAction - Indicate that the specified operation does not work
1119  /// with the specified type and indicate what to do about it.
1120  void setOperationAction(unsigned Op, MVT VT,
1121                          LegalizeAction Action) {
1122    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1123    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1124  }
1125
1126  /// setLoadExtAction - Indicate that the specified load with extension does
1127  /// not work with the specified type and indicate what to do about it.
1128  void setLoadExtAction(unsigned ExtType, MVT VT,
1129                        LegalizeAction Action) {
1130    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1131           "Table isn't big enough!");
1132    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1133  }
1134
1135  /// setTruncStoreAction - Indicate that the specified truncating store does
1136  /// not work with the specified type and indicate what to do about it.
1137  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1138                           LegalizeAction Action) {
1139    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1140           "Table isn't big enough!");
1141    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1142  }
1143
1144  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1145  /// does not work with the specified type and indicate what to do abort
1146  /// it. NOTE: All indexed mode loads are initialized to Expand in
1147  /// TargetLowering.cpp
1148  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1149                            LegalizeAction Action) {
1150    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1151           (unsigned)Action < 0xf && "Table isn't big enough!");
1152    // Load action are kept in the upper half.
1153    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1154    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1155  }
1156
1157  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1158  /// does not work with the specified type and indicate what to do about
1159  /// it. NOTE: All indexed mode stores are initialized to Expand in
1160  /// TargetLowering.cpp
1161  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1162                             LegalizeAction Action) {
1163    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1164           (unsigned)Action < 0xf && "Table isn't big enough!");
1165    // Store action are kept in the lower half.
1166    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1167    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1168  }
1169
1170  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1171  /// supported on the target and indicate what to do about it.
1172  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1173                         LegalizeAction Action) {
1174    assert(VT < MVT::LAST_VALUETYPE &&
1175           (unsigned)CC < array_lengthof(CondCodeActions) &&
1176           "Table isn't big enough!");
1177    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
1178    /// value and the upper 27 bits index into the second dimension of the
1179    /// array to select what 64bit value to use.
1180    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1181      &= ~(uint64_t(3UL)  << (VT.SimpleTy & 0x1F)*2);
1182    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1183      |= (uint64_t)Action << (VT.SimpleTy & 0x1F)*2;
1184  }
1185
1186  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1187  /// promotion code defaults to trying a larger integer/fp until it can find
1188  /// one that works.  If that default is insufficient, this method can be used
1189  /// by the target to override the default.
1190  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1191    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1192  }
1193
1194  /// setTargetDAGCombine - Targets should invoke this method for each target
1195  /// independent node that they want to provide a custom DAG combiner for by
1196  /// implementing the PerformDAGCombine virtual method.
1197  void setTargetDAGCombine(ISD::NodeType NT) {
1198    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1199    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1200  }
1201
1202  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1203  /// bytes); default is 200
1204  void setJumpBufSize(unsigned Size) {
1205    JumpBufSize = Size;
1206  }
1207
1208  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1209  /// alignment (in bytes); default is 0
1210  void setJumpBufAlignment(unsigned Align) {
1211    JumpBufAlignment = Align;
1212  }
1213
1214  /// setMinFunctionAlignment - Set the target's minimum function alignment (in
1215  /// log2(bytes))
1216  void setMinFunctionAlignment(unsigned Align) {
1217    MinFunctionAlignment = Align;
1218  }
1219
1220  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1221  /// This should be set if there is a performance benefit to
1222  /// higher-than-minimum alignment (in log2(bytes))
1223  void setPrefFunctionAlignment(unsigned Align) {
1224    PrefFunctionAlignment = Align;
1225  }
1226
1227  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1228  /// alignment is zero, it means the target does not care about loop alignment.
1229  /// The alignment is specified in log2(bytes).
1230  void setPrefLoopAlignment(unsigned Align) {
1231    PrefLoopAlignment = Align;
1232  }
1233
1234  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1235  /// argument (in log2(bytes)).
1236  void setMinStackArgumentAlignment(unsigned Align) {
1237    MinStackArgumentAlignment = Align;
1238  }
1239
1240  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1241  /// atomic operation intrinsics includes locking. Default is false.
1242  void setShouldFoldAtomicFences(bool fold) {
1243    ShouldFoldAtomicFences = fold;
1244  }
1245
1246  /// setInsertFencesForAtomic - Set if the DAG builder should
1247  /// automatically insert fences and reduce the order of atomic memory
1248  /// operations to Monotonic.
1249  void setInsertFencesForAtomic(bool fence) {
1250    InsertFencesForAtomic = fence;
1251  }
1252
1253public:
1254  //===--------------------------------------------------------------------===//
1255  // Lowering methods - These methods must be implemented by targets so that
1256  // the SelectionDAGLowering code knows how to lower these.
1257  //
1258
1259  /// LowerFormalArguments - This hook must be implemented to lower the
1260  /// incoming (formal) arguments, described by the Ins array, into the
1261  /// specified DAG. The implementation should fill in the InVals array
1262  /// with legal-type argument values, and return the resulting token
1263  /// chain value.
