BasicAliasAnalysis.cpp revision f88380ba2cf472db6576a8534315449931e8cf50
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/ParameterAttributes.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Pass.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/ManagedStatic.h"
32#include <algorithm>
33using namespace llvm;
34
35namespace {
36  /// NoAA - This class implements the -no-aa pass, which always returns "I
37  /// don't know" for alias queries.  NoAA is unlike other alias analysis
38  /// implementations, in that it does not chain to a previous analysis.  As
39  /// such it doesn't follow many of the rules that other alias analyses must.
40  ///
41  struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
42    static char ID; // Class identification, replacement for typeinfo
43    NoAA() : ImmutablePass((intptr_t)&ID) {}
44    explicit NoAA(intptr_t PID) : ImmutablePass(PID) { }
45
46    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
47      AU.addRequired<TargetData>();
48    }
49
50    virtual void initializePass() {
51      TD = &getAnalysis<TargetData>();
52    }
53
54    virtual AliasResult alias(const Value *V1, unsigned V1Size,
55                              const Value *V2, unsigned V2Size) {
56      return MayAlias;
57    }
58
59    virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
60                                         std::vector<PointerAccessInfo> *Info) {
61      return UnknownModRefBehavior;
62    }
63
64    virtual void getArgumentAccesses(Function *F, CallSite CS,
65                                     std::vector<PointerAccessInfo> &Info) {
66      assert(0 && "This method may not be called on this function!");
67    }
68
69    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
70    virtual bool pointsToConstantMemory(const Value *P) { return false; }
71    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
72      return ModRef;
73    }
74    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
75      return ModRef;
76    }
77    virtual bool hasNoModRefInfoForCalls() const { return true; }
78
79    virtual void deleteValue(Value *V) {}
80    virtual void copyValue(Value *From, Value *To) {}
81  };
82
83  // Register this pass...
84  char NoAA::ID = 0;
85  RegisterPass<NoAA>
86  U("no-aa", "No Alias Analysis (always returns 'may' alias)");
87
88  // Declare that we implement the AliasAnalysis interface
89  RegisterAnalysisGroup<AliasAnalysis> V(U);
90}  // End of anonymous namespace
91
92ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
93
94namespace {
95  /// BasicAliasAnalysis - This is the default alias analysis implementation.
96  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
97  /// derives from the NoAA class.
98  struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
99    static char ID; // Class identification, replacement for typeinfo
100    BasicAliasAnalysis() : NoAA((intptr_t)&ID) { }
101    AliasResult alias(const Value *V1, unsigned V1Size,
102                      const Value *V2, unsigned V2Size);
103
104    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
105    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
106      return NoAA::getModRefInfo(CS1,CS2);
107    }
108
109    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
110    /// non-escaping allocations.
111    virtual bool hasNoModRefInfoForCalls() const { return false; }
112
113    /// pointsToConstantMemory - Chase pointers until we find a (constant
114    /// global) or not.
115    bool pointsToConstantMemory(const Value *P);
116
117  private:
118    // CheckGEPInstructions - Check two GEP instructions with known
119    // must-aliasing base pointers.  This checks to see if the index expressions
120    // preclude the pointers from aliasing...
121    AliasResult
122    CheckGEPInstructions(const Type* BasePtr1Ty,
123                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
124                         const Type *BasePtr2Ty,
125                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
126  };
127
128  // Register this pass...
129  char BasicAliasAnalysis::ID = 0;
130  RegisterPass<BasicAliasAnalysis>
131  X("basicaa", "Basic Alias Analysis (default AA impl)");
132
133  // Declare that we implement the AliasAnalysis interface
134  RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
135}  // End of anonymous namespace
136
137ImmutablePass *llvm::createBasicAliasAnalysisPass() {
138  return new BasicAliasAnalysis();
139}
140
141// getUnderlyingObject - This traverses the use chain to figure out what object
142// the specified value points to.  If the value points to, or is derived from, a
143// unique object or an argument, return it.
144static const Value *getUnderlyingObject(const Value *V) {
145  if (!isa<PointerType>(V->getType())) return 0;
146
147  // If we are at some type of object, return it. GlobalValues and Allocations
148  // have unique addresses.
149  if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isa<Argument>(V))
150    return V;
151
152  // Traverse through different addressing mechanisms...
