AsmPrinter.cpp revision 0187e7a9ba5c50b4559e0c2e0afceb6d5cd32190
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CodeGen/GCMetadataPrinter.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineJumpTableInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/DebugInfo.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/MC/MCContext.h"
35#include "llvm/MC/MCExpr.h"
36#include "llvm/MC/MCInst.h"
37#include "llvm/MC/MCSection.h"
38#include "llvm/MC/MCStreamer.h"
39#include "llvm/MC/MCSymbol.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/Format.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Timer.h"
44#include "llvm/Target/Mangler.h"
45#include "llvm/Target/TargetFrameLowering.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetLoweringObjectFile.h"
49#include "llvm/Target/TargetOptions.h"
50#include "llvm/Target/TargetRegisterInfo.h"
51using namespace llvm;
52
53static const char *DWARFGroupName = "DWARF Emission";
54static const char *DbgTimerName = "DWARF Debug Writer";
55static const char *EHTimerName = "DWARF Exception Writer";
56
57STATISTIC(EmittedInsts, "Number of machine instrs printed");
58
59char AsmPrinter::ID = 0;
60
61typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
62static gcp_map_type &getGCMap(void *&P) {
63  if (P == 0)
64    P = new gcp_map_type();
65  return *(gcp_map_type*)P;
66}
67
68
69/// getGVAlignmentLog2 - Return the alignment to use for the specified global
70/// value in log2 form.  This rounds up to the preferred alignment if possible
71/// and legal.
72static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
73                                   unsigned InBits = 0) {
74  unsigned NumBits = 0;
75  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
76    NumBits = TD.getPreferredAlignmentLog(GVar);
77
78  // If InBits is specified, round it to it.
79  if (InBits > NumBits)
80    NumBits = InBits;
81
82  // If the GV has a specified alignment, take it into account.
83  if (GV->getAlignment() == 0)
84    return NumBits;
85
86  unsigned GVAlign = Log2_32(GV->getAlignment());
87
88  // If the GVAlign is larger than NumBits, or if we are required to obey
89  // NumBits because the GV has an assigned section, obey it.
90  if (GVAlign > NumBits || GV->hasSection())
91    NumBits = GVAlign;
92  return NumBits;
93}
94
95AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
96  : MachineFunctionPass(ID),
97    TM(tm), MAI(tm.getMCAsmInfo()),
98    OutContext(Streamer.getContext()),
99    OutStreamer(Streamer),
100    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
101  DD = 0; DE = 0; MMI = 0; LI = 0;
102  CurrentFnSym = CurrentFnSymForSize = 0;
103  GCMetadataPrinters = 0;
104  VerboseAsm = Streamer.isVerboseAsm();
105}
106
107AsmPrinter::~AsmPrinter() {
108  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
109
110  if (GCMetadataPrinters != 0) {
111    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
112
113    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
114      delete I->second;
115    delete &GCMap;
116    GCMetadataPrinters = 0;
117  }
118
119  delete &OutStreamer;
120}
121
122/// getFunctionNumber - Return a unique ID for the current function.
123///
124unsigned AsmPrinter::getFunctionNumber() const {
125  return MF->getFunctionNumber();
126}
127
128const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
129  return TM.getTargetLowering()->getObjFileLowering();
130}
131
132/// getDataLayout - Return information about data layout.
133const DataLayout &AsmPrinter::getDataLayout() const {
134  return *TM.getDataLayout();
135}
136
137StringRef AsmPrinter::getTargetTriple() const {
138  return TM.getTargetTriple();
139}
140
141/// getCurrentSection() - Return the current section we are emitting to.
142const MCSection *AsmPrinter::getCurrentSection() const {
143  return OutStreamer.getCurrentSection().first;
144}
145
146
147
148void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
149  AU.setPreservesAll();
150  MachineFunctionPass::getAnalysisUsage(AU);
151  AU.addRequired<MachineModuleInfo>();
152  AU.addRequired<GCModuleInfo>();
153  if (isVerbose())
154    AU.addRequired<MachineLoopInfo>();
155}
156
157bool AsmPrinter::doInitialization(Module &M) {
158  OutStreamer.InitStreamer();
159
160  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
161  MMI->AnalyzeModule(M);
162
163  // Initialize TargetLoweringObjectFile.
164  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
165    .Initialize(OutContext, TM);
166
167  Mang = new Mangler(OutContext, &TM);
168
169  // Allow the target to emit any magic that it wants at the start of the file.
170  EmitStartOfAsmFile(M);
171
172  // Very minimal debug info. It is ignored if we emit actual debug info. If we
173  // don't, this at least helps the user find where a global came from.
174  if (MAI->hasSingleParameterDotFile()) {
175    // .file "foo.c"
176    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
177  }
178
179  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
180  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
181  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
182    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
183      MP->beginAssembly(*this);
184
185  // Emit module-level inline asm if it exists.
186  if (!M.getModuleInlineAsm().empty()) {
187    OutStreamer.AddComment("Start of file scope inline assembly");
188    OutStreamer.AddBlankLine();
189    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
190    OutStreamer.AddComment("End of file scope inline assembly");
191    OutStreamer.AddBlankLine();
192  }
193
194  if (MAI->doesSupportDebugInformation())
195    DD = new DwarfDebug(this, &M);
196
197  switch (MAI->getExceptionHandlingType()) {
198  case ExceptionHandling::None:
199    return false;
200  case ExceptionHandling::SjLj:
201  case ExceptionHandling::DwarfCFI:
202    DE = new DwarfCFIException(this);
203    return false;
204  case ExceptionHandling::ARM:
205    DE = new ARMException(this);
206    return false;
207  case ExceptionHandling::Win64:
208    DE = new Win64Exception(this);
209    return false;
210  }
211
212  llvm_unreachable("Unknown exception type.");
213}
214
215void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
216  switch ((GlobalValue::LinkageTypes)Linkage) {
217  case GlobalValue::CommonLinkage:
218  case GlobalValue::LinkOnceAnyLinkage:
219  case GlobalValue::LinkOnceODRLinkage:
220  case GlobalValue::LinkOnceODRAutoHideLinkage:
221  case GlobalValue::WeakAnyLinkage:
222  case GlobalValue::WeakODRLinkage:
223  case GlobalValue::LinkerPrivateWeakLinkage:
224    if (MAI->getWeakDefDirective() != 0) {
225      // .globl _foo
226      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
227
228      if ((GlobalValue::LinkageTypes)Linkage !=
229          GlobalValue::LinkOnceODRAutoHideLinkage)
230        // .weak_definition _foo
231        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
232      else
233        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
234    } else if (MAI->getLinkOnceDirective() != 0) {
235      // .globl _foo
236      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
237      //NOTE: linkonce is handled by the section the symbol was assigned to.
238    } else {
239      // .weak _foo
240      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
241    }
242    break;
243  case GlobalValue::DLLExportLinkage:
244  case GlobalValue::AppendingLinkage:
245    // FIXME: appending linkage variables should go into a section of
246    // their name or something.  For now, just emit them as external.
247  case GlobalValue::ExternalLinkage:
248    // If external or appending, declare as a global symbol.
249    // .globl _foo
250    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
251    break;
252  case GlobalValue::PrivateLinkage:
253  case GlobalValue::InternalLinkage:
254  case GlobalValue::LinkerPrivateLinkage:
255    break;
256  default:
257    llvm_unreachable("Unknown linkage type!");
258  }
259}
260
261
262/// EmitGlobalVariable - Emit the specified global variable to the .s file.
263void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
264  if (GV->hasInitializer()) {
265    // Check to see if this is a special global used by LLVM, if so, emit it.
266    if (EmitSpecialLLVMGlobal(GV))
267      return;
268
269    if (isVerbose()) {
270      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
271                     /*PrintType=*/false, GV->getParent());
272      OutStreamer.GetCommentOS() << '\n';
273    }
274  }
275
276  MCSymbol *GVSym = Mang->getSymbol(GV);
277  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
278
279  if (!GV->hasInitializer())   // External globals require no extra code.
280    return;
281
282  if (MAI->hasDotTypeDotSizeDirective())
283    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
284
285  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
286
287  const DataLayout *TD = TM.getDataLayout();
288  uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
289
290  // If the alignment is specified, we *must* obey it.  Overaligning a global
291  // with a specified alignment is a prompt way to break globals emitted to
292  // sections and expected to be contiguous (e.g. ObjC metadata).
