BasicAliasAnalysis.cpp revision 88d3e03429bf3b0e78b1cccbad8a9246a7fdb23e
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Pass.h"
18#include "llvm/Argument.h"
19#include "llvm/iOther.h"
20#include "llvm/ConstantHandling.h"
21#include "llvm/GlobalValue.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Support/GetElementPtrTypeIterator.h"
25using namespace llvm;
26
27// Make sure that anything that uses AliasAnalysis pulls in this file...
28void llvm::BasicAAStub() {}
29
30namespace {
31  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
32
33    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
34      AliasAnalysis::getAnalysisUsage(AU);
35    }
36
37    virtual void initializePass();
38
39    // alias - This is the only method here that does anything interesting...
40    //
41    AliasResult alias(const Value *V1, unsigned V1Size,
42                      const Value *V2, unsigned V2Size);
43  private:
44    // CheckGEPInstructions - Check two GEP instructions of compatible types and
45    // equal number of arguments.  This checks to see if the index expressions
46    // preclude the pointers from aliasing...
47    AliasResult CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1Size,
48                                     GetElementPtrInst *GEP2, unsigned G2Size);
49  };
50
51  // Register this pass...
52  RegisterOpt<BasicAliasAnalysis>
53  X("basicaa", "Basic Alias Analysis (default AA impl)");
54
55  // Declare that we implement the AliasAnalysis interface
56  RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y;
57}  // End of anonymous namespace
58
59void BasicAliasAnalysis::initializePass() {
60  InitializeAliasAnalysis(this);
61}
62
63// hasUniqueAddress - Return true if the specified value points to something
64// with a unique, discernable, address.
65static inline bool hasUniqueAddress(const Value *V) {
66  return isa<GlobalValue>(V) || isa<AllocationInst>(V);
67}
68
69// getUnderlyingObject - This traverses the use chain to figure out what object
70// the specified value points to.  If the value points to, or is derived from, a
71// unique object or an argument, return it.
72static const Value *getUnderlyingObject(const Value *V) {
73  if (!isa<PointerType>(V->getType())) return 0;
74
75  // If we are at some type of object... return it.
76  if (hasUniqueAddress(V) || isa<Argument>(V)) return V;
77
78  // Traverse through different addressing mechanisms...
79  if (const Instruction *I = dyn_cast<Instruction>(V)) {
80    if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
81      return getUnderlyingObject(I->getOperand(0));
82  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
83    if (CE->getOpcode() == Instruction::Cast ||
84        CE->getOpcode() == Instruction::GetElementPtr)
85      return getUnderlyingObject(CE->getOperand(0));
86  } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) {
87    return CPR->getValue();
88  }
89  return 0;
90}
91
92
93// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
94// as array references.  Note that this function is heavily tail recursive.
95// Hopefully we have a smart C++ compiler.  :)
96//
97AliasAnalysis::AliasResult
98BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
99                          const Value *V2, unsigned V2Size) {
100  // Strip off constant pointer refs if they exist
101  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
102    V1 = CPR->getValue();
103  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2))
104    V2 = CPR->getValue();
105
106  // Are we checking for alias of the same value?
107  if (V1 == V2) return MustAlias;
108
109  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
110      V1->getType() != Type::LongTy && V2->getType() != Type::LongTy)
111    return NoAlias;  // Scalars cannot alias each other
112
113  // Strip off cast instructions...
114  if (const Instruction *I = dyn_cast<CastInst>(V1))
115    return alias(I->getOperand(0), V1Size, V2, V2Size);
116  if (const Instruction *I = dyn_cast<CastInst>(V2))
117    return alias(V1, V1Size, I->getOperand(0), V2Size);
118
119  // Figure out what objects these things are pointing to if we can...
120  const Value *O1 = getUnderlyingObject(V1);
121  const Value *O2 = getUnderlyingObject(V2);
122
123  // Pointing at a discernible object?
124  if (O1 && O2) {
125    if (isa<Argument>(O1)) {
126      // Incoming argument cannot alias locally allocated object!
127      if (isa<AllocationInst>(O2)) return NoAlias;
128      // Otherwise, nothing is known...
129    } else if (isa<Argument>(O2)) {
130      // Incoming argument cannot alias locally allocated object!
131      if (isa<AllocationInst>(O1)) return NoAlias;
132      // Otherwise, nothing is known...
133    } else {
134      // If they are two different objects, we know that we have no alias...
135      if (O1 != O2) return NoAlias;
136    }
137
138    // If they are the same object, they we can look at the indexes.  If they
139    // index off of the object is the same for both pointers, they must alias.
140    // If they are provably different, they must not alias.  Otherwise, we can't
141    // tell anything.