1264  ///
1265  virtual SDValue
1266    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1267                         bool /*isVarArg*/,
1268                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1269                         DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1270                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1271    llvm_unreachable("Not Implemented");
1272  }
1273
1274  struct ArgListEntry {
1275    SDValue Node;
1276    Type* Ty;
1277    bool isSExt  : 1;
1278    bool isZExt  : 1;
1279    bool isInReg : 1;
1280    bool isSRet  : 1;
1281    bool isNest  : 1;
1282    bool isByVal : 1;
1283    uint16_t Alignment;
1284
1285    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1286      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1287  };
1288  typedef std::vector<ArgListEntry> ArgListTy;
1289
1290  /// CallLoweringInfo - This structure contains all information that is
1291  /// necessary for lowering calls. It is passed to TLI::LowerCallTo when the
1292  /// SelectionDAG builder needs to lower a call, and targets will see this
1293  /// struct in their LowerCall implementation.
1294  struct CallLoweringInfo {
1295    SDValue Chain;
1296    Type *RetTy;
1297    bool RetSExt           : 1;
1298    bool RetZExt           : 1;
1299    bool IsVarArg          : 1;
1300    bool IsInReg           : 1;
1301    bool DoesNotReturn     : 1;
1302    bool IsReturnValueUsed : 1;
1303
1304    // IsTailCall should be modified by implementations of
1305    // TargetLowering::LowerCall that perform tail call conversions.
1306    bool IsTailCall;
1307
1308    unsigned NumFixedArgs;
1309    CallingConv::ID CallConv;
1310    SDValue Callee;
1311    ArgListTy &Args;
1312    SelectionDAG &DAG;
1313    DebugLoc DL;
1314    ImmutableCallSite *CS;
1315    SmallVector<ISD::OutputArg, 32> Outs;
1316    SmallVector<SDValue, 32> OutVals;
1317    SmallVector<ISD::InputArg, 32> Ins;
1318
1319
1320    /// CallLoweringInfo - Constructs a call lowering context based on the
1321    /// ImmutableCallSite \p cs.
1322    CallLoweringInfo(SDValue chain, Type *retTy,
1323                     FunctionType *FTy, bool isTailCall, SDValue callee,
1324                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl,
1325                     ImmutableCallSite &cs)
1326    : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attributes::SExt)),
1327      RetZExt(cs.paramHasAttr(0, Attributes::ZExt)), IsVarArg(FTy->isVarArg()),
1328      IsInReg(cs.paramHasAttr(0, Attributes::InReg)),
1329      DoesNotReturn(cs.doesNotReturn()),
1330      IsReturnValueUsed(!cs.getInstruction()->use_empty()),
1331      IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
1332      CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
1333      DL(dl), CS(&cs) {}
1334
1335    /// CallLoweringInfo - Constructs a call lowering context based on the
1336    /// provided call information.
1337    CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
1338                     bool isVarArg, bool isInReg, unsigned numFixedArgs,
1339                     CallingConv::ID callConv, bool isTailCall,
1340                     bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
1341                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl)
1342    : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
1343      IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
1344      IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
1345      NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
1346      Args(args), DAG(dag), DL(dl), CS(NULL) {}
1347  };
1348
1349  /// LowerCallTo - This function lowers an abstract call to a function into an
1350  /// actual call.  This returns a pair of operands.  The first element is the
1351  /// return value for the function (if RetTy is not VoidTy).  The second
1352  /// element is the outgoing token chain. It calls LowerCall to do the actual
1353  /// lowering.
1354  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
1355
1356  /// LowerCall - This hook must be implemented to lower calls into the
1357  /// the specified DAG. The outgoing arguments to the call are described
1358  /// by the Outs array, and the values to be returned by the call are
1359  /// described by the Ins array. The implementation should fill in the
1360  /// InVals array with legal-type return values from the call, and return
1361  /// the resulting token chain value.
1362  virtual SDValue
1363    LowerCall(CallLoweringInfo &/*CLI*/,
1364              SmallVectorImpl<SDValue> &/*InVals*/) const {
1365    llvm_unreachable("Not Implemented");
1366  }
1367
1368  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1369  virtual void HandleByVal(CCState *, unsigned &) const {}
1370
1371  /// CanLowerReturn - This hook should be implemented to check whether the
1372  /// return values described by the Outs array can fit into the return
1373  /// registers.  If false is returned, an sret-demotion is performed.
1374  ///
1375  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
1376                              MachineFunction &/*MF*/, bool /*isVarArg*/,
1377               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1378               LLVMContext &/*Context*/) const
1379  {
1380    // Return true by default to get preexisting behavior.
1381    return true;
1382  }
1383
1384  /// LowerReturn - This hook must be implemented to lower outgoing
1385  /// return values, described by the Outs array, into the specified
1386  /// DAG. The implementation should return the resulting token chain
1387  /// value.
