BasicAliasAnalysis.cpp revision 71339c965ca6268b9bff91213364783c3d06f666
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Operator.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/CaptureTracking.h"
27#include "llvm/Analysis/MemoryBuiltins.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Support/ErrorHandling.h"
33#include <algorithm>
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37// Useful predicates
38//===----------------------------------------------------------------------===//
39
40/// isKnownNonNull - Return true if we know that the specified value is never
41/// null.
42static bool isKnownNonNull(const Value *V) {
43  // Alloca never returns null, malloc might.
44  if (isa<AllocaInst>(V)) return true;
45
46  // A byval argument is never null.
47  if (const Argument *A = dyn_cast<Argument>(V))
48    return A->hasByValAttr();
49
50  // Global values are not null unless extern weak.
51  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
52    return !GV->hasExternalWeakLinkage();
53  return false;
54}
55
56/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
57/// object that never escapes from the function.
58static bool isNonEscapingLocalObject(const Value *V) {
59  // If this is a local allocation, check to see if it escapes.
60  if (isa<AllocaInst>(V) || isNoAliasCall(V))
61    // Set StoreCaptures to True so that we can assume in our callers that the
62    // pointer is not the result of a load instruction. Currently
63    // PointerMayBeCaptured doesn't have any special analysis for the
64    // StoreCaptures=false case; if it did, our callers could be refined to be
65    // more precise.
66    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
67
68  // If this is an argument that corresponds to a byval or noalias argument,
69  // then it has not escaped before entering the function.  Check if it escapes
70  // inside the function.
71  if (const Argument *A = dyn_cast<Argument>(V))
72    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
73      // Don't bother analyzing arguments already known not to escape.
74      if (A->hasNoCaptureAttr())
75        return true;
76      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
77    }
78  return false;
79}
80
81
82/// isObjectSmallerThan - Return true if we can prove that the object specified
83/// by V is smaller than Size.
84static bool isObjectSmallerThan(const Value *V, unsigned Size,
85                                const TargetData &TD) {
86  const Type *AccessTy;
87  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
88    AccessTy = GV->getType()->getElementType();
89  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
90    if (!AI->isArrayAllocation())
91      AccessTy = AI->getType()->getElementType();
92    else
93      return false;
94  } else if (const CallInst* CI = extractMallocCall(V)) {
95    if (!isArrayMalloc(V, &TD))
96      // The size is the argument to the malloc call.
97      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
98        return (C->getZExtValue() < Size);
99    return false;
100  } else if (const Argument *A = dyn_cast<Argument>(V)) {
101    if (A->hasByValAttr())
102      AccessTy = cast<PointerType>(A->getType())->getElementType();
103    else
104      return false;
105  } else {
106    return false;
107  }
108
109  if (AccessTy->isSized())
110    return TD.getTypeAllocSize(AccessTy) < Size;
111  return false;
112}
113
114//===----------------------------------------------------------------------===//
115// NoAA Pass
116//===----------------------------------------------------------------------===//
117
118namespace {
119  /// NoAA - This class implements the -no-aa pass, which always returns "I
120  /// don't know" for alias queries.  NoAA is unlike other alias analysis
121  /// implementations, in that it does not chain to a previous analysis.  As
122  /// such it doesn't follow many of the rules that other alias analyses must.
123  ///
124  struct NoAA : public ImmutablePass, public AliasAnalysis {
125    static char ID; // Class identification, replacement for typeinfo
126    NoAA() : ImmutablePass(&ID) {}
127    explicit NoAA(void *PID) : ImmutablePass(PID) { }
128
129    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
130    }
131
132    virtual void initializePass() {
133      TD = getAnalysisIfAvailable<TargetData>();
134    }
135
136    virtual AliasResult alias(const Value *V1, unsigned V1Size,
137                              const Value *V2, unsigned V2Size) {
138      return MayAlias;
139    }
140
141    virtual void getArgumentAccesses(Function *F, CallSite CS,
142                                     std::vector<PointerAccessInfo> &Info) {
143      llvm_unreachable("This method may not be called on this function!");
144    }
145
146    virtual bool pointsToConstantMemory(const Value *P) { return false; }
147    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
148      return ModRef;
149    }
150    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
151      return ModRef;
152    }
153
154    virtual void deleteValue(Value *V) {}
155    virtual void copyValue(Value *From, Value *To) {}
156
157    /// getAdjustedAnalysisPointer - This method is used when a pass implements
158    /// an analysis interface through multiple inheritance.  If needed, it should
159    /// override this to adjust the this pointer as needed for the specified pass
160    /// info.
