AsmPrinter.cpp revision 1e0e4896a635b3a82eab996f58e77e0a5ba537bd
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/DwarfWriter.h"
24#include "llvm/Support/Mangler.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Target/TargetAsmInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetMachine.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include <cerrno>
36using namespace llvm;
37
38char AsmPrinter::ID = 0;
39AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
40                       const TargetAsmInfo *T, bool F)
41  : MachineFunctionPass(&ID), FunctionNumber(0), Fast(F), O(o),
42    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
43    IsInTextSection(false)
44{}
45
46AsmPrinter::~AsmPrinter() {
47  for (gcp_iterator I = GCMetadataPrinters.begin(),
48                    E = GCMetadataPrinters.end(); I != E; ++I)
49    delete I->second;
50}
51
52/// SwitchToTextSection - Switch to the specified text section of the executable
53/// if we are not already in it!
54///
55void AsmPrinter::SwitchToTextSection(const char *NewSection,
56                                     const GlobalValue *GV) {
57  std::string NS;
58  if (GV && GV->hasSection())
59    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
60  else
61    NS = NewSection;
62
63  // If we're already in this section, we're done.
64  if (CurrentSection == NS) return;
65
66  // Close the current section, if applicable.
67  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
68    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
69
70  CurrentSection = NS;
71
72  if (!CurrentSection.empty())
73    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
74
75  IsInTextSection = true;
76}
77
78/// SwitchToDataSection - Switch to the specified data section of the executable
79/// if we are not already in it!
80///
81void AsmPrinter::SwitchToDataSection(const char *NewSection,
82                                     const GlobalValue *GV) {
83  std::string NS;
84  if (GV && GV->hasSection())
85    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
86  else
87    NS = NewSection;
88
89  // If we're already in this section, we're done.
90  if (CurrentSection == NS) return;
91
92  // Close the current section, if applicable.
93  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
94    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
95
96  CurrentSection = NS;
97
98  if (!CurrentSection.empty())
99    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
100
101  IsInTextSection = false;
102}
103
104/// SwitchToSection - Switch to the specified section of the executable if we
105/// are not already in it!
106void AsmPrinter::SwitchToSection(const Section* NS) {
107  const std::string& NewSection = NS->getName();
108
109  // If we're already in this section, we're done.
110  if (CurrentSection == NewSection) return;
111
112  // Close the current section, if applicable.
113  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
114    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
115
116  // FIXME: Make CurrentSection a Section* in the future
117  CurrentSection = NewSection;
118  CurrentSection_ = NS;
119
120  if (!CurrentSection.empty()) {
121    // If section is named we need to switch into it via special '.section'
122    // directive and also append funky flags. Otherwise - section name is just
123    // some magic assembler directive.
124    if (NS->isNamed())
125      O << TAI->getSwitchToSectionDirective()
126        << CurrentSection
127        << TAI->getSectionFlags(NS->getFlags());
128    else
129      O << CurrentSection;
130    O << TAI->getDataSectionStartSuffix() << '\n';
131  }
132
133  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
134}
135
136void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
137  MachineFunctionPass::getAnalysisUsage(AU);
138  AU.addRequired<GCModuleInfo>();
139}
140
141bool AsmPrinter::doInitialization(Module &M) {
142  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix());
143
144  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
145  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
146
147  if (TAI->hasSingleParameterDotFile()) {
148    /* Very minimal debug info. It is ignored if we emit actual
149       debug info. If we don't, this at helps the user find where
150       a function came from. */
151    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
152  }
153
154  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
155    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
156      MP->beginAssembly(O, *this, *TAI);
157
158  if (!M.getModuleInlineAsm().empty())
159    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
160      << M.getModuleInlineAsm()
161      << '\n' << TAI->getCommentString()
162      << " End of file scope inline assembly\n";
163
164  SwitchToDataSection("");   // Reset back to no section.
165
166  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
167  if (MMI) MMI->AnalyzeModule(M);
168  DW = getAnalysisIfAvailable<DwarfWriter>();
169  return false;
170}
171
172bool AsmPrinter::doFinalization(Module &M) {
173  if (TAI->getWeakRefDirective()) {
174    if (!ExtWeakSymbols.empty())
175      SwitchToDataSection("");
176
177    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
178         e = ExtWeakSymbols.end(); i != e; ++i) {
179      const GlobalValue *GV = *i;
180      std::string Name = Mang->getValueName(GV);
181      O << TAI->getWeakRefDirective() << Name << '\n';
182    }
183  }
184
185  if (TAI->getSetDirective()) {
186    if (!M.alias_empty())
187      SwitchToSection(TAI->getTextSection());
188
189    O << '\n';
190    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
191         I!=E; ++I) {
192      std::string Name = Mang->getValueName(I);
193      std::string Target;
194
195      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
196      Target = Mang->getValueName(GV);
197
198      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
199        O << "\t.globl\t" << Name << '\n';
200      else if (I->hasWeakLinkage())
201        O << TAI->getWeakRefDirective() << Name << '\n';
202      else if (!I->hasLocalLinkage())
203        assert(0 && "Invalid alias linkage");
204
205      printVisibility(Name, I->getVisibility());
206
207      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
208    }
209  }
210
211  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
212  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
213  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
214    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
215      MP->finishAssembly(O, *this, *TAI);
216
217  // If we don't have any trampolines, then we don't require stack memory
218  // to be executable. Some targets have a directive to declare this.
219  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
220  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
221    if (TAI->getNonexecutableStackDirective())
222      O << TAI->getNonexecutableStackDirective() << '\n';
223
224  delete Mang; Mang = 0;
225  return false;
226}
227
228std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
229  assert(MF && "No machine function?");
230  std::string Name = MF->getFunction()->getName();
231  if (Name.empty())
232    Name = Mang->getValueName(MF->getFunction());
233  return Mang->makeNameProper(TAI->getEHGlobalPrefix() +
234                              Name + ".eh", TAI->getGlobalPrefix());
235}
236
237void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
238  // What's my mangled name?
239  CurrentFnName = Mang->getValueName(MF.getFunction());
240  IncrementFunctionNumber();
241}
242
243/// EmitConstantPool - Print to the current output stream assembly
244/// representations of the constants in the constant pool MCP. This is
245/// used to print out constants which have been "spilled to memory" by
246/// the code generator.