293  unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
294
295  // Handle common and BSS local symbols (.lcomm).
296  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
297    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
298    unsigned Align = 1 << AlignLog;
299
300    // Handle common symbols.
301    if (GVKind.isCommon()) {
302      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
303        Align = 0;
304
305      // .comm _foo, 42, 4
306      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
307      return;
308    }
309
310    // Handle local BSS symbols.
311    if (MAI->hasMachoZeroFillDirective()) {
312      const MCSection *TheSection =
313        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
314      // .zerofill __DATA, __bss, _foo, 400, 5
315      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
316      return;
317    }
318
319    // Use .lcomm only if it supports user-specified alignment.
320    // Otherwise, while it would still be correct to use .lcomm in some
321    // cases (e.g. when Align == 1), the external assembler might enfore
322    // some -unknown- default alignment behavior, which could cause
323    // spurious differences between external and integrated assembler.
324    // Prefer to simply fall back to .local / .comm in this case.
325    if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
326      // .lcomm _foo, 42
327      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
328      return;
329    }
330
331    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
332      Align = 0;
333
334    // .local _foo
335    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
336    // .comm _foo, 42, 4
337    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
338    return;
339  }
340
341  const MCSection *TheSection =
342    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
343
344  // Handle the zerofill directive on darwin, which is a special form of BSS
345  // emission.
346  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
347    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
348
349    // .globl _foo
350    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
351    // .zerofill __DATA, __common, _foo, 400, 5
352    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
353    return;
354  }
355
356  // Handle thread local data for mach-o which requires us to output an
357  // additional structure of data and mangle the original symbol so that we
358  // can reference it later.
359  //
360  // TODO: This should become an "emit thread local global" method on TLOF.
361  // All of this macho specific stuff should be sunk down into TLOFMachO and
362  // stuff like "TLSExtraDataSection" should no longer be part of the parent
363  // TLOF class.  This will also make it more obvious that stuff like
364  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
365  // specific code.
366  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
367    // Emit the .tbss symbol
368    MCSymbol *MangSym =
369      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
370
371    if (GVKind.isThreadBSS())
372      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
373    else if (GVKind.isThreadData()) {
374      OutStreamer.SwitchSection(TheSection);
375
376      EmitAlignment(AlignLog, GV);
377      OutStreamer.EmitLabel(MangSym);
378
379      EmitGlobalConstant(GV->getInitializer());
380    }
381
382    OutStreamer.AddBlankLine();
383
384    // Emit the variable struct for the runtime.
385    const MCSection *TLVSect
386      = getObjFileLowering().getTLSExtraDataSection();
387
388    OutStreamer.SwitchSection(TLVSect);
389    // Emit the linkage here.
390    EmitLinkage(GV->getLinkage(), GVSym);
391    OutStreamer.EmitLabel(GVSym);
392
393    // Three pointers in size:
394    //   - __tlv_bootstrap - used to make sure support exists
395    //   - spare pointer, used when mapped by the runtime
396    //   - pointer to mangled symbol above with initializer
397    unsigned PtrSize = TD->getPointerSizeInBits()/8;
398    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
399				PtrSize);
400    OutStreamer.EmitIntValue(0, PtrSize);
401    OutStreamer.EmitSymbolValue(MangSym, PtrSize);
402
403    OutStreamer.AddBlankLine();
404    return;
405  }
406
407  OutStreamer.SwitchSection(TheSection);
408
409  EmitLinkage(GV->getLinkage(), GVSym);
410  EmitAlignment(AlignLog, GV);
411
412  OutStreamer.EmitLabel(GVSym);
413
414  EmitGlobalConstant(GV->getInitializer());
415
416  if (MAI->hasDotTypeDotSizeDirective())
417    // .size foo, 42
418    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
419
420  OutStreamer.AddBlankLine();
421}
422
423/// EmitFunctionHeader - This method emits the header for the current
424/// function.
425void AsmPrinter::EmitFunctionHeader() {
426  // Print out constants referenced by the function
427  EmitConstantPool();
428
429  // Print the 'header' of function.
430  const Function *F = MF->getFunction();
431
432  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
433  EmitVisibility(CurrentFnSym, F->getVisibility());
434
435  EmitLinkage(F->getLinkage(), CurrentFnSym);
436  EmitAlignment(MF->getAlignment(), F);
437
438  if (MAI->hasDotTypeDotSizeDirective())
439    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
440
441  if (isVerbose()) {
442    WriteAsOperand(OutStreamer.GetCommentOS(), F,
443                   /*PrintType=*/false, F->getParent());
444    OutStreamer.GetCommentOS() << '\n';
445  }
446
447  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
448  // do their wild and crazy things as required.
449  EmitFunctionEntryLabel();
450
451  // If the function had address-taken blocks that got deleted, then we have
452  // references to the dangling symbols.  Emit them at the start of the function
453  // so that we don't get references to undefined symbols.
454  std::vector<MCSymbol*> DeadBlockSyms;
455  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
456  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
457    OutStreamer.AddComment("Address taken block that was later removed");
458    OutStreamer.EmitLabel(DeadBlockSyms[i]);
459  }
460
461  // Add some workaround for linkonce linkage on Cygwin\MinGW.
462  if (MAI->getLinkOnceDirective() != 0 &&
463      (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
464    // FIXME: What is this?
465    MCSymbol *FakeStub =
466      OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
467                                   CurrentFnSym->getName());
468    OutStreamer.EmitLabel(FakeStub);
469  }
470
471  // Emit pre-function debug and/or EH information.
472  if (DE) {
473    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
474    DE->BeginFunction(MF);
475  }
476  if (DD) {
477    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
478    DD->beginFunction(MF);
479  }
480}
481
482/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
483/// function.  This can be overridden by targets as required to do custom stuff.
484void AsmPrinter::EmitFunctionEntryLabel() {
485  // The function label could have already been emitted if two symbols end up
486  // conflicting due to asm renaming.  Detect this and emit an error.
487  if (CurrentFnSym->isUndefined())
488    return OutStreamer.EmitLabel(CurrentFnSym);
489
490  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
491                     "' label emitted multiple times to assembly file");
492}
493
494/// emitComments - Pretty-print comments for instructions.
495static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
496  const MachineFunction *MF = MI.getParent()->getParent();
497  const TargetMachine &TM = MF->getTarget();
498
499  // Check for spills and reloads
500  int FI;
501
502  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
503
504  // We assume a single instruction only has a spill or reload, not
505  // both.
506  const MachineMemOperand *MMO;
507  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
508    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
509      MMO = *MI.memoperands_begin();
510      CommentOS << MMO->getSize() << "-byte Reload\n";
511    }
512  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
513    if (FrameInfo->isSpillSlotObjectIndex(FI))
514      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
515  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
516    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
517      MMO = *MI.memoperands_begin();
518      CommentOS << MMO->getSize() << "-byte Spill\n";
519    }
520  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
521    if (FrameInfo->isSpillSlotObjectIndex(FI))
522      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
523  }
524
525  // Check for spill-induced copies
526  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
527    CommentOS << " Reload Reuse\n";
528}
529
530/// emitImplicitDef - This method emits the specified machine instruction
531/// that is an implicit def.
532static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
533  unsigned RegNo = MI->getOperand(0).getReg();
534  AP.OutStreamer.AddComment(Twine("implicit-def: ") +
535                            AP.TM.getRegisterInfo()->getName(RegNo));
536  AP.OutStreamer.AddBlankLine();
537}
538
539static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
540  std::string Str = "kill:";
541  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
542    const MachineOperand &Op = MI->getOperand(i);
543    assert(Op.isReg() && "KILL instruction must have only register operands");
544    Str += ' ';
545    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
546    Str += (Op.isDef() ? "<def>" : "<kill>");
547  }
548  AP.OutStreamer.AddComment(Str);
549  AP.OutStreamer.AddBlankLine();
550}
551
552/// emitDebugValueComment - This method handles the target-independent form
553/// of DBG_VALUE, returning true if it was able to do so.  A false return
554/// means the target will need to handle MI in EmitInstruction.
555static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
556  // This code handles only the 3-operand target-independent form.
557  if (MI->getNumOperands() != 3)
558    return false;
559
560  SmallString<128> Str;
561  raw_svector_ostream OS(Str);
562  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
563
564  // cast away const; DIetc do not take const operands for some reason.