1388  ///
1389  virtual SDValue
1390    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1391                bool /*isVarArg*/,
1392                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1393                const SmallVectorImpl<SDValue> &/*OutVals*/,
1394                DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
1395    llvm_unreachable("Not Implemented");
1396  }
1397
1398  /// isUsedByReturnOnly - Return true if result of the specified node is used
1399  /// by a return node only. It also compute and return the input chain for the
1400  /// tail call.
1401  /// This is used to determine whether it is possible
1402  /// to codegen a libcall as tail call at legalization time.
1403  virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const {
1404    return false;
1405  }
1406
1407  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1408  /// call instruction as a tail call. This is used by optimization passes to
1409  /// determine if it's profitable to duplicate return instructions to enable
1410  /// tailcall optimization.
1411  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
1412    return false;
1413  }
1414
1415  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1416  /// sign extend a zeroext/signext integer argument or return value.
1417  /// FIXME: Most C calling convention requires the return type to be promoted,
1418  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1419  /// necessary for non-C calling conventions. The frontend should handle this
1420  /// and include all of the necessary information.
1421  virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1422                                       ISD::NodeType /*ExtendKind*/) const {
1423    EVT MinVT = getRegisterType(Context, MVT::i32);
1424    return VT.bitsLT(MinVT) ? MinVT : VT;
1425  }
1426
1427  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1428  /// to legalize nodes with an illegal operand type but legal result types.
1429  /// It replaces the LowerOperation callback in the type Legalizer.
1430  /// The reason we can not do away with LowerOperation entirely is that
1431  /// LegalizeDAG isn't yet ready to use this callback.
1432  /// TODO: Consider merging with ReplaceNodeResults.
1433
1434  /// The target places new result values for the node in Results (their number
1435  /// and types must exactly match those of the original return values of
1436  /// the node), or leaves Results empty, which indicates that the node is not
1437  /// to be custom lowered after all.
1438  /// The default implementation calls LowerOperation.
1439  virtual void LowerOperationWrapper(SDNode *N,
1440                                     SmallVectorImpl<SDValue> &Results,
1441                                     SelectionDAG &DAG) const;
1442
1443  /// LowerOperation - This callback is invoked for operations that are
1444  /// unsupported by the target, which are registered to use 'custom' lowering,
1445  /// and whose defined values are all legal.
1446  /// If the target has no operations that require custom lowering, it need not
1447  /// implement this.  The default implementation of this aborts.
1448  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1449
1450  /// ReplaceNodeResults - This callback is invoked when a node result type is
1451  /// illegal for the target, and the operation was registered to use 'custom'
1452  /// lowering for that result type.  The target places new result values for
1453  /// the node in Results (their number and types must exactly match those of
1454  /// the original return values of the node), or leaves Results empty, which
1455  /// indicates that the node is not to be custom lowered after all.
1456  ///
1457  /// If the target has no operations that require custom lowering, it need not
1458  /// implement this.  The default implementation aborts.
1459  virtual void ReplaceNodeResults(SDNode * /*N*/,
1460                                  SmallVectorImpl<SDValue> &/*Results*/,
1461                                  SelectionDAG &/*DAG*/) const {
1462    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
1463  }
1464
1465  /// getTargetNodeName() - This method returns the name of a target specific
1466  /// DAG node.
1467  virtual const char *getTargetNodeName(unsigned Opcode) const;
1468
1469  /// createFastISel - This method returns a target specific FastISel object,
1470  /// or null if the target does not support "fast" ISel.
1471  virtual FastISel *createFastISel(FunctionLoweringInfo &,
1472                                   const TargetLibraryInfo *) const {
1473    return 0;
1474  }
1475
1476  //===--------------------------------------------------------------------===//
1477  // Inline Asm Support hooks
1478  //
1479
1480  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1481  /// call to be explicit llvm code if it wants to.  This is useful for
1482  /// turning simple inline asms into LLVM intrinsics, which gives the
1483  /// compiler more information about the behavior of the code.
1484  virtual bool ExpandInlineAsm(CallInst *) const {
1485    return false;
1486  }
1487
1488  enum ConstraintType {
1489    C_Register,            // Constraint represents specific register(s).
1490    C_RegisterClass,       // Constraint represents any of register(s) in class.
1491    C_Memory,              // Memory constraint.
1492    C_Other,               // Something else.
1493    C_Unknown              // Unsupported constraint.
1494  };
1495
1496  enum ConstraintWeight {
1497    // Generic weights.
1498    CW_Invalid  = -1,     // No match.
1499    CW_Okay     = 0,      // Acceptable.
1500    CW_Good     = 1,      // Good weight.
1501    CW_Better   = 2,      // Better weight.
1502    CW_Best     = 3,      // Best weight.
1503
1504    // Well-known weights.
1505    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1506    CW_Register     = CW_Good,    // Register operands.