161    virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
162      if (PI->isPassID(&AliasAnalysis::ID))
163        return (AliasAnalysis*)this;
164      return this;
165    }
166  };
167}  // End of anonymous namespace
168
169// Register this pass...
170char NoAA::ID = 0;
171static RegisterPass<NoAA>
172U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
173
174// Declare that we implement the AliasAnalysis interface
175static RegisterAnalysisGroup<AliasAnalysis> V(U);
176
177ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
178
179//===----------------------------------------------------------------------===//
180// BasicAA Pass
181//===----------------------------------------------------------------------===//
182
183namespace {
184  /// BasicAliasAnalysis - This is the default alias analysis implementation.
185  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
186  /// derives from the NoAA class.
187  struct BasicAliasAnalysis : public NoAA {
188    static char ID; // Class identification, replacement for typeinfo
189    BasicAliasAnalysis() : NoAA(&ID) {}
190    AliasResult alias(const Value *V1, unsigned V1Size,
191                      const Value *V2, unsigned V2Size) {
192      assert(VisitedPHIs.empty() && "VisitedPHIs must be cleared after use!");
193      AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
194      VisitedPHIs.clear();
195      return Alias;
196    }
197
198    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
199    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
200
201    /// pointsToConstantMemory - Chase pointers until we find a (constant
202    /// global) or not.
203    bool pointsToConstantMemory(const Value *P);
204
205    /// getAdjustedAnalysisPointer - This method is used when a pass implements
206    /// an analysis interface through multiple inheritance.  If needed, it should
207    /// override this to adjust the this pointer as needed for the specified pass
208    /// info.
209    virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
210      if (PI->isPassID(&AliasAnalysis::ID))
211        return (AliasAnalysis*)this;
212      return this;
213    }
214
215  private:
216    // VisitedPHIs - Track PHI nodes visited by a aliasCheck() call.
217    SmallPtrSet<const Value*, 16> VisitedPHIs;
218
219    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
220    // instruction against another.
221    AliasResult aliasGEP(const GEPOperator *V1, unsigned V1Size,
222                         const Value *V2, unsigned V2Size,
223                         const Value *UnderlyingV1, const Value *UnderlyingV2);
224
225    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
226    // instruction against another.
227    AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
228                         const Value *V2, unsigned V2Size);
229
230    /// aliasSelect - Disambiguate a Select instruction against another value.
231    AliasResult aliasSelect(const SelectInst *SI, unsigned SISize,
232                            const Value *V2, unsigned V2Size);
233
234    AliasResult aliasCheck(const Value *V1, unsigned V1Size,
235                           const Value *V2, unsigned V2Size);
236  };
237}  // End of anonymous namespace
238
239// Register this pass...
240char BasicAliasAnalysis::ID = 0;
241static RegisterPass<BasicAliasAnalysis>
242X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
243
244// Declare that we implement the AliasAnalysis interface
245static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
246
247ImmutablePass *llvm::createBasicAliasAnalysisPass() {
248  return new BasicAliasAnalysis();
249}
250
251
252/// pointsToConstantMemory - Chase pointers until we find a (constant
253/// global) or not.
254bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
255  if (const GlobalVariable *GV =
256        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
257    // Note: this doesn't require GV to be "ODR" because it isn't legal for a
258    // global to be marked constant in some modules and non-constant in others.
259    // GV may even be a declaration, not a definition.
260    return GV->isConstant();
261  return false;
262}
263
264
265/// getModRefInfo - Check to see if the specified callsite can clobber the
266/// specified memory object.  Since we only look at local properties of this
267/// function, we really can't say much about this query.  We do, however, use
268/// simple "address taken" analysis on local objects.
269AliasAnalysis::ModRefResult
270BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
271  const Value *Object = P->getUnderlyingObject();
272
273  // If this is a tail call and P points to a stack location, we know that
274  // the tail call cannot access or modify the local stack.