142  } else if (O1 && !isa<Argument>(O1) && isa<ConstantPointerNull>(V2)) {
143    return NoAlias;                    // Unique values don't alias null
144  } else if (O2 && !isa<Argument>(O2) && isa<ConstantPointerNull>(V1)) {
145    return NoAlias;                    // Unique values don't alias null
146  }
147
148  // If we have two gep instructions with identical indices, return an alias
149  // result equal to the alias result of the original pointer...
150  //
151  if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(V1))
152    if (const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(V2))
153      if (GEP1->getNumOperands() == GEP2->getNumOperands() &&
154          GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType()) {
155        AliasResult GAlias =
156          CheckGEPInstructions((GetElementPtrInst*)GEP1, V1Size,
157                               (GetElementPtrInst*)GEP2, V2Size);
158        if (GAlias != MayAlias)
159          return GAlias;
160      }
161
162  // Check to see if these two pointers are related by a getelementptr
163  // instruction.  If one pointer is a GEP with a non-zero index of the other
164  // pointer, we know they cannot alias.
165  //
166  if (isa<GetElementPtrInst>(V2)) {
167    std::swap(V1, V2);
168    std::swap(V1Size, V2Size);
169  }
170
171  if (V1Size != ~0U && V2Size != ~0U)
172    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V1)) {
173      AliasResult R = alias(GEP->getOperand(0), V1Size, V2, V2Size);
174      if (R == MustAlias) {
175        // If there is at least one non-zero constant index, we know they cannot
176        // alias.
177        bool ConstantFound = false;
178        bool AllZerosFound = true;
179        for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
180          if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i))) {
181            if (!C->isNullValue()) {
182              ConstantFound = true;
183              break;
184            }
185          } else {
186            AllZerosFound = false;
187          }
188
189        // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
190        // the ptr, the end result is a must alias also.
191        if (AllZerosFound)
192          return MustAlias;
193
194        if (ConstantFound) {
195          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
196            return NoAlias;
197
198          // Otherwise we have to check to see that the distance is more than
199          // the size of the argument... build an index vector that is equal to
200          // the arguments provided, except substitute 0's for any variable
201          // indexes we find...
202
203          std::vector<Value*> Indices;
204          Indices.reserve(GEP->getNumOperands()-1);
205          for (unsigned i = 1; i != GEP->getNumOperands(); ++i)
206            if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i)))
207              Indices.push_back((Value*)C);
208            else
209              Indices.push_back(Constant::getNullValue(Type::LongTy));
210          const Type *Ty = GEP->getOperand(0)->getType();
211          int Offset = getTargetData().getIndexedOffset(Ty, Indices);
212          if (Offset >= (int)V2Size || Offset <= -(int)V1Size)
213            return NoAlias;
214        }
215      }
216    }
217
218  return MayAlias;
219}
220
221static Value *CheckArrayIndicesForOverflow(const Type *PtrTy,
222                                           const std::vector<Value*> &Indices,
223                                           const ConstantInt *Idx) {
224  if (const ConstantSInt *IdxS = dyn_cast<ConstantSInt>(Idx)) {
225    if (IdxS->getValue() < 0)   // Underflow on the array subscript?
226      return Constant::getNullValue(Type::LongTy);
227    else {                       // Check for overflow
228      const ArrayType *ATy =
229        cast<ArrayType>(GetElementPtrInst::getIndexedType(PtrTy, Indices,true));
230      if (IdxS->getValue() >= (int64_t)ATy->getNumElements())
231        return ConstantSInt::get(Type::LongTy, ATy->getNumElements()-1);
232    }
233  }
234  return (Value*)Idx;  // Everything is acceptable.
235}
236
237// CheckGEPInstructions - Check two GEP instructions of compatible types and
238// equal number of arguments.  This checks to see if the index expressions
239// preclude the pointers from aliasing...
240//
241AliasAnalysis::AliasResult
242BasicAliasAnalysis::CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1S,
243                                         GetElementPtrInst *GEP2, unsigned G2S){
244  // Do the base pointers alias?
245  AliasResult BaseAlias = alias(GEP1->getOperand(0), G1S,
246                                GEP2->getOperand(0), G2S);
247  if (BaseAlias != MustAlias)   // No or May alias: We cannot add anything...
248    return BaseAlias;
249
250  // Find the (possibly empty) initial sequence of equal values...
251  unsigned NumGEPOperands = GEP1->getNumOperands();
252  unsigned UnequalOper = 1;
253  while (UnequalOper != NumGEPOperands &&
254         GEP1->getOperand(UnequalOper) == GEP2->getOperand(UnequalOper))
255    ++UnequalOper;
256
257  // If all operands equal each other, then the derived pointers must
258  // alias each other...
259  if (UnequalOper == NumGEPOperands) return MustAlias;
260
261  // So now we know that the indexes derived from the base pointers,
262  // which are known to alias, are different.  We can still determine a
263  // no-alias result if there are differing constant pairs in the index
264  // chain.  For example:
265  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
266  //
267  unsigned SizeMax = std::max(G1S, G2S);
268  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work...