1507    CW_Memory       = CW_Better,  // Memory operands.
1508    CW_Constant     = CW_Best,    // Constant operand.
1509    CW_Default      = CW_Okay     // Default or don't know type.
1510  };
1511
1512  /// AsmOperandInfo - This contains information for each constraint that we are
1513  /// lowering.
1514  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1515    /// ConstraintCode - This contains the actual string for the code, like "m".
1516    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1517    /// most closely matches the operand.
1518    std::string ConstraintCode;
1519
1520    /// ConstraintType - Information about the constraint code, e.g. Register,
1521    /// RegisterClass, Memory, Other, Unknown.
1522    TargetLowering::ConstraintType ConstraintType;
1523
1524    /// CallOperandval - If this is the result output operand or a
1525    /// clobber, this is null, otherwise it is the incoming operand to the
1526    /// CallInst.  This gets modified as the asm is processed.
1527    Value *CallOperandVal;
1528
1529    /// ConstraintVT - The ValueType for the operand value.
1530    EVT ConstraintVT;
1531
1532    /// isMatchingInputConstraint - Return true of this is an input operand that
1533    /// is a matching constraint like "4".
1534    bool isMatchingInputConstraint() const;
1535
1536    /// getMatchedOperand - If this is an input matching constraint, this method
1537    /// returns the output operand it matches.
1538    unsigned getMatchedOperand() const;
1539
1540    /// Copy constructor for copying from an AsmOperandInfo.
1541    AsmOperandInfo(const AsmOperandInfo &info)
1542      : InlineAsm::ConstraintInfo(info),
1543        ConstraintCode(info.ConstraintCode),
1544        ConstraintType(info.ConstraintType),
1545        CallOperandVal(info.CallOperandVal),
1546        ConstraintVT(info.ConstraintVT) {
1547    }
1548
1549    /// Copy constructor for copying from a ConstraintInfo.
1550    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1551      : InlineAsm::ConstraintInfo(info),
1552        ConstraintType(TargetLowering::C_Unknown),
1553        CallOperandVal(0), ConstraintVT(MVT::Other) {
1554    }
1555  };
1556
1557  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1558
1559  /// ParseConstraints - Split up the constraint string from the inline
1560  /// assembly value into the specific constraints and their prefixes,
1561  /// and also tie in the associated operand values.
1562  /// If this returns an empty vector, and if the constraint string itself
1563  /// isn't empty, there was an error parsing.
1564  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1565
1566  /// Examine constraint type and operand type and determine a weight value.
1567  /// The operand object must already have been set up with the operand type.
1568  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1569      AsmOperandInfo &info, int maIndex) const;
1570
1571  /// Examine constraint string and operand type and determine a weight value.
1572  /// The operand object must already have been set up with the operand type.
1573  virtual ConstraintWeight getSingleConstraintMatchWeight(
1574      AsmOperandInfo &info, const char *constraint) const;
1575
1576  /// ComputeConstraintToUse - Determines the constraint code and constraint
1577  /// type to use for the specific AsmOperandInfo, setting
1578  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1579  /// being passed in is available, it can be passed in as Op, otherwise an
1580  /// empty SDValue can be passed.
1581  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1582                                      SDValue Op,
1583                                      SelectionDAG *DAG = 0) const;
1584
1585  /// getConstraintType - Given a constraint, return the type of constraint it
1586  /// is for this target.
1587  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1588
1589  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1590  /// {edx}), return the register number and the register class for the
1591  /// register.
1592  ///
1593  /// Given a register class constraint, like 'r', if this corresponds directly
1594  /// to an LLVM register class, return a register of 0 and the register class
1595  /// pointer.
1596  ///
1597  /// This should only be used for C_Register constraints.  On error,
1598  /// this returns a register number of 0 and a null register class pointer..
1599  virtual std::pair<unsigned, const TargetRegisterClass*>
1600    getRegForInlineAsmConstraint(const std::string &Constraint,
1601                                 EVT VT) const;
1602
1603  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1604  /// with another that has more specific requirements based on the type of the
1605  /// corresponding operand.  This returns null if there is no replacement to
1606  /// make.
1607  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1608
1609  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1610  /// vector.  If it is invalid, don't add anything to Ops.
1611  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1612                                            std::vector<SDValue> &Ops,
1613                                            SelectionDAG &DAG) const;
1614
1615  //===--------------------------------------------------------------------===//
1616  // Instruction Emitting Hooks
1617  //
1618
1619  // EmitInstrWithCustomInserter - This method should be implemented by targets
1620  // that mark instructions with the 'usesCustomInserter' flag.  These
1621  // instructions are special in various ways, which require special support to
1622  // insert.  The specified MachineInstr is created but not inserted into any
1623  // basic blocks, and this method is called to expand it into a sequence of
1624  // instructions, potentially also creating new basic blocks and control flow.
1625  virtual MachineBasicBlock *
1626    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1627
1628  /// AdjustInstrPostInstrSelection - This method should be implemented by
1629  /// targets that mark instructions with the 'hasPostISelHook' flag. These
1630  /// instructions must be adjusted after instruction selection by target hooks.