247///
248void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
249  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
250  if (CP.empty()) return;
251
252  // Calculate sections for constant pool entries. We collect entries to go into
253  // the same section together to reduce amount of section switch statements.
254  typedef
255    std::multimap<const Section*,
256                  std::pair<MachineConstantPoolEntry, unsigned> > CPMap;
257  CPMap  CPs;
258  SmallPtrSet<const Section*, 5> Sections;
259
260  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
261    MachineConstantPoolEntry CPE = CP[i];
262    const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
263    CPs.insert(std::make_pair(S, std::make_pair(CPE, i)));
264    Sections.insert(S);
265  }
266
267  // Now print stuff into the calculated sections.
268  for (SmallPtrSet<const Section*, 5>::iterator IS = Sections.begin(),
269         ES = Sections.end(); IS != ES; ++IS) {
270    SwitchToSection(*IS);
271    EmitAlignment(MCP->getConstantPoolAlignment());
272
273    std::pair<CPMap::iterator, CPMap::iterator> II = CPs.equal_range(*IS);
274    for (CPMap::iterator I = II.first, E = II.second; I != E; ++I) {
275      CPMap::iterator J = next(I);
276      MachineConstantPoolEntry Entry = I->second.first;
277      unsigned index = I->second.second;
278
279      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
280        << index << ":\t\t\t\t\t";
281    // O << TAI->getCommentString() << ' ' <<
282    //      WriteTypeSymbolic(O, CP[i].first.getType(), 0);
283      O << '\n';
284      if (Entry.isMachineConstantPoolEntry())
285        EmitMachineConstantPoolValue(Entry.Val.MachineCPVal);
286      else
287        EmitGlobalConstant(Entry.Val.ConstVal);
288
289      // Emit inter-object padding for alignment.
290      if (J != E) {
291        const Type *Ty = Entry.getType();
292        unsigned EntSize = TM.getTargetData()->getTypePaddedSize(Ty);
293        unsigned ValEnd = Entry.getOffset() + EntSize;
294        EmitZeros(J->second.first.getOffset()-ValEnd);
295      }
296    }
297  }
298}
299
300/// EmitJumpTableInfo - Print assembly representations of the jump tables used
301/// by the current function to the current output stream.
302///
303void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
304                                   MachineFunction &MF) {
305  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
306  if (JT.empty()) return;
307
308  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
309
310  // Pick the directive to use to print the jump table entries, and switch to
311  // the appropriate section.
312  TargetLowering *LoweringInfo = TM.getTargetLowering();
313
314  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
315  const Function *F = MF.getFunction();
316  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
317  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
318     !JumpTableDataSection ||
319      SectionFlags & SectionFlags::Linkonce) {
320    // In PIC mode, we need to emit the jump table to the same section as the
321    // function body itself, otherwise the label differences won't make sense.
322    // We should also do if the section name is NULL or function is declared in
323    // discardable section.
324    SwitchToSection(TAI->SectionForGlobal(F));
325  } else {
326    SwitchToDataSection(JumpTableDataSection);
327  }
328
329  EmitAlignment(Log2_32(MJTI->getAlignment()));
330
331  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
332    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
333
334    // If this jump table was deleted, ignore it.
335    if (JTBBs.empty()) continue;
336
337    // For PIC codegen, if possible we want to use the SetDirective to reduce
338    // the number of relocations the assembler will generate for the jump table.
339    // Set directives are all printed before the jump table itself.
340    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
341    if (TAI->getSetDirective() && IsPic)
342      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
343        if (EmittedSets.insert(JTBBs[ii]))
344          printPICJumpTableSetLabel(i, JTBBs[ii]);
345
346    // On some targets (e.g. darwin) we want to emit two consequtive labels
347    // before each jump table.  The first label is never referenced, but tells
348    // the assembler and linker the extents of the jump table object.  The
349    // second label is actually referenced by the code.
350    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
351      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
352
353    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
354      << '_' << i << ":\n";
355
356    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
357      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
358      O << '\n';
359    }
360  }
361}
362
363void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
364                                        const MachineBasicBlock *MBB,
365                                        unsigned uid)  const {
366  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
367
368  // Use JumpTableDirective otherwise honor the entry size from the jump table
369  // info.
370  const char *JTEntryDirective = TAI->getJumpTableDirective();
371  bool HadJTEntryDirective = JTEntryDirective != NULL;
372  if (!HadJTEntryDirective) {
373    JTEntryDirective = MJTI->getEntrySize() == 4 ?
374      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
375  }
376
377  O << JTEntryDirective << ' ';
378
379  // If we have emitted set directives for the jump table entries, print
380  // them rather than the entries themselves.  If we're emitting PIC, then
381  // emit the table entries as differences between two text section labels.
382  // If we're emitting non-PIC code, then emit the entries as direct
383  // references to the target basic blocks.
384  if (IsPic) {
385    if (TAI->getSetDirective()) {
386      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
387        << '_' << uid << "_set_" << MBB->getNumber();
388    } else {
389      printBasicBlockLabel(MBB, false, false, false);
390      // If the arch uses custom Jump Table directives, don't calc relative to
391      // JT
392      if (!HadJTEntryDirective)
393        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
394          << getFunctionNumber() << '_' << uid;
395    }
396  } else {
397    printBasicBlockLabel(MBB, false, false, false);
398  }
399}
400
401
402/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
403/// special global used by LLVM.  If so, emit it and return true, otherwise
404/// do nothing and return false.
405bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
406  if (GV->getName() == "llvm.used") {
407    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
408      EmitLLVMUsedList(GV->getInitializer());
409    return true;
410  }
411
412  // Ignore debug and non-emitted data.
413  if (GV->getSection() == "llvm.metadata") return true;
414
415  if (!GV->hasAppendingLinkage()) return false;
416
417  assert(GV->hasInitializer() && "Not a special LLVM global!");
418
419  const TargetData *TD = TM.getTargetData();
420  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
421  if (GV->getName() == "llvm.global_ctors") {
422    SwitchToDataSection(TAI->getStaticCtorsSection());
423    EmitAlignment(Align, 0);
424    EmitXXStructorList(GV->getInitializer());
425    return true;
426  }
427
428  if (GV->getName() == "llvm.global_dtors") {
429    SwitchToDataSection(TAI->getStaticDtorsSection());
430    EmitAlignment(Align, 0);
431    EmitXXStructorList(GV->getInitializer());
432    return true;
433  }
434
435  return false;
436}
437
438/// findGlobalValue - if CV is an expression equivalent to a single
439/// global value, return that value.
