BasicAliasAnalysis.cpp revision 17f647d33237222bb8f79dad5046114a89a7efdf
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Operator.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/CaptureTracking.h"
27#include "llvm/Analysis/MemoryBuiltins.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Support/ErrorHandling.h"
33#include <algorithm>
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37// Useful predicates
38//===----------------------------------------------------------------------===//
39
40/// isKnownNonNull - Return true if we know that the specified value is never
41/// null.
42static bool isKnownNonNull(const Value *V) {
43  // Alloca never returns null, malloc might.
44  if (isa<AllocaInst>(V)) return true;
45
46  // A byval argument is never null.
47  if (const Argument *A = dyn_cast<Argument>(V))
48    return A->hasByValAttr();
49
50  // Global values are not null unless extern weak.
51  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
52    return !GV->hasExternalWeakLinkage();
53  return false;
54}
55
56/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
57/// object that never escapes from the function.
58static bool isNonEscapingLocalObject(const Value *V) {
59  // If this is a local allocation, check to see if it escapes.
60  if (isa<AllocaInst>(V) || isNoAliasCall(V))
61    // Set StoreCaptures to True so that we can assume in our callers that the
62    // pointer is not the result of a load instruction. Currently
63    // PointerMayBeCaptured doesn't have any special analysis for the
64    // StoreCaptures=false case; if it did, our callers could be refined to be
65    // more precise.
66    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
67
68  // If this is an argument that corresponds to a byval or noalias argument,
69  // then it has not escaped before entering the function.  Check if it escapes
70  // inside the function.
71  if (const Argument *A = dyn_cast<Argument>(V))
72    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
73      // Don't bother analyzing arguments already known not to escape.
74      if (A->hasNoCaptureAttr())
75        return true;
76      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
77    }
78  return false;
79}
80
81/// isEscapeSource - Return true if the pointer is one which would have
82/// been considered an escape by isNonEscapingLocalObject.
83static bool isEscapeSource(const Value *V) {
84  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
85    return true;
86
87  // The load case works because isNonEscapingLocalObject considers all
88  // stores to be escapes (it passes true for the StoreCaptures argument
89  // to PointerMayBeCaptured).
90  if (isa<LoadInst>(V))
91    return true;
92
93  return false;
94}
95
96/// isObjectSmallerThan - Return true if we can prove that the object specified
97/// by V is smaller than Size.
98static bool isObjectSmallerThan(const Value *V, unsigned Size,
99                                const TargetData &TD) {
100  const Type *AccessTy;
101  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
102    AccessTy = GV->getType()->getElementType();
103  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
104    if (!AI->isArrayAllocation())
105      AccessTy = AI->getType()->getElementType();
106    else
107      return false;
108  } else if (const CallInst* CI = extractMallocCall(V)) {
109    if (!isArrayMalloc(V, &TD))
110      // The size is the argument to the malloc call.
111      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
112        return (C->getZExtValue() < Size);
113    return false;
114  } else if (const Argument *A = dyn_cast<Argument>(V)) {
115    if (A->hasByValAttr())
116      AccessTy = cast<PointerType>(A->getType())->getElementType();
117    else
118      return false;
119  } else {
120    return false;
121  }
122
123  if (AccessTy->isSized())
124    return TD.getTypeAllocSize(AccessTy) < Size;
125  return false;
126}
127
128//===----------------------------------------------------------------------===//
129// NoAA Pass
130//===----------------------------------------------------------------------===//
131
132namespace {
133  /// NoAA - This class implements the -no-aa pass, which always returns "I
134  /// don't know" for alias queries.  NoAA is unlike other alias analysis
135  /// implementations, in that it does not chain to a previous analysis.  As
136  /// such it doesn't follow many of the rules that other alias analyses must.
137  ///
138  struct NoAA : public ImmutablePass, public AliasAnalysis {
139    static char ID; // Class identification, replacement for typeinfo
140    NoAA() : ImmutablePass(&ID) {}
141    explicit NoAA(void *PID) : ImmutablePass(PID) { }
142
143    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
144    }
145
146    virtual void initializePass() {
147      TD = getAnalysisIfAvailable<TargetData>();
148    }
149
150    virtual AliasResult alias(const Value *V1, unsigned V1Size,
151                              const Value *V2, unsigned V2Size) {
152      return MayAlias;
153    }
154
155    virtual bool pointsToConstantMemory(const Value *P) { return false; }
156    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
157      return ModRef;
158    }
159    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
160      return ModRef;
161    }
162
163    virtual void deleteValue(Value *V) {}
164    virtual void copyValue(Value *From, Value *To) {}
165
166    /// getAdjustedAnalysisPointer - This method is used when a pass implements
167    /// an analysis interface through multiple inheritance.  If needed, it should
168    /// override this to adjust the this pointer as needed for the specified pass
169    /// info.