153  if (const Instruction *I = dyn_cast<Instruction>(V)) {
154    if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I))
155      return getUnderlyingObject(I->getOperand(0));
156  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
157    if (CE->getOpcode() == Instruction::BitCast ||
158        CE->getOpcode() == Instruction::GetElementPtr)
159      return getUnderlyingObject(CE->getOperand(0));
160  }
161  return 0;
162}
163
164static const User *isGEP(const Value *V) {
165  if (isa<GetElementPtrInst>(V) ||
166      (isa<ConstantExpr>(V) &&
167       cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
168    return cast<User>(V);
169  return 0;
170}
171
172static const Value *GetGEPOperands(const Value *V,
173                                   SmallVector<Value*, 16> &GEPOps){
174  assert(GEPOps.empty() && "Expect empty list to populate!");
175  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
176                cast<User>(V)->op_end());
177
178  // Accumulate all of the chained indexes into the operand array
179  V = cast<User>(V)->getOperand(0);
180
181  while (const User *G = isGEP(V)) {
182    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
183        !cast<Constant>(GEPOps[0])->isNullValue())
184      break;  // Don't handle folding arbitrary pointer offsets yet...
185    GEPOps.erase(GEPOps.begin());   // Drop the zero index
186    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
187    V = G->getOperand(0);
188  }
189  return V;
190}
191
192/// pointsToConstantMemory - Chase pointers until we find a (constant
193/// global) or not.
194bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
195  if (const Value *V = getUnderlyingObject(P))
196    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
197      return GV->isConstant();
198  return false;
199}
200
201// Determine if an AllocationInst instruction escapes from the function it is
202// contained in. If it does not escape, there is no way for another function to
203// mod/ref it.  We do this by looking at its uses and determining if the uses
204// can escape (recursively).
205static bool AddressMightEscape(const Value *V) {
206  for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end();
207       UI != E; ++UI) {
208    const Instruction *I = cast<Instruction>(*UI);
209    switch (I->getOpcode()) {
210    case Instruction::Load:
211      break; //next use.
212    case Instruction::Store:
213      if (I->getOperand(0) == V)
214        return true; // Escapes if the pointer is stored.
215      break; // next use.
216    case Instruction::GetElementPtr:
217      if (AddressMightEscape(I))
218        return true;
219      break; // next use.
220    case Instruction::BitCast:
221      if (!isa<PointerType>(I->getType()))
222        return true;
223      if (AddressMightEscape(I))
224        return true;
225      break; // next use
226    case Instruction::Ret:
227      // If returned, the address will escape to calling functions, but no
228      // callees could modify it.
229      break; // next use
230    default:
231      return true;
232    }
233  }
234  return false;
235}
236
237// getModRefInfo - Check to see if the specified callsite can clobber the
238// specified memory object.  Since we only look at local properties of this
239// function, we really can't say much about this query.  We do, however, use
240// simple "address taken" analysis on local objects.
241//
242AliasAnalysis::ModRefResult
243BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
244  if (!isa<Constant>(P))
245    if (const AllocationInst *AI =
246                  dyn_cast_or_null<AllocationInst>(getUnderlyingObject(P))) {
247      // Okay, the pointer is to a stack allocated object.  If we can prove that
248      // the pointer never "escapes", then we know the call cannot clobber it,
249      // because it simply can't get its address.
250      if (!AddressMightEscape(AI))
251        return NoModRef;
252
253      // If this is a tail call and P points to a stack location, we know that
254      // the tail call cannot access or modify the local stack.
255      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
256        if (CI->isTailCall() && isa<AllocaInst>(AI))
257          return NoModRef;
258    }
259
260  // The AliasAnalysis base class has some smarts, lets use them.
261  return AliasAnalysis::getModRefInfo(CS, P, Size);
262}
263
264static bool isNoAliasArgument(const Argument *Arg) {
265  const Function *Func = Arg->getParent();
266  const ParamAttrsList *Attr = Func->getParamAttrs();
267  if (Attr) {
268    unsigned Idx = 1;
269    for (Function::const_arg_iterator I = Func->arg_begin(),
270          E = Func->arg_end(); I != E; ++I, ++Idx) {
271      if (&(*I) == Arg &&
272           Attr->paramHasAttr(Idx, ParamAttr::NoAlias))
273        return true;
274    }
275  }
276  return false;
277}
278
279// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
280// as array references.  Note that this function is heavily tail recursive.
