AsmPrinter.cpp revision 3873361e281d1b25fd4579cb42c76954cf40c3ef
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CodeGen/GCMetadataPrinter.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineJumpTableInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/DebugInfo.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/MC/MCContext.h"
35#include "llvm/MC/MCExpr.h"
36#include "llvm/MC/MCInst.h"
37#include "llvm/MC/MCSection.h"
38#include "llvm/MC/MCStreamer.h"
39#include "llvm/MC/MCSymbol.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/Format.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Timer.h"
44#include "llvm/Target/Mangler.h"
45#include "llvm/Target/TargetFrameLowering.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetLoweringObjectFile.h"
49#include "llvm/Target/TargetOptions.h"
50#include "llvm/Target/TargetRegisterInfo.h"
51using namespace llvm;
52
53static const char *const DWARFGroupName = "DWARF Emission";
54static const char *const DbgTimerName = "DWARF Debug Writer";
55static const char *const EHTimerName = "DWARF Exception Writer";
56
57STATISTIC(EmittedInsts, "Number of machine instrs printed");
58
59char AsmPrinter::ID = 0;
60
61typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
62static gcp_map_type &getGCMap(void *&P) {
63  if (P == 0)
64    P = new gcp_map_type();
65  return *(gcp_map_type*)P;
66}
67
68
69/// getGVAlignmentLog2 - Return the alignment to use for the specified global
70/// value in log2 form.  This rounds up to the preferred alignment if possible
71/// and legal.
72static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
73                                   unsigned InBits = 0) {
74  unsigned NumBits = 0;
75  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
76    NumBits = TD.getPreferredAlignmentLog(GVar);
77
78  // If InBits is specified, round it to it.
79  if (InBits > NumBits)
80    NumBits = InBits;
81
82  // If the GV has a specified alignment, take it into account.
83  if (GV->getAlignment() == 0)
84    return NumBits;
85
86  unsigned GVAlign = Log2_32(GV->getAlignment());
87
88  // If the GVAlign is larger than NumBits, or if we are required to obey
89  // NumBits because the GV has an assigned section, obey it.
90  if (GVAlign > NumBits || GV->hasSection())
91    NumBits = GVAlign;
92  return NumBits;
93}
94
95AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
96  : MachineFunctionPass(ID),
97    TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()),
98    OutContext(Streamer.getContext()),
99    OutStreamer(Streamer),
100    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
101  DD = 0; DE = 0; MMI = 0; LI = 0; MF = 0;
102  CurrentFnSym = CurrentFnSymForSize = 0;
103  GCMetadataPrinters = 0;
104  VerboseAsm = Streamer.isVerboseAsm();
105}
106
107AsmPrinter::~AsmPrinter() {
108  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
109
110  if (GCMetadataPrinters != 0) {
111    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
112
113    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
114      delete I->second;
115    delete &GCMap;
116    GCMetadataPrinters = 0;
117  }
118
119  delete &OutStreamer;
120}
121
122/// getFunctionNumber - Return a unique ID for the current function.
123///
124unsigned AsmPrinter::getFunctionNumber() const {
125  return MF->getFunctionNumber();
126}
127
128const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
129  return TM.getTargetLowering()->getObjFileLowering();
130}
131
132/// getDataLayout - Return information about data layout.
133const DataLayout &AsmPrinter::getDataLayout() const {
134  return *TM.getDataLayout();
135}
136
137StringRef AsmPrinter::getTargetTriple() const {
138  return TM.getTargetTriple();
139}
140
141/// getCurrentSection() - Return the current section we are emitting to.
142const MCSection *AsmPrinter::getCurrentSection() const {
143  return OutStreamer.getCurrentSection().first;
144}
145
146
147
148void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
149  AU.setPreservesAll();
150  MachineFunctionPass::getAnalysisUsage(AU);
151  AU.addRequired<MachineModuleInfo>();
152  AU.addRequired<GCModuleInfo>();
153  if (isVerbose())
154    AU.addRequired<MachineLoopInfo>();
155}
156
157bool AsmPrinter::doInitialization(Module &M) {
158  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
159  MMI->AnalyzeModule(M);
160
161  // Initialize TargetLoweringObjectFile.
162  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
163    .Initialize(OutContext, TM);
164
165  OutStreamer.InitStreamer();
166
167  Mang = new Mangler(OutContext, &TM);
168
169  // Allow the target to emit any magic that it wants at the start of the file.
170  EmitStartOfAsmFile(M);
171
172  // Very minimal debug info. It is ignored if we emit actual debug info. If we
173  // don't, this at least helps the user find where a global came from.
174  if (MAI->hasSingleParameterDotFile()) {
175    // .file "foo.c"
176    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
177  }
178
179  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
180  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
181  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
182    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
183      MP->beginAssembly(*this);
184
185  // Emit module-level inline asm if it exists.
