BasicAliasAnalysis.cpp revision 8556d2a7f155c7edfaf454a3acda8ce28863c5e4
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/CaptureTracking.h"
18#include "llvm/Analysis/Passes.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Pass.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/ManagedStatic.h"
32#include <algorithm>
33using namespace llvm;
34
35//===----------------------------------------------------------------------===//
36// Useful predicates
37//===----------------------------------------------------------------------===//
38
39static const User *isGEP(const Value *V) {
40  if (isa<GetElementPtrInst>(V) ||
41      (isa<ConstantExpr>(V) &&
42       cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
43    return cast<User>(V);
44  return 0;
45}
46
47static const Value *GetGEPOperands(const Value *V,
48                                   SmallVector<Value*, 16> &GEPOps) {
49  assert(GEPOps.empty() && "Expect empty list to populate!");
50  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
51                cast<User>(V)->op_end());
52
53  // Accumulate all of the chained indexes into the operand array
54  V = cast<User>(V)->getOperand(0);
55
56  while (const User *G = isGEP(V)) {
57    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
58        !cast<Constant>(GEPOps[0])->isNullValue())
59      break;  // Don't handle folding arbitrary pointer offsets yet...
60    GEPOps.erase(GEPOps.begin());   // Drop the zero index
61    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
62    V = G->getOperand(0);
63  }
64  return V;
65}
66
67/// isNoAliasCall - Return true if this pointer is returned by a noalias
68/// function.
69static bool isNoAliasCall(const Value *V) {
70  if (isa<CallInst>(V) || isa<InvokeInst>(V))
71    return CallSite(const_cast<Instruction*>(cast<Instruction>(V)))
72      .paramHasAttr(0, Attribute::NoAlias);
73  return false;
74}
75
76/// isIdentifiedObject - Return true if this pointer refers to a distinct and
77/// identifiable object.  This returns true for:
78///    Global Variables and Functions
79///    Allocas and Mallocs
80///    ByVal and NoAlias Arguments
81///    NoAlias returns
82///
83static bool isIdentifiedObject(const Value *V) {
84  if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isNoAliasCall(V))
85    return true;
86  if (const Argument *A = dyn_cast<Argument>(V))
87    return A->hasNoAliasAttr() || A->hasByValAttr();
88  return false;
89}
90
91/// isKnownNonNull - Return true if we know that the specified value is never
92/// null.
93static bool isKnownNonNull(const Value *V) {
94  // Alloca never returns null, malloc might.
95  if (isa<AllocaInst>(V)) return true;
96
97  // A byval argument is never null.
98  if (const Argument *A = dyn_cast<Argument>(V))
99    return A->hasByValAttr();
100
101  // Global values are not null unless extern weak.
102  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
103    return !GV->hasExternalWeakLinkage();
104  return false;
105}
106
107/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
108/// object that never escapes from the function.
109static bool isNonEscapingLocalObject(const Value *V) {
110  // If this is a local allocation, check to see if it escapes.
111  if (isa<AllocationInst>(V) || isNoAliasCall(V))
112    return !PointerMayBeCaptured(V, false);
113
114  // If this is an argument that corresponds to a byval or noalias argument,
115  // then it has not escaped before entering the function.  Check if it escapes
116  // inside the function.
117  if (const Argument *A = dyn_cast<Argument>(V))
118    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
119      // Don't bother analyzing arguments already known not to escape.
120      if (A->hasNoCaptureAttr())
121        return true;
122      return !PointerMayBeCaptured(V, false);
123    }
124  return false;
125}
126
127
128/// isObjectSmallerThan - Return true if we can prove that the object specified
129/// by V is smaller than Size.
130static bool isObjectSmallerThan(const Value *V, unsigned Size,
131                                const TargetData &TD) {
132  const Type *AccessTy;
133  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
134    AccessTy = GV->getType()->getElementType();
135  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
136    if (!AI->isArrayAllocation())
137      AccessTy = AI->getType()->getElementType();
138    else
139      return false;
140  } else if (const Argument *A = dyn_cast<Argument>(V)) {
141    if (A->hasByValAttr())
142      AccessTy = cast<PointerType>(A->getType())->getElementType();
143    else
144      return false;
145  } else {
146    return false;
147  }
148
149  if (AccessTy->isSized())
150    return TD.getTypePaddedSize(AccessTy) < Size;
151  return false;
152}
153
154//===----------------------------------------------------------------------===//
155// NoAA Pass
156//===----------------------------------------------------------------------===//
157
158namespace {
159  /// NoAA - This class implements the -no-aa pass, which always returns "I
160  /// don't know" for alias queries.  NoAA is unlike other alias analysis
161  /// implementations, in that it does not chain to a previous analysis.  As
162  /// such it doesn't follow many of the rules that other alias analyses must.