281// Hopefully we have a smart C++ compiler.  :)
282//
283AliasAnalysis::AliasResult
284BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
285                          const Value *V2, unsigned V2Size) {
286  // Strip off any constant expression casts if they exist
287  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
288    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
289      V1 = CE->getOperand(0);
290  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
291    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
292      V2 = CE->getOperand(0);
293
294  // Are we checking for alias of the same value?
295  if (V1 == V2) return MustAlias;
296
297  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
298      V1->getType() != Type::Int64Ty && V2->getType() != Type::Int64Ty)
299    return NoAlias;  // Scalars cannot alias each other
300
301  // Strip off cast instructions...
302  if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
303    return alias(I->getOperand(0), V1Size, V2, V2Size);
304  if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
305    return alias(V1, V1Size, I->getOperand(0), V2Size);
306
307  // Figure out what objects these things are pointing to if we can...
308  const Value *O1 = getUnderlyingObject(V1);
309  const Value *O2 = getUnderlyingObject(V2);
310
311  // Pointing at a discernible object?
312  if (O1) {
313    if (O2) {
314      if (const Argument *O1Arg = dyn_cast<Argument>(O1)) {
315        // Incoming argument cannot alias locally allocated object!
316        if (isa<AllocationInst>(O2)) return NoAlias;
317
318        // If they are two different objects, and one is a noalias argument
319        // then they do not alias.
320        if (O1 != O2 && isNoAliasArgument(O1Arg))
321          return NoAlias;
322
323        // Otherwise, nothing is known...
324      }
325
326      if (const Argument *O2Arg = dyn_cast<Argument>(O2)) {
327        // Incoming argument cannot alias locally allocated object!
328        if (isa<AllocationInst>(O1)) return NoAlias;
329
330        // If they are two different objects, and one is a noalias argument
331        // then they do not alias.
332        if (O1 != O2 && isNoAliasArgument(O2Arg))
333          return NoAlias;
334
335        // Otherwise, nothing is known...
336
337      } else if (O1 != O2) {
338        if (!isa<Argument>(O1))
339          // If they are two different objects, and neither is an argument,
340          // we know that we have no alias...
341          return NoAlias;
342      }
343
344      // If they are the same object, they we can look at the indexes.  If they
345      // index off of the object is the same for both pointers, they must alias.
346      // If they are provably different, they must not alias.  Otherwise, we
347      // can't tell anything.
348    }
349
350
351    if (!isa<Argument>(O1) && isa<ConstantPointerNull>(V2))
352      return NoAlias;                    // Unique values don't alias null
353
354    if (isa<GlobalVariable>(O1) ||
355        (isa<AllocationInst>(O1) &&
356         !cast<AllocationInst>(O1)->isArrayAllocation()))
357      if (cast<PointerType>(O1->getType())->getElementType()->isSized()) {
358        // If the size of the other access is larger than the total size of the
359        // global/alloca/malloc, it cannot be accessing the global (it's
360        // undefined to load or store bytes before or after an object).
361        const Type *ElTy = cast<PointerType>(O1->getType())->getElementType();
362        unsigned GlobalSize = getTargetData().getABITypeSize(ElTy);
363        if (GlobalSize < V2Size && V2Size != ~0U)
364          return NoAlias;
365      }
366  }
367
368  if (O2) {
369    if (!isa<Argument>(O2) && isa<ConstantPointerNull>(V1))
370      return NoAlias;                    // Unique values don't alias null
371
372    if (isa<GlobalVariable>(O2) ||
373        (isa<AllocationInst>(O2) &&
374         !cast<AllocationInst>(O2)->isArrayAllocation()))
375      if (cast<PointerType>(O2->getType())->getElementType()->isSized()) {
376        // If the size of the other access is larger than the total size of the
377        // global/alloca/malloc, it cannot be accessing the object (it's
378        // undefined to load or store bytes before or after an object).
379        const Type *ElTy = cast<PointerType>(O2->getType())->getElementType();
380        unsigned GlobalSize = getTargetData().getABITypeSize(ElTy);
381        if (GlobalSize < V1Size && V1Size != ~0U)
382          return NoAlias;
383      }
384  }
385
386  // If we have two gep instructions with must-alias'ing base pointers, figure
387  // out if the indexes to the GEP tell us anything about the derived pointer.
388  // Note that we also handle chains of getelementptr instructions as well as
389  // constant expression getelementptrs here.
390  //
391  if (isGEP(V1) && isGEP(V2)) {
392    // Drill down into the first non-gep value, to test for must-aliasing of
393    // the base pointers.