275  // We cannot exclude byval arguments here; these belong to the caller of
276  // the current function not to the current function, and a tail callee
277  // may reference them.
278  if (isa<AllocaInst>(Object))
279    if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
280      if (CI->isTailCall())
281        return NoModRef;
282
283  // If the pointer is to a locally allocated object that does not escape,
284  // then the call can not mod/ref the pointer unless the call takes the pointer
285  // as an argument, and itself doesn't capture it.
286  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
287      isNonEscapingLocalObject(Object)) {
288    bool PassedAsArg = false;
289    unsigned ArgNo = 0;
290    for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
291         CI != CE; ++CI, ++ArgNo) {
292      // Only look at the no-capture pointer arguments.
293      if (!(*CI)->getType()->isPointerTy() ||
294          !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
295        continue;
296
297      // If  this is a no-capture pointer argument, see if we can tell that it
298      // is impossible to alias the pointer we're checking.  If not, we have to
299      // assume that the call could touch the pointer, even though it doesn't
300      // escape.
301      if (!isNoAlias(cast<Value>(CI), ~0U, P, ~0U)) {
302        PassedAsArg = true;
303        break;
304      }
305    }
306
307    if (!PassedAsArg)
308      return NoModRef;
309  }
310
311  // Finally, handle specific knowledge of intrinsics.
312  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
313  if (II == 0)
314    return AliasAnalysis::getModRefInfo(CS, P, Size);
315
316  switch (II->getIntrinsicID()) {
317  default: break;
318  case Intrinsic::memcpy:
319  case Intrinsic::memmove: {
320    unsigned Len = ~0U;
321    if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
322      Len = LenCI->getZExtValue();
323    Value *Dest = II->getArgOperand(0);
324    Value *Src = II->getArgOperand(1);
325    if (isNoAlias(Dest, Len, P, Size)) {
326      if (isNoAlias(Src, Len, P, Size))
327        return NoModRef;
328      return Ref;
329    }
330    break;
331  }
332  case Intrinsic::memset:
333    // Since memset is 'accesses arguments' only, the AliasAnalysis base class
334    // will handle it for the variable length case.
335    if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
336      unsigned Len = LenCI->getZExtValue();
337      Value *Dest = II->getArgOperand(0);
338      if (isNoAlias(Dest, Len, P, Size))
339        return NoModRef;
340    }
341    break;
342  case Intrinsic::atomic_cmp_swap:
343  case Intrinsic::atomic_swap:
344  case Intrinsic::atomic_load_add:
345  case Intrinsic::atomic_load_sub:
346  case Intrinsic::atomic_load_and:
347  case Intrinsic::atomic_load_nand:
348  case Intrinsic::atomic_load_or:
349  case Intrinsic::atomic_load_xor:
350  case Intrinsic::atomic_load_max:
351  case Intrinsic::atomic_load_min:
352  case Intrinsic::atomic_load_umax:
353  case Intrinsic::atomic_load_umin:
354    if (TD) {
355      Value *Op1 = II->getArgOperand(0);
356      unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
357      if (isNoAlias(Op1, Op1Size, P, Size))
358        return NoModRef;
359    }
360    break;
361  case Intrinsic::lifetime_start:
362  case Intrinsic::lifetime_end:
363  case Intrinsic::invariant_start: {
364    unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
365    if (isNoAlias(II->getArgOperand(1), PtrSize, P, Size))
366      return NoModRef;
367    break;
368  }
369  case Intrinsic::invariant_end: {
370    unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
371    if (isNoAlias(II->getArgOperand(2), PtrSize, P, Size))
372      return NoModRef;
373    break;
374  }
375  }
376
377  // The AliasAnalysis base class has some smarts, lets use them.
378  return AliasAnalysis::getModRefInfo(CS, P, Size);
379}
380
381
382AliasAnalysis::ModRefResult
383BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
384  // If CS1 or CS2 are readnone, they don't interact.
385  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
386  if (CS1B == DoesNotAccessMemory) return NoModRef;
387
388  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
389  if (CS2B == DoesNotAccessMemory) return NoModRef;
390
391  // If they both only read from memory, just return ref.
392  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
393    return Ref;
394
395  // Otherwise, fall back to NoAA (mod+ref).