1631  /// e.g. To fill in optional defs for ARM 's' setting instructions.
1632  virtual void
1633  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
1634
1635  //===--------------------------------------------------------------------===//
1636  // Addressing mode description hooks (used by LSR etc).
1637  //
1638
1639  /// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the
1640  /// same BB as Load/Store instructions reading the address.  This allows as
1641  /// much computation as possible to be done in the address mode for that
1642  /// operand.  This hook lets targets also pass back when this should be done
1643  /// on intrinsics which load/store.
1644  virtual bool GetAddrModeArguments(IntrinsicInst *I,
1645                                    SmallVectorImpl<Value*> &Ops,
1646                                    Type *&AccessTy) const {
1647    return false;
1648  }
1649
1650  /// isLegalAddressingMode - Return true if the addressing mode represented by
1651  /// AM is legal for this target, for a load/store of the specified type.
1652  /// The type may be VoidTy, in which case only return true if the addressing
1653  /// mode is legal for a load/store of any legal type.
1654  /// TODO: Handle pre/postinc as well.
1655  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1656
1657  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1658  /// icmp immediate, that is the target has icmp instructions which can compare
1659  /// a register against the immediate without having to materialize the
1660  /// immediate into a register.
1661  virtual bool isLegalICmpImmediate(int64_t) const {
1662    return true;
1663  }
1664
1665  /// isLegalAddImmediate - Return true if the specified immediate is legal
1666  /// add immediate, that is the target has add instructions which can add
1667  /// a register with the immediate without having to materialize the
1668  /// immediate into a register.
1669  virtual bool isLegalAddImmediate(int64_t) const {
1670    return true;
1671  }
1672
1673  /// isTruncateFree - Return true if it's free to truncate a value of
1674  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1675  /// register EAX to i16 by referencing its sub-register AX.
1676  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1677    return false;
1678  }
1679
1680  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1681    return false;
1682  }
1683
1684  /// isZExtFree - Return true if any actual instruction that defines a
1685  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1686  /// register. This does not necessarily include registers defined in
1687  /// unknown ways, such as incoming arguments, or copies from unknown
1688  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1689  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1690  /// all instructions that define 32-bit values implicit zero-extend the
1691  /// result out to 64 bits.
1692  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1693    return false;
1694  }
1695
1696  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1697    return false;
1698  }
1699
1700  /// isFNegFree - Return true if an fneg operation is free to the point where
1701  /// it is never worthwhile to replace it with a bitwise operation.
1702  virtual bool isFNegFree(EVT) const {
1703    return false;
1704  }
1705
1706  /// isFAbsFree - Return true if an fneg operation is free to the point where
1707  /// it is never worthwhile to replace it with a bitwise operation.
1708  virtual bool isFAbsFree(EVT) const {
1709    return false;
1710  }
1711
1712  /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
1713  /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
1714  /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
1715  /// is expanded to mul + add.
1716  virtual bool isFMAFasterThanMulAndAdd(EVT) const {
1717    return false;
1718  }
1719
1720  /// isNarrowingProfitable - Return true if it's profitable to narrow
1721  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1722  /// from i32 to i8 but not from i32 to i16.
1723  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1724    return false;
1725  }
1726
1727  //===--------------------------------------------------------------------===//
1728  // Div utility functions
1729  //
1730  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1731                         SelectionDAG &DAG) const;
1732  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1733                      std::vector<SDNode*>* Created) const;
1734  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1735                      std::vector<SDNode*>* Created) const;
1736
1737
1738  //===--------------------------------------------------------------------===//
1739  // Runtime Library hooks
1740  //
1741
1742  /// setLibcallName - Rename the default libcall routine name for the specified
1743  /// libcall.
1744  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1745    LibcallRoutineNames[Call] = Name;
1746  }
1747
1748  /// getLibcallName - Get the libcall routine name for the specified libcall.
1749  ///
1750  const char *getLibcallName(RTLIB::Libcall Call) const {
1751    return LibcallRoutineNames[Call];
1752  }
1753
1754  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1755  /// result of the comparison libcall against zero.
1756  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1757    CmpLibcallCCs[Call] = CC;
1758  }
1759
1760  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1761  /// the comparison libcall against zero.
1762  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1763    return CmpLibcallCCs[Call];
1764  }
1765
1766  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1767  /// specified libcall.
1768  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1769    LibcallCallingConvs[Call] = CC;
1770  }
1771
1772  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1773  /// specified libcall.
1774  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1775    return LibcallCallingConvs[Call];
1776  }
1777
1778private:
1779  const TargetMachine &TM;
1780  const DataLayout *TD;
1781  const TargetLoweringObjectFile &TLOF;
1782
1783  /// PointerTy - The type to use for pointers for the default address space,
1784  /// usually i32 or i64.
1785  ///
1786  MVT PointerTy;
1787
1788  /// IsLittleEndian - True if this is a little endian target.
