AsmPrinter.cpp revision 290c2f56ce551ebcf4480ac2944986fe4bb339e9
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/DwarfWriter.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/MC/MCContext.h"
26#include "llvm/MC/MCInst.h"
27#include "llvm/MC/MCSection.h"
28#include "llvm/MC/MCStreamer.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/FormattedStream.h"
32#include "llvm/Support/Mangler.h"
33#include "llvm/Target/TargetAsmInfo.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetLoweringObjectFile.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallString.h"
41#include "llvm/ADT/StringExtras.h"
42#include <cerrno>
43using namespace llvm;
44
45static cl::opt<cl::boolOrDefault>
46AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
47           cl::init(cl::BOU_UNSET));
48
49char AsmPrinter::ID = 0;
50AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
51                       const TargetAsmInfo *T, bool VDef)
52  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
53    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
54
55    OutContext(*new MCContext()),
56    OutStreamer(*createAsmStreamer(OutContext, O)),
57
58    LastMI(0), LastFn(0), Counter(~0U),
59    PrevDLT(0, ~0U, ~0U) {
60  CurrentSection = 0;
61  DW = 0; MMI = 0;
62  switch (AsmVerbose) {
63  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
64  case cl::BOU_TRUE:  VerboseAsm = true;  break;
65  case cl::BOU_FALSE: VerboseAsm = false; break;
66  }
67}
68
69AsmPrinter::~AsmPrinter() {
70  for (gcp_iterator I = GCMetadataPrinters.begin(),
71                    E = GCMetadataPrinters.end(); I != E; ++I)
72    delete I->second;
73
74  delete &OutStreamer;
75  delete &OutContext;
76}
77
78TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
79  return TM.getTargetLowering()->getObjFileLowering();
80}
81
82/// SwitchToSection - Switch to the specified section of the executable if we
83/// are not already in it!  If "NS" is null, then this causes us to exit the
84/// current section and not reenter another one.  This is generally used for
85/// asmprinter hacks.
86///
87/// FIXME: Remove support for null sections.
88///
89void AsmPrinter::SwitchToSection(const MCSection *NS) {
90  // If we're already in this section, we're done.
91  if (CurrentSection == NS) return;
92
93  // Close the current section, if applicable.
94  if (NS != 0 && TAI->getSectionEndDirectiveSuffix())
95    O << NS->getName() << TAI->getSectionEndDirectiveSuffix() << '\n';
96
97  CurrentSection = NS;
98
99  if (NS != 0) {
100    // If section is named we need to switch into it via special '.section'
101    // directive and also append funky flags. Otherwise - section name is just
102    // some magic assembler directive.
103    if (!NS->isDirective()) {
104      SmallString<32> FlagsStr;
105
106      getObjFileLowering().getSectionFlagsAsString(NS->getKind(), FlagsStr);
107
108      O << TAI->getSwitchToSectionDirective()
109        << CurrentSection->getName() << FlagsStr.c_str();
110    } else {
111      O << CurrentSection->getName();
112    }
113    O << TAI->getDataSectionStartSuffix() << '\n';
114  }
115}
116
117void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
118  AU.setPreservesAll();
119  MachineFunctionPass::getAnalysisUsage(AU);
120  AU.addRequired<GCModuleInfo>();
121}
122
123bool AsmPrinter::doInitialization(Module &M) {
124  // Initialize TargetLoweringObjectFile.
125  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
126    .Initialize(OutContext, TM);
127
128  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(),
129                     TAI->getLinkerPrivateGlobalPrefix());
130
131  if (TAI->doesAllowQuotesInName())
132    Mang->setUseQuotes(true);
133
134  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
135  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
136
137  if (TAI->hasSingleParameterDotFile()) {
138    /* Very minimal debug info. It is ignored if we emit actual
139       debug info. If we don't, this at helps the user find where
140       a function came from. */
141    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
142  }
143
144  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
145    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
146      MP->beginAssembly(O, *this, *TAI);
147
148  if (!M.getModuleInlineAsm().empty())
149    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
150      << M.getModuleInlineAsm()
151      << '\n' << TAI->getCommentString()
152      << " End of file scope inline assembly\n";
153
154  SwitchToSection(0);   // Reset back to no section to close off sections.
155
156  if (TAI->doesSupportDebugInformation() ||
157      TAI->doesSupportExceptionHandling()) {
158    MMI = getAnalysisIfAvailable<MachineModuleInfo>();
159    if (MMI)
160      MMI->AnalyzeModule(M);
161    DW = getAnalysisIfAvailable<DwarfWriter>();
162    if (DW)
163      DW->BeginModule(&M, MMI, O, this, TAI);
164  }
165
166  return false;
167}
168
169bool AsmPrinter::doFinalization(Module &M) {
170  // Emit global variables.
171  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
172       I != E; ++I)
173    PrintGlobalVariable(I);
174
175  // Emit final debug information.
176  if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
177    DW->EndModule();
178
179  // If the target wants to know about weak references, print them all.
180  if (TAI->getWeakRefDirective()) {
181    // FIXME: This is not lazy, it would be nice to only print weak references
182    // to stuff that is actually used.  Note that doing so would require targets
183    // to notice uses in operands (due to constant exprs etc).  This should
184    // happen with the MC stuff eventually.
185    SwitchToSection(0);
186
187    // Print out module-level global variables here.
188    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
189         I != E; ++I) {
190      if (I->hasExternalWeakLinkage())
191        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
192    }
193
194    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
195      if (I->hasExternalWeakLinkage())
196        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
197    }
198  }
199
200  if (TAI->getSetDirective()) {
201    O << '\n';
202    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
203         I != E; ++I) {
204      std::string Name = Mang->getMangledName(I);
205
206      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
207      std::string Target = Mang->getMangledName(GV);
208
209      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
210        O << "\t.globl\t" << Name << '\n';
211      else if (I->hasWeakLinkage())
212        O << TAI->getWeakRefDirective() << Name << '\n';
213      else if (!I->hasLocalLinkage())
214        llvm_unreachable("Invalid alias linkage");
215
216      printVisibility(Name, I->getVisibility());
217
218      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
219    }
220  }
221
222  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
223  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
224  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
225    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
226      MP->finishAssembly(O, *this, *TAI);
227
228  // If we don't have any trampolines, then we don't require stack memory
229  // to be executable. Some targets have a directive to declare this.
230  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
231  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
232    if (TAI->getNonexecutableStackDirective())
233      O << TAI->getNonexecutableStackDirective() << '\n';
234
235  delete Mang; Mang = 0;
236  DW = 0; MMI = 0;
237
238  OutStreamer.Finish();
239  return false;
240}
241
242std::string
243AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const {
244  assert(MF && "No machine function?");
245  return Mang->getMangledName(MF->getFunction(), ".eh",
246                              TAI->is_EHSymbolPrivate());
247}
248
249void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
250  // What's my mangled name?