440const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
441  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
442    return GV;
443  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
444    const TargetData *TD = TM.getTargetData();
445    unsigned Opcode = CE->getOpcode();
446    switch (Opcode) {
447    case Instruction::GetElementPtr: {
448      const Constant *ptrVal = CE->getOperand(0);
449      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
450      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
451        return 0;
452      return findGlobalValue(ptrVal);
453    }
454    case Instruction::BitCast:
455      return findGlobalValue(CE->getOperand(0));
456    default:
457      return 0;
458    }
459  }
460  return 0;
461}
462
463/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
464/// global in the specified llvm.used list for which emitUsedDirectiveFor
465/// is true, as being used with this directive.
466
467void AsmPrinter::EmitLLVMUsedList(Constant *List) {
468  const char *Directive = TAI->getUsedDirective();
469
470  // Should be an array of 'sbyte*'.
471  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
472  if (InitList == 0) return;
473
474  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
475    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
476    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
477      O << Directive;
478      EmitConstantValueOnly(InitList->getOperand(i));
479      O << '\n';
480    }
481  }
482}
483
484/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
485/// function pointers, ignoring the init priority.
486void AsmPrinter::EmitXXStructorList(Constant *List) {
487  // Should be an array of '{ int, void ()* }' structs.  The first value is the
488  // init priority, which we ignore.
489  if (!isa<ConstantArray>(List)) return;
490  ConstantArray *InitList = cast<ConstantArray>(List);
491  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
492    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
493      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
494
495      if (CS->getOperand(1)->isNullValue())
496        return;  // Found a null terminator, exit printing.
497      // Emit the function pointer.
498      EmitGlobalConstant(CS->getOperand(1));
499    }
500}
501
502/// getGlobalLinkName - Returns the asm/link name of of the specified
503/// global variable.  Should be overridden by each target asm printer to
504/// generate the appropriate value.
505const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
506  std::string LinkName;
507
508  if (isa<Function>(GV)) {
509    LinkName += TAI->getFunctionAddrPrefix();
510    LinkName += Mang->getValueName(GV);
511    LinkName += TAI->getFunctionAddrSuffix();
512  } else {
513    LinkName += TAI->getGlobalVarAddrPrefix();
514    LinkName += Mang->getValueName(GV);
515    LinkName += TAI->getGlobalVarAddrSuffix();
516  }
517
518  return LinkName;
519}
520
521/// EmitExternalGlobal - Emit the external reference to a global variable.
522/// Should be overridden if an indirect reference should be used.
523void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
524  O << getGlobalLinkName(GV);
525}
526
527
528
529//===----------------------------------------------------------------------===//
530/// LEB 128 number encoding.
531
532/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
533/// representing an unsigned leb128 value.
534void AsmPrinter::PrintULEB128(unsigned Value) const {
535  char Buffer[20];
536  do {
537    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
538    Value >>= 7;
539    if (Value) Byte |= 0x80;
540    O << "0x" << utohex_buffer(Byte, Buffer+20);
541    if (Value) O << ", ";
542  } while (Value);
543}
544
545/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
546/// representing a signed leb128 value.
547void AsmPrinter::PrintSLEB128(int Value) const {
548  int Sign = Value >> (8 * sizeof(Value) - 1);
549  bool IsMore;
550  char Buffer[20];
551
552  do {
553    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
554    Value >>= 7;
555    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
556    if (IsMore) Byte |= 0x80;
557    O << "0x" << utohex_buffer(Byte, Buffer+20);
558    if (IsMore) O << ", ";
559  } while (IsMore);
560}
561
562//===--------------------------------------------------------------------===//
563// Emission and print routines
564//
565
566/// PrintHex - Print a value as a hexidecimal value.
567///
568void AsmPrinter::PrintHex(int Value) const {
569  char Buffer[20];
570  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
571}
572
573/// EOL - Print a newline character to asm stream.  If a comment is present
574/// then it will be printed first.  Comments should not contain '\n'.
575void AsmPrinter::EOL() const {
576  O << '\n';
577}
578
579void AsmPrinter::EOL(const std::string &Comment) const {
580  if (VerboseAsm && !Comment.empty()) {
581    O << '\t'
582      << TAI->getCommentString()
583      << ' '
584      << Comment;
585  }
586  O << '\n';
587}
588
589void AsmPrinter::EOL(const char* Comment) const {
590  if (VerboseAsm && *Comment) {
591    O << '\t'
592      << TAI->getCommentString()
593      << ' '
594      << Comment;
595  }
596  O << '\n';
597}
598
599/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
600/// unsigned leb128 value.
601void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
602  if (TAI->hasLEB128()) {
603    O << "\t.uleb128\t"
604      << Value;
605  } else {
606    O << TAI->getData8bitsDirective();
607    PrintULEB128(Value);
608  }
609}
610
611/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
612/// signed leb128 value.
613void AsmPrinter::EmitSLEB128Bytes(int Value) const {
614  if (TAI->hasLEB128()) {
615    O << "\t.sleb128\t"
616      << Value;
617  } else {
618    O << TAI->getData8bitsDirective();
619    PrintSLEB128(Value);
620  }
621}
622
623/// EmitInt8 - Emit a byte directive and value.
624///
625void AsmPrinter::EmitInt8(int Value) const {
626  O << TAI->getData8bitsDirective();
627  PrintHex(Value & 0xFF);
628}
629
630/// EmitInt16 - Emit a short directive and value.
631///
632void AsmPrinter::EmitInt16(int Value) const {
633  O << TAI->getData16bitsDirective();
634  PrintHex(Value & 0xFFFF);
635}
636
637/// EmitInt32 - Emit a long directive and value.
638///
639void AsmPrinter::EmitInt32(int Value) const {
640  O << TAI->getData32bitsDirective();
641  PrintHex(Value);
642}
643
644/// EmitInt64 - Emit a long long directive and value.