565  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
566  if (V.getContext().isSubprogram()) {
567    StringRef Name = DISubprogram(V.getContext()).getDisplayName();
568    if (!Name.empty())
569      OS << Name << ":";
570  }
571  OS << V.getName() << " <- ";
572
573  int64_t Offset = MI->getOperand(1).getImm();
574  bool Deref = false;
575  // Register or immediate value. Register 0 means undef.
576  if (MI->getOperand(0).isFPImm()) {
577    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
578    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
579      OS << (double)APF.convertToFloat();
580    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
581      OS << APF.convertToDouble();
582    } else {
583      // There is no good way to print long double.  Convert a copy to
584      // double.  Ah well, it's only a comment.
585      bool ignored;
586      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
587                  &ignored);
588      OS << "(long double) " << APF.convertToDouble();
589    }
590  } else if (MI->getOperand(0).isImm()) {
591    OS << MI->getOperand(0).getImm();
592  } else if (MI->getOperand(0).isCImm()) {
593    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
594  } else {
595    unsigned Reg;
596    if (MI->getOperand(0).isReg()) {
597      Reg = MI->getOperand(0).getReg();
598      Deref = Offset != 0; // FIXME: use a better sentinel value so that deref
599                           // of a reg with a zero offset is valid
600    } else {
601      assert(MI->getOperand(0).isFI() && "Unknown operand type");
602      const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
603      Offset += TFI->getFrameIndexReference(*AP.MF, MI->getOperand(0).getIndex(), Reg);
604      Deref = true;
605    }
606    if (Reg == 0) {
607      // Suppress offset, it is not meaningful here.
608      OS << "undef";
609      // NOTE: Want this comment at start of line, don't emit with AddComment.
610      AP.OutStreamer.EmitRawText(OS.str());
611      return true;
612    }
613    if (Deref)
614      OS << '[';
615    OS << AP.TM.getRegisterInfo()->getName(Reg);
616  }
617
618  if (Offset)
619    OS << '+' << Offset;
620  if (Deref)
621    OS << ']';
622  // NOTE: Want this comment at start of line, don't emit with AddComment.
623  AP.OutStreamer.EmitRawText(OS.str());
624  return true;
625}
626
627AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
628  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
629      MF->getFunction()->needsUnwindTableEntry())
630    return CFI_M_EH;
631
632  if (MMI->hasDebugInfo())
633    return CFI_M_Debug;
634
635  return CFI_M_None;
636}
637
638bool AsmPrinter::needsSEHMoves() {
639  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
640    MF->getFunction()->needsUnwindTableEntry();
641}
642
643bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
644  return MAI->doesDwarfUseRelocationsAcrossSections();
645}
646
647void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
648  MCSymbol *Label = MI.getOperand(0).getMCSymbol();
649
650  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
651    return;
652
653  if (needsCFIMoves() == CFI_M_None)
654    return;
655
656  if (MMI->getCompactUnwindEncoding() != 0)
657    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
658
659  MachineModuleInfo &MMI = MF->getMMI();
660  std::vector<MCCFIInstruction> Instructions = MMI.getFrameInstructions();
661  bool FoundOne = false;
662  (void)FoundOne;
663  for (std::vector<MCCFIInstruction>::iterator I = Instructions.begin(),
664         E = Instructions.end(); I != E; ++I) {
665    if (I->getLabel() == Label) {
666      emitCFIInstruction(*I);
667      FoundOne = true;
668    }
669  }
670  assert(FoundOne);
671}
672
673/// EmitFunctionBody - This method emits the body and trailer for a
674/// function.
675void AsmPrinter::EmitFunctionBody() {
676  // Emit target-specific gunk before the function body.
677  EmitFunctionBodyStart();
678
679  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
680
681  // Print out code for the function.
682  bool HasAnyRealCode = false;
683  const MachineInstr *LastMI = 0;
684  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
685       I != E; ++I) {
686    // Print a label for the basic block.
687    EmitBasicBlockStart(I);
688    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
689         II != IE; ++II) {
690      LastMI = II;
691
692      // Print the assembly for the instruction.
693      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
694          !II->isDebugValue()) {
695        HasAnyRealCode = true;
696        ++EmittedInsts;
697      }
698
699      if (ShouldPrintDebugScopes) {
700        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
701        DD->beginInstruction(II);
702      }
703
704      if (isVerbose())
705        emitComments(*II, OutStreamer.GetCommentOS());
706
707      switch (II->getOpcode()) {
708      case TargetOpcode::PROLOG_LABEL:
709        emitPrologLabel(*II);
710        break;
711
712      case TargetOpcode::EH_LABEL:
713      case TargetOpcode::GC_LABEL:
714        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
715        break;
716      case TargetOpcode::INLINEASM:
717        EmitInlineAsm(II);
718        break;
719      case TargetOpcode::DBG_VALUE:
720        if (isVerbose()) {
721          if (!emitDebugValueComment(II, *this))
722            EmitInstruction(II);
723        }
724        break;
725      case TargetOpcode::IMPLICIT_DEF:
726        if (isVerbose()) emitImplicitDef(II, *this);
727        break;
728      case TargetOpcode::KILL:
729        if (isVerbose()) emitKill(II, *this);
730        break;
731      default:
732        if (!TM.hasMCUseLoc())
733          MCLineEntry::Make(&OutStreamer, getCurrentSection());
734
735        EmitInstruction(II);
736        break;
737      }
738
739      if (ShouldPrintDebugScopes) {
740        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
741        DD->endInstruction(II);
742      }
743    }
744  }
745
746  // If the last instruction was a prolog label, then we have a situation where
747  // we emitted a prolog but no function body. This results in the ending prolog
748  // label equaling the end of function label and an invalid "row" in the
749  // FDE. We need to emit a noop in this situation so that the FDE's rows are
750  // valid.
751  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
752
753  // If the function is empty and the object file uses .subsections_via_symbols,
754  // then we need to emit *something* to the function body to prevent the
755  // labels from collapsing together.  Just emit a noop.
756  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
757    MCInst Noop;
758    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
759    if (Noop.getOpcode()) {
760      OutStreamer.AddComment("avoids zero-length function");
761      OutStreamer.EmitInstruction(Noop);
762    } else  // Target not mc-ized yet.
763      OutStreamer.EmitRawText(StringRef("\tnop\n"));
764  }
765
766  const Function *F = MF->getFunction();
767  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
768    const BasicBlock *BB = i;
769    if (!BB->hasAddressTaken())
770      continue;
771    MCSymbol *Sym = GetBlockAddressSymbol(BB);
772    if (Sym->isDefined())
773      continue;
774    OutStreamer.AddComment("Address of block that was removed by CodeGen");
775    OutStreamer.EmitLabel(Sym);
776  }
777
778  // Emit target-specific gunk after the function body.
779  EmitFunctionBodyEnd();
780
781  // If the target wants a .size directive for the size of the function, emit
782  // it.
783  if (MAI->hasDotTypeDotSizeDirective()) {
784    // Create a symbol for the end of function, so we can get the size as
785    // difference between the function label and the temp label.
786    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
787    OutStreamer.EmitLabel(FnEndLabel);
788
789    const MCExpr *SizeExp =
790      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
791                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
792                                                      OutContext),
793                              OutContext);
794    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
795  }
796
797  // Emit post-function debug information.
798  if (DD) {
799    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
800    DD->endFunction(MF);
801  }
802  if (DE) {
803    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
804    DE->EndFunction();
805  }
806  MMI->EndFunction();
807
808  // Print out jump tables referenced by the function.
809  EmitJumpTableInfo();
810
811  OutStreamer.AddBlankLine();
812}
813
814/// EmitDwarfRegOp - Emit dwarf register operation.
815void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
816  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
817  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
818
819  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
820       ++SR) {
821    Reg = TRI->getDwarfRegNum(*SR, false);
822    // FIXME: Get the bit range this register uses of the superregister
823    // so that we can produce a DW_OP_bit_piece
824  }
825
826  // FIXME: Handle cases like a super register being encoded as
827  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
828
829  // FIXME: We have no reasonable way of handling errors in here. The
830  // caller might be in the middle of an dwarf expression. We should
831  // probably assert that Reg >= 0 once debug info generation is more mature.