251  CurrentFnName = Mang->getMangledName(MF.getFunction());
252  IncrementFunctionNumber();
253}
254
255namespace {
256  // SectionCPs - Keep track the alignment, constpool entries per Section.
257  struct SectionCPs {
258    const MCSection *S;
259    unsigned Alignment;
260    SmallVector<unsigned, 4> CPEs;
261    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
262  };
263}
264
265/// EmitConstantPool - Print to the current output stream assembly
266/// representations of the constants in the constant pool MCP. This is
267/// used to print out constants which have been "spilled to memory" by
268/// the code generator.
269///
270void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
271  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
272  if (CP.empty()) return;
273
274  // Calculate sections for constant pool entries. We collect entries to go into
275  // the same section together to reduce amount of section switch statements.
276  SmallVector<SectionCPs, 4> CPSections;
277  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
278    const MachineConstantPoolEntry &CPE = CP[i];
279    unsigned Align = CPE.getAlignment();
280
281    SectionKind Kind;
282    switch (CPE.getRelocationInfo()) {
283    default: llvm_unreachable("Unknown section kind");
284    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
285    case 1:
286      Kind = SectionKind::getReadOnlyWithRelLocal();
287      break;
288    case 0:
289    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
290    case 4:  Kind = SectionKind::getMergeableConst4(); break;
291    case 8:  Kind = SectionKind::getMergeableConst8(); break;
292    case 16: Kind = SectionKind::getMergeableConst16();break;
293    default: Kind = SectionKind::getMergeableConst(); break;
294    }
295    }
296
297    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
298
299    // The number of sections are small, just do a linear search from the
300    // last section to the first.
301    bool Found = false;
302    unsigned SecIdx = CPSections.size();
303    while (SecIdx != 0) {
304      if (CPSections[--SecIdx].S == S) {
305        Found = true;
306        break;
307      }
308    }
309    if (!Found) {
310      SecIdx = CPSections.size();
311      CPSections.push_back(SectionCPs(S, Align));
312    }
313
314    if (Align > CPSections[SecIdx].Alignment)
315      CPSections[SecIdx].Alignment = Align;
316    CPSections[SecIdx].CPEs.push_back(i);
317  }
318
319  // Now print stuff into the calculated sections.
320  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
321    SwitchToSection(CPSections[i].S);
322    EmitAlignment(Log2_32(CPSections[i].Alignment));
323
324    unsigned Offset = 0;
325    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
326      unsigned CPI = CPSections[i].CPEs[j];
327      MachineConstantPoolEntry CPE = CP[CPI];
328
329      // Emit inter-object padding for alignment.
330      unsigned AlignMask = CPE.getAlignment() - 1;
331      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
332      EmitZeros(NewOffset - Offset);
333
334      const Type *Ty = CPE.getType();
335      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
336
337      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
338        << CPI << ":\t\t\t\t\t";
339      if (VerboseAsm) {
340        O << TAI->getCommentString() << ' ';
341        WriteTypeSymbolic(O, CPE.getType(), 0);
342      }
343      O << '\n';
344      if (CPE.isMachineConstantPoolEntry())
345        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
346      else
347        EmitGlobalConstant(CPE.Val.ConstVal);
348    }
349  }
350}
351
352/// EmitJumpTableInfo - Print assembly representations of the jump tables used
353/// by the current function to the current output stream.
354///
355void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
356                                   MachineFunction &MF) {
357  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
358  if (JT.empty()) return;
359
360  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
361
362  // Pick the directive to use to print the jump table entries, and switch to
363  // the appropriate section.
364  TargetLowering *LoweringInfo = TM.getTargetLowering();
365
366  const Function *F = MF.getFunction();
367  bool JTInDiffSection = false;
368  if (F->isWeakForLinker() ||
369      (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
370    // In PIC mode, we need to emit the jump table to the same section as the
371    // function body itself, otherwise the label differences won't make sense.
372    // We should also do if the section name is NULL or function is declared in
373    // discardable section.
374    SwitchToSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
375  } else {
376    // Otherwise, drop it in the readonly section.
377    const MCSection *ReadOnlySection =
378      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
379    SwitchToSection(ReadOnlySection);
380    JTInDiffSection = true;
381  }
382
383  EmitAlignment(Log2_32(MJTI->getAlignment()));
384
385  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
386    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
387
388    // If this jump table was deleted, ignore it.
389    if (JTBBs.empty()) continue;
390
391    // For PIC codegen, if possible we want to use the SetDirective to reduce
392    // the number of relocations the assembler will generate for the jump table.
393    // Set directives are all printed before the jump table itself.
394    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
395    if (TAI->getSetDirective() && IsPic)
396      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
397        if (EmittedSets.insert(JTBBs[ii]))
398          printPICJumpTableSetLabel(i, JTBBs[ii]);
399
400    // On some targets (e.g. darwin) we want to emit two consequtive labels
401    // before each jump table.  The first label is never referenced, but tells
402    // the assembler and linker the extents of the jump table object.  The
403    // second label is actually referenced by the code.
404    if (JTInDiffSection) {
405      if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
406        O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
407    }
408
409    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
410      << '_' << i << ":\n";
411
412    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
413      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
414      O << '\n';
415    }
416  }
417}
418
419void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
420                                        const MachineBasicBlock *MBB,
421                                        unsigned uid)  const {
422  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
423
424  // Use JumpTableDirective otherwise honor the entry size from the jump table
425  // info.
426  const char *JTEntryDirective = TAI->getJumpTableDirective();
427  bool HadJTEntryDirective = JTEntryDirective != NULL;
428  if (!HadJTEntryDirective) {
429    JTEntryDirective = MJTI->getEntrySize() == 4 ?
430      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
431  }
432
433  O << JTEntryDirective << ' ';
434
435  // If we have emitted set directives for the jump table entries, print
436  // them rather than the entries themselves.  If we're emitting PIC, then
437  // emit the table entries as differences between two text section labels.
438  // If we're emitting non-PIC code, then emit the entries as direct
439  // references to the target basic blocks.
440  if (IsPic) {
441    if (TAI->getSetDirective()) {
442      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
443        << '_' << uid << "_set_" << MBB->getNumber();
444    } else {
445      printBasicBlockLabel(MBB, false, false, false);
446      // If the arch uses custom Jump Table directives, don't calc relative to
447      // JT
448      if (!HadJTEntryDirective)
449        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
450          << getFunctionNumber() << '_' << uid;
451    }
452  } else {
453    printBasicBlockLabel(MBB, false, false, false);
454  }
455}
456
457
458/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
459/// special global used by LLVM.  If so, emit it and return true, otherwise
460/// do nothing and return false.
461bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
462  if (GV->getName() == "llvm.used") {
463    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
464      EmitLLVMUsedList(GV->getInitializer());
465    return true;
466  }
467
468  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
469  if (GV->getSection() == "llvm.metadata" ||
470      GV->hasAvailableExternallyLinkage())
471    return true;
472
473  if (!GV->hasAppendingLinkage()) return false;
474
475  assert(GV->hasInitializer() && "Not a special LLVM global!");
476
477  const TargetData *TD = TM.getTargetData();
478  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
479  if (GV->getName() == "llvm.global_ctors") {
480    SwitchToSection(getObjFileLowering().getStaticCtorSection());
481    EmitAlignment(Align, 0);
482    EmitXXStructorList(GV->getInitializer());
483    return true;
484  }
485
486  if (GV->getName() == "llvm.global_dtors") {
487    SwitchToSection(getObjFileLowering().getStaticDtorSection());
488    EmitAlignment(Align, 0);
489    EmitXXStructorList(GV->getInitializer());
490    return true;
491  }
492
493  return false;
494}
495
496/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
497/// global in the specified llvm.used list for which emitUsedDirectiveFor
498/// is true, as being used with this directive.
499void AsmPrinter::EmitLLVMUsedList(Constant *List) {
500  const char *Directive = TAI->getUsedDirective();
501
502  // Should be an array of 'i8*'.
503  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
504  if (InitList == 0) return;
505
506  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
507    const GlobalValue *GV =
508      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
509    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
510      O << Directive;
511      EmitConstantValueOnly(InitList->getOperand(i));
512      O << '\n';
513    }
514  }
515}
516
517/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
518/// function pointers, ignoring the init priority.
519void AsmPrinter::EmitXXStructorList(Constant *List) {
520  // Should be an array of '{ int, void ()* }' structs.  The first value is the
521  // init priority, which we ignore.
522  if (!isa<ConstantArray>(List)) return;
523  ConstantArray *InitList = cast<ConstantArray>(List);
524  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
525    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
526      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
527
528      if (CS->getOperand(1)->isNullValue())
529        return;  // Found a null terminator, exit printing.
530      // Emit the function pointer.
531      EmitGlobalConstant(CS->getOperand(1));
532    }
533}
534
535/// getGlobalLinkName - Returns the asm/link name of of the specified
536/// global variable.  Should be overridden by each target asm printer to
537/// generate the appropriate value.
538const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
539                                                 std::string &LinkName) const {
540  if (isa<Function>(GV)) {
541    LinkName += TAI->getFunctionAddrPrefix();
542    LinkName += Mang->getMangledName(GV);
543    LinkName += TAI->getFunctionAddrSuffix();
544  } else {
545    LinkName += TAI->getGlobalVarAddrPrefix();
546    LinkName += Mang->getMangledName(GV);
547    LinkName += TAI->getGlobalVarAddrSuffix();
548  }
549
550  return LinkName;
551}
552
553/// EmitExternalGlobal - Emit the external reference to a global variable.
554/// Should be overridden if an indirect reference should be used.
555void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
556  std::string GLN;
557  O << getGlobalLinkName(GV, GLN);
558}
559
560
561
562//===----------------------------------------------------------------------===//
563/// LEB 128 number encoding.
564
565/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
566/// representing an unsigned leb128 value.
567void AsmPrinter::PrintULEB128(unsigned Value) const {
568  char Buffer[20];
569  do {
570    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
571    Value >>= 7;
572    if (Value) Byte |= 0x80;
573    O << "0x" << utohex_buffer(Byte, Buffer+20);
574    if (Value) O << ", ";
575  } while (Value);
576}
577
578/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
579/// representing a signed leb128 value.
580void AsmPrinter::PrintSLEB128(int Value) const {
581  int Sign = Value >> (8 * sizeof(Value) - 1);
582  bool IsMore;
583  char Buffer[20];
584
585  do {
586    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
587    Value >>= 7;
588    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
589    if (IsMore) Byte |= 0x80;
590    O << "0x" << utohex_buffer(Byte, Buffer+20);
591    if (IsMore) O << ", ";
592  } while (IsMore);
593}
594
595//===--------------------------------------------------------------------===//
596// Emission and print routines
597//
598
599/// PrintHex - Print a value as a hexidecimal value.
600///
601void AsmPrinter::PrintHex(int Value) const {
602  char Buffer[20];
603  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
604}
605
606/// EOL - Print a newline character to asm stream.  If a comment is present
607/// then it will be printed first.  Comments should not contain '\n'.
608void AsmPrinter::EOL() const {
609  O << '\n';
610}
611
612void AsmPrinter::EOL(const std::string &Comment) const {
613  if (VerboseAsm && !Comment.empty()) {
614    O << '\t'
615      << TAI->getCommentString()
616      << ' '
617      << Comment;
618  }
619  O << '\n';
620}
621
622void AsmPrinter::EOL(const char* Comment) const {
623  if (VerboseAsm && *Comment) {
624    O << '\t'
625      << TAI->getCommentString()
626      << ' '
627      << Comment;
628  }
629  O << '\n';
630}
631
632/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
633/// unsigned leb128 value.
634void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
635  if (TAI->hasLEB128()) {
636    O << "\t.uleb128\t"
637      << Value;
638  } else {
639    O << TAI->getData8bitsDirective();
640    PrintULEB128(Value);
641  }
642}
643
644/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
645/// signed leb128 value.
646void AsmPrinter::EmitSLEB128Bytes(int Value) const {
647  if (TAI->hasLEB128()) {
648    O << "\t.sleb128\t"
649      << Value;
650  } else {
651    O << TAI->getData8bitsDirective();
652    PrintSLEB128(Value);
653  }
654}
655
656/// EmitInt8 - Emit a byte directive and value.
657///
658void AsmPrinter::EmitInt8(int Value) const {
659  O << TAI->getData8bitsDirective();
660  PrintHex(Value & 0xFF);
661}
662
663/// EmitInt16 - Emit a short directive and value.
664///
665void AsmPrinter::EmitInt16(int Value) const {
666  O << TAI->getData16bitsDirective();
667  PrintHex(Value & 0xFFFF);
668}
669
670/// EmitInt32 - Emit a long directive and value.
671///
672void AsmPrinter::EmitInt32(int Value) const {
673  O << TAI->getData32bitsDirective();
674  PrintHex(Value);
675}
676
677/// EmitInt64 - Emit a long long directive and value.
678///
679void AsmPrinter::EmitInt64(uint64_t Value) const {
680  if (TAI->getData64bitsDirective()) {
681    O << TAI->getData64bitsDirective();
682    PrintHex(Value);
683  } else {
684    if (TM.getTargetData()->isBigEndian()) {
685      EmitInt32(unsigned(Value >> 32)); O << '\n';
686      EmitInt32(unsigned(Value));
687    } else {
688      EmitInt32(unsigned(Value)); O << '\n';
689      EmitInt32(unsigned(Value >> 32));
690    }
691  }
692}
693
694/// toOctal - Convert the low order bits of X into an octal digit.
695///
696static inline char toOctal(int X) {
697  return (X&7)+'0';
698}
699
700/// printStringChar - Print a char, escaped if necessary.