1789  ///
1790  bool IsLittleEndian;
1791
1792  /// SelectIsExpensive - Tells the code generator not to expand operations
1793  /// into sequences that use the select operations if possible.
1794  bool SelectIsExpensive;
1795
1796  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1797  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1798  /// a real cost model is in place.  If we ever optimize for size, this will be
1799  /// set to true unconditionally.
1800  bool IntDivIsCheap;
1801
1802  /// BypassSlowDivMap - Tells the code generator to bypass slow divide or
1803  /// remainder instructions. For example, BypassSlowDivWidths[32,8] tells the
1804  /// code generator to bypass 32-bit integer div/rem with an 8-bit unsigned
1805  /// integer div/rem when the operands are positive and less than 256.
1806  DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1807
1808  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1809  /// srl/add/sra for a signed divide by power of two, and let the target handle
1810  /// it.
1811  bool Pow2DivIsCheap;
1812
1813  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1814  /// extra flow control instructions and should attempt to combine flow
1815  /// control instructions via predication.
1816  bool JumpIsExpensive;
1817
1818  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1819  /// llvm.setjmp.  Defaults to false.
1820  bool UseUnderscoreSetJmp;
1821
1822  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1823  /// llvm.longjmp.  Defaults to false.
1824  bool UseUnderscoreLongJmp;
1825
1826  /// SupportJumpTables - Whether the target can generate code for jumptables.
1827  /// If it's not true, then each jumptable must be lowered into if-then-else's.
1828  bool SupportJumpTables;
1829
1830  /// MinimumJumpTableEntries - Number of blocks threshold to use jump tables.
1831  int MinimumJumpTableEntries;
1832
1833  /// BooleanContents - Information about the contents of the high-bits in
1834  /// boolean values held in a type wider than i1.  See getBooleanContents.
1835  BooleanContent BooleanContents;
1836  /// BooleanVectorContents - Information about the contents of the high-bits
1837  /// in boolean vector values when the element type is wider than i1.  See
1838  /// getBooleanContents.
1839  BooleanContent BooleanVectorContents;
1840
1841  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1842  /// total cycles or lowest register usage.
1843  Sched::Preference SchedPreferenceInfo;
1844
1845  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1846  unsigned JumpBufSize;
1847
1848  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1849  /// buffers
1850  unsigned JumpBufAlignment;
1851
1852  /// MinStackArgumentAlignment - The minimum alignment that any argument
1853  /// on the stack needs to have.
1854  ///
1855  unsigned MinStackArgumentAlignment;
1856
1857  /// MinFunctionAlignment - The minimum function alignment (used when
1858  /// optimizing for size, and to prevent explicitly provided alignment
1859  /// from leading to incorrect code).
1860  ///
1861  unsigned MinFunctionAlignment;
1862
1863  /// PrefFunctionAlignment - The preferred function alignment (used when
1864  /// alignment unspecified and optimizing for speed).
1865  ///
1866  unsigned PrefFunctionAlignment;
1867
1868  /// PrefLoopAlignment - The preferred loop alignment.
1869  ///
1870  unsigned PrefLoopAlignment;
1871
1872  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1873  /// be folded into the enclosed atomic intrinsic instruction by the
1874  /// combiner.
1875  bool ShouldFoldAtomicFences;
1876
1877  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1878  /// insert fences and reduce ordering for atomics.  (This will be set for
1879  /// for most architectures with weak memory ordering.)
1880  bool InsertFencesForAtomic;
1881
1882  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1883  /// specifies the register that llvm.savestack/llvm.restorestack should save
1884  /// and restore.
1885  unsigned StackPointerRegisterToSaveRestore;
1886
1887  /// ExceptionPointerRegister - If set to a physical register, this specifies
1888  /// the register that receives the exception address on entry to a landing
1889  /// pad.
1890  unsigned ExceptionPointerRegister;
1891
1892  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1893  /// the register that receives the exception typeid on entry to a landing
1894  /// pad.
1895  unsigned ExceptionSelectorRegister;
1896
1897  /// RegClassForVT - This indicates the default register class to use for
1898  /// each ValueType the target supports natively.
1899  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1900  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1901  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1902
1903  /// RepRegClassForVT - This indicates the "representative" register class to
1904  /// use for each ValueType the target supports natively. This information is
1905  /// used by the scheduler to track register pressure. By default, the
1906  /// representative register class is the largest legal super-reg register
1907  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1908  /// and i32's representative class would be GR32.
1909  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1910
1911  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1912  /// register class for each ValueType. The cost is used by the scheduler to
1913  /// approximate register pressure.
1914  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1915
1916  /// TransformToType - For any value types we are promoting or expanding, this
1917  /// contains the value type that we are changing to.  For Expanded types, this
1918  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1919  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1920  /// by the system, this holds the same type (e.g. i32 -> i32).
1921  EVT TransformToType[MVT::LAST_VALUETYPE];
1922
1923  /// OpActions - For each operation and each value type, keep a LegalizeAction
1924  /// that indicates how instruction selection should deal with the operation.