645///
646void AsmPrinter::EmitInt64(uint64_t Value) const {
647  if (TAI->getData64bitsDirective()) {
648    O << TAI->getData64bitsDirective();
649    PrintHex(Value);
650  } else {
651    if (TM.getTargetData()->isBigEndian()) {
652      EmitInt32(unsigned(Value >> 32)); O << '\n';
653      EmitInt32(unsigned(Value));
654    } else {
655      EmitInt32(unsigned(Value)); O << '\n';
656      EmitInt32(unsigned(Value >> 32));
657    }
658  }
659}
660
661/// toOctal - Convert the low order bits of X into an octal digit.
662///
663static inline char toOctal(int X) {
664  return (X&7)+'0';
665}
666
667/// printStringChar - Print a char, escaped if necessary.
668///
669static void printStringChar(raw_ostream &O, char C) {
670  if (C == '"') {
671    O << "\\\"";
672  } else if (C == '\\') {
673    O << "\\\\";
674  } else if (isprint((unsigned char)C)) {
675    O << C;
676  } else {
677    switch(C) {
678    case '\b': O << "\\b"; break;
679    case '\f': O << "\\f"; break;
680    case '\n': O << "\\n"; break;
681    case '\r': O << "\\r"; break;
682    case '\t': O << "\\t"; break;
683    default:
684      O << '\\';
685      O << toOctal(C >> 6);
686      O << toOctal(C >> 3);
687      O << toOctal(C >> 0);
688      break;
689    }
690  }
691}
692
693/// EmitString - Emit a string with quotes and a null terminator.
694/// Special characters are emitted properly.
695/// \literal (Eg. '\t') \endliteral
696void AsmPrinter::EmitString(const std::string &String) const {
697  const char* AscizDirective = TAI->getAscizDirective();
698  if (AscizDirective)
699    O << AscizDirective;
700  else
701    O << TAI->getAsciiDirective();
702  O << '\"';
703  for (unsigned i = 0, N = String.size(); i < N; ++i) {
704    unsigned char C = String[i];
705    printStringChar(O, C);
706  }
707  if (AscizDirective)
708    O << '\"';
709  else
710    O << "\\0\"";
711}
712
713
714/// EmitFile - Emit a .file directive.
715void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
716  O << "\t.file\t" << Number << " \"";
717  for (unsigned i = 0, N = Name.size(); i < N; ++i) {
718    unsigned char C = Name[i];
719    printStringChar(O, C);
720  }
721  O << '\"';
722}
723
724
725//===----------------------------------------------------------------------===//
726
727// EmitAlignment - Emit an alignment directive to the specified power of
728// two boundary.  For example, if you pass in 3 here, you will get an 8
729// byte alignment.  If a global value is specified, and if that global has
730// an explicit alignment requested, it will unconditionally override the
731// alignment request.  However, if ForcedAlignBits is specified, this value
732// has final say: the ultimate alignment will be the max of ForcedAlignBits
733// and the alignment computed with NumBits and the global.
734//
735// The algorithm is:
736//     Align = NumBits;
737//     if (GV && GV->hasalignment) Align = GV->getalignment();
738//     Align = std::max(Align, ForcedAlignBits);
739//
740void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
741                               unsigned ForcedAlignBits,
742                               bool UseFillExpr) const {
743  if (GV && GV->getAlignment())
744    NumBits = Log2_32(GV->getAlignment());
745  NumBits = std::max(NumBits, ForcedAlignBits);
746
747  if (NumBits == 0) return;   // No need to emit alignment.
748  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
749  O << TAI->getAlignDirective() << NumBits;
750
751  unsigned FillValue = TAI->getTextAlignFillValue();
752  UseFillExpr &= IsInTextSection && FillValue;
753  if (UseFillExpr) {
754    O << ',';
755    PrintHex(FillValue);
756  }
757  O << '\n';
758}
759
760
761/// EmitZeros - Emit a block of zeros.
762///
763void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
764  if (NumZeros) {
765    if (TAI->getZeroDirective()) {
766      O << TAI->getZeroDirective() << NumZeros;
767      if (TAI->getZeroDirectiveSuffix())
768        O << TAI->getZeroDirectiveSuffix();
769      O << '\n';
770    } else {
771      for (; NumZeros; --NumZeros)
772        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
773    }
774  }
775}
776
777// Print out the specified constant, without a storage class.  Only the
778// constants valid in constant expressions can occur here.
779void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
780  if (CV->isNullValue() || isa<UndefValue>(CV))
781    O << '0';
782  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
783    O << CI->getZExtValue();
784  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
785    // This is a constant address for a global variable or function. Use the
786    // name of the variable or function as the address value, possibly
787    // decorating it with GlobalVarAddrPrefix/Suffix or
788    // FunctionAddrPrefix/Suffix (these all default to "" )
789    if (isa<Function>(GV)) {
790      O << TAI->getFunctionAddrPrefix()
791        << Mang->getValueName(GV)
792        << TAI->getFunctionAddrSuffix();
793    } else {
794      O << TAI->getGlobalVarAddrPrefix()
795        << Mang->getValueName(GV)
796        << TAI->getGlobalVarAddrSuffix();
797    }
798  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
799    const TargetData *TD = TM.getTargetData();
800    unsigned Opcode = CE->getOpcode();
801    switch (Opcode) {
802    case Instruction::GetElementPtr: {
803      // generate a symbolic expression for the byte address
804      const Constant *ptrVal = CE->getOperand(0);
805      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
806      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
807                                                idxVec.size())) {
808        // Truncate/sext the offset to the pointer size.
809        if (TD->getPointerSizeInBits() != 64) {
810          int SExtAmount = 64-TD->getPointerSizeInBits();
811          Offset = (Offset << SExtAmount) >> SExtAmount;
812        }
813
814        if (Offset)
815          O << '(';
816        EmitConstantValueOnly(ptrVal);
817        if (Offset > 0)
818          O << ") + " << Offset;
819        else if (Offset < 0)
820          O << ") - " << -Offset;
821      } else {
822        EmitConstantValueOnly(ptrVal);
823      }
824      break;
825    }
826    case Instruction::Trunc:
827    case Instruction::ZExt:
828    case Instruction::SExt:
829    case Instruction::FPTrunc:
830    case Instruction::FPExt:
831    case Instruction::UIToFP:
832    case Instruction::SIToFP:
833    case Instruction::FPToUI:
834    case Instruction::FPToSI:
835      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
836      break;
837    case Instruction::BitCast:
838      return EmitConstantValueOnly(CE->getOperand(0));
839
840    case Instruction::IntToPtr: {
841      // Handle casts to pointers by changing them into casts to the appropriate
842      // integer type.  This promotes constant folding and simplifies this code.