396  return NoAA::getModRefInfo(CS1, CS2);
397}
398
399/// GetIndiceDifference - Dest and Src are the variable indices from two
400/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
401/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
402/// difference between the two pointers.
403static void GetIndiceDifference(
404                      SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest,
405                const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) {
406  if (Src.empty()) return;
407
408  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
409    const Value *V = Src[i].first;
410    int64_t Scale = Src[i].second;
411
412    // Find V in Dest.  This is N^2, but pointer indices almost never have more
413    // than a few variable indexes.
414    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
415      if (Dest[j].first != V) continue;
416
417      // If we found it, subtract off Scale V's from the entry in Dest.  If it
418      // goes to zero, remove the entry.
419      if (Dest[j].second != Scale)
420        Dest[j].second -= Scale;
421      else
422        Dest.erase(Dest.begin()+j);
423      Scale = 0;
424      break;
425    }
426
427    // If we didn't consume this entry, add it to the end of the Dest list.
428    if (Scale)
429      Dest.push_back(std::make_pair(V, -Scale));
430  }
431}
432
433/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
434/// against another pointer.  We know that V1 is a GEP, but we don't know
435/// anything about V2.  UnderlyingV1 is GEP1->getUnderlyingObject(),
436/// UnderlyingV2 is the same for V2.
437///
438AliasAnalysis::AliasResult
439BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size,
440                             const Value *V2, unsigned V2Size,
441                             const Value *UnderlyingV1,
442                             const Value *UnderlyingV2) {
443  int64_t GEP1BaseOffset;
444  SmallVector<std::pair<const Value*, int64_t>, 4> GEP1VariableIndices;
445
446  // If we have two gep instructions with must-alias'ing base pointers, figure
447  // out if the indexes to the GEP tell us anything about the derived pointer.
448  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
449    // Do the base pointers alias?
450    AliasResult BaseAlias = aliasCheck(UnderlyingV1, ~0U, UnderlyingV2, ~0U);
451
452    // If we get a No or May, then return it immediately, no amount of analysis
453    // will improve this situation.
454    if (BaseAlias != MustAlias) return BaseAlias;
455
456    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
457    // exactly, see if the computed offset from the common pointer tells us
458    // about the relation of the resulting pointer.
459    const Value *GEP1BasePtr =
460      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
461
462    int64_t GEP2BaseOffset;
463    SmallVector<std::pair<const Value*, int64_t>, 4> GEP2VariableIndices;
464    const Value *GEP2BasePtr =
465      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
466
467    // If DecomposeGEPExpression isn't able to look all the way through the
468    // addressing operation, we must not have TD and this is too complex for us
469    // to handle without it.
470    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
471      assert(TD == 0 &&
472             "DecomposeGEPExpression and getUnderlyingObject disagree!");
473      return MayAlias;
474    }
475
476    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
477    // symbolic difference.
478    GEP1BaseOffset -= GEP2BaseOffset;
479    GetIndiceDifference(GEP1VariableIndices, GEP2VariableIndices);
480
481  } else {
482    // Check to see if these two pointers are related by the getelementptr
483    // instruction.  If one pointer is a GEP with a non-zero index of the other
484    // pointer, we know they cannot alias.
485
486    // If both accesses are unknown size, we can't do anything useful here.
487    if (V1Size == ~0U && V2Size == ~0U)
488      return MayAlias;
489
490    AliasResult R = aliasCheck(UnderlyingV1, ~0U, V2, V2Size);
491    if (R != MustAlias)
492      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
493      // If V2 is known not to alias GEP base pointer, then the two values
494      // cannot alias per GEP semantics: "A pointer value formed from a
495      // getelementptr instruction is associated with the addresses associated
496      // with the first operand of the getelementptr".
497      return R;
498
499    const Value *GEP1BasePtr =
500      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
501
502    // If DecomposeGEPExpression isn't able to look all the way through the
503    // addressing operation, we must not have TD and this is too complex for us
504    // to handle without it.
505    if (GEP1BasePtr != UnderlyingV1) {
506      assert(TD == 0 &&
507             "DecomposeGEPExpression and getUnderlyingObject disagree!");
508      return MayAlias;
509    }
510  }
511
512  // In the two GEP Case, if there is no difference in the offsets of the
513  // computed pointers, the resultant pointers are a must alias.  This
514  // hapens when we have two lexically identical GEP's (for example).