1925  /// Most operations are Legal (aka, supported natively by the target), but
1926  /// operations that are not should be described.  Note that operations on
1927  /// non-legal value types are not described here.
1928  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1929
1930  /// LoadExtActions - For each load extension type and each value type,
1931  /// keep a LegalizeAction that indicates how instruction selection should deal
1932  /// with a load of a specific value type and extension type.
1933  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1934
1935  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1936  /// indicates whether a truncating store of a specific value type and
1937  /// truncating type is legal.
1938  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1939
1940  /// IndexedModeActions - For each indexed mode and each value type,
1941  /// keep a pair of LegalizeAction that indicates how instruction
1942  /// selection should deal with the load / store.  The first dimension is the
1943  /// value_type for the reference. The second dimension represents the various
1944  /// modes for load store.
1945  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1946
1947  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1948  /// LegalizeAction that indicates how instruction selection should
1949  /// deal with the condition code.
1950  /// Because each CC action takes up 2 bits, we need to have the array size
1951  /// be large enough to fit all of the value types. This can be done by
1952  /// dividing the MVT::LAST_VALUETYPE by 32 and adding one.
1953  uint64_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE / 32) + 1];
1954
1955  ValueTypeActionImpl ValueTypeActions;
1956
1957  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
1958
1959  LegalizeKind
1960  getTypeConversion(LLVMContext &Context, EVT VT) const {
1961    // If this is a simple type, use the ComputeRegisterProp mechanism.
1962    if (VT.isSimple()) {
1963      assert((unsigned)VT.getSimpleVT().SimpleTy <
1964             array_lengthof(TransformToType));
1965      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
1966      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
1967
1968      assert(
1969        (!(NVT.isSimple() && LA != TypeLegal) ||
1970         ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
1971         && "Promote may not follow Expand or Promote");
1972
1973      return LegalizeKind(LA, NVT);
1974    }
1975
1976    // Handle Extended Scalar Types.
1977    if (!VT.isVector()) {
1978      assert(VT.isInteger() && "Float types must be simple");
1979      unsigned BitSize = VT.getSizeInBits();
1980      // First promote to a power-of-two size, then expand if necessary.
1981      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1982        EVT NVT = VT.getRoundIntegerType(Context);
1983        assert(NVT != VT && "Unable to round integer VT");
1984        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1985        // Avoid multi-step promotion.
1986        if (NextStep.first == TypePromoteInteger) return NextStep;
1987        // Return rounded integer type.
1988        return LegalizeKind(TypePromoteInteger, NVT);
1989      }
1990
1991      return LegalizeKind(TypeExpandInteger,
1992                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1993    }
1994
1995    // Handle vector types.
1996    unsigned NumElts = VT.getVectorNumElements();
1997    EVT EltVT = VT.getVectorElementType();
1998
1999    // Vectors with only one element are always scalarized.
2000    if (NumElts == 1)
2001      return LegalizeKind(TypeScalarizeVector, EltVT);
2002
2003    // Try to widen vector elements until a legal type is found.
2004    if (EltVT.isInteger()) {
2005      // Vectors with a number of elements that is not a power of two are always
2006      // widened, for example <3 x float> -> <4 x float>.
2007      if (!VT.isPow2VectorType()) {
2008        NumElts = (unsigned)NextPowerOf2(NumElts);
2009        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
2010        return LegalizeKind(TypeWidenVector, NVT);
2011      }
2012
2013      // Examine the element type.
2014      LegalizeKind LK = getTypeConversion(Context, EltVT);
2015
2016      // If type is to be expanded, split the vector.
2017      //  <4 x i140> -> <2 x i140>
2018      if (LK.first == TypeExpandInteger)
2019        return LegalizeKind(TypeSplitVector,
2020                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
2021
2022      // Promote the integer element types until a legal vector type is found
2023      // or until the element integer type is too big. If a legal type was not
2024      // found, fallback to the usual mechanism of widening/splitting the
2025      // vector.
2026      while (1) {
2027        // Increase the bitwidth of the element to the next pow-of-two
2028        // (which is greater than 8 bits).
2029        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
2030                                 ).getRoundIntegerType(Context);
2031
2032        // Stop trying when getting a non-simple element type.
2033        // Note that vector elements may be greater than legal vector element
2034        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
2035        if (!EltVT.isSimple()) break;
2036
2037        // Build a new vector type and check if it is legal.
2038        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2039        // Found a legal promoted vector type.
2040        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
2041          return LegalizeKind(TypePromoteInteger,
2042                              EVT::getVectorVT(Context, EltVT, NumElts));
2043      }
2044    }
2045
2046    // Try to widen the vector until a legal type is found.
2047    // If there is no wider legal type, split the vector.
2048    while (1) {
2049      // Round up to the next power of 2.