701///
702static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
703  if (C == '"') {
704    O << "\\\"";
705  } else if (C == '\\') {
706    O << "\\\\";
707  } else if (isprint((unsigned char)C)) {
708    O << C;
709  } else {
710    switch(C) {
711    case '\b': O << "\\b"; break;
712    case '\f': O << "\\f"; break;
713    case '\n': O << "\\n"; break;
714    case '\r': O << "\\r"; break;
715    case '\t': O << "\\t"; break;
716    default:
717      O << '\\';
718      O << toOctal(C >> 6);
719      O << toOctal(C >> 3);
720      O << toOctal(C >> 0);
721      break;
722    }
723  }
724}
725
726/// EmitString - Emit a string with quotes and a null terminator.
727/// Special characters are emitted properly.
728/// \literal (Eg. '\t') \endliteral
729void AsmPrinter::EmitString(const std::string &String) const {
730  EmitString(String.c_str(), String.size());
731}
732
733void AsmPrinter::EmitString(const char *String, unsigned Size) const {
734  const char* AscizDirective = TAI->getAscizDirective();
735  if (AscizDirective)
736    O << AscizDirective;
737  else
738    O << TAI->getAsciiDirective();
739  O << '\"';
740  for (unsigned i = 0; i < Size; ++i)
741    printStringChar(O, String[i]);
742  if (AscizDirective)
743    O << '\"';
744  else
745    O << "\\0\"";
746}
747
748
749/// EmitFile - Emit a .file directive.
750void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
751  O << "\t.file\t" << Number << " \"";
752  for (unsigned i = 0, N = Name.size(); i < N; ++i)
753    printStringChar(O, Name[i]);
754  O << '\"';
755}
756
757
758//===----------------------------------------------------------------------===//
759
760// EmitAlignment - Emit an alignment directive to the specified power of
761// two boundary.  For example, if you pass in 3 here, you will get an 8
762// byte alignment.  If a global value is specified, and if that global has
763// an explicit alignment requested, it will unconditionally override the
764// alignment request.  However, if ForcedAlignBits is specified, this value
765// has final say: the ultimate alignment will be the max of ForcedAlignBits
766// and the alignment computed with NumBits and the global.
767//
768// The algorithm is:
769//     Align = NumBits;
770//     if (GV && GV->hasalignment) Align = GV->getalignment();
771//     Align = std::max(Align, ForcedAlignBits);
772//
773void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
774                               unsigned ForcedAlignBits,
775                               bool UseFillExpr) const {
776  if (GV && GV->getAlignment())
777    NumBits = Log2_32(GV->getAlignment());
778  NumBits = std::max(NumBits, ForcedAlignBits);
779
780  if (NumBits == 0) return;   // No need to emit alignment.
781  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
782  O << TAI->getAlignDirective() << NumBits;
783
784  if (CurrentSection && CurrentSection->getKind().isText())
785    if (unsigned FillValue = TAI->getTextAlignFillValue()) {
786      O << ',';
787      PrintHex(FillValue);
788    }
789  O << '\n';
790}
791
792/// PadToColumn - This gets called every time a tab is emitted.  If
793/// column padding is turned on, we replace the tab with the
794/// appropriate amount of padding.  If not, we replace the tab with a
795/// space, except for the first operand so that initial operands are
796/// always lined up by tabs.
797void AsmPrinter::PadToColumn(unsigned Operand) const {
798  if (TAI->getOperandColumn(Operand) > 0) {
799    O.PadToColumn(TAI->getOperandColumn(Operand), 1);
800  }
801  else {
802    if (Operand == 1) {
803      // Emit the tab after the mnemonic.
804      O << '\t';
805    }
806    else {
807      // Replace the tab with a space.
808      O << ' ';
809    }
810  }
811}
812
813/// EmitZeros - Emit a block of zeros.
814///
815void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
816  if (NumZeros) {
817    if (TAI->getZeroDirective()) {
818      O << TAI->getZeroDirective() << NumZeros;
819      if (TAI->getZeroDirectiveSuffix())
820        O << TAI->getZeroDirectiveSuffix();
821      O << '\n';
822    } else {
823      for (; NumZeros; --NumZeros)
824        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
825    }
826  }
827}
828
829// Print out the specified constant, without a storage class.  Only the
830// constants valid in constant expressions can occur here.
831void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
832  if (CV->isNullValue() || isa<UndefValue>(CV))
833    O << '0';
834  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
835    O << CI->getZExtValue();
836  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
837    // This is a constant address for a global variable or function. Use the
838    // name of the variable or function as the address value, possibly
839    // decorating it with GlobalVarAddrPrefix/Suffix or
840    // FunctionAddrPrefix/Suffix (these all default to "" )
841    if (isa<Function>(GV)) {
842      O << TAI->getFunctionAddrPrefix()
843        << Mang->getMangledName(GV)
844        << TAI->getFunctionAddrSuffix();
845    } else {
846      O << TAI->getGlobalVarAddrPrefix()
847        << Mang->getMangledName(GV)
848        << TAI->getGlobalVarAddrSuffix();
849    }
850  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
851    const TargetData *TD = TM.getTargetData();
852    unsigned Opcode = CE->getOpcode();
853    switch (Opcode) {
854    case Instruction::Trunc:
855    case Instruction::ZExt:
856    case Instruction::SExt:
857    case Instruction::FPTrunc:
858    case Instruction::FPExt:
859    case Instruction::UIToFP:
860    case Instruction::SIToFP:
861    case Instruction::FPToUI:
862    case Instruction::FPToSI:
863      llvm_unreachable("FIXME: Don't support this constant cast expr");
864    case Instruction::GetElementPtr: {
865      // generate a symbolic expression for the byte address
866      const Constant *ptrVal = CE->getOperand(0);
867      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
868      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
869                                                idxVec.size())) {
870        // Truncate/sext the offset to the pointer size.
871        if (TD->getPointerSizeInBits() != 64) {
872          int SExtAmount = 64-TD->getPointerSizeInBits();
873          Offset = (Offset << SExtAmount) >> SExtAmount;
874        }
875
876        if (Offset)
877          O << '(';
878        EmitConstantValueOnly(ptrVal);
879        if (Offset > 0)
880          O << ") + " << Offset;
881        else if (Offset < 0)
882          O << ") - " << -Offset;
883      } else {
884        EmitConstantValueOnly(ptrVal);
885      }
886      break;
887    }
888    case Instruction::BitCast:
889      return EmitConstantValueOnly(CE->getOperand(0));
890
891    case Instruction::IntToPtr: {
892      // Handle casts to pointers by changing them into casts to the appropriate
893      // integer type.  This promotes constant folding and simplifies this code.
894      Constant *Op = CE->getOperand(0);
895      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
896      return EmitConstantValueOnly(Op);
897    }
898
899
900    case Instruction::PtrToInt: {
901      // Support only foldable casts to/from pointers that can be eliminated by
902      // changing the pointer to the appropriately sized integer type.