170    virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
171      if (PI->isPassID(&AliasAnalysis::ID))
172        return (AliasAnalysis*)this;
173      return this;
174    }
175  };
176}  // End of anonymous namespace
177
178// Register this pass...
179char NoAA::ID = 0;
180INITIALIZE_AG_PASS(NoAA, AliasAnalysis, "no-aa",
181                   "No Alias Analysis (always returns 'may' alias)",
182                   true, true, false);
183
184ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
185
186//===----------------------------------------------------------------------===//
187// BasicAliasAnalysis Pass
188//===----------------------------------------------------------------------===//
189
190#ifndef NDEBUG
191static const Function *getParent(const Value *V) {
192  if (const Instruction *inst = dyn_cast<Instruction>(V))
193    return inst->getParent()->getParent();
194
195  if (const Argument *arg = dyn_cast<Argument>(V))
196    return arg->getParent();
197
198  return NULL;
199}
200
201static bool notDifferentParent(const Value *O1, const Value *O2) {
202
203  const Function *F1 = getParent(O1);
204  const Function *F2 = getParent(O2);
205
206  return !F1 || !F2 || F1 == F2;
207}
208#endif
209
210namespace {
211  /// BasicAliasAnalysis - This is the default alias analysis implementation.
212  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
213  /// derives from the NoAA class.
214  struct BasicAliasAnalysis : public NoAA {
215    static char ID; // Class identification, replacement for typeinfo
216    BasicAliasAnalysis() : NoAA(&ID) {}
217
218    AliasResult alias(const Value *V1, unsigned V1Size,
219                      const Value *V2, unsigned V2Size) {
220      assert(Visited.empty() && "Visited must be cleared after use!");
221      assert(notDifferentParent(V1, V2) &&
222             "BasicAliasAnalysis doesn't support interprocedural queries.");
223      AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
224      Visited.clear();
225      return Alias;
226    }
227
228    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
229    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
230
231    /// pointsToConstantMemory - Chase pointers until we find a (constant
232    /// global) or not.
233    bool pointsToConstantMemory(const Value *P);
234
235    /// getAdjustedAnalysisPointer - This method is used when a pass implements
236    /// an analysis interface through multiple inheritance.  If needed, it should
237    /// override this to adjust the this pointer as needed for the specified pass
238    /// info.
239    virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
240      if (PI->isPassID(&AliasAnalysis::ID))
241        return (AliasAnalysis*)this;
242      return this;
243    }
244
245  private:
246    // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP().
247    SmallPtrSet<const Value*, 16> Visited;
248
249    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
250    // instruction against another.
251    AliasResult aliasGEP(const GEPOperator *V1, unsigned V1Size,
252                         const Value *V2, unsigned V2Size,
253                         const Value *UnderlyingV1, const Value *UnderlyingV2);
254
255    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
256    // instruction against another.
257    AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
258                         const Value *V2, unsigned V2Size);
259
260    /// aliasSelect - Disambiguate a Select instruction against another value.
261    AliasResult aliasSelect(const SelectInst *SI, unsigned SISize,
262                            const Value *V2, unsigned V2Size);
263
264    AliasResult aliasCheck(const Value *V1, unsigned V1Size,
265                           const Value *V2, unsigned V2Size);
266  };
267}  // End of anonymous namespace
268
269// Register this pass...
270char BasicAliasAnalysis::ID = 0;
271INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa",
272                   "Basic Alias Analysis (default AA impl)",
273                   false, true, true);
274
275ImmutablePass *llvm::createBasicAliasAnalysisPass() {
276  return new BasicAliasAnalysis();
277}
278
279
280/// pointsToConstantMemory - Chase pointers until we find a (constant
281/// global) or not.
282bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
283  if (const GlobalVariable *GV =
284        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
285    // Note: this doesn't require GV to be "ODR" because it isn't legal for a
286    // global to be marked constant in some modules and non-constant in others.
287    // GV may even be a declaration, not a definition.
288    return GV->isConstant();
289  return false;
290}
291
292
293/// getModRefInfo - Check to see if the specified callsite can clobber the
294/// specified memory object.  Since we only look at local properties of this
295/// function, we really can't say much about this query.  We do, however, use
296/// simple "address taken" analysis on local objects.