269
270  // Scan for the first operand that is constant and unequal in the
271  // two getelemenptrs...
272  unsigned FirstConstantOper = UnequalOper;
273  for (; FirstConstantOper != NumGEPOperands; ++FirstConstantOper) {
274    const Value *G1Oper = GEP1->getOperand(FirstConstantOper);
275    const Value *G2Oper = GEP2->getOperand(FirstConstantOper);
276    if (G1Oper != G2Oper &&   // Found non-equal constant indexes...
277        isa<Constant>(G1Oper) && isa<Constant>(G2Oper)) {
278      // Make sure they are comparable...  and make sure the GEP with
279      // the smaller leading constant is GEP1.
280      ConstantBool *Compare =
281        *cast<Constant>(GEP1->getOperand(FirstConstantOper)) >
282        *cast<Constant>(GEP2->getOperand(FirstConstantOper));
283      if (Compare) {  // If they are comparable...
284        if (Compare->getValue())
285          std::swap(GEP1, GEP2);  // Make GEP1 < GEP2
286        break;
287      }
288    }
289  }
290
291  // No constant operands, we cannot tell anything...
292  if (FirstConstantOper == NumGEPOperands) return MayAlias;
293
294  // If there are non-equal constants arguments, then we can figure
295  // out a minimum known delta between the two index expressions... at
296  // this point we know that the first constant index of GEP1 is less
297  // than the first constant index of GEP2.
298  //
299  std::vector<Value*> Indices1;
300  Indices1.reserve(NumGEPOperands-1);
301
302  for (gep_type_iterator I = gep_type_begin(GEP1);
303       I.getOperandNum() != FirstConstantOper; ++I)
304    if (isa<StructType>(*I))
305      Indices1.push_back(I.getOperand());
306    else
307      Indices1.push_back(Constant::getNullValue(Type::LongTy));
308
309  std::vector<Value*> Indices2;
310  Indices2.reserve(NumGEPOperands-1);
311  Indices2 = Indices1;           // Copy the zeros prefix...
312
313  // Add the two known constant operands...
314  Indices1.push_back((Value*)GEP1->getOperand(FirstConstantOper));
315  Indices2.push_back((Value*)GEP2->getOperand(FirstConstantOper));
316
317  const Type *GEPPointerTy = GEP1->getOperand(0)->getType();
318
319  // Loop over the rest of the operands...
320  for (unsigned i = FirstConstantOper+1; i != NumGEPOperands; ++i) {
321    const Value *Op1 = GEP1->getOperand(i);
322    const Value *Op2 = GEP2->getOperand(i);
323    if (Op1 == Op2) {   // If they are equal, use a zero index...
324      if (!isa<Constant>(Op1)) {
325        Indices1.push_back(Constant::getNullValue(Op1->getType()));
326        Indices2.push_back(Indices1.back());
327      } else {
328        Indices1.push_back((Value*)Op1);
329        Indices2.push_back((Value*)Op2);
330      }
331    } else {
332      if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
333        // If this is an array index, make sure the array element is in range...
334        if (i != 1)   // The pointer index can be "out of range"
335          Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices1, Op1C);
336
337        Indices1.push_back((Value*)Op1);
338      } else {
339        // GEP1 is known to produce a value less than GEP2.  To be
340        // conservatively correct, we must assume the largest possible constant
341        // is used in this position.  This cannot be the initial index to the
342        // GEP instructions (because we know we have at least one element before
343        // this one with the different constant arguments), so we know that the
344        // current index must be into either a struct or array.  Because we know
345        // it's not constant, this cannot be a structure index.  Because of
346        // this, we can calculate the maximum value possible.
347        //
348        const ArrayType *ElTy =
349          cast<ArrayType>(GEP1->getIndexedType(GEPPointerTy, Indices1, true));
350        Indices1.push_back(ConstantSInt::get(Type::LongTy,
351                                             ElTy->getNumElements()-1));
352      }
353
354      if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op2)) {
355        // If this is an array index, make sure the array element is in range...
356        if (i != 1)   // The pointer index can be "out of range"
357          Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices2, Op1C);
358
359        Indices2.push_back((Value*)Op2);
360      }
361      else // Conservatively assume the minimum value for this index
362        Indices2.push_back(Constant::getNullValue(Op2->getType()));
363    }
364  }
365
366  int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, Indices1);
367  int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, Indices2);
368  assert(Offset1 < Offset2 &&"There is at least one different constant here!");
369
370  if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
371    //std::cerr << "Determined that these two GEP's don't alias ["
372    //          << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
373    return NoAlias;
374  }
375  return MayAlias;
376}
377
378