903      Constant *Op = CE->getOperand(0);
904      const Type *Ty = CE->getType();
905
906      // We can emit the pointer value into this slot if the slot is an
907      // integer slot greater or equal to the size of the pointer.
908      if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
909        return EmitConstantValueOnly(Op);
910
911      O << "((";
912      EmitConstantValueOnly(Op);
913      APInt ptrMask =
914        APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
915
916      SmallString<40> S;
917      ptrMask.toStringUnsigned(S);
918      O << ") & " << S.c_str() << ')';
919      break;
920    }
921    case Instruction::Add:
922    case Instruction::Sub:
923    case Instruction::And:
924    case Instruction::Or:
925    case Instruction::Xor:
926      O << '(';
927      EmitConstantValueOnly(CE->getOperand(0));
928      O << ')';
929      switch (Opcode) {
930      case Instruction::Add:
931       O << " + ";
932       break;
933      case Instruction::Sub:
934       O << " - ";
935       break;
936      case Instruction::And:
937       O << " & ";
938       break;
939      case Instruction::Or:
940       O << " | ";
941       break;
942      case Instruction::Xor:
943       O << " ^ ";
944       break;
945      default:
946       break;
947      }
948      O << '(';
949      EmitConstantValueOnly(CE->getOperand(1));
950      O << ')';
951      break;
952    default:
953      llvm_unreachable("Unsupported operator!");
954    }
955  } else {
956    llvm_unreachable("Unknown constant value!");
957  }
958}
959
960/// printAsCString - Print the specified array as a C compatible string, only if
961/// the predicate isString is true.
962///
963static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
964                           unsigned LastElt) {
965  assert(CVA->isString() && "Array is not string compatible!");
966
967  O << '\"';
968  for (unsigned i = 0; i != LastElt; ++i) {
969    unsigned char C =
970        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
971    printStringChar(O, C);
972  }
973  O << '\"';
974}
975
976/// EmitString - Emit a zero-byte-terminated string constant.
977///
978void AsmPrinter::EmitString(const ConstantArray *CVA) const {
979  unsigned NumElts = CVA->getNumOperands();
980  if (TAI->getAscizDirective() && NumElts &&
981      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
982    O << TAI->getAscizDirective();
983    printAsCString(O, CVA, NumElts-1);
984  } else {
985    O << TAI->getAsciiDirective();
986    printAsCString(O, CVA, NumElts);
987  }
988  O << '\n';
989}
990
991void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
992                                         unsigned AddrSpace) {
993  if (CVA->isString()) {
994    EmitString(CVA);
995  } else { // Not a string.  Print the values in successive locations
996    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
997      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
998  }
999}
1000
1001void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
1002  const VectorType *PTy = CP->getType();
1003
1004  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1005    EmitGlobalConstant(CP->getOperand(I));
1006}
1007
1008void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
1009                                          unsigned AddrSpace) {
1010  // Print the fields in successive locations. Pad to align if needed!
1011  const TargetData *TD = TM.getTargetData();
1012  unsigned Size = TD->getTypeAllocSize(CVS->getType());
1013  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
1014  uint64_t sizeSoFar = 0;
1015  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
1016    const Constant* field = CVS->getOperand(i);
1017
1018    // Check if padding is needed and insert one or more 0s.
1019    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
1020    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1021                        - cvsLayout->getElementOffset(i)) - fieldSize;
1022    sizeSoFar += fieldSize + padSize;
1023
1024    // Now print the actual field value.
1025    EmitGlobalConstant(field, AddrSpace);
1026
1027    // Insert padding - this may include padding to increase the size of the
1028    // current field up to the ABI size (if the struct is not packed) as well
1029    // as padding to ensure that the next field starts at the right offset.
1030    EmitZeros(padSize, AddrSpace);
1031  }
1032  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1033         "Layout of constant struct may be incorrect!");
1034}
1035
1036void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1037                                      unsigned AddrSpace) {
1038  // FP Constants are printed as integer constants to avoid losing
1039  // precision...
1040  const TargetData *TD = TM.getTargetData();
1041  if (CFP->getType() == Type::DoubleTy) {
1042    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1043    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1044    if (TAI->getData64bitsDirective(AddrSpace)) {
1045      O << TAI->getData64bitsDirective(AddrSpace) << i;
1046      if (VerboseAsm)
1047        O << '\t' << TAI->getCommentString() << " double value: " << Val;
1048      O << '\n';
1049    } else if (TD->isBigEndian()) {
1050      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1051      if (VerboseAsm)
1052        O << '\t' << TAI->getCommentString()
1053          << " double most significant word " << Val;
1054      O << '\n';
1055      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1056      if (VerboseAsm)
1057        O << '\t' << TAI->getCommentString()
1058          << " double least significant word " << Val;
1059      O << '\n';
1060    } else {
1061      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1062      if (VerboseAsm)
1063        O << '\t' << TAI->getCommentString()
1064          << " double least significant word " << Val;
1065      O << '\n';
1066      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1067      if (VerboseAsm)
1068        O << '\t' << TAI->getCommentString()
1069          << " double most significant word " << Val;
1070      O << '\n';
1071    }
1072    return;
1073  } else if (CFP->getType() == Type::FloatTy) {
1074    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1075    O << TAI->getData32bitsDirective(AddrSpace)
1076      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1077    if (VerboseAsm)
1078      O << '\t' << TAI->getCommentString() << " float " << Val;
1079    O << '\n';
1080    return;
1081  } else if (CFP->getType() == Type::X86_FP80Ty) {
1082    // all long double variants are printed as hex
1083    // api needed to prevent premature destruction
1084    APInt api = CFP->getValueAPF().bitcastToAPInt();
1085    const uint64_t *p = api.getRawData();
1086    // Convert to double so we can print the approximate val as a comment.