297AliasAnalysis::ModRefResult
298BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
299  assert(notDifferentParent(CS.getInstruction(), P) &&
300         "AliasAnalysis query involving multiple functions!");
301
302  const Value *Object = P->getUnderlyingObject();
303
304  // If this is a tail call and P points to a stack location, we know that
305  // the tail call cannot access or modify the local stack.
306  // We cannot exclude byval arguments here; these belong to the caller of
307  // the current function not to the current function, and a tail callee
308  // may reference them.
309  if (isa<AllocaInst>(Object))
310    if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
311      if (CI->isTailCall())
312        return NoModRef;
313
314  // If the pointer is to a locally allocated object that does not escape,
315  // then the call can not mod/ref the pointer unless the call takes the pointer
316  // as an argument, and itself doesn't capture it.
317  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
318      isNonEscapingLocalObject(Object)) {
319    bool PassedAsArg = false;
320    unsigned ArgNo = 0;
321    for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
322         CI != CE; ++CI, ++ArgNo) {
323      // Only look at the no-capture pointer arguments.
324      if (!(*CI)->getType()->isPointerTy() ||
325          !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
326        continue;
327
328      // If  this is a no-capture pointer argument, see if we can tell that it
329      // is impossible to alias the pointer we're checking.  If not, we have to
330      // assume that the call could touch the pointer, even though it doesn't
331      // escape.
332      if (!isNoAlias(cast<Value>(CI), UnknownSize, P, UnknownSize)) {
333        PassedAsArg = true;
334        break;
335      }
336    }
337
338    if (!PassedAsArg)
339      return NoModRef;
340  }
341
342  // Finally, handle specific knowledge of intrinsics.
343  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
344  if (II == 0)
345    return AliasAnalysis::getModRefInfo(CS, P, Size);
346
347  switch (II->getIntrinsicID()) {
348  default: break;
349  case Intrinsic::memcpy:
350  case Intrinsic::memmove: {
351    unsigned Len = UnknownSize;
352    if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
353      Len = LenCI->getZExtValue();
354    Value *Dest = II->getArgOperand(0);
355    Value *Src = II->getArgOperand(1);
356    if (isNoAlias(Dest, Len, P, Size)) {
357      if (isNoAlias(Src, Len, P, Size))
358        return NoModRef;
359      return Ref;
360    }
361    break;
362  }
363  case Intrinsic::memset:
364    // Since memset is 'accesses arguments' only, the AliasAnalysis base class
365    // will handle it for the variable length case.
366    if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
367      unsigned Len = LenCI->getZExtValue();
368      Value *Dest = II->getArgOperand(0);
369      if (isNoAlias(Dest, Len, P, Size))
370        return NoModRef;
371    }
372    break;
373  case Intrinsic::atomic_cmp_swap:
374  case Intrinsic::atomic_swap:
375  case Intrinsic::atomic_load_add:
376  case Intrinsic::atomic_load_sub:
377  case Intrinsic::atomic_load_and:
378  case Intrinsic::atomic_load_nand:
379  case Intrinsic::atomic_load_or:
380  case Intrinsic::atomic_load_xor:
381  case Intrinsic::atomic_load_max:
382  case Intrinsic::atomic_load_min:
383  case Intrinsic::atomic_load_umax:
384  case Intrinsic::atomic_load_umin:
385    if (TD) {
386      Value *Op1 = II->getArgOperand(0);
387      unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
388      if (isNoAlias(Op1, Op1Size, P, Size))
389        return NoModRef;
390    }
391    break;
392  case Intrinsic::lifetime_start:
393  case Intrinsic::lifetime_end:
394  case Intrinsic::invariant_start: {
395    unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
396    if (isNoAlias(II->getArgOperand(1), PtrSize, P, Size))
397      return NoModRef;
398    break;
399  }
400  case Intrinsic::invariant_end: {
401    unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
402    if (isNoAlias(II->getArgOperand(2), PtrSize, P, Size))
403      return NoModRef;
404    break;
405  }
406  }
407
408  // The AliasAnalysis base class has some smarts, lets use them.
409  return AliasAnalysis::getModRefInfo(CS, P, Size);
410}
411
412
413AliasAnalysis::ModRefResult
414BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
415  // If CS1 or CS2 are readnone, they don't interact.
416  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
417  if (CS1B == DoesNotAccessMemory) return NoModRef;
418
419  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
420  if (CS2B == DoesNotAccessMemory) return NoModRef;
421
422  // If they both only read from memory, just return ref.
