AsmPrinter.cpp revision 2798119ab4d7e0b42812b3acdf37821f40dee627
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/DwarfWriter.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/MC/MCContext.h"
26#include "llvm/MC/MCInst.h"
27#include "llvm/MC/MCSection.h"
28#include "llvm/MC/MCStreamer.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/FormattedStream.h"
32#include "llvm/Support/Mangler.h"
33#include "llvm/Target/TargetAsmInfo.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetLoweringObjectFile.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallString.h"
41#include "llvm/ADT/StringExtras.h"
42#include <cerrno>
43using namespace llvm;
44
45static cl::opt<cl::boolOrDefault>
46AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
47           cl::init(cl::BOU_UNSET));
48
49char AsmPrinter::ID = 0;
50AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
51                       const TargetAsmInfo *T, bool VDef)
52  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
53    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
54
55    OutContext(*new MCContext()),
56    OutStreamer(*createAsmStreamer(OutContext, O)),
57
58    IsInTextSection(false), LastMI(0), LastFn(0), Counter(~0U),
59    PrevDLT(0, ~0U, ~0U) {
60  DW = 0; MMI = 0;
61  switch (AsmVerbose) {
62  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
63  case cl::BOU_TRUE:  VerboseAsm = true;  break;
64  case cl::BOU_FALSE: VerboseAsm = false; break;
65  }
66}
67
68AsmPrinter::~AsmPrinter() {
69  for (gcp_iterator I = GCMetadataPrinters.begin(),
70                    E = GCMetadataPrinters.end(); I != E; ++I)
71    delete I->second;
72
73  delete &OutStreamer;
74  delete &OutContext;
75}
76
77const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
78  return TM.getTargetLowering()->getObjFileLowering();
79}
80
81
82/// SwitchToTextSection - Switch to the specified text section of the executable
83/// if we are not already in it!
84///
85void AsmPrinter::SwitchToTextSection(const char *NewSection,
86                                     const GlobalValue *GV) {
87  std::string NS;
88  if (GV && GV->hasSection())
89    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
90  else
91    NS = NewSection;
92
93  // If we're already in this section, we're done.
94  if (CurrentSection == NS) return;
95
96  // Close the current section, if applicable.
97  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
98    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
99
100  CurrentSection = NS;
101
102  if (!CurrentSection.empty())
103    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
104
105  IsInTextSection = true;
106}
107
108/// SwitchToDataSection - Switch to the specified data section of the executable
109/// if we are not already in it!
110///
111void AsmPrinter::SwitchToDataSection(const char *NewSection,
112                                     const GlobalValue *GV) {
113  std::string NS;
114  if (GV && GV->hasSection())
115    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
116  else
117    NS = NewSection;
118
119  // If we're already in this section, we're done.
120  if (CurrentSection == NS) return;
121
122  // Close the current section, if applicable.
123  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
124    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
125
126  CurrentSection = NS;
127
128  if (!CurrentSection.empty())
129    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
130
131  IsInTextSection = false;
132}
133
134/// SwitchToSection - Switch to the specified section of the executable if we
135/// are not already in it!
136void AsmPrinter::SwitchToSection(const MCSection *NS) {
137  const std::string &NewSection = NS->getName();
138
139  // If we're already in this section, we're done.
140  if (CurrentSection == NewSection) return;
141
142  // Close the current section, if applicable.
143  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
144    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
145
146  // FIXME: Make CurrentSection a Section* in the future
147  CurrentSection = NewSection;
148  CurrentSection_ = NS;
149
150  if (!CurrentSection.empty()) {
151    // If section is named we need to switch into it via special '.section'
152    // directive and also append funky flags. Otherwise - section name is just
153    // some magic assembler directive.
154    if (!NS->isDirective()) {
155      SmallString<32> FlagsStr;
156
157      getObjFileLowering().getSectionFlagsAsString(NS->getKind(), FlagsStr);
158
159      O << TAI->getSwitchToSectionDirective()
160        << CurrentSection
161        << FlagsStr.c_str();
162    } else {
163      O << CurrentSection;
164    }
165    O << TAI->getDataSectionStartSuffix() << '\n';
166  }
167
168  IsInTextSection = NS->getKind().isText();
169}
170
171void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
172  AU.setPreservesAll();
173  MachineFunctionPass::getAnalysisUsage(AU);
174  AU.addRequired<GCModuleInfo>();
175}
176
177bool AsmPrinter::doInitialization(Module &M) {
178  // Initialize TargetLoweringObjectFile.
179  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
180    .Initialize(OutContext, TM);
181
182  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(),
183                     TAI->getLinkerPrivateGlobalPrefix());
184
185  if (TAI->doesAllowQuotesInName())
186    Mang->setUseQuotes(true);
187
188  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
189  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
190
191  if (TAI->hasSingleParameterDotFile()) {
192    /* Very minimal debug info. It is ignored if we emit actual
193       debug info. If we don't, this at helps the user find where
194       a function came from. */
195    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
196  }
197
198  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
199    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
200      MP->beginAssembly(O, *this, *TAI);
201
202  if (!M.getModuleInlineAsm().empty())
203    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
204      << M.getModuleInlineAsm()
205      << '\n' << TAI->getCommentString()
206      << " End of file scope inline assembly\n";
207
208  SwitchToDataSection("");   // Reset back to no section.
209
210  if (TAI->doesSupportDebugInformation() ||
211      TAI->doesSupportExceptionHandling()) {
212    MMI = getAnalysisIfAvailable<MachineModuleInfo>();
213    if (MMI)
214      MMI->AnalyzeModule(M);
215    DW = getAnalysisIfAvailable<DwarfWriter>();
216    if (DW)
217      DW->BeginModule(&M, MMI, O, this, TAI);
218  }
219
220  return false;
221}
222
223bool AsmPrinter::doFinalization(Module &M) {
224  // Emit global variables.
225  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
226       I != E; ++I)
227    PrintGlobalVariable(I);
228
229  // Emit final debug information.
230  if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
231    DW->EndModule();
232
233  // If the target wants to know about weak references, print them all.
234  if (TAI->getWeakRefDirective()) {
235    // FIXME: This is not lazy, it would be nice to only print weak references
236    // to stuff that is actually used.  Note that doing so would require targets
237    // to notice uses in operands (due to constant exprs etc).  This should
238    // happen with the MC stuff eventually.
239    SwitchToDataSection("");
240
241    // Print out module-level global variables here.
242    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
243         I != E; ++I) {
244      if (I->hasExternalWeakLinkage())
245        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
246    }
247
248    for (Module::const_iterator I = M.begin(), E = M.end();
249         I != E; ++I) {
250      if (I->hasExternalWeakLinkage())
251        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
252    }
253  }
254
255  if (TAI->getSetDirective()) {
256    O << '\n';
257    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
258         I != E; ++I) {
259      std::string Name = Mang->getMangledName(I);
260
261      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
262      std::string Target = Mang->getMangledName(GV);
263
264      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
265        O << "\t.globl\t" << Name << '\n';
266      else if (I->hasWeakLinkage())
267        O << TAI->getWeakRefDirective() << Name << '\n';
268      else if (!I->hasLocalLinkage())
269        llvm_unreachable("Invalid alias linkage");
270
271      printVisibility(Name, I->getVisibility());
272
273      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
274    }
275  }
276
277  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
278  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
279  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
280    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
281      MP->finishAssembly(O, *this, *TAI);
282
283  // If we don't have any trampolines, then we don't require stack memory
284  // to be executable. Some targets have a directive to declare this.