832
833  if (MLoc.isIndirect()) {
834    if (Reg < 32) {
835      OutStreamer.AddComment(
836        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
837      EmitInt8(dwarf::DW_OP_breg0 + Reg);
838    } else {
839      OutStreamer.AddComment("DW_OP_bregx");
840      EmitInt8(dwarf::DW_OP_bregx);
841      OutStreamer.AddComment(Twine(Reg));
842      EmitULEB128(Reg);
843    }
844    EmitSLEB128(MLoc.getOffset());
845  } else {
846    if (Reg < 32) {
847      OutStreamer.AddComment(
848        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
849      EmitInt8(dwarf::DW_OP_reg0 + Reg);
850    } else {
851      OutStreamer.AddComment("DW_OP_regx");
852      EmitInt8(dwarf::DW_OP_regx);
853      OutStreamer.AddComment(Twine(Reg));
854      EmitULEB128(Reg);
855    }
856  }
857
858  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
859}
860
861bool AsmPrinter::doFinalization(Module &M) {
862  // Emit global variables.
863  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
864       I != E; ++I)
865    EmitGlobalVariable(I);
866
867  // Emit visibility info for declarations
868  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
869    const Function &F = *I;
870    if (!F.isDeclaration())
871      continue;
872    GlobalValue::VisibilityTypes V = F.getVisibility();
873    if (V == GlobalValue::DefaultVisibility)
874      continue;
875
876    MCSymbol *Name = Mang->getSymbol(&F);
877    EmitVisibility(Name, V, false);
878  }
879
880  // Emit module flags.
881  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
882  M.getModuleFlagsMetadata(ModuleFlags);
883  if (!ModuleFlags.empty())
884    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
885
886  // Finalize debug and EH information.
887  if (DE) {
888    {
889      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
890      DE->EndModule();
891    }
892    delete DE; DE = 0;
893  }
894  if (DD) {
895    {
896      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
897      DD->endModule();
898    }
899    delete DD; DD = 0;
900  }
901
902  // If the target wants to know about weak references, print them all.
903  if (MAI->getWeakRefDirective()) {
904    // FIXME: This is not lazy, it would be nice to only print weak references
905    // to stuff that is actually used.  Note that doing so would require targets
906    // to notice uses in operands (due to constant exprs etc).  This should
907    // happen with the MC stuff eventually.
908
909    // Print out module-level global variables here.
910    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
911         I != E; ++I) {
912      if (!I->hasExternalWeakLinkage()) continue;
913      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
914    }
915
916    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
917      if (!I->hasExternalWeakLinkage()) continue;
918      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
919    }
920  }
921
922  if (MAI->hasSetDirective()) {
923    OutStreamer.AddBlankLine();
924    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
925         I != E; ++I) {
926      MCSymbol *Name = Mang->getSymbol(I);
927
928      const GlobalValue *GV = I->getAliasedGlobal();
929      MCSymbol *Target = Mang->getSymbol(GV);
930
931      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
932        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
933      else if (I->hasWeakLinkage())
934        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
935      else
936        assert(I->hasLocalLinkage() && "Invalid alias linkage");
937
938      EmitVisibility(Name, I->getVisibility());
939
940      // Emit the directives as assignments aka .set:
941      OutStreamer.EmitAssignment(Name,
942                                 MCSymbolRefExpr::Create(Target, OutContext));
943    }
944  }
945
946  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
947  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
948  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
949    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
950      MP->finishAssembly(*this);
951
952  // If we don't have any trampolines, then we don't require stack memory
953  // to be executable. Some targets have a directive to declare this.
954  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
955  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
956    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
957      OutStreamer.SwitchSection(S);
958
959  // Allow the target to emit any magic that it wants at the end of the file,
960  // after everything else has gone out.
961  EmitEndOfAsmFile(M);
962
963  delete Mang; Mang = 0;
964  MMI = 0;
965
966  OutStreamer.Finish();
967  OutStreamer.reset();
968
969  return false;
970}
971
972void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
973  this->MF = &MF;
974  // Get the function symbol.
975  CurrentFnSym = Mang->getSymbol(MF.getFunction());
976  CurrentFnSymForSize = CurrentFnSym;
977
978  if (isVerbose())
979    LI = &getAnalysis<MachineLoopInfo>();
980}
981
982namespace {
983  // SectionCPs - Keep track the alignment, constpool entries per Section.
984  struct SectionCPs {
985    const MCSection *S;
986    unsigned Alignment;
987    SmallVector<unsigned, 4> CPEs;
988    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
989  };
990}
991
992/// EmitConstantPool - Print to the current output stream assembly
993/// representations of the constants in the constant pool MCP. This is
994/// used to print out constants which have been "spilled to memory" by
995/// the code generator.
996///
997void AsmPrinter::EmitConstantPool() {
998  const MachineConstantPool *MCP = MF->getConstantPool();
999  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1000  if (CP.empty()) return;
1001
1002  // Calculate sections for constant pool entries. We collect entries to go into
1003  // the same section together to reduce amount of section switch statements.
1004  SmallVector<SectionCPs, 4> CPSections;
1005  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1006    const MachineConstantPoolEntry &CPE = CP[i];
1007    unsigned Align = CPE.getAlignment();
1008
1009    SectionKind Kind;
1010    switch (CPE.getRelocationInfo()) {
1011    default: llvm_unreachable("Unknown section kind");
1012    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1013    case 1:
1014      Kind = SectionKind::getReadOnlyWithRelLocal();
1015      break;
1016    case 0:
1017    switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
1018    case 4:  Kind = SectionKind::getMergeableConst4(); break;
1019    case 8:  Kind = SectionKind::getMergeableConst8(); break;
1020    case 16: Kind = SectionKind::getMergeableConst16();break;
1021    default: Kind = SectionKind::getMergeableConst(); break;
1022    }
1023    }
1024
1025    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1026
1027    // The number of sections are small, just do a linear search from the
1028    // last section to the first.
1029    bool Found = false;
1030    unsigned SecIdx = CPSections.size();
1031    while (SecIdx != 0) {
1032      if (CPSections[--SecIdx].S == S) {
1033        Found = true;
1034        break;
1035      }
1036    }
1037    if (!Found) {
1038      SecIdx = CPSections.size();
1039      CPSections.push_back(SectionCPs(S, Align));
1040    }
1041
1042    if (Align > CPSections[SecIdx].Alignment)
1043      CPSections[SecIdx].Alignment = Align;
1044    CPSections[SecIdx].CPEs.push_back(i);
1045  }
1046
1047  // Now print stuff into the calculated sections.
1048  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1049    OutStreamer.SwitchSection(CPSections[i].S);
1050    EmitAlignment(Log2_32(CPSections[i].Alignment));
1051
1052    unsigned Offset = 0;
1053    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1054      unsigned CPI = CPSections[i].CPEs[j];
1055      MachineConstantPoolEntry CPE = CP[CPI];
1056
1057      // Emit inter-object padding for alignment.
1058      unsigned AlignMask = CPE.getAlignment() - 1;
1059      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1060      OutStreamer.EmitZeros(NewOffset - Offset);
1061
1062      Type *Ty = CPE.getType();
1063      Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1064      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1065
1066      if (CPE.isMachineConstantPoolEntry())
1067        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1068      else
1069        EmitGlobalConstant(CPE.Val.ConstVal);
1070    }
1071  }
1072}
1073
1074/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1075/// by the current function to the current output stream.
1076///
1077void AsmPrinter::EmitJumpTableInfo() {
1078  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1079  if (MJTI == 0) return;
1080  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1081  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1082  if (JT.empty()) return;
1083
1084  // Pick the directive to use to print the jump table entries, and switch to
1085  // the appropriate section.
1086  const Function *F = MF->getFunction();
1087  bool JTInDiffSection = false;
1088  if (// In PIC mode, we need to emit the jump table to the same section as the
1089      // function body itself, otherwise the label differences won't make sense.
1090      // FIXME: Need a better predicate for this: what about custom entries?
1091      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1092      // We should also do if the section name is NULL or function is declared
1093      // in discardable section
1094      // FIXME: this isn't the right predicate, should be based on the MCSection
1095      // for the function.
1096      F->isWeakForLinker()) {
1097    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1098  } else {
1099    // Otherwise, drop it in the readonly section.
1100    const MCSection *ReadOnlySection =
1101      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1102    OutStreamer.SwitchSection(ReadOnlySection);
1103    JTInDiffSection = true;
1104  }
1105
1106  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1107
1108  // Jump tables in code sections are marked with a data_region directive
1109  // where that's supported.
1110  if (!JTInDiffSection)
1111    OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1112
1113  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1114    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1115
1116    // If this jump table was deleted, ignore it.