2050      NumElts = (unsigned)NextPowerOf2(NumElts);
2051
2052      // If there is no simple vector type with this many elements then there
2053      // cannot be a larger legal vector type.  Note that this assumes that
2054      // there are no skipped intermediate vector types in the simple types.
2055      if (!EltVT.isSimple()) break;
2056      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2057      if (LargerVector == MVT()) break;
2058
2059      // If this type is legal then widen the vector.
2060      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
2061        return LegalizeKind(TypeWidenVector, LargerVector);
2062    }
2063
2064    // Widen odd vectors to next power of two.
2065    if (!VT.isPow2VectorType()) {
2066      EVT NVT = VT.getPow2VectorType(Context);
2067      return LegalizeKind(TypeWidenVector, NVT);
2068    }
2069
2070    // Vectors with illegal element types are expanded.
2071    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
2072    return LegalizeKind(TypeSplitVector, NVT);
2073  }
2074
2075  std::vector<std::pair<EVT, const TargetRegisterClass*> > AvailableRegClasses;
2076
2077  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
2078  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
2079  /// which sets a bit in this array.
2080  unsigned char
2081  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
2082
2083  /// PromoteToType - For operations that must be promoted to a specific type,
2084  /// this holds the destination type.  This map should be sparse, so don't hold
2085  /// it as an array.
2086  ///
2087  /// Targets add entries to this map with AddPromotedToType(..), clients access
2088  /// this with getTypeToPromoteTo(..).
2089  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
2090    PromoteToType;
2091
2092  /// LibcallRoutineNames - Stores the name each libcall.
2093  ///
2094  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
2095
2096  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
2097  /// of each of the comparison libcall against zero.
2098  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
2099
2100  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
2101  /// libcall.
2102  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
2103
2104protected:
2105  /// When lowering \@llvm.memset this field specifies the maximum number of
2106  /// store operations that may be substituted for the call to memset. Targets
2107  /// must set this value based on the cost threshold for that target. Targets
2108  /// should assume that the memset will be done using as many of the largest
2109  /// store operations first, followed by smaller ones, if necessary, per
2110  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
2111  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
2112  /// store.  This only applies to setting a constant array of a constant size.
2113  /// @brief Specify maximum number of store instructions per memset call.
2114  unsigned maxStoresPerMemset;
2115
2116  /// Maximum number of stores operations that may be substituted for the call
2117  /// to memset, used for functions with OptSize attribute.
2118  unsigned maxStoresPerMemsetOptSize;
2119
2120  /// When lowering \@llvm.memcpy this field specifies the maximum number of
2121  /// store operations that may be substituted for a call to memcpy. Targets
2122  /// must set this value based on the cost threshold for that target. Targets
2123  /// should assume that the memcpy will be done using as many of the largest
2124  /// store operations first, followed by smaller ones, if necessary, per
2125  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
2126  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
2127  /// and one 1-byte store. This only applies to copying a constant array of
2128  /// constant size.
2129  /// @brief Specify maximum bytes of store instructions per memcpy call.
2130  unsigned maxStoresPerMemcpy;
2131
2132  /// Maximum number of store operations that may be substituted for a call
2133  /// to memcpy, used for functions with OptSize attribute.
2134  unsigned maxStoresPerMemcpyOptSize;
2135
2136  /// When lowering \@llvm.memmove this field specifies the maximum number of
2137  /// store instructions that may be substituted for a call to memmove. Targets
2138  /// must set this value based on the cost threshold for that target. Targets
2139  /// should assume that the memmove will be done using as many of the largest
2140  /// store operations first, followed by smaller ones, if necessary, per
2141  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2142  /// with 8-bit alignment would result in nine 1-byte stores.  This only
2143  /// applies to copying a constant array of constant size.
2144  /// @brief Specify maximum bytes of store instructions per memmove call.
2145  unsigned maxStoresPerMemmove;
2146
2147  /// Maximum number of store instructions that may be substituted for a call
2148  /// to memmove, used for functions with OpSize attribute.
2149  unsigned maxStoresPerMemmoveOptSize;
2150
2151  /// This field specifies whether the target can benefit from code placement
2152  /// optimization.
2153  bool benefitFromCodePlacementOpt;
2154
2155  /// predictableSelectIsExpensive - Tells the code generator that select is
2156  /// more expensive than a branch if the branch is usually predicted right.
2157  bool predictableSelectIsExpensive;
2158
2159private:
2160  /// isLegalRC - Return true if the value types that can be represented by the
2161  /// specified register class are all legal.
2162  bool isLegalRC(const TargetRegisterClass *RC) const;
2163};
2164
2165/// GetReturnInfo - Given an LLVM IR type and return type attributes,
2166/// compute the return value EVTs and flags, and optionally also
2167/// the offsets, if the return value is being lowered to memory.
2168void GetReturnInfo(Type* ReturnType, Attributes attr,
2169                   SmallVectorImpl<ISD::OutputArg> &Outs,
2170                   const TargetLowering &TLI);
2171
2172} // end llvm namespace
2173
2174#endif
2175