285  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
286  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
287    if (TAI->getNonexecutableStackDirective())
288      O << TAI->getNonexecutableStackDirective() << '\n';
289
290  delete Mang; Mang = 0;
291  DW = 0; MMI = 0;
292
293  OutStreamer.Finish();
294  return false;
295}
296
297std::string
298AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const {
299  assert(MF && "No machine function?");
300  return Mang->getMangledName(MF->getFunction(), ".eh",
301                              TAI->is_EHSymbolPrivate());
302}
303
304void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
305  // What's my mangled name?
306  CurrentFnName = Mang->getMangledName(MF.getFunction());
307  IncrementFunctionNumber();
308}
309
310namespace {
311  // SectionCPs - Keep track the alignment, constpool entries per Section.
312  struct SectionCPs {
313    const MCSection *S;
314    unsigned Alignment;
315    SmallVector<unsigned, 4> CPEs;
316    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
317  };
318}
319
320/// EmitConstantPool - Print to the current output stream assembly
321/// representations of the constants in the constant pool MCP. This is
322/// used to print out constants which have been "spilled to memory" by
323/// the code generator.
324///
325void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
326  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
327  if (CP.empty()) return;
328
329  // Calculate sections for constant pool entries. We collect entries to go into
330  // the same section together to reduce amount of section switch statements.
331  SmallVector<SectionCPs, 4> CPSections;
332  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
333    const MachineConstantPoolEntry &CPE = CP[i];
334    unsigned Align = CPE.getAlignment();
335
336    SectionKind Kind;
337    switch (CPE.getRelocationInfo()) {
338    default: llvm_unreachable("Unknown section kind");
339    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
340    case 1:
341      Kind = SectionKind::getReadOnlyWithRelLocal();
342      break;
343    case 0:
344    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
345    case 4:  Kind = SectionKind::getMergeableConst4(); break;
346    case 8:  Kind = SectionKind::getMergeableConst8(); break;
347    case 16: Kind = SectionKind::getMergeableConst16();break;
348    default: Kind = SectionKind::getMergeableConst(); break;
349    }
350    }
351
352    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
353
354    // The number of sections are small, just do a linear search from the
355    // last section to the first.
356    bool Found = false;
357    unsigned SecIdx = CPSections.size();
358    while (SecIdx != 0) {
359      if (CPSections[--SecIdx].S == S) {
360        Found = true;
361        break;
362      }
363    }
364    if (!Found) {
365      SecIdx = CPSections.size();
366      CPSections.push_back(SectionCPs(S, Align));
367    }
368
369    if (Align > CPSections[SecIdx].Alignment)
370      CPSections[SecIdx].Alignment = Align;
371    CPSections[SecIdx].CPEs.push_back(i);
372  }
373
374  // Now print stuff into the calculated sections.
375  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
376    SwitchToSection(CPSections[i].S);
377    EmitAlignment(Log2_32(CPSections[i].Alignment));
378
379    unsigned Offset = 0;
380    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
381      unsigned CPI = CPSections[i].CPEs[j];
382      MachineConstantPoolEntry CPE = CP[CPI];
383
384      // Emit inter-object padding for alignment.
385      unsigned AlignMask = CPE.getAlignment() - 1;
386      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
387      EmitZeros(NewOffset - Offset);
388
389      const Type *Ty = CPE.getType();
390      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
391
392      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
393        << CPI << ":\t\t\t\t\t";
394      if (VerboseAsm) {
395        O << TAI->getCommentString() << ' ';
396        WriteTypeSymbolic(O, CPE.getType(), 0);
397      }
398      O << '\n';
399      if (CPE.isMachineConstantPoolEntry())
400        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
401      else
402        EmitGlobalConstant(CPE.Val.ConstVal);
403    }
404  }
405}
406
407/// EmitJumpTableInfo - Print assembly representations of the jump tables used
408/// by the current function to the current output stream.
409///
410void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
411                                   MachineFunction &MF) {
412  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
413  if (JT.empty()) return;
414
415  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
416
417  // Pick the directive to use to print the jump table entries, and switch to
418  // the appropriate section.
419  TargetLowering *LoweringInfo = TM.getTargetLowering();
420
421  const Function *F = MF.getFunction();
422  bool JTInDiffSection = false;
423  if (F->isWeakForLinker() ||
424      (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
425    // In PIC mode, we need to emit the jump table to the same section as the
426    // function body itself, otherwise the label differences won't make sense.
427    // We should also do if the section name is NULL or function is declared in
428    // discardable section.
429    SwitchToSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
430  } else {
431    // Otherwise, drop it in the readonly section.
432    const MCSection *ReadOnlySection =
433      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
434    SwitchToSection(ReadOnlySection);
435    JTInDiffSection = true;
436  }
437
438  EmitAlignment(Log2_32(MJTI->getAlignment()));
439
440  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
441    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
442
443    // If this jump table was deleted, ignore it.
444    if (JTBBs.empty()) continue;
445
446    // For PIC codegen, if possible we want to use the SetDirective to reduce
447    // the number of relocations the assembler will generate for the jump table.
448    // Set directives are all printed before the jump table itself.
449    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
450    if (TAI->getSetDirective() && IsPic)
451      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
452        if (EmittedSets.insert(JTBBs[ii]))
453          printPICJumpTableSetLabel(i, JTBBs[ii]);
454
455    // On some targets (e.g. darwin) we want to emit two consequtive labels
456    // before each jump table.  The first label is never referenced, but tells
457    // the assembler and linker the extents of the jump table object.  The
458    // second label is actually referenced by the code.
459    if (JTInDiffSection) {
460      if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
461        O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
462    }
463
464    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
465      << '_' << i << ":\n";
466
467    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
468      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
469      O << '\n';
470    }
471  }
472}
473
474void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
475                                        const MachineBasicBlock *MBB,
476                                        unsigned uid)  const {
477  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
478
479  // Use JumpTableDirective otherwise honor the entry size from the jump table
480  // info.
481  const char *JTEntryDirective = TAI->getJumpTableDirective();
482  bool HadJTEntryDirective = JTEntryDirective != NULL;
483  if (!HadJTEntryDirective) {
484    JTEntryDirective = MJTI->getEntrySize() == 4 ?
485      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
486  }
487
488  O << JTEntryDirective << ' ';
489
490  // If we have emitted set directives for the jump table entries, print
491  // them rather than the entries themselves.  If we're emitting PIC, then
492  // emit the table entries as differences between two text section labels.
493  // If we're emitting non-PIC code, then emit the entries as direct
494  // references to the target basic blocks.