1087    APFloat DoubleVal = CFP->getValueAPF();
1088    bool ignored;
1089    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1090                      &ignored);
1091    if (TD->isBigEndian()) {
1092      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1093      if (VerboseAsm)
1094        O << '\t' << TAI->getCommentString()
1095          << " long double most significant halfword of ~"
1096          << DoubleVal.convertToDouble();
1097      O << '\n';
1098      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1099      if (VerboseAsm)
1100        O << '\t' << TAI->getCommentString() << " long double next halfword";
1101      O << '\n';
1102      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1103      if (VerboseAsm)
1104        O << '\t' << TAI->getCommentString() << " long double next halfword";
1105      O << '\n';
1106      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1107      if (VerboseAsm)
1108        O << '\t' << TAI->getCommentString() << " long double next halfword";
1109      O << '\n';
1110      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1111      if (VerboseAsm)
1112        O << '\t' << TAI->getCommentString()
1113          << " long double least significant halfword";
1114      O << '\n';
1115     } else {
1116      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1117      if (VerboseAsm)
1118        O << '\t' << TAI->getCommentString()
1119          << " long double least significant halfword of ~"
1120          << DoubleVal.convertToDouble();
1121      O << '\n';
1122      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1123      if (VerboseAsm)
1124        O << '\t' << TAI->getCommentString()
1125          << " long double next halfword";
1126      O << '\n';
1127      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1128      if (VerboseAsm)
1129        O << '\t' << TAI->getCommentString()
1130          << " long double next halfword";
1131      O << '\n';
1132      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1133      if (VerboseAsm)
1134        O << '\t' << TAI->getCommentString()
1135          << " long double next halfword";
1136      O << '\n';
1137      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1138      if (VerboseAsm)
1139        O << '\t' << TAI->getCommentString()
1140          << " long double most significant halfword";
1141      O << '\n';
1142    }
1143    EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) -
1144              TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1145    return;
1146  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1147    // all long double variants are printed as hex
1148    // api needed to prevent premature destruction
1149    APInt api = CFP->getValueAPF().bitcastToAPInt();
1150    const uint64_t *p = api.getRawData();
1151    if (TD->isBigEndian()) {
1152      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1153      if (VerboseAsm)
1154        O << '\t' << TAI->getCommentString()
1155          << " long double most significant word";
1156      O << '\n';
1157      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1158      if (VerboseAsm)
1159        O << '\t' << TAI->getCommentString()
1160        << " long double next word";
1161      O << '\n';
1162      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1163      if (VerboseAsm)
1164        O << '\t' << TAI->getCommentString()
1165          << " long double next word";
1166      O << '\n';
1167      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1168      if (VerboseAsm)
1169        O << '\t' << TAI->getCommentString()
1170          << " long double least significant word";
1171      O << '\n';
1172     } else {
1173      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1174      if (VerboseAsm)
1175        O << '\t' << TAI->getCommentString()
1176          << " long double least significant word";
1177      O << '\n';
1178      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1179      if (VerboseAsm)
1180        O << '\t' << TAI->getCommentString()
1181          << " long double next word";
1182      O << '\n';
1183      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1184      if (VerboseAsm)
1185        O << '\t' << TAI->getCommentString()
1186          << " long double next word";
1187      O << '\n';
1188      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1189      if (VerboseAsm)
1190        O << '\t' << TAI->getCommentString()
1191          << " long double most significant word";
1192      O << '\n';
1193    }
1194    return;
1195  } else llvm_unreachable("Floating point constant type not handled");
1196}
1197
1198void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1199                                            unsigned AddrSpace) {
1200  const TargetData *TD = TM.getTargetData();
1201  unsigned BitWidth = CI->getBitWidth();
1202  assert(isPowerOf2_32(BitWidth) &&
1203         "Non-power-of-2-sized integers not handled!");
1204
1205  // We don't expect assemblers to support integer data directives
1206  // for more than 64 bits, so we emit the data in at most 64-bit
1207  // quantities at a time.
1208  const uint64_t *RawData = CI->getValue().getRawData();
1209  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1210    uint64_t Val;
1211    if (TD->isBigEndian())
1212      Val = RawData[e - i - 1];
1213    else
1214      Val = RawData[i];
1215
1216    if (TAI->getData64bitsDirective(AddrSpace))
1217      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1218    else if (TD->isBigEndian()) {
1219      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1220      if (VerboseAsm)
1221        O << '\t' << TAI->getCommentString()
1222          << " Double-word most significant word " << Val;
1223      O << '\n';
1224      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1225      if (VerboseAsm)
1226        O << '\t' << TAI->getCommentString()
1227          << " Double-word least significant word " << Val;
1228      O << '\n';
1229    } else {
1230      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1231      if (VerboseAsm)
1232        O << '\t' << TAI->getCommentString()
1233          << " Double-word least significant word " << Val;
1234      O << '\n';
1235      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1236      if (VerboseAsm)
1237        O << '\t' << TAI->getCommentString()
1238          << " Double-word most significant word " << Val;
1239      O << '\n';
1240    }
1241  }
1242}
1243
1244/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1245void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1246  const TargetData *TD = TM.getTargetData();
1247  const Type *type = CV->getType();
1248  unsigned Size = TD->getTypeAllocSize(type);
1249
1250  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1251    EmitZeros(Size, AddrSpace);
1252    return;
1253  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1254    EmitGlobalConstantArray(CVA , AddrSpace);
1255    return;
1256  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1257    EmitGlobalConstantStruct(CVS, AddrSpace);
1258    return;
1259  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1260    EmitGlobalConstantFP(CFP, AddrSpace);
1261    return;
1262  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1263    // Small integers are handled below; large integers are handled here.
1264    if (Size > 4) {
1265      EmitGlobalConstantLargeInt(CI, AddrSpace);
1266      return;
1267    }
1268  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1269    EmitGlobalConstantVector(CP);
1270    return;
1271  }
1272
1273  printDataDirective(type, AddrSpace);
1274  EmitConstantValueOnly(CV);
1275  if (VerboseAsm) {
1276    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1277      SmallString<40> S;
1278      CI->getValue().toStringUnsigned(S, 16);
1279      O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1280    }
1281  }
1282  O << '\n';
1283}
1284
1285void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1286  // Target doesn't support this yet!
1287  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1288}
1289
1290/// PrintSpecial - Print information related to the specified machine instr
1291/// that is independent of the operand, and may be independent of the instr
1292/// itself.  This can be useful for portably encoding the comment character
1293/// or other bits of target-specific knowledge into the asmstrings.  The
1294/// syntax used is ${:comment}.  Targets can override this to add support
1295/// for their own strange codes.
1296void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1297  if (!strcmp(Code, "private")) {
1298    O << TAI->getPrivateGlobalPrefix();
1299  } else if (!strcmp(Code, "comment")) {
1300    if (VerboseAsm)
1301      O << TAI->getCommentString();
1302  } else if (!strcmp(Code, "uid")) {
1303    // Comparing the address of MI isn't sufficient, because machineinstrs may
1304    // be allocated to the same address across functions.
1305    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1306
1307    // If this is a new LastFn instruction, bump the counter.
1308    if (LastMI != MI || LastFn != ThisF) {
1309      ++Counter;
1310      LastMI = MI;
1311      LastFn = ThisF;
1312    }
1313    O << Counter;
1314  } else {
1315    std::string msg;
1316    raw_string_ostream Msg(msg);
1317    Msg << "Unknown special formatter '" << Code
1318         << "' for machine instr: " << *MI;
1319    llvm_report_error(Msg.str());
1320  }
1321}
1322
1323/// processDebugLoc - Processes the debug information of each machine
1324/// instruction's DebugLoc.
1325void AsmPrinter::processDebugLoc(DebugLoc DL) {
1326  if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
1327    if (!DL.isUnknown()) {
1328      DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1329
1330      if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
1331        printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1332                                        DICompileUnit(CurDLT.CompileUnit)));
1333
1334      PrevDLT = CurDLT;
1335    }
1336  }
1337}
1338
1339/// printInlineAsm - This method formats and prints the specified machine
1340/// instruction that is an inline asm.