423  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
424    return Ref;
425
426  // Otherwise, fall back to NoAA (mod+ref).
427  return NoAA::getModRefInfo(CS1, CS2);
428}
429
430/// GetIndiceDifference - Dest and Src are the variable indices from two
431/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
432/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
433/// difference between the two pointers.
434static void GetIndiceDifference(
435                      SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest,
436                const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) {
437  if (Src.empty()) return;
438
439  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
440    const Value *V = Src[i].first;
441    int64_t Scale = Src[i].second;
442
443    // Find V in Dest.  This is N^2, but pointer indices almost never have more
444    // than a few variable indexes.
445    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
446      if (Dest[j].first != V) continue;
447
448      // If we found it, subtract off Scale V's from the entry in Dest.  If it
449      // goes to zero, remove the entry.
450      if (Dest[j].second != Scale)
451        Dest[j].second -= Scale;
452      else
453        Dest.erase(Dest.begin()+j);
454      Scale = 0;
455      break;
456    }
457
458    // If we didn't consume this entry, add it to the end of the Dest list.
459    if (Scale)
460      Dest.push_back(std::make_pair(V, -Scale));
461  }
462}
463
464/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
465/// against another pointer.  We know that V1 is a GEP, but we don't know
466/// anything about V2.  UnderlyingV1 is GEP1->getUnderlyingObject(),
467/// UnderlyingV2 is the same for V2.
468///
469AliasAnalysis::AliasResult
470BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size,
471                             const Value *V2, unsigned V2Size,
472                             const Value *UnderlyingV1,
473                             const Value *UnderlyingV2) {
474  // If this GEP has been visited before, we're on a use-def cycle.
475  // Such cycles are only valid when PHI nodes are involved or in unreachable
476  // code. The visitPHI function catches cycles containing PHIs, but there
477  // could still be a cycle without PHIs in unreachable code.
478  if (!Visited.insert(GEP1))
479    return MayAlias;
480
481  int64_t GEP1BaseOffset;
482  SmallVector<std::pair<const Value*, int64_t>, 4> GEP1VariableIndices;
483
484  // If we have two gep instructions with must-alias'ing base pointers, figure
485  // out if the indexes to the GEP tell us anything about the derived pointer.
486  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
487    // Do the base pointers alias?
488    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize,
489                                       UnderlyingV2, UnknownSize);
490
491    // If we get a No or May, then return it immediately, no amount of analysis
492    // will improve this situation.
493    if (BaseAlias != MustAlias) return BaseAlias;
494
495    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
496    // exactly, see if the computed offset from the common pointer tells us
497    // about the relation of the resulting pointer.
498    const Value *GEP1BasePtr =
499      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
500
501    int64_t GEP2BaseOffset;
502    SmallVector<std::pair<const Value*, int64_t>, 4> GEP2VariableIndices;
503    const Value *GEP2BasePtr =
504      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
505
506    // If DecomposeGEPExpression isn't able to look all the way through the
507    // addressing operation, we must not have TD and this is too complex for us
508    // to handle without it.
509    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
510      assert(TD == 0 &&
511             "DecomposeGEPExpression and getUnderlyingObject disagree!");
512      return MayAlias;
513    }
514
515    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
516    // symbolic difference.
517    GEP1BaseOffset -= GEP2BaseOffset;
518    GetIndiceDifference(GEP1VariableIndices, GEP2VariableIndices);
519
520  } else {
521    // Check to see if these two pointers are related by the getelementptr
522    // instruction.  If one pointer is a GEP with a non-zero index of the other
523    // pointer, we know they cannot alias.
524
525    // If both accesses are unknown size, we can't do anything useful here.
526    if (V1Size == UnknownSize && V2Size == UnknownSize)
527      return MayAlias;
528
529    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, V2, V2Size);
530    if (R != MustAlias)
531      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
532      // If V2 is known not to alias GEP base pointer, then the two values
533      // cannot alias per GEP semantics: "A pointer value formed from a
534      // getelementptr instruction is associated with the addresses associated
535      // with the first operand of the getelementptr".
536      return R;
537
538    const Value *GEP1BasePtr =
539      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
540
541    // If DecomposeGEPExpression isn't able to look all the way through the
542    // addressing operation, we must not have TD and this is too complex for us
543    // to handle without it.