495  if (IsPic) {
496    if (TAI->getSetDirective()) {
497      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
498        << '_' << uid << "_set_" << MBB->getNumber();
499    } else {
500      printBasicBlockLabel(MBB, false, false, false);
501      // If the arch uses custom Jump Table directives, don't calc relative to
502      // JT
503      if (!HadJTEntryDirective)
504        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
505          << getFunctionNumber() << '_' << uid;
506    }
507  } else {
508    printBasicBlockLabel(MBB, false, false, false);
509  }
510}
511
512
513/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
514/// special global used by LLVM.  If so, emit it and return true, otherwise
515/// do nothing and return false.
516bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
517  if (GV->getName() == "llvm.used") {
518    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
519      EmitLLVMUsedList(GV->getInitializer());
520    return true;
521  }
522
523  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
524  if (GV->getSection() == "llvm.metadata" ||
525      GV->hasAvailableExternallyLinkage())
526    return true;
527
528  if (!GV->hasAppendingLinkage()) return false;
529
530  assert(GV->hasInitializer() && "Not a special LLVM global!");
531
532  const TargetData *TD = TM.getTargetData();
533  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
534  if (GV->getName() == "llvm.global_ctors") {
535    SwitchToDataSection(TAI->getStaticCtorsSection());
536    EmitAlignment(Align, 0);
537    EmitXXStructorList(GV->getInitializer());
538    return true;
539  }
540
541  if (GV->getName() == "llvm.global_dtors") {
542    SwitchToDataSection(TAI->getStaticDtorsSection());
543    EmitAlignment(Align, 0);
544    EmitXXStructorList(GV->getInitializer());
545    return true;
546  }
547
548  return false;
549}
550
551/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
552/// global in the specified llvm.used list for which emitUsedDirectiveFor
553/// is true, as being used with this directive.
554void AsmPrinter::EmitLLVMUsedList(Constant *List) {
555  const char *Directive = TAI->getUsedDirective();
556
557  // Should be an array of 'i8*'.
558  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
559  if (InitList == 0) return;
560
561  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
562    const GlobalValue *GV =
563      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
564    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
565      O << Directive;
566      EmitConstantValueOnly(InitList->getOperand(i));
567      O << '\n';
568    }
569  }
570}
571
572/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
573/// function pointers, ignoring the init priority.
574void AsmPrinter::EmitXXStructorList(Constant *List) {
575  // Should be an array of '{ int, void ()* }' structs.  The first value is the
576  // init priority, which we ignore.
577  if (!isa<ConstantArray>(List)) return;
578  ConstantArray *InitList = cast<ConstantArray>(List);
579  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
580    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
581      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
582
583      if (CS->getOperand(1)->isNullValue())
584        return;  // Found a null terminator, exit printing.
585      // Emit the function pointer.
586      EmitGlobalConstant(CS->getOperand(1));
587    }
588}
589
590/// getGlobalLinkName - Returns the asm/link name of of the specified
591/// global variable.  Should be overridden by each target asm printer to
592/// generate the appropriate value.
593const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
594                                                 std::string &LinkName) const {
595  if (isa<Function>(GV)) {
596    LinkName += TAI->getFunctionAddrPrefix();
597    LinkName += Mang->getMangledName(GV);
598    LinkName += TAI->getFunctionAddrSuffix();
599  } else {
600    LinkName += TAI->getGlobalVarAddrPrefix();
601    LinkName += Mang->getMangledName(GV);
602    LinkName += TAI->getGlobalVarAddrSuffix();
603  }
604
605  return LinkName;
606}
607
608/// EmitExternalGlobal - Emit the external reference to a global variable.
609/// Should be overridden if an indirect reference should be used.
610void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
611  std::string GLN;
612  O << getGlobalLinkName(GV, GLN);
613}
614
615
616
617//===----------------------------------------------------------------------===//
618/// LEB 128 number encoding.
619
620/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
621/// representing an unsigned leb128 value.
622void AsmPrinter::PrintULEB128(unsigned Value) const {
623  char Buffer[20];
624  do {
625    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
626    Value >>= 7;
627    if (Value) Byte |= 0x80;
628    O << "0x" << utohex_buffer(Byte, Buffer+20);
629    if (Value) O << ", ";
630  } while (Value);
631}
632
633/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
634/// representing a signed leb128 value.
635void AsmPrinter::PrintSLEB128(int Value) const {
636  int Sign = Value >> (8 * sizeof(Value) - 1);
637  bool IsMore;
638  char Buffer[20];
639
640  do {
641    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
642    Value >>= 7;
643    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
644    if (IsMore) Byte |= 0x80;
645    O << "0x" << utohex_buffer(Byte, Buffer+20);
646    if (IsMore) O << ", ";
647  } while (IsMore);
648}
649
650//===--------------------------------------------------------------------===//
651// Emission and print routines
652//
653
654/// PrintHex - Print a value as a hexidecimal value.
655///
656void AsmPrinter::PrintHex(int Value) const {
657  char Buffer[20];
658  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
659}
660
661/// EOL - Print a newline character to asm stream.  If a comment is present
662/// then it will be printed first.  Comments should not contain '\n'.
663void AsmPrinter::EOL() const {
664  O << '\n';
665}
666
667void AsmPrinter::EOL(const std::string &Comment) const {
668  if (VerboseAsm && !Comment.empty()) {
669    O << '\t'
670      << TAI->getCommentString()
671      << ' '
672      << Comment;
673  }
674  O << '\n';
675}
676
677void AsmPrinter::EOL(const char* Comment) const {
678  if (VerboseAsm && *Comment) {
679    O << '\t'
680      << TAI->getCommentString()
681      << ' '
682      << Comment;
683  }
684  O << '\n';
685}
686
687/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
688/// unsigned leb128 value.
689void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
690  if (TAI->hasLEB128()) {
691    O << "\t.uleb128\t"
692      << Value;
693  } else {
694    O << TAI->getData8bitsDirective();
695    PrintULEB128(Value);
696  }
697}
698
699/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
700/// signed leb128 value.
701void AsmPrinter::EmitSLEB128Bytes(int Value) const {
702  if (TAI->hasLEB128()) {
703    O << "\t.sleb128\t"
704      << Value;
705  } else {
706    O << TAI->getData8bitsDirective();
707    PrintSLEB128(Value);
708  }
709}
710
711/// EmitInt8 - Emit a byte directive and value.
712///
713void AsmPrinter::EmitInt8(int Value) const {
714  O << TAI->getData8bitsDirective();
715  PrintHex(Value & 0xFF);
716}
717
718/// EmitInt16 - Emit a short directive and value.
719///
720void AsmPrinter::EmitInt16(int Value) const {
721  O << TAI->getData16bitsDirective();
722  PrintHex(Value & 0xFFFF);
723}
724
725/// EmitInt32 - Emit a long directive and value.
726///
727void AsmPrinter::EmitInt32(int Value) const {
728  O << TAI->getData32bitsDirective();
729  PrintHex(Value);
730}
731
732/// EmitInt64 - Emit a long long directive and value.