394    const Value *BasePtr1 = V1, *BasePtr2 = V2;
395    do {
396      BasePtr1 = cast<User>(BasePtr1)->getOperand(0);
397    } while (isGEP(BasePtr1) &&
398             cast<User>(BasePtr1)->getOperand(1) ==
399       Constant::getNullValue(cast<User>(BasePtr1)->getOperand(1)->getType()));
400    do {
401      BasePtr2 = cast<User>(BasePtr2)->getOperand(0);
402    } while (isGEP(BasePtr2) &&
403             cast<User>(BasePtr2)->getOperand(1) ==
404       Constant::getNullValue(cast<User>(BasePtr2)->getOperand(1)->getType()));
405
406    // Do the base pointers alias?
407    AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
408    if (BaseAlias == NoAlias) return NoAlias;
409    if (BaseAlias == MustAlias) {
410      // If the base pointers alias each other exactly, check to see if we can
411      // figure out anything about the resultant pointers, to try to prove
412      // non-aliasing.
413
414      // Collect all of the chained GEP operands together into one simple place
415      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
416      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
417      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
418
419      // If GetGEPOperands were able to fold to the same must-aliased pointer,
420      // do the comparison.
421      if (BasePtr1 == BasePtr2) {
422        AliasResult GAlias =
423          CheckGEPInstructions(BasePtr1->getType(),
424                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
425                               BasePtr2->getType(),
426                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
427        if (GAlias != MayAlias)
428          return GAlias;
429      }
430    }
431  }
432
433  // Check to see if these two pointers are related by a getelementptr
434  // instruction.  If one pointer is a GEP with a non-zero index of the other
435  // pointer, we know they cannot alias.
436  //
437  if (isGEP(V2)) {
438    std::swap(V1, V2);
439    std::swap(V1Size, V2Size);
440  }
441
442  if (V1Size != ~0U && V2Size != ~0U)
443    if (isGEP(V1)) {
444      SmallVector<Value*, 16> GEPOperands;
445      const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
446
447      AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
448      if (R == MustAlias) {
449        // If there is at least one non-zero constant index, we know they cannot
450        // alias.
451        bool ConstantFound = false;
452        bool AllZerosFound = true;
453        for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
454          if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
455            if (!C->isNullValue()) {
456              ConstantFound = true;
457              AllZerosFound = false;
458              break;
459            }
460          } else {
461            AllZerosFound = false;
462          }
463
464        // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
465        // the ptr, the end result is a must alias also.
466        if (AllZerosFound)
467          return MustAlias;
468
469        if (ConstantFound) {
470          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
471            return NoAlias;
472
473          // Otherwise we have to check to see that the distance is more than
474          // the size of the argument... build an index vector that is equal to
475          // the arguments provided, except substitute 0's for any variable
476          // indexes we find...
477          if (cast<PointerType>(
478                BasePtr->getType())->getElementType()->isSized()) {
479            for (unsigned i = 0; i != GEPOperands.size(); ++i)
480              if (!isa<ConstantInt>(GEPOperands[i]))
481                GEPOperands[i] =
482                  Constant::getNullValue(GEPOperands[i]->getType());
483            int64_t Offset =
484              getTargetData().getIndexedOffset(BasePtr->getType(),
485                                               &GEPOperands[0],
486                                               GEPOperands.size());
487
488            if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
489              return NoAlias;
490          }
491        }
492      }
493    }
494
495  return MayAlias;
496}
497
498// This function is used to determin if the indices of two GEP instructions are
499// equal. V1 and V2 are the indices.
500static bool IndexOperandsEqual(Value *V1, Value *V2) {
501  if (V1->getType() == V2->getType())
502    return V1 == V2;
503  if (Constant *C1 = dyn_cast<Constant>(V1))
504    if (Constant *C2 = dyn_cast<Constant>(V2)) {
505      // Sign extend the constants to long types, if necessary
506      if (C1->getType() != Type::Int64Ty)
507        C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
508      if (C2->getType() != Type::Int64Ty)
509        C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
510      return C1 == C2;
511    }
512  return false;
513}
514
515/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
516/// base pointers.  This checks to see if the index expressions preclude the
517/// pointers from aliasing...
518AliasAnalysis::AliasResult
519BasicAliasAnalysis::CheckGEPInstructions(
520  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
521  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
522  // We currently can't handle the case when the base pointers have different
523  // primitive types.  Since this is uncommon anyway, we are happy being
524  // extremely conservative.