1117    if (JTBBs.empty()) continue;
1118
1119    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1120    // .set directive for each unique entry.  This reduces the number of
1121    // relocations the assembler will generate for the jump table.
1122    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1123        MAI->hasSetDirective()) {
1124      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1125      const TargetLowering *TLI = TM.getTargetLowering();
1126      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1127      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1128        const MachineBasicBlock *MBB = JTBBs[ii];
1129        if (!EmittedSets.insert(MBB)) continue;
1130
1131        // .set LJTSet, LBB32-base
1132        const MCExpr *LHS =
1133          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1134        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1135                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1136      }
1137    }
1138
1139    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1140    // before each jump table.  The first label is never referenced, but tells
1141    // the assembler and linker the extents of the jump table object.  The
1142    // second label is actually referenced by the code.
1143    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1144      // FIXME: This doesn't have to have any specific name, just any randomly
1145      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1146      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1147
1148    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1149
1150    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1151      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1152  }
1153  if (!JTInDiffSection)
1154    OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1155}
1156
1157/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1158/// current stream.
1159void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1160                                    const MachineBasicBlock *MBB,
1161                                    unsigned UID) const {
1162  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1163  const MCExpr *Value = 0;
1164  switch (MJTI->getEntryKind()) {
1165  case MachineJumpTableInfo::EK_Inline:
1166    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1167  case MachineJumpTableInfo::EK_Custom32:
1168    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1169                                                              OutContext);
1170    break;
1171  case MachineJumpTableInfo::EK_BlockAddress:
1172    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1173    //     .word LBB123
1174    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1175    break;
1176  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1177    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1178    // with a relocation as gp-relative, e.g.:
1179    //     .gprel32 LBB123
1180    MCSymbol *MBBSym = MBB->getSymbol();
1181    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1182    return;
1183  }
1184
1185  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1186    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1187    // with a relocation as gp-relative, e.g.:
1188    //     .gpdword LBB123
1189    MCSymbol *MBBSym = MBB->getSymbol();
1190    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1191    return;
1192  }
1193
1194  case MachineJumpTableInfo::EK_LabelDifference32: {
1195    // EK_LabelDifference32 - Each entry is the address of the block minus
1196    // the address of the jump table.  This is used for PIC jump tables where
1197    // gprel32 is not supported.  e.g.:
1198    //      .word LBB123 - LJTI1_2
1199    // If the .set directive is supported, this is emitted as:
1200    //      .set L4_5_set_123, LBB123 - LJTI1_2
1201    //      .word L4_5_set_123
1202
1203    // If we have emitted set directives for the jump table entries, print
1204    // them rather than the entries themselves.  If we're emitting PIC, then
1205    // emit the table entries as differences between two text section labels.
1206    if (MAI->hasSetDirective()) {
1207      // If we used .set, reference the .set's symbol.
1208      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1209                                      OutContext);
1210      break;
1211    }
1212    // Otherwise, use the difference as the jump table entry.
1213    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1214    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1215    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1216    break;
1217  }
1218  }
1219
1220  assert(Value && "Unknown entry kind!");
1221
1222  unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1223  OutStreamer.EmitValue(Value, EntrySize);
1224}
1225
1226
1227/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1228/// special global used by LLVM.  If so, emit it and return true, otherwise
1229/// do nothing and return false.
1230bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1231  if (GV->getName() == "llvm.used") {
1232    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1233      EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1234    return true;
1235  }
1236
1237  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1238  if (GV->getSection() == "llvm.metadata" ||
1239      GV->hasAvailableExternallyLinkage())
1240    return true;
1241
1242  if (!GV->hasAppendingLinkage()) return false;
1243
1244  assert(GV->hasInitializer() && "Not a special LLVM global!");
1245
1246  if (GV->getName() == "llvm.global_ctors") {
1247    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1248
1249    if (TM.getRelocationModel() == Reloc::Static &&
1250        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1251      StringRef Sym(".constructors_used");
1252      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1253                                      MCSA_Reference);
1254    }
1255    return true;
1256  }
1257
1258  if (GV->getName() == "llvm.global_dtors") {
1259    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1260
1261    if (TM.getRelocationModel() == Reloc::Static &&
1262        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1263      StringRef Sym(".destructors_used");
1264      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1265                                      MCSA_Reference);
1266    }
1267    return true;
1268  }
1269
1270  return false;
1271}
1272
1273/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1274/// global in the specified llvm.used list for which emitUsedDirectiveFor
1275/// is true, as being used with this directive.
1276void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1277  // Should be an array of 'i8*'.
1278  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1279    const GlobalValue *GV =
1280      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1281    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1282      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1283  }
1284}
1285
1286typedef std::pair<unsigned, Constant*> Structor;
1287
1288static bool priority_order(const Structor& lhs, const Structor& rhs) {
1289  return lhs.first < rhs.first;
1290}
1291
1292/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1293/// priority.
1294void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1295  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1296  // init priority.
1297  if (!isa<ConstantArray>(List)) return;
1298
1299  // Sanity check the structors list.
1300  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1301  if (!InitList) return; // Not an array!
1302  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1303  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1304  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1305      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1306
1307  // Gather the structors in a form that's convenient for sorting by priority.
1308  SmallVector<Structor, 8> Structors;
1309  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1310    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1311    if (!CS) continue; // Malformed.
1312    if (CS->getOperand(1)->isNullValue())
1313      break;  // Found a null terminator, skip the rest.
1314    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1315    if (!Priority) continue; // Malformed.
1316    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1317                                       CS->getOperand(1)));
1318  }
1319
1320  // Emit the function pointers in the target-specific order
1321  const DataLayout *TD = TM.getDataLayout();
1322  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1323  std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1324  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1325    const MCSection *OutputSection =
1326      (isCtor ?
1327       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1328       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1329    OutStreamer.SwitchSection(OutputSection);
1330    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1331      EmitAlignment(Align);
1332    EmitXXStructor(Structors[i].second);
1333  }
1334}
1335
1336//===--------------------------------------------------------------------===//
1337// Emission and print routines
1338//
1339
1340/// EmitInt8 - Emit a byte directive and value.
1341///
1342void AsmPrinter::EmitInt8(int Value) const {
1343  OutStreamer.EmitIntValue(Value, 1);
1344}
1345
1346/// EmitInt16 - Emit a short directive and value.
1347///
1348void AsmPrinter::EmitInt16(int Value) const {
1349  OutStreamer.EmitIntValue(Value, 2);
1350}
1351
1352/// EmitInt32 - Emit a long directive and value.
1353///
1354void AsmPrinter::EmitInt32(int Value) const {
1355  OutStreamer.EmitIntValue(Value, 4);
1356}
1357
1358/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1359/// in bytes of the directive is specified by Size and Hi/Lo specify the
1360/// labels.  This implicitly uses .set if it is available.
1361void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1362                                     unsigned Size) const {
1363  // Get the Hi-Lo expression.
1364  const MCExpr *Diff =
1365    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1366                            MCSymbolRefExpr::Create(Lo, OutContext),
1367                            OutContext);
1368
1369  if (!MAI->hasSetDirective()) {
1370    OutStreamer.EmitValue(Diff, Size);
1371    return;
1372  }
1373
1374  // Otherwise, emit with .set (aka assignment).
1375  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1376  OutStreamer.EmitAssignment(SetLabel, Diff);
1377  OutStreamer.EmitSymbolValue(SetLabel, Size);
1378}
1379
1380/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1381/// where the size in bytes of the directive is specified by Size and Hi/Lo
1382/// specify the labels.  This implicitly uses .set if it is available.
1383void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1384                                           const MCSymbol *Lo, unsigned Size)
1385  const {
1386
1387  // Emit Hi+Offset - Lo
1388  // Get the Hi+Offset expression.
1389  const MCExpr *Plus =
1390    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1391                            MCConstantExpr::Create(Offset, OutContext),
1392                            OutContext);
1393
1394  // Get the Hi+Offset-Lo expression.
1395  const MCExpr *Diff =
1396    MCBinaryExpr::CreateSub(Plus,
1397                            MCSymbolRefExpr::Create(Lo, OutContext),
1398                            OutContext);
1399
1400  if (!MAI->hasSetDirective())
1401    OutStreamer.EmitValue(Diff, 4);
1402  else {
1403    // Otherwise, emit with .set (aka assignment).
1404    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1405    OutStreamer.EmitAssignment(SetLabel, Diff);
1406    OutStreamer.EmitSymbolValue(SetLabel, 4);
1407  }
1408}
1409
1410/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1411/// where the size in bytes of the directive is specified by Size and Label
1412/// specifies the label.  This implicitly uses .set if it is available.