733///
734void AsmPrinter::EmitInt64(uint64_t Value) const {
735  if (TAI->getData64bitsDirective()) {
736    O << TAI->getData64bitsDirective();
737    PrintHex(Value);
738  } else {
739    if (TM.getTargetData()->isBigEndian()) {
740      EmitInt32(unsigned(Value >> 32)); O << '\n';
741      EmitInt32(unsigned(Value));
742    } else {
743      EmitInt32(unsigned(Value)); O << '\n';
744      EmitInt32(unsigned(Value >> 32));
745    }
746  }
747}
748
749/// toOctal - Convert the low order bits of X into an octal digit.
750///
751static inline char toOctal(int X) {
752  return (X&7)+'0';
753}
754
755/// printStringChar - Print a char, escaped if necessary.
756///
757static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
758  if (C == '"') {
759    O << "\\\"";
760  } else if (C == '\\') {
761    O << "\\\\";
762  } else if (isprint((unsigned char)C)) {
763    O << C;
764  } else {
765    switch(C) {
766    case '\b': O << "\\b"; break;
767    case '\f': O << "\\f"; break;
768    case '\n': O << "\\n"; break;
769    case '\r': O << "\\r"; break;
770    case '\t': O << "\\t"; break;
771    default:
772      O << '\\';
773      O << toOctal(C >> 6);
774      O << toOctal(C >> 3);
775      O << toOctal(C >> 0);
776      break;
777    }
778  }
779}
780
781/// EmitString - Emit a string with quotes and a null terminator.
782/// Special characters are emitted properly.
783/// \literal (Eg. '\t') \endliteral
784void AsmPrinter::EmitString(const std::string &String) const {
785  EmitString(String.c_str(), String.size());
786}
787
788void AsmPrinter::EmitString(const char *String, unsigned Size) const {
789  const char* AscizDirective = TAI->getAscizDirective();
790  if (AscizDirective)
791    O << AscizDirective;
792  else
793    O << TAI->getAsciiDirective();
794  O << '\"';
795  for (unsigned i = 0; i < Size; ++i)
796    printStringChar(O, String[i]);
797  if (AscizDirective)
798    O << '\"';
799  else
800    O << "\\0\"";
801}
802
803
804/// EmitFile - Emit a .file directive.
805void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
806  O << "\t.file\t" << Number << " \"";
807  for (unsigned i = 0, N = Name.size(); i < N; ++i)
808    printStringChar(O, Name[i]);
809  O << '\"';
810}
811
812
813//===----------------------------------------------------------------------===//
814
815// EmitAlignment - Emit an alignment directive to the specified power of
816// two boundary.  For example, if you pass in 3 here, you will get an 8
817// byte alignment.  If a global value is specified, and if that global has
818// an explicit alignment requested, it will unconditionally override the
819// alignment request.  However, if ForcedAlignBits is specified, this value
820// has final say: the ultimate alignment will be the max of ForcedAlignBits
821// and the alignment computed with NumBits and the global.
822//
823// The algorithm is:
824//     Align = NumBits;
825//     if (GV && GV->hasalignment) Align = GV->getalignment();
826//     Align = std::max(Align, ForcedAlignBits);
827//
828void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
829                               unsigned ForcedAlignBits,
830                               bool UseFillExpr) const {
831  if (GV && GV->getAlignment())
832    NumBits = Log2_32(GV->getAlignment());
833  NumBits = std::max(NumBits, ForcedAlignBits);
834
835  if (NumBits == 0) return;   // No need to emit alignment.
836  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
837  O << TAI->getAlignDirective() << NumBits;
838
839  unsigned FillValue = TAI->getTextAlignFillValue();
840  UseFillExpr &= IsInTextSection && FillValue;
841  if (UseFillExpr) {
842    O << ',';
843    PrintHex(FillValue);
844  }
845  O << '\n';
846}
847
848/// PadToColumn - This gets called every time a tab is emitted.  If
849/// column padding is turned on, we replace the tab with the
850/// appropriate amount of padding.  If not, we replace the tab with a
851/// space, except for the first operand so that initial operands are
852/// always lined up by tabs.
853void AsmPrinter::PadToColumn(unsigned Operand) const {
854  if (TAI->getOperandColumn(Operand) > 0) {
855    O.PadToColumn(TAI->getOperandColumn(Operand), 1);
856  }
857  else {
858    if (Operand == 1) {
859      // Emit the tab after the mnemonic.
860      O << '\t';
861    }
862    else {
863      // Replace the tab with a space.
864      O << ' ';
865    }
866  }
867}
868
869/// EmitZeros - Emit a block of zeros.
870///
871void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
872  if (NumZeros) {
873    if (TAI->getZeroDirective()) {
874      O << TAI->getZeroDirective() << NumZeros;
875      if (TAI->getZeroDirectiveSuffix())
876        O << TAI->getZeroDirectiveSuffix();
877      O << '\n';
878    } else {
879      for (; NumZeros; --NumZeros)
880        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
881    }
882  }
883}
884
885// Print out the specified constant, without a storage class.  Only the
886// constants valid in constant expressions can occur here.
887void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
888  if (CV->isNullValue() || isa<UndefValue>(CV))
889    O << '0';
890  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
891    O << CI->getZExtValue();
892  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
893    // This is a constant address for a global variable or function. Use the
894    // name of the variable or function as the address value, possibly
895    // decorating it with GlobalVarAddrPrefix/Suffix or
896    // FunctionAddrPrefix/Suffix (these all default to "" )
897    if (isa<Function>(GV)) {
898      O << TAI->getFunctionAddrPrefix()
899        << Mang->getMangledName(GV)
900        << TAI->getFunctionAddrSuffix();
901    } else {
902      O << TAI->getGlobalVarAddrPrefix()
903        << Mang->getMangledName(GV)
904        << TAI->getGlobalVarAddrSuffix();
905    }
906  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
907    const TargetData *TD = TM.getTargetData();
908    unsigned Opcode = CE->getOpcode();
909    switch (Opcode) {
910    case Instruction::Trunc:
911    case Instruction::ZExt:
912    case Instruction::SExt:
913    case Instruction::FPTrunc:
914    case Instruction::FPExt:
915    case Instruction::UIToFP:
916    case Instruction::SIToFP:
917    case Instruction::FPToUI:
918    case Instruction::FPToSI:
919      llvm_unreachable("FIXME: Don't support this constant cast expr");
920    case Instruction::GetElementPtr: {
921      // generate a symbolic expression for the byte address
922      const Constant *ptrVal = CE->getOperand(0);
923      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
924      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
925                                                idxVec.size())) {
926        // Truncate/sext the offset to the pointer size.
927        if (TD->getPointerSizeInBits() != 64) {
928          int SExtAmount = 64-TD->getPointerSizeInBits();
929          Offset = (Offset << SExtAmount) >> SExtAmount;
930        }
931
932        if (Offset)
933          O << '(';
934        EmitConstantValueOnly(ptrVal);
935        if (Offset > 0)
936          O << ") + " << Offset;
937        else if (Offset < 0)
938          O << ") - " << -Offset;
939      } else {
940        EmitConstantValueOnly(ptrVal);
941      }
942      break;
943    }
944    case Instruction::BitCast:
945      return EmitConstantValueOnly(CE->getOperand(0));
946
947    case Instruction::IntToPtr: {
948      // Handle casts to pointers by changing them into casts to the appropriate
949      // integer type.  This promotes constant folding and simplifies this code.