163  ///
164  struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
165    static char ID; // Class identification, replacement for typeinfo
166    NoAA() : ImmutablePass(&ID) {}
167    explicit NoAA(void *PID) : ImmutablePass(PID) { }
168
169    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
170      AU.addRequired<TargetData>();
171    }
172
173    virtual void initializePass() {
174      TD = &getAnalysis<TargetData>();
175    }
176
177    virtual AliasResult alias(const Value *V1, unsigned V1Size,
178                              const Value *V2, unsigned V2Size) {
179      return MayAlias;
180    }
181
182    virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
183                                         std::vector<PointerAccessInfo> *Info) {
184      return UnknownModRefBehavior;
185    }
186
187    virtual void getArgumentAccesses(Function *F, CallSite CS,
188                                     std::vector<PointerAccessInfo> &Info) {
189      assert(0 && "This method may not be called on this function!");
190    }
191
192    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
193    virtual bool pointsToConstantMemory(const Value *P) { return false; }
194    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
195      return ModRef;
196    }
197    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
198      return ModRef;
199    }
200    virtual bool hasNoModRefInfoForCalls() const { return true; }
201
202    virtual void deleteValue(Value *V) {}
203    virtual void copyValue(Value *From, Value *To) {}
204  };
205}  // End of anonymous namespace
206
207// Register this pass...
208char NoAA::ID = 0;
209static RegisterPass<NoAA>
210U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
211
212// Declare that we implement the AliasAnalysis interface
213static RegisterAnalysisGroup<AliasAnalysis> V(U);
214
215ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
216
217//===----------------------------------------------------------------------===//
218// BasicAA Pass
219//===----------------------------------------------------------------------===//
220
221namespace {
222  /// BasicAliasAnalysis - This is the default alias analysis implementation.
223  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
224  /// derives from the NoAA class.
225  struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
226    static char ID; // Class identification, replacement for typeinfo
227    BasicAliasAnalysis() : NoAA(&ID) {}
228    AliasResult alias(const Value *V1, unsigned V1Size,
229                      const Value *V2, unsigned V2Size);
230
231    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
232    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
233
234    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
235    /// non-escaping allocations.
236    virtual bool hasNoModRefInfoForCalls() const { return false; }
237
238    /// pointsToConstantMemory - Chase pointers until we find a (constant
239    /// global) or not.
240    bool pointsToConstantMemory(const Value *P);
241
242  private:
243    // CheckGEPInstructions - Check two GEP instructions with known
244    // must-aliasing base pointers.  This checks to see if the index expressions
245    // preclude the pointers from aliasing...
246    AliasResult
247    CheckGEPInstructions(const Type* BasePtr1Ty,
248                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
249                         const Type *BasePtr2Ty,
250                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
251  };
252}  // End of anonymous namespace
253
254// Register this pass...
255char BasicAliasAnalysis::ID = 0;
256static RegisterPass<BasicAliasAnalysis>
257X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
258
259// Declare that we implement the AliasAnalysis interface
260static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
261
262ImmutablePass *llvm::createBasicAliasAnalysisPass() {
263  return new BasicAliasAnalysis();
264}
265
266
267/// pointsToConstantMemory - Chase pointers until we find a (constant
268/// global) or not.
269bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
270  if (const GlobalVariable *GV =
271        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
272    return GV->isConstant();
273  return false;
274}
275
276// getModRefInfo - Check to see if the specified callsite can clobber the
277// specified memory object.  Since we only look at local properties of this
278// function, we really can't say much about this query.  We do, however, use
279// simple "address taken" analysis on local objects.
280//
281AliasAnalysis::ModRefResult
282BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
283  if (!isa<Constant>(P)) {
284    const Value *Object = P->getUnderlyingObject();
285
286    // If this is a tail call and P points to a stack location, we know that
287    // the tail call cannot access or modify the local stack.
288    // We cannot exclude byval arguments here; these belong to the caller of
289    // the current function not to the current function, and a tail callee
290    // may reference them.