1413void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1414                                      unsigned Size)
1415  const {
1416
1417  // Emit Label+Offset (or just Label if Offset is zero)
1418  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1419  if (Offset)
1420    Expr = MCBinaryExpr::CreateAdd(Expr,
1421                                   MCConstantExpr::Create(Offset, OutContext),
1422                                   OutContext);
1423
1424  OutStreamer.EmitValue(Expr, Size);
1425}
1426
1427
1428//===----------------------------------------------------------------------===//
1429
1430// EmitAlignment - Emit an alignment directive to the specified power of
1431// two boundary.  For example, if you pass in 3 here, you will get an 8
1432// byte alignment.  If a global value is specified, and if that global has
1433// an explicit alignment requested, it will override the alignment request
1434// if required for correctness.
1435//
1436void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1437  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1438
1439  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1440
1441  if (getCurrentSection()->getKind().isText())
1442    OutStreamer.EmitCodeAlignment(1 << NumBits);
1443  else
1444    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1445}
1446
1447//===----------------------------------------------------------------------===//
1448// Constant emission.
1449//===----------------------------------------------------------------------===//
1450
1451/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1452///
1453static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1454  MCContext &Ctx = AP.OutContext;
1455
1456  if (CV->isNullValue() || isa<UndefValue>(CV))
1457    return MCConstantExpr::Create(0, Ctx);
1458
1459  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1460    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1461
1462  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1463    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1464
1465  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1466    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1467
1468  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1469  if (CE == 0) {
1470    llvm_unreachable("Unknown constant value to lower!");
1471  }
1472
1473  switch (CE->getOpcode()) {
1474  default:
1475    // If the code isn't optimized, there may be outstanding folding
1476    // opportunities. Attempt to fold the expression using DataLayout as a
1477    // last resort before giving up.
1478    if (Constant *C =
1479          ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1480      if (C != CE)
1481        return lowerConstant(C, AP);
1482
1483    // Otherwise report the problem to the user.
1484    {
1485      std::string S;
1486      raw_string_ostream OS(S);
1487      OS << "Unsupported expression in static initializer: ";
1488      WriteAsOperand(OS, CE, /*PrintType=*/false,
1489                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1490      report_fatal_error(OS.str());
1491    }
1492  case Instruction::GetElementPtr: {
1493    const DataLayout &TD = *AP.TM.getDataLayout();
1494    // Generate a symbolic expression for the byte address
1495    APInt OffsetAI(TD.getPointerSizeInBits(), 0);
1496    cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
1497
1498    const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1499    if (!OffsetAI)
1500      return Base;
1501
1502    int64_t Offset = OffsetAI.getSExtValue();
1503    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1504                                   Ctx);
1505  }
1506
1507  case Instruction::Trunc:
1508    // We emit the value and depend on the assembler to truncate the generated
1509    // expression properly.  This is important for differences between
1510    // blockaddress labels.  Since the two labels are in the same function, it
1511    // is reasonable to treat their delta as a 32-bit value.
1512    // FALL THROUGH.
1513  case Instruction::BitCast:
1514    return lowerConstant(CE->getOperand(0), AP);
1515
1516  case Instruction::IntToPtr: {
1517    const DataLayout &TD = *AP.TM.getDataLayout();
1518    // Handle casts to pointers by changing them into casts to the appropriate
1519    // integer type.  This promotes constant folding and simplifies this code.
1520    Constant *Op = CE->getOperand(0);
1521    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1522                                      false/*ZExt*/);
1523    return lowerConstant(Op, AP);
1524  }
1525
1526  case Instruction::PtrToInt: {
1527    const DataLayout &TD = *AP.TM.getDataLayout();
1528    // Support only foldable casts to/from pointers that can be eliminated by
1529    // changing the pointer to the appropriately sized integer type.
1530    Constant *Op = CE->getOperand(0);
1531    Type *Ty = CE->getType();
1532
1533    const MCExpr *OpExpr = lowerConstant(Op, AP);
1534
1535    // We can emit the pointer value into this slot if the slot is an
1536    // integer slot equal to the size of the pointer.
1537    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1538      return OpExpr;
1539
1540    // Otherwise the pointer is smaller than the resultant integer, mask off
1541    // the high bits so we are sure to get a proper truncation if the input is
1542    // a constant expr.
1543    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1544    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1545    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1546  }
1547
1548  // The MC library also has a right-shift operator, but it isn't consistently
1549  // signed or unsigned between different targets.
1550  case Instruction::Add:
1551  case Instruction::Sub:
1552  case Instruction::Mul:
1553  case Instruction::SDiv:
1554  case Instruction::SRem:
1555  case Instruction::Shl:
1556  case Instruction::And:
1557  case Instruction::Or:
1558  case Instruction::Xor: {
1559    const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1560    const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1561    switch (CE->getOpcode()) {
1562    default: llvm_unreachable("Unknown binary operator constant cast expr");
1563    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1564    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1565    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1566    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1567    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1568    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1569    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1570    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1571    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1572    }
1573  }
1574  }
1575}
1576
1577static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1578                                   AsmPrinter &AP);
1579
1580/// isRepeatedByteSequence - Determine whether the given value is
1581/// composed of a repeated sequence of identical bytes and return the
1582/// byte value.  If it is not a repeated sequence, return -1.
1583static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1584  StringRef Data = V->getRawDataValues();
1585  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1586  char C = Data[0];
1587  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1588    if (Data[i] != C) return -1;
1589  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1590}
1591
1592
1593/// isRepeatedByteSequence - Determine whether the given value is
1594/// composed of a repeated sequence of identical bytes and return the
1595/// byte value.  If it is not a repeated sequence, return -1.
1596static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1597
1598  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1599    if (CI->getBitWidth() > 64) return -1;
1600
1601    uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1602    uint64_t Value = CI->getZExtValue();
1603
1604    // Make sure the constant is at least 8 bits long and has a power
1605    // of 2 bit width.  This guarantees the constant bit width is
1606    // always a multiple of 8 bits, avoiding issues with padding out
1607    // to Size and other such corner cases.
1608    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1609
1610    uint8_t Byte = static_cast<uint8_t>(Value);
1611
1612    for (unsigned i = 1; i < Size; ++i) {
1613      Value >>= 8;
1614      if (static_cast<uint8_t>(Value) != Byte) return -1;
1615    }
1616    return Byte;
1617  }
1618  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1619    // Make sure all array elements are sequences of the same repeated
1620    // byte.
1621    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1622    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1623    if (Byte == -1) return -1;
1624
1625    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1626      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1627      if (ThisByte == -1) return -1;
1628      if (Byte != ThisByte) return -1;
1629    }
1630    return Byte;
1631  }
1632
1633  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1634    return isRepeatedByteSequence(CDS);
1635
1636  return -1;
1637}
1638
1639static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1640                                             unsigned AddrSpace,AsmPrinter &AP){
1641
1642  // See if we can aggregate this into a .fill, if so, emit it as such.
1643  int Value = isRepeatedByteSequence(CDS, AP.TM);
1644  if (Value != -1) {
1645    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1646    // Don't emit a 1-byte object as a .fill.
1647    if (Bytes > 1)
1648      return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1649  }
1650
1651  // If this can be emitted with .ascii/.asciz, emit it as such.
1652  if (CDS->isString())
1653    return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1654
1655  // Otherwise, emit the values in successive locations.
1656  unsigned ElementByteSize = CDS->getElementByteSize();
1657  if (isa<IntegerType>(CDS->getElementType())) {
1658    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1659      if (AP.isVerbose())
1660        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1661                                                CDS->getElementAsInteger(i));
1662      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1663                                  ElementByteSize, AddrSpace);
1664    }
1665  } else if (ElementByteSize == 4) {
1666    // FP Constants are printed as integer constants to avoid losing
1667    // precision.