950      Constant *Op = CE->getOperand(0);
951      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
952      return EmitConstantValueOnly(Op);
953    }
954
955
956    case Instruction::PtrToInt: {
957      // Support only foldable casts to/from pointers that can be eliminated by
958      // changing the pointer to the appropriately sized integer type.
959      Constant *Op = CE->getOperand(0);
960      const Type *Ty = CE->getType();
961
962      // We can emit the pointer value into this slot if the slot is an
963      // integer slot greater or equal to the size of the pointer.
964      if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
965        return EmitConstantValueOnly(Op);
966
967      O << "((";
968      EmitConstantValueOnly(Op);
969      APInt ptrMask =
970        APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
971
972      SmallString<40> S;
973      ptrMask.toStringUnsigned(S);
974      O << ") & " << S.c_str() << ')';
975      break;
976    }
977    case Instruction::Add:
978    case Instruction::Sub:
979    case Instruction::And:
980    case Instruction::Or:
981    case Instruction::Xor:
982      O << '(';
983      EmitConstantValueOnly(CE->getOperand(0));
984      O << ')';
985      switch (Opcode) {
986      case Instruction::Add:
987       O << " + ";
988       break;
989      case Instruction::Sub:
990       O << " - ";
991       break;
992      case Instruction::And:
993       O << " & ";
994       break;
995      case Instruction::Or:
996       O << " | ";
997       break;
998      case Instruction::Xor:
999       O << " ^ ";
1000       break;
1001      default:
1002       break;
1003      }
1004      O << '(';
1005      EmitConstantValueOnly(CE->getOperand(1));
1006      O << ')';
1007      break;
1008    default:
1009      llvm_unreachable("Unsupported operator!");
1010    }
1011  } else {
1012    llvm_unreachable("Unknown constant value!");
1013  }
1014}
1015
1016/// printAsCString - Print the specified array as a C compatible string, only if
1017/// the predicate isString is true.
1018///
1019static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
1020                           unsigned LastElt) {
1021  assert(CVA->isString() && "Array is not string compatible!");
1022
1023  O << '\"';
1024  for (unsigned i = 0; i != LastElt; ++i) {
1025    unsigned char C =
1026        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
1027    printStringChar(O, C);
1028  }
1029  O << '\"';
1030}
1031
1032/// EmitString - Emit a zero-byte-terminated string constant.
1033///
1034void AsmPrinter::EmitString(const ConstantArray *CVA) const {
1035  unsigned NumElts = CVA->getNumOperands();
1036  if (TAI->getAscizDirective() && NumElts &&
1037      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
1038    O << TAI->getAscizDirective();
1039    printAsCString(O, CVA, NumElts-1);
1040  } else {
1041    O << TAI->getAsciiDirective();
1042    printAsCString(O, CVA, NumElts);
1043  }
1044  O << '\n';
1045}
1046
1047void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
1048                                         unsigned AddrSpace) {
1049  if (CVA->isString()) {
1050    EmitString(CVA);
1051  } else { // Not a string.  Print the values in successive locations
1052    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
1053      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
1054  }
1055}
1056
1057void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
1058  const VectorType *PTy = CP->getType();
1059
1060  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1061    EmitGlobalConstant(CP->getOperand(I));
1062}
1063
1064void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
1065                                          unsigned AddrSpace) {
1066  // Print the fields in successive locations. Pad to align if needed!
1067  const TargetData *TD = TM.getTargetData();
1068  unsigned Size = TD->getTypeAllocSize(CVS->getType());
1069  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
1070  uint64_t sizeSoFar = 0;
1071  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
1072    const Constant* field = CVS->getOperand(i);
1073
1074    // Check if padding is needed and insert one or more 0s.
1075    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
1076    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1077                        - cvsLayout->getElementOffset(i)) - fieldSize;
1078    sizeSoFar += fieldSize + padSize;
1079
1080    // Now print the actual field value.
1081    EmitGlobalConstant(field, AddrSpace);
1082
1083    // Insert padding - this may include padding to increase the size of the
1084    // current field up to the ABI size (if the struct is not packed) as well
1085    // as padding to ensure that the next field starts at the right offset.
1086    EmitZeros(padSize, AddrSpace);
1087  }
1088  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1089         "Layout of constant struct may be incorrect!");
1090}
1091
1092void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1093                                      unsigned AddrSpace) {
1094  // FP Constants are printed as integer constants to avoid losing
1095  // precision...
1096  const TargetData *TD = TM.getTargetData();
1097  if (CFP->getType() == Type::DoubleTy) {
1098    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1099    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1100    if (TAI->getData64bitsDirective(AddrSpace)) {
1101      O << TAI->getData64bitsDirective(AddrSpace) << i;
1102      if (VerboseAsm)
1103        O << '\t' << TAI->getCommentString() << " double value: " << Val;
1104      O << '\n';
1105    } else if (TD->isBigEndian()) {
1106      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1107      if (VerboseAsm)
1108        O << '\t' << TAI->getCommentString()
1109          << " double most significant word " << Val;
1110      O << '\n';
1111      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1112      if (VerboseAsm)
1113        O << '\t' << TAI->getCommentString()
1114          << " double least significant word " << Val;
1115      O << '\n';
1116    } else {
1117      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1118      if (VerboseAsm)
1119        O << '\t' << TAI->getCommentString()
1120          << " double least significant word " << Val;
1121      O << '\n';
1122      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1123      if (VerboseAsm)
1124        O << '\t' << TAI->getCommentString()
1125          << " double most significant word " << Val;
1126      O << '\n';
1127    }
1128    return;
1129  } else if (CFP->getType() == Type::FloatTy) {
1130    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1131    O << TAI->getData32bitsDirective(AddrSpace)
1132      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1133    if (VerboseAsm)
1134      O << '\t' << TAI->getCommentString() << " float " << Val;
1135    O << '\n';
1136    return;
1137  } else if (CFP->getType() == Type::X86_FP80Ty) {
1138    // all long double variants are printed as hex
1139    // api needed to prevent premature destruction
1140    APInt api = CFP->getValueAPF().bitcastToAPInt();
1141    const uint64_t *p = api.getRawData();
1142    // Convert to double so we can print the approximate val as a comment.