515  //
516  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
517  // must aliases the GEP, the end result is a must alias also.
518  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
519    return MustAlias;
520
521  // If we have a known constant offset, see if this offset is larger than the
522  // access size being queried.  If so, and if no variable indices can remove
523  // pieces of this constant, then we know we have a no-alias.  For example,
524  //   &A[100] != &A.
525
526  // In order to handle cases like &A[100][i] where i is an out of range
527  // subscript, we have to ignore all constant offset pieces that are a multiple
528  // of a scaled index.  Do this by removing constant offsets that are a
529  // multiple of any of our variable indices.  This allows us to transform
530  // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
531  // provides an offset of 4 bytes (assuming a <= 4 byte access).
532  for (unsigned i = 0, e = GEP1VariableIndices.size();
533       i != e && GEP1BaseOffset;++i)
534    if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].second)
535      GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].second;
536
537  // If our known offset is bigger than the access size, we know we don't have
538  // an alias.
539  if (GEP1BaseOffset) {
540    if (GEP1BaseOffset >= (int64_t)V2Size ||
541        GEP1BaseOffset <= -(int64_t)V1Size)
542      return NoAlias;
543  }
544
545  return MayAlias;
546}
547
548/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
549/// instruction against another.
550AliasAnalysis::AliasResult
551BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize,
552                                const Value *V2, unsigned V2Size) {
553  // If the values are Selects with the same condition, we can do a more precise
554  // check: just check for aliases between the values on corresponding arms.
555  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
556    if (SI->getCondition() == SI2->getCondition()) {
557      AliasResult Alias =
558        aliasCheck(SI->getTrueValue(), SISize,
559                   SI2->getTrueValue(), V2Size);
560      if (Alias == MayAlias)
561        return MayAlias;
562      AliasResult ThisAlias =
563        aliasCheck(SI->getFalseValue(), SISize,
564                   SI2->getFalseValue(), V2Size);
565      if (ThisAlias != Alias)
566        return MayAlias;
567      return Alias;
568    }
569
570  // If both arms of the Select node NoAlias or MustAlias V2, then returns
571  // NoAlias / MustAlias. Otherwise, returns MayAlias.
572  AliasResult Alias =
573    aliasCheck(SI->getTrueValue(), SISize, V2, V2Size);
574  if (Alias == MayAlias)
575    return MayAlias;
576  AliasResult ThisAlias =
577    aliasCheck(SI->getFalseValue(), SISize, V2, V2Size);
578  if (ThisAlias != Alias)
579    return MayAlias;
580  return Alias;
581}
582
583// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
584// against another.
585AliasAnalysis::AliasResult
586BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
587                             const Value *V2, unsigned V2Size) {
588  // The PHI node has already been visited, avoid recursion any further.
589  if (!VisitedPHIs.insert(PN))
590    return MayAlias;
591
592  // If the values are PHIs in the same block, we can do a more precise
593  // as well as efficient check: just check for aliases between the values
594  // on corresponding edges.
595  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
596    if (PN2->getParent() == PN->getParent()) {
597      AliasResult Alias =
598        aliasCheck(PN->getIncomingValue(0), PNSize,
599                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
600                   V2Size);
601      if (Alias == MayAlias)
602        return MayAlias;
603      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
604        AliasResult ThisAlias =
605          aliasCheck(PN->getIncomingValue(i), PNSize,
606                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
607                     V2Size);
608        if (ThisAlias != Alias)
609          return MayAlias;
610      }
611      return Alias;
612    }
613
614  SmallPtrSet<Value*, 4> UniqueSrc;
615  SmallVector<Value*, 4> V1Srcs;
616  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
617    Value *PV1 = PN->getIncomingValue(i);
618    if (isa<PHINode>(PV1))
619      // If any of the source itself is a PHI, return MayAlias conservatively
620      // to avoid compile time explosion. The worst possible case is if both
621      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
622      // and 'n' are the number of PHI sources.
623      return MayAlias;
624    if (UniqueSrc.insert(PV1))
625      V1Srcs.push_back(PV1);
626  }
627
628  AliasResult Alias = aliasCheck(V2, V2Size, V1Srcs[0], PNSize);
629  // Early exit if the check of the first PHI source against V2 is MayAlias.