1668    assert(CDS->getElementType()->isFloatTy());
1669    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1670      union {
1671        float F;
1672        uint32_t I;
1673      };
1674
1675      F = CDS->getElementAsFloat(i);
1676      if (AP.isVerbose())
1677        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1678      AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1679    }
1680  } else {
1681    assert(CDS->getElementType()->isDoubleTy());
1682    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1683      union {
1684        double F;
1685        uint64_t I;
1686      };
1687
1688      F = CDS->getElementAsDouble(i);
1689      if (AP.isVerbose())
1690        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1691      AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1692    }
1693  }
1694
1695  const DataLayout &TD = *AP.TM.getDataLayout();
1696  unsigned Size = TD.getTypeAllocSize(CDS->getType());
1697  unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1698                        CDS->getNumElements();
1699  if (unsigned Padding = Size - EmittedSize)
1700    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1701
1702}
1703
1704static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1705                                    AsmPrinter &AP) {
1706  // See if we can aggregate some values.  Make sure it can be
1707  // represented as a series of bytes of the constant value.
1708  int Value = isRepeatedByteSequence(CA, AP.TM);
1709
1710  if (Value != -1) {
1711    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1712    AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1713  }
1714  else {
1715    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1716      emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1717  }
1718}
1719
1720static void emitGlobalConstantVector(const ConstantVector *CV,
1721                                     unsigned AddrSpace, AsmPrinter &AP) {
1722  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1723    emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1724
1725  const DataLayout &TD = *AP.TM.getDataLayout();
1726  unsigned Size = TD.getTypeAllocSize(CV->getType());
1727  unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1728                         CV->getType()->getNumElements();
1729  if (unsigned Padding = Size - EmittedSize)
1730    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1731}
1732
1733static void emitGlobalConstantStruct(const ConstantStruct *CS,
1734                                     unsigned AddrSpace, AsmPrinter &AP) {
1735  // Print the fields in successive locations. Pad to align if needed!
1736  const DataLayout *TD = AP.TM.getDataLayout();
1737  unsigned Size = TD->getTypeAllocSize(CS->getType());
1738  const StructLayout *Layout = TD->getStructLayout(CS->getType());
1739  uint64_t SizeSoFar = 0;
1740  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1741    const Constant *Field = CS->getOperand(i);
1742
1743    // Check if padding is needed and insert one or more 0s.
1744    uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1745    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1746                        - Layout->getElementOffset(i)) - FieldSize;
1747    SizeSoFar += FieldSize + PadSize;
1748
1749    // Now print the actual field value.
1750    emitGlobalConstantImpl(Field, AddrSpace, AP);
1751
1752    // Insert padding - this may include padding to increase the size of the
1753    // current field up to the ABI size (if the struct is not packed) as well
1754    // as padding to ensure that the next field starts at the right offset.
1755    AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1756  }
1757  assert(SizeSoFar == Layout->getSizeInBytes() &&
1758         "Layout of constant struct may be incorrect!");
1759}
1760
1761static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1762                                 AsmPrinter &AP) {
1763  APInt API = CFP->getValueAPF().bitcastToAPInt();
1764
1765  // First print a comment with what we think the original floating-point value
1766  // should have been.
1767  if (AP.isVerbose()) {
1768    SmallString<8> StrVal;
1769    CFP->getValueAPF().toString(StrVal);
1770
1771    CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1772    AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1773  }
1774
1775  // Now iterate through the APInt chunks, emitting them in endian-correct
1776  // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1777  // floats).
1778  unsigned NumBytes = API.getBitWidth() / 8;
1779  unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1780  const uint64_t *p = API.getRawData();
1781
1782  // PPC's long double has odd notions of endianness compared to how LLVM
1783  // handles it: p[0] goes first for *big* endian on PPC.
1784  if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
1785    int Chunk = API.getNumWords() - 1;
1786
1787    if (TrailingBytes)
1788      AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes, AddrSpace);
1789
1790    for (; Chunk >= 0; --Chunk)
1791      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace);
1792  } else {
1793    unsigned Chunk;
1794    for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
1795      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace);
1796
1797    if (TrailingBytes)
1798      AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes, AddrSpace);
1799  }
1800
1801  // Emit the tail padding for the long double.
1802  const DataLayout &TD = *AP.TM.getDataLayout();
1803  AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1804                           TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1805}
1806
1807static void emitGlobalConstantLargeInt(const ConstantInt *CI,
1808                                       unsigned AddrSpace, AsmPrinter &AP) {
1809  const DataLayout *TD = AP.TM.getDataLayout();
1810  unsigned BitWidth = CI->getBitWidth();
1811
1812  // Copy the value as we may massage the layout for constants whose bit width
1813  // is not a multiple of 64-bits.
1814  APInt Realigned(CI->getValue());
1815  uint64_t ExtraBits = 0;
1816  unsigned ExtraBitsSize = BitWidth & 63;
1817
1818  if (ExtraBitsSize) {
1819    // The bit width of the data is not a multiple of 64-bits.
1820    // The extra bits are expected to be at the end of the chunk of the memory.
1821    // Little endian:
1822    // * Nothing to be done, just record the extra bits to emit.
1823    // Big endian:
1824    // * Record the extra bits to emit.
1825    // * Realign the raw data to emit the chunks of 64-bits.
1826    if (TD->isBigEndian()) {
1827      // Basically the structure of the raw data is a chunk of 64-bits cells:
1828      //    0        1         BitWidth / 64
1829      // [chunk1][chunk2] ... [chunkN].
1830      // The most significant chunk is chunkN and it should be emitted first.
1831      // However, due to the alignment issue chunkN contains useless bits.
1832      // Realign the chunks so that they contain only useless information:
1833      // ExtraBits     0       1       (BitWidth / 64) - 1
1834      //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
1835      ExtraBits = Realigned.getRawData()[0] &
1836        (((uint64_t)-1) >> (64 - ExtraBitsSize));
1837      Realigned = Realigned.lshr(ExtraBitsSize);
1838    } else
1839      ExtraBits = Realigned.getRawData()[BitWidth / 64];
1840  }
1841
1842  // We don't expect assemblers to support integer data directives
1843  // for more than 64 bits, so we emit the data in at most 64-bit
1844  // quantities at a time.
1845  const uint64_t *RawData = Realigned.getRawData();
1846  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1847    uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1848    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1849  }
1850
1851  if (ExtraBitsSize) {
1852    // Emit the extra bits after the 64-bits chunks.
1853
1854    // Emit a directive that fills the expected size.
1855    uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
1856    Size -= (BitWidth / 64) * 8;
1857    assert(Size && Size * 8 >= ExtraBitsSize &&
1858           (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
1859           == ExtraBits && "Directive too small for extra bits.");
1860    AP.OutStreamer.EmitIntValue(ExtraBits, Size, AddrSpace);
1861  }
1862}
1863
1864static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1865                                   AsmPrinter &AP) {
1866  const DataLayout *TD = AP.TM.getDataLayout();
1867  uint64_t Size = TD->getTypeAllocSize(CV->getType());
1868  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1869    return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1870
1871  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1872    switch (Size) {
1873    case 1:
1874    case 2:
1875    case 4:
1876    case 8:
1877      if (AP.isVerbose())
1878        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1879                                                CI->getZExtValue());
1880      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1881      return;
1882    default:
1883      emitGlobalConstantLargeInt(CI, AddrSpace, AP);
1884      return;
1885    }
1886  }
1887
1888  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1889    return emitGlobalConstantFP(CFP, AddrSpace, AP);
1890
1891  if (isa<ConstantPointerNull>(CV)) {
1892    AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1893    return;
1894  }
1895
1896  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1897    return emitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1898
1899  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1900    return emitGlobalConstantArray(CVA, AddrSpace, AP);
1901
1902  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1903    return emitGlobalConstantStruct(CVS, AddrSpace, AP);
1904
1905  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1906    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1907    // vectors).
1908    if (CE->getOpcode() == Instruction::BitCast)
1909      return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1910
1911    if (Size > 8) {
1912      // If the constant expression's size is greater than 64-bits, then we have
1913      // to emit the value in chunks. Try to constant fold the value and emit it
1914      // that way.
1915      Constant *New = ConstantFoldConstantExpression(CE, TD);
1916      if (New && New != CE)
1917        return emitGlobalConstantImpl(New, AddrSpace, AP);
1918    }
1919  }
1920
1921  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1922    return emitGlobalConstantVector(V, AddrSpace, AP);
1923
1924  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1925  // thread the streamer with EmitValue.
1926  AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace);
1927}
1928
1929/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1930void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1931  uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
1932  if (Size)
1933    emitGlobalConstantImpl(CV, AddrSpace, *this);
1934  else if (MAI->hasSubsectionsViaSymbols()) {
1935    // If the global has zero size, emit a single byte so that two labels don't
1936    // look like they are at the same location.