291    if (isa<AllocaInst>(Object))
292      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
293        if (CI->isTailCall())
294          return NoModRef;
295
296    // If the pointer is to a locally allocated object that does not escape,
297    // then the call can not mod/ref the pointer unless the call takes the
298    // argument without capturing it.
299    if (isNonEscapingLocalObject(Object)) {
300      bool passedAsArg = false;
301      // TODO: Eventually only check 'nocapture' arguments.
302      for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
303           CI != CE; ++CI)
304        if (isa<PointerType>((*CI)->getType()) &&
305            alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
306          passedAsArg = true;
307
308      if (!passedAsArg)
309        return NoModRef;
310    }
311  }
312
313  // The AliasAnalysis base class has some smarts, lets use them.
314  return AliasAnalysis::getModRefInfo(CS, P, Size);
315}
316
317
318AliasAnalysis::ModRefResult
319BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
320  // If CS1 or CS2 are readnone, they don't interact.
321  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
322  if (CS1B == DoesNotAccessMemory) return NoModRef;
323
324  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
325  if (CS2B == DoesNotAccessMemory) return NoModRef;
326
327  // If they both only read from memory, just return ref.
328  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
329    return Ref;
330
331  // Otherwise, fall back to NoAA (mod+ref).
332  return NoAA::getModRefInfo(CS1, CS2);
333}
334
335
336// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
337// as array references.
338//
339AliasAnalysis::AliasResult
340BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
341                          const Value *V2, unsigned V2Size) {
342  // Strip off any constant expression casts if they exist
343  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
344    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
345      V1 = CE->getOperand(0);
346  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
347    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
348      V2 = CE->getOperand(0);
349
350  // Are we checking for alias of the same value?
351  if (V1 == V2) return MustAlias;
352
353  if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
354    return NoAlias;  // Scalars cannot alias each other
355
356  // Strip off cast instructions.   Since V1 and V2 are pointers, they must be
357  // pointer<->pointer bitcasts.
358  if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
359    return alias(I->getOperand(0), V1Size, V2, V2Size);
360  if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
361    return alias(V1, V1Size, I->getOperand(0), V2Size);
362
363  // Figure out what objects these things are pointing to if we can.
364  const Value *O1 = V1->getUnderlyingObject();
365  const Value *O2 = V2->getUnderlyingObject();
366
367  if (O1 != O2) {
368    // If V1/V2 point to two different objects we know that we have no alias.
369    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
370      return NoAlias;
371
372    // Arguments can't alias with local allocations or noalias calls.
373    if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
374        (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
375      return NoAlias;
376
377    // Most objects can't alias null.
378    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
379        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
380      return NoAlias;
381  }
382
383  // If the size of one access is larger than the entire object on the other
384  // side, then we know such behavior is undefined and can assume no alias.
385  const TargetData &TD = getTargetData();
386  if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, TD)) ||
387      (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, TD)))
388    return NoAlias;
389
390  // If one pointer is the result of a call/invoke and the other is a
391  // non-escaping local object, then we know the object couldn't escape to a
392  // point where the call could return it.
393  if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
394      isNonEscapingLocalObject(O2))
395    return NoAlias;
396  if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
397      isNonEscapingLocalObject(O1))
398    return NoAlias;
399
400  // If we have two gep instructions with must-alias'ing base pointers, figure
401  // out if the indexes to the GEP tell us anything about the derived pointer.
402  // Note that we also handle chains of getelementptr instructions as well as
403  // constant expression getelementptrs here.
404  //
405  if (isGEP(V1) && isGEP(V2)) {
406    const User *GEP1 = cast<User>(V1);
407    const User *GEP2 = cast<User>(V2);
408
409    // If V1 and V2 are identical GEPs, just recurse down on both of them.
410    // This allows us to analyze things like:
411    //   P = gep A, 0, i, 1
412    //   Q = gep B, 0, i, 1
413    // by just analyzing A and B.  This is even safe for variable indices.
414    if (GEP1->getType() == GEP2->getType() &&
415        GEP1->getNumOperands() == GEP2->getNumOperands() &&
416        GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
417        // All operands are the same, ignoring the base.
418        std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
419      return alias(GEP1->getOperand(0), V1Size, GEP2->getOperand(0), V2Size);
420
421
422    // Drill down into the first non-gep value, to test for must-aliasing of
423    // the base pointers.