630  // Other results are not possible.
631  if (Alias == MayAlias)
632    return MayAlias;
633
634  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
635  // NoAlias / MustAlias. Otherwise, returns MayAlias.
636  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
637    Value *V = V1Srcs[i];
638
639    // If V2 is a PHI, the recursive case will have been caught in the
640    // above aliasCheck call, so these subsequent calls to aliasCheck
641    // don't need to assume that V2 is being visited recursively.
642    VisitedPHIs.erase(V2);
643
644    AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize);
645    if (ThisAlias != Alias || ThisAlias == MayAlias)
646      return MayAlias;
647  }
648
649  return Alias;
650}
651
652// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
653// such as array references.
654//
655AliasAnalysis::AliasResult
656BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
657                               const Value *V2, unsigned V2Size) {
658  // If either of the memory references is empty, it doesn't matter what the
659  // pointer values are.
660  if (V1Size == 0 || V2Size == 0)
661    return NoAlias;
662
663  // Strip off any casts if they exist.
664  V1 = V1->stripPointerCasts();
665  V2 = V2->stripPointerCasts();
666
667  // Are we checking for alias of the same value?
668  if (V1 == V2) return MustAlias;
669
670  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
671    return NoAlias;  // Scalars cannot alias each other
672
673  // Figure out what objects these things are pointing to if we can.
674  const Value *O1 = V1->getUnderlyingObject();
675  const Value *O2 = V2->getUnderlyingObject();
676
677  // Null values in the default address space don't point to any object, so they
678  // don't alias any other pointer.
679  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
680    if (CPN->getType()->getAddressSpace() == 0)
681      return NoAlias;
682  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
683    if (CPN->getType()->getAddressSpace() == 0)
684      return NoAlias;
685
686  if (O1 != O2) {
687    // If V1/V2 point to two different objects we know that we have no alias.
688    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
689      return NoAlias;
690
691    // Constant pointers can't alias with non-const isIdentifiedObject objects.
692    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
693        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
694      return NoAlias;
695
696    // Arguments can't alias with local allocations or noalias calls.
697    if ((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
698        (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1))))
699      return NoAlias;
700
701    // Most objects can't alias null.
702    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
703        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
704      return NoAlias;
705  }
706
707  // If the size of one access is larger than the entire object on the other
708  // side, then we know such behavior is undefined and can assume no alias.
709  if (TD)
710    if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, *TD)) ||
711        (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD)))
712      return NoAlias;
713
714  // If one pointer is the result of a call/invoke or load and the other is a
715  // non-escaping local object, then we know the object couldn't escape to a
716  // point where the call could return it. The load case works because
717  // isNonEscapingLocalObject considers all stores to be escapes (it
718  // passes true for the StoreCaptures argument to PointerMayBeCaptured).
719  if (O1 != O2) {
720    if ((isa<CallInst>(O1) || isa<InvokeInst>(O1) || isa<LoadInst>(O1) ||
721         isa<Argument>(O1)) &&
722        isNonEscapingLocalObject(O2))
723      return NoAlias;
724    if ((isa<CallInst>(O2) || isa<InvokeInst>(O2) || isa<LoadInst>(O2) ||
725         isa<Argument>(O2)) &&
726        isNonEscapingLocalObject(O1))
727      return NoAlias;
728  }
729
730  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
731  // GEP can't simplify, we don't even look at the PHI cases.
732  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
733    std::swap(V1, V2);
734    std::swap(V1Size, V2Size);
735    std::swap(O1, O2);
736  }
737  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1))
738    return aliasGEP(GV1, V1Size, V2, V2Size, O1, O2);
739
740  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
741    std::swap(V1, V2);
742    std::swap(V1Size, V2Size);
743  }
744  if (const PHINode *PN = dyn_cast<PHINode>(V1))
745    return aliasPHI(PN, V1Size, V2, V2Size);
746
747  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
748    std::swap(V1, V2);
749    std::swap(V1Size, V2Size);
750  }
751  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1))
752    return aliasSelect(S1, V1Size, V2, V2Size);
753
754  return MayAlias;
755}
756
757// Make sure that anything that uses AliasAnalysis pulls in this file.
758DEFINING_FILE_FOR(BasicAliasAnalysis)
759