544    if (GEP1BasePtr != UnderlyingV1) {
545      assert(TD == 0 &&
546             "DecomposeGEPExpression and getUnderlyingObject disagree!");
547      return MayAlias;
548    }
549  }
550
551  // In the two GEP Case, if there is no difference in the offsets of the
552  // computed pointers, the resultant pointers are a must alias.  This
553  // hapens when we have two lexically identical GEP's (for example).
554  //
555  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
556  // must aliases the GEP, the end result is a must alias also.
557  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
558    return MustAlias;
559
560  // If we have a known constant offset, see if this offset is larger than the
561  // access size being queried.  If so, and if no variable indices can remove
562  // pieces of this constant, then we know we have a no-alias.  For example,
563  //   &A[100] != &A.
564
565  // In order to handle cases like &A[100][i] where i is an out of range
566  // subscript, we have to ignore all constant offset pieces that are a multiple
567  // of a scaled index.  Do this by removing constant offsets that are a
568  // multiple of any of our variable indices.  This allows us to transform
569  // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
570  // provides an offset of 4 bytes (assuming a <= 4 byte access).
571  for (unsigned i = 0, e = GEP1VariableIndices.size();
572       i != e && GEP1BaseOffset;++i)
573    if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].second)
574      GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].second;
575
576  // If our known offset is bigger than the access size, we know we don't have
577  // an alias.
578  if (GEP1BaseOffset) {
579    if (GEP1BaseOffset >= (int64_t)V2Size ||
580        GEP1BaseOffset <= -(int64_t)V1Size)
581      return NoAlias;
582  }
583
584  return MayAlias;
585}
586
587/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
588/// instruction against another.
589AliasAnalysis::AliasResult
590BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize,
591                                const Value *V2, unsigned V2Size) {
592  // If this select has been visited before, we're on a use-def cycle.
593  // Such cycles are only valid when PHI nodes are involved or in unreachable
594  // code. The visitPHI function catches cycles containing PHIs, but there
595  // could still be a cycle without PHIs in unreachable code.
596  if (!Visited.insert(SI))
597    return MayAlias;
598
599  // If the values are Selects with the same condition, we can do a more precise
600  // check: just check for aliases between the values on corresponding arms.
601  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
602    if (SI->getCondition() == SI2->getCondition()) {
603      AliasResult Alias =
604        aliasCheck(SI->getTrueValue(), SISize,
605                   SI2->getTrueValue(), V2Size);
606      if (Alias == MayAlias)
607        return MayAlias;
608      AliasResult ThisAlias =
609        aliasCheck(SI->getFalseValue(), SISize,
610                   SI2->getFalseValue(), V2Size);
611      if (ThisAlias != Alias)
612        return MayAlias;
613      return Alias;
614    }
615
616  // If both arms of the Select node NoAlias or MustAlias V2, then returns
617  // NoAlias / MustAlias. Otherwise, returns MayAlias.
618  AliasResult Alias =
619    aliasCheck(V2, V2Size, SI->getTrueValue(), SISize);
620  if (Alias == MayAlias)
621    return MayAlias;
622
623  // If V2 is visited, the recursive case will have been caught in the
624  // above aliasCheck call, so these subsequent calls to aliasCheck
625  // don't need to assume that V2 is being visited recursively.
626  Visited.erase(V2);
627
628  AliasResult ThisAlias =
629    aliasCheck(V2, V2Size, SI->getFalseValue(), SISize);
630  if (ThisAlias != Alias)
631    return MayAlias;
632  return Alias;
633}
634
635// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
636// against another.
637AliasAnalysis::AliasResult
638BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
639                             const Value *V2, unsigned V2Size) {
640  // The PHI node has already been visited, avoid recursion any further.
641  if (!Visited.insert(PN))
642    return MayAlias;
643
644  // If the values are PHIs in the same block, we can do a more precise
645  // as well as efficient check: just check for aliases between the values
646  // on corresponding edges.
647  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
648    if (PN2->getParent() == PN->getParent()) {
649      AliasResult Alias =
650        aliasCheck(PN->getIncomingValue(0), PNSize,
651                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
652                   V2Size);
653      if (Alias == MayAlias)
654        return MayAlias;
655      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
656        AliasResult ThisAlias =
657          aliasCheck(PN->getIncomingValue(i), PNSize,
658                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
659                     V2Size);
660        if (ThisAlias != Alias)
661          return MayAlias;
662      }
663      return Alias;
664    }
665
666  SmallPtrSet<Value*, 4> UniqueSrc;
667  SmallVector<Value*, 4> V1Srcs;
668  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
669    Value *PV1 = PN->getIncomingValue(i);
670    if (isa<PHINode>(PV1))
671      // If any of the source itself is a PHI, return MayAlias conservatively
672      // to avoid compile time explosion. The worst possible case is if both
673      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
674      // and 'n' are the number of PHI sources.