1143    APFloat DoubleVal = CFP->getValueAPF();
1144    bool ignored;
1145    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1146                      &ignored);
1147    if (TD->isBigEndian()) {
1148      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1149      if (VerboseAsm)
1150        O << '\t' << TAI->getCommentString()
1151          << " long double most significant halfword of ~"
1152          << DoubleVal.convertToDouble();
1153      O << '\n';
1154      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1155      if (VerboseAsm)
1156        O << '\t' << TAI->getCommentString() << " long double next halfword";
1157      O << '\n';
1158      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1159      if (VerboseAsm)
1160        O << '\t' << TAI->getCommentString() << " long double next halfword";
1161      O << '\n';
1162      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1163      if (VerboseAsm)
1164        O << '\t' << TAI->getCommentString() << " long double next halfword";
1165      O << '\n';
1166      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1167      if (VerboseAsm)
1168        O << '\t' << TAI->getCommentString()
1169          << " long double least significant halfword";
1170      O << '\n';
1171     } else {
1172      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1173      if (VerboseAsm)
1174        O << '\t' << TAI->getCommentString()
1175          << " long double least significant halfword of ~"
1176          << DoubleVal.convertToDouble();
1177      O << '\n';
1178      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1179      if (VerboseAsm)
1180        O << '\t' << TAI->getCommentString()
1181          << " long double next halfword";
1182      O << '\n';
1183      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1184      if (VerboseAsm)
1185        O << '\t' << TAI->getCommentString()
1186          << " long double next halfword";
1187      O << '\n';
1188      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1189      if (VerboseAsm)
1190        O << '\t' << TAI->getCommentString()
1191          << " long double next halfword";
1192      O << '\n';
1193      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1194      if (VerboseAsm)
1195        O << '\t' << TAI->getCommentString()
1196          << " long double most significant halfword";
1197      O << '\n';
1198    }
1199    EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) -
1200              TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1201    return;
1202  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1203    // all long double variants are printed as hex
1204    // api needed to prevent premature destruction
1205    APInt api = CFP->getValueAPF().bitcastToAPInt();
1206    const uint64_t *p = api.getRawData();
1207    if (TD->isBigEndian()) {
1208      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1209      if (VerboseAsm)
1210        O << '\t' << TAI->getCommentString()
1211          << " long double most significant word";
1212      O << '\n';
1213      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1214      if (VerboseAsm)
1215        O << '\t' << TAI->getCommentString()
1216        << " long double next word";
1217      O << '\n';
1218      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1219      if (VerboseAsm)
1220        O << '\t' << TAI->getCommentString()
1221          << " long double next word";
1222      O << '\n';
1223      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1224      if (VerboseAsm)
1225        O << '\t' << TAI->getCommentString()
1226          << " long double least significant word";
1227      O << '\n';
1228     } else {
1229      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1230      if (VerboseAsm)
1231        O << '\t' << TAI->getCommentString()
1232          << " long double least significant word";
1233      O << '\n';
1234      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1235      if (VerboseAsm)
1236        O << '\t' << TAI->getCommentString()
1237          << " long double next word";
1238      O << '\n';
1239      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1240      if (VerboseAsm)
1241        O << '\t' << TAI->getCommentString()
1242          << " long double next word";
1243      O << '\n';
1244      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1245      if (VerboseAsm)
1246        O << '\t' << TAI->getCommentString()
1247          << " long double most significant word";
1248      O << '\n';
1249    }
1250    return;
1251  } else llvm_unreachable("Floating point constant type not handled");
1252}
1253
1254void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1255                                            unsigned AddrSpace) {
1256  const TargetData *TD = TM.getTargetData();
1257  unsigned BitWidth = CI->getBitWidth();
1258  assert(isPowerOf2_32(BitWidth) &&
1259         "Non-power-of-2-sized integers not handled!");
1260
1261  // We don't expect assemblers to support integer data directives
1262  // for more than 64 bits, so we emit the data in at most 64-bit
1263  // quantities at a time.
1264  const uint64_t *RawData = CI->getValue().getRawData();
1265  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1266    uint64_t Val;
1267    if (TD->isBigEndian())
1268      Val = RawData[e - i - 1];
1269    else
1270      Val = RawData[i];
1271
1272    if (TAI->getData64bitsDirective(AddrSpace))
1273      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1274    else if (TD->isBigEndian()) {
1275      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1276      if (VerboseAsm)
1277        O << '\t' << TAI->getCommentString()
1278          << " Double-word most significant word " << Val;
1279      O << '\n';
1280      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1281      if (VerboseAsm)
1282        O << '\t' << TAI->getCommentString()
1283          << " Double-word least significant word " << Val;
1284      O << '\n';
1285    } else {
1286      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1287      if (VerboseAsm)
1288        O << '\t' << TAI->getCommentString()
1289          << " Double-word least significant word " << Val;
1290      O << '\n';
1291      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1292      if (VerboseAsm)
1293        O << '\t' << TAI->getCommentString()
1294          << " Double-word most significant word " << Val;
1295      O << '\n';
1296    }
1297  }
1298}
1299
1300/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1301void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1302  const TargetData *TD = TM.getTargetData();
1303  const Type *type = CV->getType();
1304  unsigned Size = TD->getTypeAllocSize(type);
1305
1306  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1307    EmitZeros(Size, AddrSpace);
1308    return;
1309  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1310    EmitGlobalConstantArray(CVA , AddrSpace);
1311    return;
1312  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1313    EmitGlobalConstantStruct(CVS, AddrSpace);
1314    return;
1315  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1316    EmitGlobalConstantFP(CFP, AddrSpace);
1317    return;
1318  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1319    // Small integers are handled below; large integers are handled here.
1320    if (Size > 4) {
1321      EmitGlobalConstantLargeInt(CI, AddrSpace);
1322      return;
1323    }
1324  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1325    EmitGlobalConstantVector(CP);
1326    return;
1327  }
1328
1329  printDataDirective(type, AddrSpace);
1330  EmitConstantValueOnly(CV);
1331  if (VerboseAsm) {
1332    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1333      SmallString<40> S;
1334      CI->getValue().toStringUnsigned(S, 16);
1335      O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1336    }
1337  }
1338  O << '\n';
1339}
1340
1341void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1342  // Target doesn't support this yet!
1343  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1344}
1345
1346/// PrintSpecial - Print information related to the specified machine instr
1347/// that is independent of the operand, and may be independent of the instr
1348/// itself.  This can be useful for portably encoding the comment character
1349/// or other bits of target-specific knowledge into the asmstrings.  The
1350/// syntax used is ${:comment}.  Targets can override this to add support
1351/// for their own strange codes.
1352void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1353  if (!strcmp(Code, "private")) {
1354    O << TAI->getPrivateGlobalPrefix();
1355  } else if (!strcmp(Code, "comment")) {
1356    if (VerboseAsm)
1357      O << TAI->getCommentString();
1358  } else if (!strcmp(Code, "uid")) {
1359    // Comparing the address of MI isn't sufficient, because machineinstrs may
1360    // be allocated to the same address across functions.
1361    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1362
1363    // If this is a new LastFn instruction, bump the counter.
1364    if (LastMI != MI || LastFn != ThisF) {
1365      ++Counter;
1366      LastMI = MI;
1367      LastFn = ThisF;
1368    }
1369    O << Counter;
1370  } else {
1371    std::string msg;
1372    raw_string_ostream Msg(msg);
1373    Msg << "Unknown special formatter '" << Code
1374         << "' for machine instr: " << *MI;
1375    llvm_report_error(Msg.str());
1376  }
1377}
1378
1379/// processDebugLoc - Processes the debug information of each machine
1380/// instruction's DebugLoc.