525  if (BasePtr1Ty != BasePtr2Ty)
526    return MayAlias;
527
528  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
529
530  // Find the (possibly empty) initial sequence of equal values... which are not
531  // necessarily constants.
532  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
533  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
534  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
535  unsigned UnequalOper = 0;
536  while (UnequalOper != MinOperands &&
537         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
538    // Advance through the type as we go...
539    ++UnequalOper;
540    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
541      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
542    else {
543      // If all operands equal each other, then the derived pointers must
544      // alias each other...
545      BasePtr1Ty = 0;
546      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
547             "Ran out of type nesting, but not out of operands?");
548      return MustAlias;
549    }
550  }
551
552  // If we have seen all constant operands, and run out of indexes on one of the
553  // getelementptrs, check to see if the tail of the leftover one is all zeros.
554  // If so, return mustalias.
555  if (UnequalOper == MinOperands) {
556    if (NumGEP1Ops < NumGEP2Ops) {
557      std::swap(GEP1Ops, GEP2Ops);
558      std::swap(NumGEP1Ops, NumGEP2Ops);
559    }
560
561    bool AllAreZeros = true;
562    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
563      if (!isa<Constant>(GEP1Ops[i]) ||
564          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
565        AllAreZeros = false;
566        break;
567      }
568    if (AllAreZeros) return MustAlias;
569  }
570
571
572  // So now we know that the indexes derived from the base pointers,
573  // which are known to alias, are different.  We can still determine a
574  // no-alias result if there are differing constant pairs in the index
575  // chain.  For example:
576  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
577  //
578  // We have to be careful here about array accesses.  In particular, consider:
579  //        A[1][0] vs A[0][i]
580  // In this case, we don't *know* that the array will be accessed in bounds:
581  // the index could even be negative.  Because of this, we have to
582  // conservatively *give up* and return may alias.  We disregard differing
583  // array subscripts that are followed by a variable index without going
584  // through a struct.
585  //
586  unsigned SizeMax = std::max(G1S, G2S);
587  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
588
589  // Scan for the first operand that is constant and unequal in the
590  // two getelementptrs...
591  unsigned FirstConstantOper = UnequalOper;
592  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
593    const Value *G1Oper = GEP1Ops[FirstConstantOper];
594    const Value *G2Oper = GEP2Ops[FirstConstantOper];
595
596    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
597      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
598        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
599          if (G1OC->getType() != G2OC->getType()) {
600            // Sign extend both operands to long.
601            if (G1OC->getType() != Type::Int64Ty)
602              G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
603            if (G2OC->getType() != Type::Int64Ty)
604              G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
605            GEP1Ops[FirstConstantOper] = G1OC;
606            GEP2Ops[FirstConstantOper] = G2OC;
607          }
608
609          if (G1OC != G2OC) {
610            // Handle the "be careful" case above: if this is an array/vector
611            // subscript, scan for a subsequent variable array index.
612            if (isa<SequentialType>(BasePtr1Ty))  {
613              const Type *NextTy =
614                cast<SequentialType>(BasePtr1Ty)->getElementType();
615              bool isBadCase = false;
616
617              for (unsigned Idx = FirstConstantOper+1;
618                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
619                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
620                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
621                  isBadCase = true;
622                  break;
623                }
624                NextTy = cast<SequentialType>(NextTy)->getElementType();
625              }
626
627              if (isBadCase) G1OC = 0;
628            }
629
630            // Make sure they are comparable (ie, not constant expressions), and
631            // make sure the GEP with the smaller leading constant is GEP1.
632            if (G1OC) {
633              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
634                                                        G1OC, G2OC);
635              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
636                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
637                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
638                  std::swap(NumGEP1Ops, NumGEP2Ops);
639                }
640                break;
641              }
642            }
643          }
644        }
645    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
646  }
647
648  // No shared constant operands, and we ran out of common operands.  At this
649  // point, the GEP instructions have run through all of their operands, and we
650  // haven't found evidence that there are any deltas between the GEP's.
651  // However, one GEP may have more operands than the other.  If this is the
652  // case, there may still be hope.  Check this now.
653  if (FirstConstantOper == MinOperands) {
654    // Make GEP1Ops be the longer one if there is a longer one.
655    if (NumGEP1Ops < NumGEP2Ops) {
656      std::swap(GEP1Ops, GEP2Ops);
657      std::swap(NumGEP1Ops, NumGEP2Ops);
658    }
659
660    // Is there anything to check?