843      Constant *Op = CE->getOperand(0);
844      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
845      return EmitConstantValueOnly(Op);
846    }
847
848
849    case Instruction::PtrToInt: {
850      // Support only foldable casts to/from pointers that can be eliminated by
851      // changing the pointer to the appropriately sized integer type.
852      Constant *Op = CE->getOperand(0);
853      const Type *Ty = CE->getType();
854
855      // We can emit the pointer value into this slot if the slot is an
856      // integer slot greater or equal to the size of the pointer.
857      if (TD->getTypePaddedSize(Ty) >= TD->getTypePaddedSize(Op->getType()))
858        return EmitConstantValueOnly(Op);
859
860      O << "((";
861      EmitConstantValueOnly(Op);
862      APInt ptrMask = APInt::getAllOnesValue(TD->getTypePaddedSizeInBits(Ty));
863
864      SmallString<40> S;
865      ptrMask.toStringUnsigned(S);
866      O << ") & " << S.c_str() << ')';
867      break;
868    }
869    case Instruction::Add:
870    case Instruction::Sub:
871    case Instruction::And:
872    case Instruction::Or:
873    case Instruction::Xor:
874      O << '(';
875      EmitConstantValueOnly(CE->getOperand(0));
876      O << ')';
877      switch (Opcode) {
878      case Instruction::Add:
879       O << " + ";
880       break;
881      case Instruction::Sub:
882       O << " - ";
883       break;
884      case Instruction::And:
885       O << " & ";
886       break;
887      case Instruction::Or:
888       O << " | ";
889       break;
890      case Instruction::Xor:
891       O << " ^ ";
892       break;
893      default:
894       break;
895      }
896      O << '(';
897      EmitConstantValueOnly(CE->getOperand(1));
898      O << ')';
899      break;
900    default:
901      assert(0 && "Unsupported operator!");
902    }
903  } else {
904    assert(0 && "Unknown constant value!");
905  }
906}
907
908/// printAsCString - Print the specified array as a C compatible string, only if
909/// the predicate isString is true.
910///
911static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
912                           unsigned LastElt) {
913  assert(CVA->isString() && "Array is not string compatible!");
914
915  O << '\"';
916  for (unsigned i = 0; i != LastElt; ++i) {
917    unsigned char C =
918        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
919    printStringChar(O, C);
920  }
921  O << '\"';
922}
923
924/// EmitString - Emit a zero-byte-terminated string constant.
925///
926void AsmPrinter::EmitString(const ConstantArray *CVA) const {
927  unsigned NumElts = CVA->getNumOperands();
928  if (TAI->getAscizDirective() && NumElts &&
929      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
930    O << TAI->getAscizDirective();
931    printAsCString(O, CVA, NumElts-1);
932  } else {
933    O << TAI->getAsciiDirective();
934    printAsCString(O, CVA, NumElts);
935  }
936  O << '\n';
937}
938
939void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA) {
940  if (CVA->isString()) {
941    EmitString(CVA);
942  } else { // Not a string.  Print the values in successive locations
943    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
944      EmitGlobalConstant(CVA->getOperand(i));
945  }
946}
947
948void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
949  const VectorType *PTy = CP->getType();
950
951  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
952    EmitGlobalConstant(CP->getOperand(I));
953}
954
955void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
956                                          unsigned AddrSpace) {
957  // Print the fields in successive locations. Pad to align if needed!
958  const TargetData *TD = TM.getTargetData();
959  unsigned Size = TD->getTypePaddedSize(CVS->getType());
960  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
961  uint64_t sizeSoFar = 0;
962  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
963    const Constant* field = CVS->getOperand(i);
964
965    // Check if padding is needed and insert one or more 0s.
966    uint64_t fieldSize = TD->getTypePaddedSize(field->getType());
967    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
968                        - cvsLayout->getElementOffset(i)) - fieldSize;
969    sizeSoFar += fieldSize + padSize;
970
971    // Now print the actual field value.
972    EmitGlobalConstant(field, AddrSpace);
973
974    // Insert padding - this may include padding to increase the size of the
975    // current field up to the ABI size (if the struct is not packed) as well
976    // as padding to ensure that the next field starts at the right offset.
977    EmitZeros(padSize, AddrSpace);
978  }
979  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
980         "Layout of constant struct may be incorrect!");
981}
982
983void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
984                                      unsigned AddrSpace) {
985  // FP Constants are printed as integer constants to avoid losing
986  // precision...
987  const TargetData *TD = TM.getTargetData();
988  if (CFP->getType() == Type::DoubleTy) {
989    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
990    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
991    if (TAI->getData64bitsDirective(AddrSpace))
992      O << TAI->getData64bitsDirective(AddrSpace) << i << '\t'
993        << TAI->getCommentString() << " double value: " << Val << '\n';
994    else if (TD->isBigEndian()) {
995      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32)
996        << '\t' << TAI->getCommentString()
997        << " double most significant word " << Val << '\n';
998      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i)
999        << '\t' << TAI->getCommentString()
1000        << " double least significant word " << Val << '\n';
1001    } else {
1002      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i)
1003        << '\t' << TAI->getCommentString()
1004        << " double least significant word " << Val << '\n';
1005      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32)
1006        << '\t' << TAI->getCommentString()
1007        << " double most significant word " << Val << '\n';
1008    }
1009    return;
1010  } else if (CFP->getType() == Type::FloatTy) {
1011    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1012    O << TAI->getData32bitsDirective(AddrSpace)
1013      << CFP->getValueAPF().bitcastToAPInt().getZExtValue()
1014      << '\t' << TAI->getCommentString() << " float " << Val << '\n';
1015    return;
1016  } else if (CFP->getType() == Type::X86_FP80Ty) {
1017    // all long double variants are printed as hex
1018    // api needed to prevent premature destruction
1019    APInt api = CFP->getValueAPF().bitcastToAPInt();
1020    const uint64_t *p = api.getRawData();
1021    // Convert to double so we can print the approximate val as a comment.