675      return MayAlias;
676    if (UniqueSrc.insert(PV1))
677      V1Srcs.push_back(PV1);
678  }
679
680  AliasResult Alias = aliasCheck(V2, V2Size, V1Srcs[0], PNSize);
681  // Early exit if the check of the first PHI source against V2 is MayAlias.
682  // Other results are not possible.
683  if (Alias == MayAlias)
684    return MayAlias;
685
686  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
687  // NoAlias / MustAlias. Otherwise, returns MayAlias.
688  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
689    Value *V = V1Srcs[i];
690
691    // If V2 is visited, the recursive case will have been caught in the
692    // above aliasCheck call, so these subsequent calls to aliasCheck
693    // don't need to assume that V2 is being visited recursively.
694    Visited.erase(V2);
695
696    AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize);
697    if (ThisAlias != Alias || ThisAlias == MayAlias)
698      return MayAlias;
699  }
700
701  return Alias;
702}
703
704// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
705// such as array references.
706//
707AliasAnalysis::AliasResult
708BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
709                               const Value *V2, unsigned V2Size) {
710  // If either of the memory references is empty, it doesn't matter what the
711  // pointer values are.
712  if (V1Size == 0 || V2Size == 0)
713    return NoAlias;
714
715  // Strip off any casts if they exist.
716  V1 = V1->stripPointerCasts();
717  V2 = V2->stripPointerCasts();
718
719  // Are we checking for alias of the same value?
720  if (V1 == V2) return MustAlias;
721
722  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
723    return NoAlias;  // Scalars cannot alias each other
724
725  // Figure out what objects these things are pointing to if we can.
726  const Value *O1 = V1->getUnderlyingObject();
727  const Value *O2 = V2->getUnderlyingObject();
728
729  // Null values in the default address space don't point to any object, so they
730  // don't alias any other pointer.
731  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
732    if (CPN->getType()->getAddressSpace() == 0)
733      return NoAlias;
734  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
735    if (CPN->getType()->getAddressSpace() == 0)
736      return NoAlias;
737
738  if (O1 != O2) {
739    // If V1/V2 point to two different objects we know that we have no alias.
740    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
741      return NoAlias;
742
743    // Constant pointers can't alias with non-const isIdentifiedObject objects.
744    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
745        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
746      return NoAlias;
747
748    // Arguments can't alias with local allocations or noalias calls
749    // in the same function.
750    if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
751         (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
752      return NoAlias;
753
754    // Most objects can't alias null.
755    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
756        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
757      return NoAlias;
758
759    // If one pointer is the result of a call/invoke or load and the other is a
760    // non-escaping local object within the same function, then we know the
761    // object couldn't escape to a point where the call could return it.
762    //
763    // Note that if the pointers are in different functions, there are a
764    // variety of complications. A call with a nocapture argument may still
765    // temporary store the nocapture argument's value in a temporary memory
766    // location if that memory location doesn't escape. Or it may pass a
767    // nocapture value to other functions as long as they don't capture it.
768    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
769      return NoAlias;
770    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
771      return NoAlias;
772  }
773
774  // If the size of one access is larger than the entire object on the other
775  // side, then we know such behavior is undefined and can assume no alias.
776  if (TD)
777    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) ||
778        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD)))
779      return NoAlias;
780
781  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
782  // GEP can't simplify, we don't even look at the PHI cases.
783  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
784    std::swap(V1, V2);
785    std::swap(V1Size, V2Size);
786    std::swap(O1, O2);
787  }
788  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1))
789    return aliasGEP(GV1, V1Size, V2, V2Size, O1, O2);
790
791  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
792    std::swap(V1, V2);
793    std::swap(V1Size, V2Size);
794  }
795  if (const PHINode *PN = dyn_cast<PHINode>(V1))
796    return aliasPHI(PN, V1Size, V2, V2Size);
797
798  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
799    std::swap(V1, V2);
800    std::swap(V1Size, V2Size);
801  }
802  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1))
803    return aliasSelect(S1, V1Size, V2, V2Size);
804
805  return MayAlias;
806}
807
808// Make sure that anything that uses AliasAnalysis pulls in this file.
809DEFINING_FILE_FOR(BasicAliasAnalysis)
810