424    while (isGEP(GEP1->getOperand(0)) &&
425           GEP1->getOperand(1) ==
426           Constant::getNullValue(GEP1->getOperand(1)->getType()))
427      GEP1 = cast<User>(GEP1->getOperand(0));
428    const Value *BasePtr1 = GEP1->getOperand(0);
429
430    while (isGEP(GEP2->getOperand(0)) &&
431           GEP2->getOperand(1) ==
432           Constant::getNullValue(GEP2->getOperand(1)->getType()))
433      GEP2 = cast<User>(GEP2->getOperand(0));
434    const Value *BasePtr2 = GEP2->getOperand(0);
435
436    // Do the base pointers alias?
437    AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
438    if (BaseAlias == NoAlias) return NoAlias;
439    if (BaseAlias == MustAlias) {
440      // If the base pointers alias each other exactly, check to see if we can
441      // figure out anything about the resultant pointers, to try to prove
442      // non-aliasing.
443
444      // Collect all of the chained GEP operands together into one simple place
445      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
446      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
447      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
448
449      // If GetGEPOperands were able to fold to the same must-aliased pointer,
450      // do the comparison.
451      if (BasePtr1 == BasePtr2) {
452        AliasResult GAlias =
453          CheckGEPInstructions(BasePtr1->getType(),
454                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
455                               BasePtr2->getType(),
456                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
457        if (GAlias != MayAlias)
458          return GAlias;
459      }
460    }
461  }
462
463  // Check to see if these two pointers are related by a getelementptr
464  // instruction.  If one pointer is a GEP with a non-zero index of the other
465  // pointer, we know they cannot alias.
466  //
467  if (isGEP(V2)) {
468    std::swap(V1, V2);
469    std::swap(V1Size, V2Size);
470  }
471
472  if (V1Size != ~0U && V2Size != ~0U)
473    if (isGEP(V1)) {
474      SmallVector<Value*, 16> GEPOperands;
475      const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
476
477      AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
478      if (R == MustAlias) {
479        // If there is at least one non-zero constant index, we know they cannot
480        // alias.
481        bool ConstantFound = false;
482        bool AllZerosFound = true;
483        for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
484          if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
485            if (!C->isNullValue()) {
486              ConstantFound = true;
487              AllZerosFound = false;
488              break;
489            }
490          } else {
491            AllZerosFound = false;
492          }
493
494        // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
495        // the ptr, the end result is a must alias also.
496        if (AllZerosFound)
497          return MustAlias;
498
499        if (ConstantFound) {
500          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
501            return NoAlias;
502
503          // Otherwise we have to check to see that the distance is more than
504          // the size of the argument... build an index vector that is equal to
505          // the arguments provided, except substitute 0's for any variable
506          // indexes we find...
507          if (cast<PointerType>(
508                BasePtr->getType())->getElementType()->isSized()) {
509            for (unsigned i = 0; i != GEPOperands.size(); ++i)
510              if (!isa<ConstantInt>(GEPOperands[i]))
511                GEPOperands[i] =
512                  Constant::getNullValue(GEPOperands[i]->getType());
513            int64_t Offset =
514              getTargetData().getIndexedOffset(BasePtr->getType(),
515                                               &GEPOperands[0],
516                                               GEPOperands.size());
517
518            if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
519              return NoAlias;
520          }
521        }
522      }
523    }
524
525  return MayAlias;
526}
527
528// This function is used to determine if the indices of two GEP instructions are
529// equal. V1 and V2 are the indices.
530static bool IndexOperandsEqual(Value *V1, Value *V2) {
531  if (V1->getType() == V2->getType())
532    return V1 == V2;
533  if (Constant *C1 = dyn_cast<Constant>(V1))
534    if (Constant *C2 = dyn_cast<Constant>(V2)) {
535      // Sign extend the constants to long types, if necessary
536      if (C1->getType() != Type::Int64Ty)
537        C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
538      if (C2->getType() != Type::Int64Ty)
539        C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
540      return C1 == C2;
541    }
542  return false;
543}
544
545/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
546/// base pointers.  This checks to see if the index expressions preclude the
547/// pointers from aliasing...
548AliasAnalysis::AliasResult
549BasicAliasAnalysis::CheckGEPInstructions(
550  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
551  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
552  // We currently can't handle the case when the base pointers have different
553  // primitive types.  Since this is uncommon anyway, we are happy being
554  // extremely conservative.
555  if (BasePtr1Ty != BasePtr2Ty)
556    return MayAlias;
557
558  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
559
560  // Find the (possibly empty) initial sequence of equal values... which are not
561  // necessarily constants.