1022    APFloat DoubleVal = CFP->getValueAPF();
1023    bool ignored;
1024    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1025                      &ignored);
1026    if (TD->isBigEndian()) {
1027      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48)
1028        << '\t' << TAI->getCommentString()
1029        << " long double most significant halfword of ~"
1030        << DoubleVal.convertToDouble() << '\n';
1031      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32)
1032        << '\t' << TAI->getCommentString()
1033        << " long double next halfword\n";
1034      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16)
1035        << '\t' << TAI->getCommentString()
1036        << " long double next halfword\n";
1037      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0])
1038        << '\t' << TAI->getCommentString()
1039        << " long double next halfword\n";
1040      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1])
1041        << '\t' << TAI->getCommentString()
1042        << " long double least significant halfword\n";
1043     } else {
1044      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1])
1045        << '\t' << TAI->getCommentString()
1046        << " long double least significant halfword of ~"
1047        << DoubleVal.convertToDouble() << '\n';
1048      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0])
1049        << '\t' << TAI->getCommentString()
1050        << " long double next halfword\n";
1051      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16)
1052        << '\t' << TAI->getCommentString()
1053        << " long double next halfword\n";
1054      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32)
1055        << '\t' << TAI->getCommentString()
1056        << " long double next halfword\n";
1057      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48)
1058        << '\t' << TAI->getCommentString()
1059        << " long double most significant halfword\n";
1060    }
1061    EmitZeros(TD->getTypePaddedSize(Type::X86_FP80Ty) -
1062              TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1063    return;
1064  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1065    // all long double variants are printed as hex
1066    // api needed to prevent premature destruction
1067    APInt api = CFP->getValueAPF().bitcastToAPInt();
1068    const uint64_t *p = api.getRawData();
1069    if (TD->isBigEndian()) {
1070      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32)
1071        << '\t' << TAI->getCommentString()
1072        << " long double most significant word\n";
1073      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0])
1074        << '\t' << TAI->getCommentString()
1075        << " long double next word\n";
1076      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32)
1077        << '\t' << TAI->getCommentString()
1078        << " long double next word\n";
1079      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1])
1080        << '\t' << TAI->getCommentString()
1081        << " long double least significant word\n";
1082     } else {
1083      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1])
1084        << '\t' << TAI->getCommentString()
1085        << " long double least significant word\n";
1086      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32)
1087        << '\t' << TAI->getCommentString()
1088        << " long double next word\n";
1089      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0])
1090        << '\t' << TAI->getCommentString()
1091        << " long double next word\n";
1092      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32)
1093        << '\t' << TAI->getCommentString()
1094        << " long double most significant word\n";
1095    }
1096    return;
1097  } else assert(0 && "Floating point constant type not handled");
1098}
1099
1100void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1101                                            unsigned AddrSpace) {
1102  const TargetData *TD = TM.getTargetData();
1103  unsigned BitWidth = CI->getBitWidth();
1104  assert(isPowerOf2_32(BitWidth) &&
1105         "Non-power-of-2-sized integers not handled!");
1106
1107  // We don't expect assemblers to support integer data directives
1108  // for more than 64 bits, so we emit the data in at most 64-bit
1109  // quantities at a time.
1110  const uint64_t *RawData = CI->getValue().getRawData();
1111  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1112    uint64_t Val;
1113    if (TD->isBigEndian())
1114      Val = RawData[e - i - 1];
1115    else
1116      Val = RawData[i];
1117
1118    if (TAI->getData64bitsDirective(AddrSpace))
1119      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1120    else if (TD->isBigEndian()) {
1121      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32)
1122        << '\t' << TAI->getCommentString()
1123        << " Double-word most significant word " << Val << '\n';
1124      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val)
1125        << '\t' << TAI->getCommentString()
1126        << " Double-word least significant word " << Val << '\n';
1127    } else {
1128      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val)
1129        << '\t' << TAI->getCommentString()
1130        << " Double-word least significant word " << Val << '\n';
1131      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32)
1132        << '\t' << TAI->getCommentString()
1133        << " Double-word most significant word " << Val << '\n';
1134    }
1135  }
1136}
1137
1138/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1139void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1140  const TargetData *TD = TM.getTargetData();
1141  const Type *type = CV->getType();
1142  unsigned Size = TD->getTypePaddedSize(type);
1143
1144  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1145    EmitZeros(Size, AddrSpace);
1146    return;
1147  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1148    EmitGlobalConstantArray(CVA);
1149    return;
1150  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1151    EmitGlobalConstantStruct(CVS, AddrSpace);
1152    return;
1153  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1154    EmitGlobalConstantFP(CFP, AddrSpace);
1155    return;
1156  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1157    // Small integers are handled below; large integers are handled here.
1158    if (Size > 4) {
1159      EmitGlobalConstantLargeInt(CI, AddrSpace);
1160      return;
1161    }
1162  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1163    EmitGlobalConstantVector(CP);
1164    return;
1165  }
1166
1167  printDataDirective(type, AddrSpace);
1168  EmitConstantValueOnly(CV);
1169  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1170    SmallString<40> S;
1171    CI->getValue().toStringUnsigned(S, 16);
1172    O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1173  }
1174  O << '\n';
1175}
1176
1177void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1178  // Target doesn't support this yet!
1179  abort();
1180}
1181
1182/// PrintSpecial - Print information related to the specified machine instr
1183/// that is independent of the operand, and may be independent of the instr
1184/// itself.  This can be useful for portably encoding the comment character
1185/// or other bits of target-specific knowledge into the asmstrings.  The
1186/// syntax used is ${:comment}.  Targets can override this to add support
1187/// for their own strange codes.
1188void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
1189  if (!strcmp(Code, "private")) {
1190    O << TAI->getPrivateGlobalPrefix();
1191  } else if (!strcmp(Code, "comment")) {
1192    O << TAI->getCommentString();
1193  } else if (!strcmp(Code, "uid")) {
1194    // Assign a unique ID to this machine instruction.
1195    static const MachineInstr *LastMI = 0;
1196    static const Function *F = 0;
1197    static unsigned Counter = 0U-1;
1198
1199    // Comparing the address of MI isn't sufficient, because machineinstrs may
1200    // be allocated to the same address across functions.