1341void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1342  unsigned NumOperands = MI->getNumOperands();
1343
1344  // Count the number of register definitions.
1345  unsigned NumDefs = 0;
1346  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1347       ++NumDefs)
1348    assert(NumDefs != NumOperands-1 && "No asm string?");
1349
1350  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1351
1352  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1353  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1354
1355  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1356  // These are useful to see where empty asm's wound up.
1357  if (AsmStr[0] == 0) {
1358    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1359    return;
1360  }
1361
1362  O << TAI->getInlineAsmStart() << "\n\t";
1363
1364  // The variant of the current asmprinter.
1365  int AsmPrinterVariant = TAI->getAssemblerDialect();
1366
1367  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1368  const char *LastEmitted = AsmStr; // One past the last character emitted.
1369
1370  while (*LastEmitted) {
1371    switch (*LastEmitted) {
1372    default: {
1373      // Not a special case, emit the string section literally.
1374      const char *LiteralEnd = LastEmitted+1;
1375      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1376             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1377        ++LiteralEnd;
1378      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1379        O.write(LastEmitted, LiteralEnd-LastEmitted);
1380      LastEmitted = LiteralEnd;
1381      break;
1382    }
1383    case '\n':
1384      ++LastEmitted;   // Consume newline character.
1385      O << '\n';       // Indent code with newline.
1386      break;
1387    case '$': {
1388      ++LastEmitted;   // Consume '$' character.
1389      bool Done = true;
1390
1391      // Handle escapes.
1392      switch (*LastEmitted) {
1393      default: Done = false; break;
1394      case '$':     // $$ -> $
1395        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1396          O << '$';
1397        ++LastEmitted;  // Consume second '$' character.
1398        break;
1399      case '(':             // $( -> same as GCC's { character.
1400        ++LastEmitted;      // Consume '(' character.
1401        if (CurVariant != -1) {
1402          llvm_report_error("Nested variants found in inline asm string: '"
1403                            + std::string(AsmStr) + "'");
1404        }
1405        CurVariant = 0;     // We're in the first variant now.
1406        break;
1407      case '|':
1408        ++LastEmitted;  // consume '|' character.
1409        if (CurVariant == -1)
1410          O << '|';       // this is gcc's behavior for | outside a variant
1411        else
1412          ++CurVariant;   // We're in the next variant.
1413        break;
1414      case ')':         // $) -> same as GCC's } char.
1415        ++LastEmitted;  // consume ')' character.
1416        if (CurVariant == -1)
1417          O << '}';     // this is gcc's behavior for } outside a variant
1418        else
1419          CurVariant = -1;
1420        break;
1421      }
1422      if (Done) break;
1423
1424      bool HasCurlyBraces = false;
1425      if (*LastEmitted == '{') {     // ${variable}
1426        ++LastEmitted;               // Consume '{' character.
1427        HasCurlyBraces = true;
1428      }
1429
1430      // If we have ${:foo}, then this is not a real operand reference, it is a
1431      // "magic" string reference, just like in .td files.  Arrange to call
1432      // PrintSpecial.
1433      if (HasCurlyBraces && *LastEmitted == ':') {
1434        ++LastEmitted;
1435        const char *StrStart = LastEmitted;
1436        const char *StrEnd = strchr(StrStart, '}');
1437        if (StrEnd == 0) {
1438          llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1439                            + std::string(AsmStr) + "'");
1440        }
1441
1442        std::string Val(StrStart, StrEnd);
1443        PrintSpecial(MI, Val.c_str());
1444        LastEmitted = StrEnd+1;
1445        break;
1446      }
1447
1448      const char *IDStart = LastEmitted;
1449      char *IDEnd;
1450      errno = 0;
1451      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1452      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1453        llvm_report_error("Bad $ operand number in inline asm string: '"
1454                          + std::string(AsmStr) + "'");
1455      }
1456      LastEmitted = IDEnd;
1457
1458      char Modifier[2] = { 0, 0 };
1459
1460      if (HasCurlyBraces) {
1461        // If we have curly braces, check for a modifier character.  This
1462        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1463        if (*LastEmitted == ':') {
1464          ++LastEmitted;    // Consume ':' character.
1465          if (*LastEmitted == 0) {
1466            llvm_report_error("Bad ${:} expression in inline asm string: '"
1467                              + std::string(AsmStr) + "'");
1468          }
1469
1470          Modifier[0] = *LastEmitted;
1471          ++LastEmitted;    // Consume modifier character.
1472        }
1473
1474        if (*LastEmitted != '}') {
1475          llvm_report_error("Bad ${} expression in inline asm string: '"
1476                            + std::string(AsmStr) + "'");
1477        }
1478        ++LastEmitted;    // Consume '}' character.
1479      }
1480
1481      if ((unsigned)Val >= NumOperands-1) {
1482        llvm_report_error("Invalid $ operand number in inline asm string: '"
1483                          + std::string(AsmStr) + "'");
1484      }
1485
1486      // Okay, we finally have a value number.  Ask the target to print this
1487      // operand!
1488      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1489        unsigned OpNo = 1;
1490
1491        bool Error = false;
1492
1493        // Scan to find the machine operand number for the operand.
1494        for (; Val; --Val) {
1495          if (OpNo >= MI->getNumOperands()) break;
1496          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1497          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1498        }
1499
1500        if (OpNo >= MI->getNumOperands()) {
1501          Error = true;
1502        } else {
1503          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1504          ++OpNo;  // Skip over the ID number.
1505
1506          if (Modifier[0]=='l')  // labels are target independent
1507            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1508                                 false, false, false);
1509          else {
1510            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1511            if ((OpFlags & 7) == 4) {
1512              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1513                                                Modifier[0] ? Modifier : 0);
1514            } else {
1515              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1516                                          Modifier[0] ? Modifier : 0);
1517            }
1518          }
1519        }
1520        if (Error) {
1521          std::string msg;
1522          raw_string_ostream Msg(msg);
1523          Msg << "Invalid operand found in inline asm: '"
1524               << AsmStr << "'\n";
1525          MI->print(Msg);
1526          llvm_report_error(Msg.str());
1527        }
1528      }
1529      break;
1530    }
1531    }
1532  }
1533  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1534}
1535
1536/// printImplicitDef - This method prints the specified machine instruction
1537/// that is an implicit def.
1538void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1539  if (VerboseAsm)
1540    O << '\t' << TAI->getCommentString() << " implicit-def: "
1541      << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1542}
1543
1544/// printLabel - This method prints a local label used by debug and
1545/// exception handling tables.
1546void AsmPrinter::printLabel(const MachineInstr *MI) const {
1547  printLabel(MI->getOperand(0).getImm());
1548}
1549
1550void AsmPrinter::printLabel(unsigned Id) const {
1551  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1552}
1553
1554/// printDeclare - This method prints a local variable declaration used by
1555/// debug tables.
1556/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1557/// entry into dwarf table.