562  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
563  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
564  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
565  unsigned UnequalOper = 0;
566  while (UnequalOper != MinOperands &&
567         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
568    // Advance through the type as we go...
569    ++UnequalOper;
570    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
571      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
572    else {
573      // If all operands equal each other, then the derived pointers must
574      // alias each other...
575      BasePtr1Ty = 0;
576      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
577             "Ran out of type nesting, but not out of operands?");
578      return MustAlias;
579    }
580  }
581
582  // If we have seen all constant operands, and run out of indexes on one of the
583  // getelementptrs, check to see if the tail of the leftover one is all zeros.
584  // If so, return mustalias.
585  if (UnequalOper == MinOperands) {
586    if (NumGEP1Ops < NumGEP2Ops) {
587      std::swap(GEP1Ops, GEP2Ops);
588      std::swap(NumGEP1Ops, NumGEP2Ops);
589    }
590
591    bool AllAreZeros = true;
592    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
593      if (!isa<Constant>(GEP1Ops[i]) ||
594          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
595        AllAreZeros = false;
596        break;
597      }
598    if (AllAreZeros) return MustAlias;
599  }
600
601
602  // So now we know that the indexes derived from the base pointers,
603  // which are known to alias, are different.  We can still determine a
604  // no-alias result if there are differing constant pairs in the index
605  // chain.  For example:
606  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
607  //
608  // We have to be careful here about array accesses.  In particular, consider:
609  //        A[1][0] vs A[0][i]
610  // In this case, we don't *know* that the array will be accessed in bounds:
611  // the index could even be negative.  Because of this, we have to
612  // conservatively *give up* and return may alias.  We disregard differing
613  // array subscripts that are followed by a variable index without going
614  // through a struct.
615  //
616  unsigned SizeMax = std::max(G1S, G2S);
617  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
618
619  // Scan for the first operand that is constant and unequal in the
620  // two getelementptrs...
621  unsigned FirstConstantOper = UnequalOper;
622  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
623    const Value *G1Oper = GEP1Ops[FirstConstantOper];
624    const Value *G2Oper = GEP2Ops[FirstConstantOper];
625
626    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
627      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
628        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
629          if (G1OC->getType() != G2OC->getType()) {
630            // Sign extend both operands to long.
631            if (G1OC->getType() != Type::Int64Ty)
632              G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
633            if (G2OC->getType() != Type::Int64Ty)
634              G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
635            GEP1Ops[FirstConstantOper] = G1OC;
636            GEP2Ops[FirstConstantOper] = G2OC;
637          }
638
639          if (G1OC != G2OC) {
640            // Handle the "be careful" case above: if this is an array/vector
641            // subscript, scan for a subsequent variable array index.
642            if (isa<SequentialType>(BasePtr1Ty))  {
643              const Type *NextTy =
644                cast<SequentialType>(BasePtr1Ty)->getElementType();
645              bool isBadCase = false;
646
647              for (unsigned Idx = FirstConstantOper+1;
648                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
649                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
650                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
651                  isBadCase = true;
652                  break;
653                }
654                NextTy = cast<SequentialType>(NextTy)->getElementType();
655              }
656
657              if (isBadCase) G1OC = 0;
658            }
659
660            // Make sure they are comparable (ie, not constant expressions), and
661            // make sure the GEP with the smaller leading constant is GEP1.
662            if (G1OC) {
663              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
664                                                        G1OC, G2OC);
665              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
666                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
667                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
668                  std::swap(NumGEP1Ops, NumGEP2Ops);
669                }
670                break;
671              }
672            }
673          }
674        }
675    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
676  }
677
678  // No shared constant operands, and we ran out of common operands.  At this
679  // point, the GEP instructions have run through all of their operands, and we
680  // haven't found evidence that there are any deltas between the GEP's.
681  // However, one GEP may have more operands than the other.  If this is the
682  // case, there may still be hope.  Check this now.
683  if (FirstConstantOper == MinOperands) {
684    // Make GEP1Ops be the longer one if there is a longer one.
685    if (NumGEP1Ops < NumGEP2Ops) {
686      std::swap(GEP1Ops, GEP2Ops);
687      std::swap(NumGEP1Ops, NumGEP2Ops);
688    }
689
690    // Is there anything to check?
691    if (NumGEP1Ops > MinOperands) {
692      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
693        if (isa<ConstantInt>(GEP1Ops[i]) &&
694            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
695          // Yup, there's a constant in the tail.  Set all variables to
696          // constants in the GEP instruction to make it suitable for
697          // TargetData::getIndexedOffset.