1201    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1202
1203    // If this is a new machine instruction, bump the counter.
1204    if (LastMI != MI || F != ThisF) {
1205      ++Counter;
1206      LastMI = MI;
1207      F = ThisF;
1208    }
1209    O << Counter;
1210  } else {
1211    cerr << "Unknown special formatter '" << Code
1212         << "' for machine instr: " << *MI;
1213    exit(1);
1214  }
1215}
1216
1217
1218/// printInlineAsm - This method formats and prints the specified machine
1219/// instruction that is an inline asm.
1220void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1221  unsigned NumOperands = MI->getNumOperands();
1222
1223  // Count the number of register definitions.
1224  unsigned NumDefs = 0;
1225  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1226       ++NumDefs)
1227    assert(NumDefs != NumOperands-1 && "No asm string?");
1228
1229  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1230
1231  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1232  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1233
1234  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1235  // These are useful to see where empty asm's wound up.
1236  if (AsmStr[0] == 0) {
1237    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1238    return;
1239  }
1240
1241  O << TAI->getInlineAsmStart() << "\n\t";
1242
1243  // The variant of the current asmprinter.
1244  int AsmPrinterVariant = TAI->getAssemblerDialect();
1245
1246  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1247  const char *LastEmitted = AsmStr; // One past the last character emitted.
1248
1249  while (*LastEmitted) {
1250    switch (*LastEmitted) {
1251    default: {
1252      // Not a special case, emit the string section literally.
1253      const char *LiteralEnd = LastEmitted+1;
1254      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1255             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1256        ++LiteralEnd;
1257      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1258        O.write(LastEmitted, LiteralEnd-LastEmitted);
1259      LastEmitted = LiteralEnd;
1260      break;
1261    }
1262    case '\n':
1263      ++LastEmitted;   // Consume newline character.
1264      O << '\n';       // Indent code with newline.
1265      break;
1266    case '$': {
1267      ++LastEmitted;   // Consume '$' character.
1268      bool Done = true;
1269
1270      // Handle escapes.
1271      switch (*LastEmitted) {
1272      default: Done = false; break;
1273      case '$':     // $$ -> $
1274        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1275          O << '$';
1276        ++LastEmitted;  // Consume second '$' character.
1277        break;
1278      case '(':             // $( -> same as GCC's { character.
1279        ++LastEmitted;      // Consume '(' character.
1280        if (CurVariant != -1) {
1281          cerr << "Nested variants found in inline asm string: '"
1282               << AsmStr << "'\n";
1283          exit(1);
1284        }
1285        CurVariant = 0;     // We're in the first variant now.
1286        break;
1287      case '|':
1288        ++LastEmitted;  // consume '|' character.
1289        if (CurVariant == -1)
1290          O << '|';       // this is gcc's behavior for | outside a variant
1291        else
1292          ++CurVariant;   // We're in the next variant.
1293        break;
1294      case ')':         // $) -> same as GCC's } char.
1295        ++LastEmitted;  // consume ')' character.
1296        if (CurVariant == -1)
1297          O << '}';     // this is gcc's behavior for } outside a variant
1298        else
1299          CurVariant = -1;
1300        break;
1301      }
1302      if (Done) break;
1303
1304      bool HasCurlyBraces = false;
1305      if (*LastEmitted == '{') {     // ${variable}
1306        ++LastEmitted;               // Consume '{' character.
1307        HasCurlyBraces = true;
1308      }
1309
1310      const char *IDStart = LastEmitted;
1311      char *IDEnd;
1312      errno = 0;
1313      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1314      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1315        cerr << "Bad $ operand number in inline asm string: '"
1316             << AsmStr << "'\n";
1317        exit(1);
1318      }
1319      LastEmitted = IDEnd;
1320
1321      char Modifier[2] = { 0, 0 };
1322
1323      if (HasCurlyBraces) {
1324        // If we have curly braces, check for a modifier character.  This
1325        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1326        if (*LastEmitted == ':') {
1327          ++LastEmitted;    // Consume ':' character.
1328          if (*LastEmitted == 0) {
1329            cerr << "Bad ${:} expression in inline asm string: '"
1330                 << AsmStr << "'\n";
1331            exit(1);
1332          }
1333
1334          Modifier[0] = *LastEmitted;
1335          ++LastEmitted;    // Consume modifier character.
1336        }
1337
1338        if (*LastEmitted != '}') {
1339          cerr << "Bad ${} expression in inline asm string: '"
1340               << AsmStr << "'\n";
1341          exit(1);
1342        }
1343        ++LastEmitted;    // Consume '}' character.
1344      }
1345
1346      if ((unsigned)Val >= NumOperands-1) {
1347        cerr << "Invalid $ operand number in inline asm string: '"
1348             << AsmStr << "'\n";
1349        exit(1);
1350      }
1351
1352      // Okay, we finally have a value number.  Ask the target to print this
1353      // operand!
1354      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1355        unsigned OpNo = 1;
1356
1357        bool Error = false;
1358
1359        // Scan to find the machine operand number for the operand.
1360        for (; Val; --Val) {
1361          if (OpNo >= MI->getNumOperands()) break;
1362          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1363          OpNo += (OpFlags >> 3) + 1;
1364        }
1365
1366        if (OpNo >= MI->getNumOperands()) {
1367          Error = true;
1368        } else {
1369          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1370          ++OpNo;  // Skip over the ID number.
1371
1372          if (Modifier[0]=='l')  // labels are target independent
1373            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1374                                 false, false, false);
1375          else {
1376            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1377            if ((OpFlags & 7) == 4) {
1378              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1379                                                Modifier[0] ? Modifier : 0);
1380            } else {
1381              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1382                                          Modifier[0] ? Modifier : 0);
1383            }
1384          }
1385        }
1386        if (Error) {
1387          cerr << "Invalid operand found in inline asm: '"
1388               << AsmStr << "'\n";
1389          MI->dump();
1390          exit(1);
1391        }
1392      }
1393      break;
1394    }
1395    }
1396  }
1397  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1398}
1399
1400/// printImplicitDef - This method prints the specified machine instruction
1401/// that is an implicit def.
1402void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1403  O << '\t' << TAI->getCommentString() << " implicit-def: "
1404    << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1405}
1406
1407/// printLabel - This method prints a local label used by debug and
1408/// exception handling tables.