1558void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1559  unsigned FI = MI->getOperand(0).getIndex();
1560  GlobalValue *GV = MI->getOperand(1).getGlobal();
1561  DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1562}
1563
1564/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1565/// instruction, using the specified assembler variant.  Targets should
1566/// overried this to format as appropriate.
1567bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1568                                 unsigned AsmVariant, const char *ExtraCode) {
1569  // Target doesn't support this yet!
1570  return true;
1571}
1572
1573bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1574                                       unsigned AsmVariant,
1575                                       const char *ExtraCode) {
1576  // Target doesn't support this yet!
1577  return true;
1578}
1579
1580/// printBasicBlockLabel - This method prints the label for the specified
1581/// MachineBasicBlock
1582void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1583                                      bool printAlign,
1584                                      bool printColon,
1585                                      bool printComment) const {
1586  if (printAlign) {
1587    unsigned Align = MBB->getAlignment();
1588    if (Align)
1589      EmitAlignment(Log2_32(Align));
1590  }
1591
1592  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1593    << MBB->getNumber();
1594  if (printColon)
1595    O << ':';
1596  if (printComment && MBB->getBasicBlock())
1597    O << '\t' << TAI->getCommentString() << ' '
1598      << MBB->getBasicBlock()->getNameStr();
1599}
1600
1601/// printPICJumpTableSetLabel - This method prints a set label for the
1602/// specified MachineBasicBlock for a jumptable entry.
1603void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1604                                           const MachineBasicBlock *MBB) const {
1605  if (!TAI->getSetDirective())
1606    return;
1607
1608  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1609    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1610  printBasicBlockLabel(MBB, false, false, false);
1611  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1612    << '_' << uid << '\n';
1613}
1614
1615void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1616                                           const MachineBasicBlock *MBB) const {
1617  if (!TAI->getSetDirective())
1618    return;
1619
1620  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1621    << getFunctionNumber() << '_' << uid << '_' << uid2
1622    << "_set_" << MBB->getNumber() << ',';
1623  printBasicBlockLabel(MBB, false, false, false);
1624  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1625    << '_' << uid << '_' << uid2 << '\n';
1626}
1627
1628/// printDataDirective - This method prints the asm directive for the
1629/// specified type.
1630void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1631  const TargetData *TD = TM.getTargetData();
1632  switch (type->getTypeID()) {
1633  case Type::FloatTyID: case Type::DoubleTyID:
1634  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1635    assert(0 && "Should have already output floating point constant.");
1636  default:
1637    assert(0 && "Can't handle printing this type of thing");
1638  case Type::IntegerTyID: {
1639    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1640    if (BitWidth <= 8)
1641      O << TAI->getData8bitsDirective(AddrSpace);
1642    else if (BitWidth <= 16)
1643      O << TAI->getData16bitsDirective(AddrSpace);
1644    else if (BitWidth <= 32)
1645      O << TAI->getData32bitsDirective(AddrSpace);
1646    else if (BitWidth <= 64) {
1647      assert(TAI->getData64bitsDirective(AddrSpace) &&
1648             "Target cannot handle 64-bit constant exprs!");
1649      O << TAI->getData64bitsDirective(AddrSpace);
1650    } else {
1651      llvm_unreachable("Target cannot handle given data directive width!");
1652    }
1653    break;
1654  }
1655  case Type::PointerTyID:
1656    if (TD->getPointerSize() == 8) {
1657      assert(TAI->getData64bitsDirective(AddrSpace) &&
1658             "Target cannot handle 64-bit pointer exprs!");
1659      O << TAI->getData64bitsDirective(AddrSpace);
1660    } else if (TD->getPointerSize() == 2) {
1661      O << TAI->getData16bitsDirective(AddrSpace);
1662    } else if (TD->getPointerSize() == 1) {
1663      O << TAI->getData8bitsDirective(AddrSpace);
1664    } else {
1665      O << TAI->getData32bitsDirective(AddrSpace);
1666    }
1667    break;
1668  }
1669}
1670
1671void AsmPrinter::printVisibility(const std::string& Name,
1672                                 unsigned Visibility) const {
1673  if (Visibility == GlobalValue::HiddenVisibility) {
1674    if (const char *Directive = TAI->getHiddenDirective())
1675      O << Directive << Name << '\n';
1676  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1677    if (const char *Directive = TAI->getProtectedDirective())
1678      O << Directive << Name << '\n';
1679  }
1680}
1681
1682void AsmPrinter::printOffset(int64_t Offset) const {
1683  if (Offset > 0)
1684    O << '+' << Offset;
1685  else if (Offset < 0)
1686    O << Offset;
1687}
1688
1689GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1690  if (!S->usesMetadata())
1691    return 0;
1692
1693  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1694  if (GCPI != GCMetadataPrinters.end())
1695    return GCPI->second;
1696
1697  const char *Name = S->getName().c_str();
1698
1699  for (GCMetadataPrinterRegistry::iterator
1700         I = GCMetadataPrinterRegistry::begin(),
1701         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1702    if (strcmp(Name, I->getName()) == 0) {
1703      GCMetadataPrinter *GMP = I->instantiate();
1704      GMP->S = S;
1705      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1706      return GMP;
1707    }
1708
1709  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1710  llvm_unreachable(0);
1711}
1712
1713/// EmitComments - Pretty-print comments for instructions
1714void AsmPrinter::EmitComments(const MachineInstr &MI) const
1715{
1716  if (VerboseAsm) {
1717    if (!MI.getDebugLoc().isUnknown()) {
1718      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1719
1720      // Print source line info
1721      O.PadToColumn(TAI->getCommentColumn(), 1);
1722      O << TAI->getCommentString() << " SrcLine ";
1723      if (DLT.CompileUnit->hasInitializer()) {
1724        Constant *Name = DLT.CompileUnit->getInitializer();
1725        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1726          if (NameString->isString()) {
1727            O << NameString->getAsString() << " ";
1728          }
1729      }
1730      O << DLT.Line;
1731      if (DLT.Col != 0)
1732        O << ":" << DLT.Col;
1733    }
1734  }
1735}
1736
1737/// EmitComments - Pretty-print comments for instructions
1738void AsmPrinter::EmitComments(const MCInst &MI) const
1739{
1740  if (VerboseAsm) {
1741    if (!MI.getDebugLoc().isUnknown()) {
1742      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1743
1744      // Print source line info
1745      O.PadToColumn(TAI->getCommentColumn(), 1);
1746      O << TAI->getCommentString() << " SrcLine ";
1747      if (DLT.CompileUnit->hasInitializer()) {
1748        Constant *Name = DLT.CompileUnit->getInitializer();
1749        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1750          if (NameString->isString()) {
1751            O << NameString->getAsString() << " ";
1752          }
1753      }
1754      O << DLT.Line;
1755      if (DLT.Col != 0)
1756        O << ":" << DLT.Col;
1757    }
1758  }
1759}
1760