1381void AsmPrinter::processDebugLoc(DebugLoc DL) {
1382  if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
1383    if (!DL.isUnknown()) {
1384      DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1385
1386      if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
1387        printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1388                                        DICompileUnit(CurDLT.CompileUnit)));
1389
1390      PrevDLT = CurDLT;
1391    }
1392  }
1393}
1394
1395/// printInlineAsm - This method formats and prints the specified machine
1396/// instruction that is an inline asm.
1397void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1398  unsigned NumOperands = MI->getNumOperands();
1399
1400  // Count the number of register definitions.
1401  unsigned NumDefs = 0;
1402  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1403       ++NumDefs)
1404    assert(NumDefs != NumOperands-1 && "No asm string?");
1405
1406  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1407
1408  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1409  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1410
1411  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1412  // These are useful to see where empty asm's wound up.
1413  if (AsmStr[0] == 0) {
1414    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1415    return;
1416  }
1417
1418  O << TAI->getInlineAsmStart() << "\n\t";
1419
1420  // The variant of the current asmprinter.
1421  int AsmPrinterVariant = TAI->getAssemblerDialect();
1422
1423  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1424  const char *LastEmitted = AsmStr; // One past the last character emitted.
1425
1426  while (*LastEmitted) {
1427    switch (*LastEmitted) {
1428    default: {
1429      // Not a special case, emit the string section literally.
1430      const char *LiteralEnd = LastEmitted+1;
1431      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1432             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1433        ++LiteralEnd;
1434      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1435        O.write(LastEmitted, LiteralEnd-LastEmitted);
1436      LastEmitted = LiteralEnd;
1437      break;
1438    }
1439    case '\n':
1440      ++LastEmitted;   // Consume newline character.
1441      O << '\n';       // Indent code with newline.
1442      break;
1443    case '$': {
1444      ++LastEmitted;   // Consume '$' character.
1445      bool Done = true;
1446
1447      // Handle escapes.
1448      switch (*LastEmitted) {
1449      default: Done = false; break;
1450      case '$':     // $$ -> $
1451        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1452          O << '$';
1453        ++LastEmitted;  // Consume second '$' character.
1454        break;
1455      case '(':             // $( -> same as GCC's { character.
1456        ++LastEmitted;      // Consume '(' character.
1457        if (CurVariant != -1) {
1458          llvm_report_error("Nested variants found in inline asm string: '"
1459                            + std::string(AsmStr) + "'");
1460        }
1461        CurVariant = 0;     // We're in the first variant now.
1462        break;
1463      case '|':
1464        ++LastEmitted;  // consume '|' character.
1465        if (CurVariant == -1)
1466          O << '|';       // this is gcc's behavior for | outside a variant
1467        else
1468          ++CurVariant;   // We're in the next variant.
1469        break;
1470      case ')':         // $) -> same as GCC's } char.
1471        ++LastEmitted;  // consume ')' character.
1472        if (CurVariant == -1)
1473          O << '}';     // this is gcc's behavior for } outside a variant
1474        else
1475          CurVariant = -1;
1476        break;
1477      }
1478      if (Done) break;
1479
1480      bool HasCurlyBraces = false;
1481      if (*LastEmitted == '{') {     // ${variable}
1482        ++LastEmitted;               // Consume '{' character.
1483        HasCurlyBraces = true;
1484      }
1485
1486      // If we have ${:foo}, then this is not a real operand reference, it is a
1487      // "magic" string reference, just like in .td files.  Arrange to call
1488      // PrintSpecial.
1489      if (HasCurlyBraces && *LastEmitted == ':') {
1490        ++LastEmitted;
1491        const char *StrStart = LastEmitted;
1492        const char *StrEnd = strchr(StrStart, '}');
1493        if (StrEnd == 0) {
1494          llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1495                            + std::string(AsmStr) + "'");
1496        }
1497
1498        std::string Val(StrStart, StrEnd);
1499        PrintSpecial(MI, Val.c_str());
1500        LastEmitted = StrEnd+1;
1501        break;
1502      }
1503
1504      const char *IDStart = LastEmitted;
1505      char *IDEnd;
1506      errno = 0;
1507      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1508      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1509        llvm_report_error("Bad $ operand number in inline asm string: '"
1510                          + std::string(AsmStr) + "'");
1511      }
1512      LastEmitted = IDEnd;
1513
1514      char Modifier[2] = { 0, 0 };
1515
1516      if (HasCurlyBraces) {
1517        // If we have curly braces, check for a modifier character.  This
1518        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1519        if (*LastEmitted == ':') {
1520          ++LastEmitted;    // Consume ':' character.
1521          if (*LastEmitted == 0) {
1522            llvm_report_error("Bad ${:} expression in inline asm string: '"
1523                              + std::string(AsmStr) + "'");
1524          }
1525
1526          Modifier[0] = *LastEmitted;
1527          ++LastEmitted;    // Consume modifier character.
1528        }
1529
1530        if (*LastEmitted != '}') {
1531          llvm_report_error("Bad ${} expression in inline asm string: '"
1532                            + std::string(AsmStr) + "'");
1533        }
1534        ++LastEmitted;    // Consume '}' character.
1535      }
1536
1537      if ((unsigned)Val >= NumOperands-1) {
1538        llvm_report_error("Invalid $ operand number in inline asm string: '"
1539                          + std::string(AsmStr) + "'");
1540      }
1541
1542      // Okay, we finally have a value number.  Ask the target to print this
1543      // operand!
1544      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1545        unsigned OpNo = 1;
1546
1547        bool Error = false;
1548
1549        // Scan to find the machine operand number for the operand.
1550        for (; Val; --Val) {
1551          if (OpNo >= MI->getNumOperands()) break;
1552          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1553          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1554        }
1555
1556        if (OpNo >= MI->getNumOperands()) {
1557          Error = true;
1558        } else {
1559          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1560          ++OpNo;  // Skip over the ID number.
1561
1562          if (Modifier[0]=='l')  // labels are target independent
1563            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1564                                 false, false, false);
1565          else {
1566            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1567            if ((OpFlags & 7) == 4) {
1568              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1569                                                Modifier[0] ? Modifier : 0);
1570            } else {
1571              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1572                                          Modifier[0] ? Modifier : 0);
1573            }
1574          }
1575        }
1576        if (Error) {
1577          std::string msg;
1578          raw_string_ostream Msg(msg);
1579          Msg << "Invalid operand found in inline asm: '"
1580               << AsmStr << "'\n";
1581          MI->print(Msg);
1582          llvm_report_error(Msg.str());
1583        }
1584      }
1585      break;
1586    }
1587    }
1588  }
1589  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1590}
1591
1592/// printImplicitDef - This method prints the specified machine instruction
1593/// that is an implicit def.
1594void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1595  if (VerboseAsm)
1596    O << '\t' << TAI->getCommentString() << " implicit-def: "
1597      << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1598}
1599
1600/// printLabel - This method prints a local label used by debug and
1601/// exception handling tables.
1602void AsmPrinter::printLabel(const MachineInstr *MI) const {
1603  printLabel(MI->getOperand(0).getImm());
1604}
1605
1606void AsmPrinter::printLabel(unsigned Id) const {
1607  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1608}
1609
1610/// printDeclare - This method prints a local variable declaration used by
1611/// debug tables.