1409void AsmPrinter::printLabel(const MachineInstr *MI) const {
1410  printLabel(MI->getOperand(0).getImm());
1411}
1412
1413void AsmPrinter::printLabel(unsigned Id) const {
1414  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1415}
1416
1417/// printDeclare - This method prints a local variable declaration used by
1418/// debug tables.
1419/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1420/// entry into dwarf table.
1421void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1422  unsigned FI = MI->getOperand(0).getIndex();
1423  GlobalValue *GV = MI->getOperand(1).getGlobal();
1424  DW->RecordVariable(cast<GlobalVariable>(GV), FI);
1425}
1426
1427/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1428/// instruction, using the specified assembler variant.  Targets should
1429/// overried this to format as appropriate.
1430bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1431                                 unsigned AsmVariant, const char *ExtraCode) {
1432  // Target doesn't support this yet!
1433  return true;
1434}
1435
1436bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1437                                       unsigned AsmVariant,
1438                                       const char *ExtraCode) {
1439  // Target doesn't support this yet!
1440  return true;
1441}
1442
1443/// printBasicBlockLabel - This method prints the label for the specified
1444/// MachineBasicBlock
1445void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1446                                      bool printAlign,
1447                                      bool printColon,
1448                                      bool printComment) const {
1449  if (printAlign) {
1450    unsigned Align = MBB->getAlignment();
1451    if (Align)
1452      EmitAlignment(Log2_32(Align));
1453  }
1454
1455  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1456    << MBB->getNumber();
1457  if (printColon)
1458    O << ':';
1459  if (printComment && MBB->getBasicBlock())
1460    O << '\t' << TAI->getCommentString() << ' '
1461      << MBB->getBasicBlock()->getNameStart();
1462}
1463
1464/// printPICJumpTableSetLabel - This method prints a set label for the
1465/// specified MachineBasicBlock for a jumptable entry.
1466void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1467                                           const MachineBasicBlock *MBB) const {
1468  if (!TAI->getSetDirective())
1469    return;
1470
1471  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1472    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1473  printBasicBlockLabel(MBB, false, false, false);
1474  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1475    << '_' << uid << '\n';
1476}
1477
1478void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1479                                           const MachineBasicBlock *MBB) const {
1480  if (!TAI->getSetDirective())
1481    return;
1482
1483  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1484    << getFunctionNumber() << '_' << uid << '_' << uid2
1485    << "_set_" << MBB->getNumber() << ',';
1486  printBasicBlockLabel(MBB, false, false, false);
1487  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1488    << '_' << uid << '_' << uid2 << '\n';
1489}
1490
1491/// printDataDirective - This method prints the asm directive for the
1492/// specified type.
1493void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1494  const TargetData *TD = TM.getTargetData();
1495  switch (type->getTypeID()) {
1496  case Type::IntegerTyID: {
1497    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1498    if (BitWidth <= 8)
1499      O << TAI->getData8bitsDirective(AddrSpace);
1500    else if (BitWidth <= 16)
1501      O << TAI->getData16bitsDirective(AddrSpace);
1502    else if (BitWidth <= 32)
1503      O << TAI->getData32bitsDirective(AddrSpace);
1504    else if (BitWidth <= 64) {
1505      assert(TAI->getData64bitsDirective(AddrSpace) &&
1506             "Target cannot handle 64-bit constant exprs!");
1507      O << TAI->getData64bitsDirective(AddrSpace);
1508    } else {
1509      assert(0 && "Target cannot handle given data directive width!");
1510    }
1511    break;
1512  }
1513  case Type::PointerTyID:
1514    if (TD->getPointerSize() == 8) {
1515      assert(TAI->getData64bitsDirective(AddrSpace) &&
1516             "Target cannot handle 64-bit pointer exprs!");
1517      O << TAI->getData64bitsDirective(AddrSpace);
1518    } else if (TD->getPointerSize() == 2) {
1519      O << TAI->getData16bitsDirective(AddrSpace);
1520    } else if (TD->getPointerSize() == 1) {
1521      O << TAI->getData8bitsDirective(AddrSpace);
1522    } else {
1523      O << TAI->getData32bitsDirective(AddrSpace);
1524    }
1525    break;
1526  case Type::FloatTyID: case Type::DoubleTyID:
1527  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1528    assert (0 && "Should have already output floating point constant.");
1529  default:
1530    assert (0 && "Can't handle printing this type of thing");
1531    break;
1532  }
1533}
1534
1535void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1536                                   const char *Prefix) {
1537  if (Name[0]=='\"')
1538    O << '\"';
1539  O << TAI->getPrivateGlobalPrefix();
1540  if (Prefix) O << Prefix;
1541  if (Name[0]=='\"')
1542    O << '\"';
1543  if (Name[0]=='\"')
1544    O << Name[1];
1545  else
1546    O << Name;
1547  O << Suffix;
1548  if (Name[0]=='\"')
1549    O << '\"';
1550}
1551
1552void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1553  printSuffixedName(Name.c_str(), Suffix);
1554}
1555
1556void AsmPrinter::printVisibility(const std::string& Name,
1557                                 unsigned Visibility) const {
1558  if (Visibility == GlobalValue::HiddenVisibility) {
1559    if (const char *Directive = TAI->getHiddenDirective())
1560      O << Directive << Name << '\n';
1561  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1562    if (const char *Directive = TAI->getProtectedDirective())
1563      O << Directive << Name << '\n';
1564  }
1565}
1566
1567void AsmPrinter::printOffset(int64_t Offset) const {
1568  if (Offset > 0)
1569    O << '+' << Offset;
1570  else if (Offset < 0)
1571    O << Offset;
1572}
1573
1574GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1575  if (!S->usesMetadata())
1576    return 0;
1577
1578  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1579  if (GCPI != GCMetadataPrinters.end())
1580    return GCPI->second;
1581
1582  const char *Name = S->getName().c_str();
1583
1584  for (GCMetadataPrinterRegistry::iterator
1585         I = GCMetadataPrinterRegistry::begin(),
1586         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1587    if (strcmp(Name, I->getName()) == 0) {
1588      GCMetadataPrinter *GMP = I->instantiate();
1589      GMP->S = S;
1590      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1591      return GMP;
1592    }
1593
1594  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1595  abort();
1596}
1597