1937    OutStreamer.EmitIntValue(0, 1, AddrSpace);
1938  }
1939}
1940
1941void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1942  // Target doesn't support this yet!
1943  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1944}
1945
1946void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1947  if (Offset > 0)
1948    OS << '+' << Offset;
1949  else if (Offset < 0)
1950    OS << Offset;
1951}
1952
1953//===----------------------------------------------------------------------===//
1954// Symbol Lowering Routines.
1955//===----------------------------------------------------------------------===//
1956
1957/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1958/// temporary label with the specified stem and unique ID.
1959MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1960  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1961                                      Name + Twine(ID));
1962}
1963
1964/// GetTempSymbol - Return an assembler temporary label with the specified
1965/// stem.
1966MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1967  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1968                                      Name);
1969}
1970
1971
1972MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1973  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1974}
1975
1976MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1977  return MMI->getAddrLabelSymbol(BB);
1978}
1979
1980/// GetCPISymbol - Return the symbol for the specified constant pool entry.
1981MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1982  return OutContext.GetOrCreateSymbol
1983    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1984     + "_" + Twine(CPID));
1985}
1986
1987/// GetJTISymbol - Return the symbol for the specified jump table entry.
1988MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1989  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1990}
1991
1992/// GetJTSetSymbol - Return the symbol for the specified jump table .set
1993/// FIXME: privatize to AsmPrinter.
1994MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1995  return OutContext.GetOrCreateSymbol
1996  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1997   Twine(UID) + "_set_" + Twine(MBBID));
1998}
1999
2000/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
2001/// global value name as its base, with the specified suffix, and where the
2002/// symbol is forced to have private linkage if ForcePrivate is true.
2003MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
2004                                                   StringRef Suffix,
2005                                                   bool ForcePrivate) const {
2006  SmallString<60> NameStr;
2007  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
2008  NameStr.append(Suffix.begin(), Suffix.end());
2009  return OutContext.GetOrCreateSymbol(NameStr.str());
2010}
2011
2012/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2013/// ExternalSymbol.
2014MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2015  SmallString<60> NameStr;
2016  Mang->getNameWithPrefix(NameStr, Sym);
2017  return OutContext.GetOrCreateSymbol(NameStr.str());
2018}
2019
2020
2021
2022/// PrintParentLoopComment - Print comments about parent loops of this one.
2023static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2024                                   unsigned FunctionNumber) {
2025  if (Loop == 0) return;
2026  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2027  OS.indent(Loop->getLoopDepth()*2)
2028    << "Parent Loop BB" << FunctionNumber << "_"
2029    << Loop->getHeader()->getNumber()
2030    << " Depth=" << Loop->getLoopDepth() << '\n';
2031}
2032
2033
2034/// PrintChildLoopComment - Print comments about child loops within
2035/// the loop for this basic block, with nesting.
2036static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2037                                  unsigned FunctionNumber) {
2038  // Add child loop information
2039  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2040    OS.indent((*CL)->getLoopDepth()*2)
2041      << "Child Loop BB" << FunctionNumber << "_"
2042      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2043      << '\n';
2044    PrintChildLoopComment(OS, *CL, FunctionNumber);
2045  }
2046}
2047
2048/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2049static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2050                                       const MachineLoopInfo *LI,
2051                                       const AsmPrinter &AP) {
2052  // Add loop depth information
2053  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2054  if (Loop == 0) return;
2055
2056  MachineBasicBlock *Header = Loop->getHeader();
2057  assert(Header && "No header for loop");
2058
2059  // If this block is not a loop header, just print out what is the loop header
2060  // and return.
2061  if (Header != &MBB) {
2062    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2063                              Twine(AP.getFunctionNumber())+"_" +
2064                              Twine(Loop->getHeader()->getNumber())+
2065                              " Depth="+Twine(Loop->getLoopDepth()));
2066    return;
2067  }
2068
2069  // Otherwise, it is a loop header.  Print out information about child and
2070  // parent loops.
2071  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2072
2073  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2074
2075  OS << "=>";
2076  OS.indent(Loop->getLoopDepth()*2-2);
2077
2078  OS << "This ";
2079  if (Loop->empty())
2080    OS << "Inner ";
2081  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2082
2083  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2084}
2085
2086
2087/// EmitBasicBlockStart - This method prints the label for the specified
2088/// MachineBasicBlock, an alignment (if present) and a comment describing
2089/// it if appropriate.
2090void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2091  // Emit an alignment directive for this block, if needed.
2092  if (unsigned Align = MBB->getAlignment())
2093    EmitAlignment(Align);
2094
2095  // If the block has its address taken, emit any labels that were used to
2096  // reference the block.  It is possible that there is more than one label
2097  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2098  // the references were generated.
2099  if (MBB->hasAddressTaken()) {
2100    const BasicBlock *BB = MBB->getBasicBlock();
2101    if (isVerbose())
2102      OutStreamer.AddComment("Block address taken");
2103
2104    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2105
2106    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2107      OutStreamer.EmitLabel(Syms[i]);
2108  }
2109
2110  // Print some verbose block comments.
2111  if (isVerbose()) {
2112    if (const BasicBlock *BB = MBB->getBasicBlock())
2113      if (BB->hasName())
2114        OutStreamer.AddComment("%" + BB->getName());
2115    emitBasicBlockLoopComments(*MBB, LI, *this);
2116  }
2117
2118  // Print the main label for the block.
2119  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2120    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2121      // NOTE: Want this comment at start of line, don't emit with AddComment.
2122      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2123                              Twine(MBB->getNumber()) + ":");
2124    }
2125  } else {
2126    OutStreamer.EmitLabel(MBB->getSymbol());
2127  }
2128}
2129
2130void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2131                                bool IsDefinition) const {
2132  MCSymbolAttr Attr = MCSA_Invalid;
2133
2134  switch (Visibility) {
2135  default: break;
2136  case GlobalValue::HiddenVisibility:
2137    if (IsDefinition)
2138      Attr = MAI->getHiddenVisibilityAttr();
2139    else
2140      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2141    break;
2142  case GlobalValue::ProtectedVisibility:
2143    Attr = MAI->getProtectedVisibilityAttr();
2144    break;
2145  }
2146
2147  if (Attr != MCSA_Invalid)
2148    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2149}
2150
2151/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2152/// exactly one predecessor and the control transfer mechanism between
2153/// the predecessor and this block is a fall-through.
2154bool AsmPrinter::
2155isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2156  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2157  // then nothing falls through to it.
2158  if (MBB->isLandingPad() || MBB->pred_empty())
2159    return false;
2160
2161  // If there isn't exactly one predecessor, it can't be a fall through.
2162  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2163  ++PI2;
2164  if (PI2 != MBB->pred_end())
2165    return false;
2166
2167  // The predecessor has to be immediately before this block.
2168  MachineBasicBlock *Pred = *PI;
2169
2170  if (!Pred->isLayoutSuccessor(MBB))
2171    return false;
2172
2173  // If the block is completely empty, then it definitely does fall through.
2174  if (Pred->empty())
2175    return true;
2176
2177  // Check the terminators in the previous blocks
2178  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2179         IE = Pred->end(); II != IE; ++II) {
2180    MachineInstr &MI = *II;
2181
2182    // If it is not a simple branch, we are in a table somewhere.
2183    if (!MI.isBranch() || MI.isIndirectBranch())
2184      return false;
2185
2186    // If we are the operands of one of the branches, this is not
2187    // a fall through.
2188    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2189           OE = MI.operands_end(); OI != OE; ++OI) {
2190      const MachineOperand& OP = *OI;
2191      if (OP.isJTI())
2192        return false;
2193      if (OP.isMBB() && OP.getMBB() == MBB)
2194        return false;
2195    }
2196  }
2197
2198  return true;
2199}
2200
2201
2202
2203GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2204  if (!S->usesMetadata())
2205    return 0;
2206
2207  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2208  gcp_map_type::iterator GCPI = GCMap.find(S);
2209  if (GCPI != GCMap.end())
2210    return GCPI->second;
2211
2212  const char *Name = S->getName().c_str();
2213
2214  for (GCMetadataPrinterRegistry::iterator
2215         I = GCMetadataPrinterRegistry::begin(),
2216         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2217    if (strcmp(Name, I->getName()) == 0) {
2218      GCMetadataPrinter *GMP = I->instantiate();
2219      GMP->S = S;
2220      GCMap.insert(std::make_pair(S, GMP));
2221      return GMP;
2222    }
2223
2224  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2225}
2226