661    if (NumGEP1Ops > MinOperands) {
662      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
663        if (isa<ConstantInt>(GEP1Ops[i]) &&
664            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
665          // Yup, there's a constant in the tail.  Set all variables to
666          // constants in the GEP instruction to make it suiteable for
667          // TargetData::getIndexedOffset.
668          for (i = 0; i != MaxOperands; ++i)
669            if (!isa<ConstantInt>(GEP1Ops[i]))
670              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
671          // Okay, now get the offset.  This is the relative offset for the full
672          // instruction.
673          const TargetData &TD = getTargetData();
674          int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
675                                                NumGEP1Ops);
676
677          // Now check without any constants at the end.
678          int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
679                                                MinOperands);
680
681          // If the tail provided a bit enough offset, return noalias!
682          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
683            return NoAlias;
684        }
685    }
686
687    // Couldn't find anything useful.
688    return MayAlias;
689  }
690
691  // If there are non-equal constants arguments, then we can figure
692  // out a minimum known delta between the two index expressions... at
693  // this point we know that the first constant index of GEP1 is less
694  // than the first constant index of GEP2.
695
696  // Advance BasePtr[12]Ty over this first differing constant operand.
697  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
698      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
699  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
700      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
701
702  // We are going to be using TargetData::getIndexedOffset to determine the
703  // offset that each of the GEP's is reaching.  To do this, we have to convert
704  // all variable references to constant references.  To do this, we convert the
705  // initial sequence of array subscripts into constant zeros to start with.
706  const Type *ZeroIdxTy = GEPPointerTy;
707  for (unsigned i = 0; i != FirstConstantOper; ++i) {
708    if (!isa<StructType>(ZeroIdxTy))
709      GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
710
711    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
712      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
713  }
714
715  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
716
717  // Loop over the rest of the operands...
718  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
719    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
720    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
721    // If they are equal, use a zero index...
722    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
723      if (!isa<ConstantInt>(Op1))
724        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
725      // Otherwise, just keep the constants we have.
726    } else {
727      if (Op1) {
728        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
729          // If this is an array index, make sure the array element is in range.
730          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
731            if (Op1C->getZExtValue() >= AT->getNumElements())
732              return MayAlias;  // Be conservative with out-of-range accesses
733          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
734            if (Op1C->getZExtValue() >= VT->getNumElements())
735              return MayAlias;  // Be conservative with out-of-range accesses
736          }
737
738        } else {
739          // GEP1 is known to produce a value less than GEP2.  To be
740          // conservatively correct, we must assume the largest possible
741          // constant is used in this position.  This cannot be the initial
742          // index to the GEP instructions (because we know we have at least one
743          // element before this one with the different constant arguments), so
744          // we know that the current index must be into either a struct or
745          // array.  Because we know it's not constant, this cannot be a
746          // structure index.  Because of this, we can calculate the maximum
747          // value possible.
748          //
749          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
750            GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
751          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
752            GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
753        }
754      }
755
756      if (Op2) {
757        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
758          // If this is an array index, make sure the array element is in range.
759          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
760            if (Op2C->getZExtValue() >= AT->getNumElements())
761              return MayAlias;  // Be conservative with out-of-range accesses
762          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
763            if (Op2C->getZExtValue() >= VT->getNumElements())
764              return MayAlias;  // Be conservative with out-of-range accesses
765          }
766        } else {  // Conservatively assume the minimum value for this index
767          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
768        }
769      }
770    }
771
772    if (BasePtr1Ty && Op1) {
773      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
774        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
775      else
776        BasePtr1Ty = 0;
777    }
778
779    if (BasePtr2Ty && Op2) {
780      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
781        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
782      else
783        BasePtr2Ty = 0;
784    }
785  }
786
787  if (GEPPointerTy->getElementType()->isSized()) {
788    int64_t Offset1 =
789      getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
790    int64_t Offset2 =
791      getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
792    assert(Offset1 != Offset2 &&
793           "There is at least one different constant here!");
794
795    // Make sure we compare the absolute difference.
796    if (Offset1 > Offset2)
797      std::swap(Offset1, Offset2);
798
799    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
800      //cerr << "Determined that these two GEP's don't alias ["
801      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
802      return NoAlias;
803    }
804  }
805  return MayAlias;
806}
807
808// Make sure that anything that uses AliasAnalysis pulls in this file...
809DEFINING_FILE_FOR(BasicAliasAnalysis)
810