698          for (i = 0; i != MaxOperands; ++i)
699            if (!isa<ConstantInt>(GEP1Ops[i]))
700              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
701          // Okay, now get the offset.  This is the relative offset for the full
702          // instruction.
703          const TargetData &TD = getTargetData();
704          int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
705                                                NumGEP1Ops);
706
707          // Now check without any constants at the end.
708          int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
709                                                MinOperands);
710
711          // Make sure we compare the absolute difference.
712          if (Offset1 > Offset2)
713            std::swap(Offset1, Offset2);
714
715          // If the tail provided a bit enough offset, return noalias!
716          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
717            return NoAlias;
718          // Otherwise break - we don't look for another constant in the tail.
719          break;
720        }
721    }
722
723    // Couldn't find anything useful.
724    return MayAlias;
725  }
726
727  // If there are non-equal constants arguments, then we can figure
728  // out a minimum known delta between the two index expressions... at
729  // this point we know that the first constant index of GEP1 is less
730  // than the first constant index of GEP2.
731
732  // Advance BasePtr[12]Ty over this first differing constant operand.
733  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
734      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
735  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
736      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
737
738  // We are going to be using TargetData::getIndexedOffset to determine the
739  // offset that each of the GEP's is reaching.  To do this, we have to convert
740  // all variable references to constant references.  To do this, we convert the
741  // initial sequence of array subscripts into constant zeros to start with.
742  const Type *ZeroIdxTy = GEPPointerTy;
743  for (unsigned i = 0; i != FirstConstantOper; ++i) {
744    if (!isa<StructType>(ZeroIdxTy))
745      GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
746
747    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
748      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
749  }
750
751  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
752
753  // Loop over the rest of the operands...
754  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
755    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
756    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
757    // If they are equal, use a zero index...
758    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
759      if (!isa<ConstantInt>(Op1))
760        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
761      // Otherwise, just keep the constants we have.
762    } else {
763      if (Op1) {
764        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
765          // If this is an array index, make sure the array element is in range.
766          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
767            if (Op1C->getZExtValue() >= AT->getNumElements())
768              return MayAlias;  // Be conservative with out-of-range accesses
769          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
770            if (Op1C->getZExtValue() >= VT->getNumElements())
771              return MayAlias;  // Be conservative with out-of-range accesses
772          }
773
774        } else {
775          // GEP1 is known to produce a value less than GEP2.  To be
776          // conservatively correct, we must assume the largest possible
777          // constant is used in this position.  This cannot be the initial
778          // index to the GEP instructions (because we know we have at least one
779          // element before this one with the different constant arguments), so
780          // we know that the current index must be into either a struct or
781          // array.  Because we know it's not constant, this cannot be a
782          // structure index.  Because of this, we can calculate the maximum
783          // value possible.
784          //
785          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
786            GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
787          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
788            GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
789        }
790      }
791
792      if (Op2) {
793        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
794          // If this is an array index, make sure the array element is in range.
795          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
796            if (Op2C->getZExtValue() >= AT->getNumElements())
797              return MayAlias;  // Be conservative with out-of-range accesses
798          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
799            if (Op2C->getZExtValue() >= VT->getNumElements())
800              return MayAlias;  // Be conservative with out-of-range accesses
801          }
802        } else {  // Conservatively assume the minimum value for this index
803          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
804        }
805      }
806    }
807
808    if (BasePtr1Ty && Op1) {
809      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
810        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
811      else
812        BasePtr1Ty = 0;
813    }
814
815    if (BasePtr2Ty && Op2) {
816      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
817        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
818      else
819        BasePtr2Ty = 0;
820    }
821  }
822
823  if (GEPPointerTy->getElementType()->isSized()) {
824    int64_t Offset1 =
825      getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
826    int64_t Offset2 =
827      getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
828    assert(Offset1 != Offset2 &&
829           "There is at least one different constant here!");
830
831    // Make sure we compare the absolute difference.
832    if (Offset1 > Offset2)
833      std::swap(Offset1, Offset2);
834
835    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
836      //cerr << "Determined that these two GEP's don't alias ["
837      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
838      return NoAlias;
839    }
840  }
841  return MayAlias;
842}
843
844// Make sure that anything that uses AliasAnalysis pulls in this file...
845DEFINING_FILE_FOR(BasicAliasAnalysis)
846