1612/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1613/// entry into dwarf table.
1614void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1615  unsigned FI = MI->getOperand(0).getIndex();
1616  GlobalValue *GV = MI->getOperand(1).getGlobal();
1617  DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1618}
1619
1620/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1621/// instruction, using the specified assembler variant.  Targets should
1622/// overried this to format as appropriate.
1623bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1624                                 unsigned AsmVariant, const char *ExtraCode) {
1625  // Target doesn't support this yet!
1626  return true;
1627}
1628
1629bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1630                                       unsigned AsmVariant,
1631                                       const char *ExtraCode) {
1632  // Target doesn't support this yet!
1633  return true;
1634}
1635
1636/// printBasicBlockLabel - This method prints the label for the specified
1637/// MachineBasicBlock
1638void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1639                                      bool printAlign,
1640                                      bool printColon,
1641                                      bool printComment) const {
1642  if (printAlign) {
1643    unsigned Align = MBB->getAlignment();
1644    if (Align)
1645      EmitAlignment(Log2_32(Align));
1646  }
1647
1648  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1649    << MBB->getNumber();
1650  if (printColon)
1651    O << ':';
1652  if (printComment && MBB->getBasicBlock())
1653    O << '\t' << TAI->getCommentString() << ' '
1654      << MBB->getBasicBlock()->getNameStr();
1655}
1656
1657/// printPICJumpTableSetLabel - This method prints a set label for the
1658/// specified MachineBasicBlock for a jumptable entry.
1659void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1660                                           const MachineBasicBlock *MBB) const {
1661  if (!TAI->getSetDirective())
1662    return;
1663
1664  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1665    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1666  printBasicBlockLabel(MBB, false, false, false);
1667  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1668    << '_' << uid << '\n';
1669}
1670
1671void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1672                                           const MachineBasicBlock *MBB) const {
1673  if (!TAI->getSetDirective())
1674    return;
1675
1676  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1677    << getFunctionNumber() << '_' << uid << '_' << uid2
1678    << "_set_" << MBB->getNumber() << ',';
1679  printBasicBlockLabel(MBB, false, false, false);
1680  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1681    << '_' << uid << '_' << uid2 << '\n';
1682}
1683
1684/// printDataDirective - This method prints the asm directive for the
1685/// specified type.
1686void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1687  const TargetData *TD = TM.getTargetData();
1688  switch (type->getTypeID()) {
1689  case Type::FloatTyID: case Type::DoubleTyID:
1690  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1691    assert(0 && "Should have already output floating point constant.");
1692  default:
1693    assert(0 && "Can't handle printing this type of thing");
1694  case Type::IntegerTyID: {
1695    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1696    if (BitWidth <= 8)
1697      O << TAI->getData8bitsDirective(AddrSpace);
1698    else if (BitWidth <= 16)
1699      O << TAI->getData16bitsDirective(AddrSpace);
1700    else if (BitWidth <= 32)
1701      O << TAI->getData32bitsDirective(AddrSpace);
1702    else if (BitWidth <= 64) {
1703      assert(TAI->getData64bitsDirective(AddrSpace) &&
1704             "Target cannot handle 64-bit constant exprs!");
1705      O << TAI->getData64bitsDirective(AddrSpace);
1706    } else {
1707      llvm_unreachable("Target cannot handle given data directive width!");
1708    }
1709    break;
1710  }
1711  case Type::PointerTyID:
1712    if (TD->getPointerSize() == 8) {
1713      assert(TAI->getData64bitsDirective(AddrSpace) &&
1714             "Target cannot handle 64-bit pointer exprs!");
1715      O << TAI->getData64bitsDirective(AddrSpace);
1716    } else if (TD->getPointerSize() == 2) {
1717      O << TAI->getData16bitsDirective(AddrSpace);
1718    } else if (TD->getPointerSize() == 1) {
1719      O << TAI->getData8bitsDirective(AddrSpace);
1720    } else {
1721      O << TAI->getData32bitsDirective(AddrSpace);
1722    }
1723    break;
1724  }
1725}
1726
1727void AsmPrinter::printVisibility(const std::string& Name,
1728                                 unsigned Visibility) const {
1729  if (Visibility == GlobalValue::HiddenVisibility) {
1730    if (const char *Directive = TAI->getHiddenDirective())
1731      O << Directive << Name << '\n';
1732  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1733    if (const char *Directive = TAI->getProtectedDirective())
1734      O << Directive << Name << '\n';
1735  }
1736}
1737
1738void AsmPrinter::printOffset(int64_t Offset) const {
1739  if (Offset > 0)
1740    O << '+' << Offset;
1741  else if (Offset < 0)
1742    O << Offset;
1743}
1744
1745GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1746  if (!S->usesMetadata())
1747    return 0;
1748
1749  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1750  if (GCPI != GCMetadataPrinters.end())
1751    return GCPI->second;
1752
1753  const char *Name = S->getName().c_str();
1754
1755  for (GCMetadataPrinterRegistry::iterator
1756         I = GCMetadataPrinterRegistry::begin(),
1757         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1758    if (strcmp(Name, I->getName()) == 0) {
1759      GCMetadataPrinter *GMP = I->instantiate();
1760      GMP->S = S;
1761      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1762      return GMP;
1763    }
1764
1765  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1766  llvm_unreachable(0);
1767}
1768
1769/// EmitComments - Pretty-print comments for instructions
1770void AsmPrinter::EmitComments(const MachineInstr &MI) const
1771{
1772  if (VerboseAsm) {
1773    if (!MI.getDebugLoc().isUnknown()) {
1774      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1775
1776      // Print source line info
1777      O.PadToColumn(TAI->getCommentColumn(), 1);
1778      O << TAI->getCommentString() << " SrcLine ";
1779      if (DLT.CompileUnit->hasInitializer()) {
1780        Constant *Name = DLT.CompileUnit->getInitializer();
1781        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1782          if (NameString->isString()) {
1783            O << NameString->getAsString() << " ";
1784          }
1785      }
1786      O << DLT.Line;
1787      if (DLT.Col != 0)
1788        O << ":" << DLT.Col;
1789    }
1790  }
1791}
1792
1793/// EmitComments - Pretty-print comments for instructions
1794void AsmPrinter::EmitComments(const MCInst &MI) const
1795{
1796  if (VerboseAsm) {
1797    if (!MI.getDebugLoc().isUnknown()) {
1798      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1799
1800      // Print source line info
1801      O.PadToColumn(TAI->getCommentColumn(), 1);
1802      O << TAI->getCommentString() << " SrcLine ";
1803      if (DLT.CompileUnit->hasInitializer()) {
1804        Constant *Name = DLT.CompileUnit->getInitializer();
1805        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1806          if (NameString->isString()) {
1807            O << NameString->getAsString() << " ";
1808          }
1809      }
1810      O << DLT.Line;
1811      if (DLT.Col != 0)
1812        O << ":" << DLT.Col;
1813    }
1814  }
1815}
1816