186  if (!M.getModuleInlineAsm().empty()) {
187    OutStreamer.AddComment("Start of file scope inline assembly");
188    OutStreamer.AddBlankLine();
189    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
190    OutStreamer.AddComment("End of file scope inline assembly");
191    OutStreamer.AddBlankLine();
192  }
193
194  if (MAI->doesSupportDebugInformation())
195    DD = new DwarfDebug(this, &M);
196
197  switch (MAI->getExceptionHandlingType()) {
198  case ExceptionHandling::None:
199    return false;
200  case ExceptionHandling::SjLj:
201  case ExceptionHandling::DwarfCFI:
202    DE = new DwarfCFIException(this);
203    return false;
204  case ExceptionHandling::ARM:
205    DE = new ARMException(this);
206    return false;
207  case ExceptionHandling::Win64:
208    DE = new Win64Exception(this);
209    return false;
210  }
211
212  llvm_unreachable("Unknown exception type.");
213}
214
215void AsmPrinter::EmitLinkage(unsigned L, MCSymbol *GVSym) const {
216  GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes)L;
217
218  switch (Linkage) {
219  case GlobalValue::CommonLinkage:
220  case GlobalValue::LinkOnceAnyLinkage:
221  case GlobalValue::LinkOnceODRLinkage:
222  case GlobalValue::LinkOnceODRAutoHideLinkage:
223  case GlobalValue::WeakAnyLinkage:
224  case GlobalValue::WeakODRLinkage:
225  case GlobalValue::LinkerPrivateWeakLinkage:
226    if (MAI->getWeakDefDirective() != 0) {
227      // .globl _foo
228      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
229
230      if (Linkage != GlobalValue::LinkOnceODRAutoHideLinkage)
231        // .weak_definition _foo
232        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
233      else
234        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
235    } else if (MAI->getLinkOnceDirective() != 0) {
236      // .globl _foo
237      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
238      //NOTE: linkonce is handled by the section the symbol was assigned to.
239    } else {
240      // .weak _foo
241      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
242    }
243    return;
244  case GlobalValue::DLLExportLinkage:
245  case GlobalValue::AppendingLinkage:
246    // FIXME: appending linkage variables should go into a section of
247    // their name or something.  For now, just emit them as external.
248  case GlobalValue::ExternalLinkage:
249    // If external or appending, declare as a global symbol.
250    // .globl _foo
251    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
252    return;
253  case GlobalValue::PrivateLinkage:
254  case GlobalValue::InternalLinkage:
255  case GlobalValue::LinkerPrivateLinkage:
256    return;
257  case GlobalValue::AvailableExternallyLinkage:
258    llvm_unreachable("Should never emit this");
259  case GlobalValue::DLLImportLinkage:
260  case GlobalValue::ExternalWeakLinkage:
261    llvm_unreachable("Don't know how to emit these");
262  }
263  llvm_unreachable("Unknown linkage type!");
264}
265
266
267/// EmitGlobalVariable - Emit the specified global variable to the .s file.
268void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
269  if (GV->hasInitializer()) {
270    // Check to see if this is a special global used by LLVM, if so, emit it.
271    if (EmitSpecialLLVMGlobal(GV))
272      return;
273
274    if (isVerbose()) {
275      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
276                     /*PrintType=*/false, GV->getParent());
277      OutStreamer.GetCommentOS() << '\n';
278    }
279  }
280
281  MCSymbol *GVSym = Mang->getSymbol(GV);
282  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
283
284  if (!GV->hasInitializer())   // External globals require no extra code.
285    return;
286
287  if (MAI->hasDotTypeDotSizeDirective())
288    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
289
290  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
291
292  const DataLayout *DL = TM.getDataLayout();
293  uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType());
294
295  // If the alignment is specified, we *must* obey it.  Overaligning a global
296  // with a specified alignment is a prompt way to break globals emitted to
297  // sections and expected to be contiguous (e.g. ObjC metadata).
298  unsigned AlignLog = getGVAlignmentLog2(GV, *DL);
299
300  if (DD)
301    DD->setSymbolSize(GVSym, Size);
302
303  // Handle common and BSS local symbols (.lcomm).
304  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
305    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
306    unsigned Align = 1 << AlignLog;
307
308    // Handle common symbols.
309    if (GVKind.isCommon()) {
310      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
311        Align = 0;
312
313      // .comm _foo, 42, 4
314      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
315      return;
316    }
317
318    // Handle local BSS symbols.
319    if (MAI->hasMachoZeroFillDirective()) {
320      const MCSection *TheSection =
321        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
322      // .zerofill __DATA, __bss, _foo, 400, 5
323      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
324      return;
325    }
326
327    // Use .lcomm only if it supports user-specified alignment.
328    // Otherwise, while it would still be correct to use .lcomm in some
329    // cases (e.g. when Align == 1), the external assembler might enfore
330    // some -unknown- default alignment behavior, which could cause
331    // spurious differences between external and integrated assembler.
332    // Prefer to simply fall back to .local / .comm in this case.
333    if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
334      // .lcomm _foo, 42
335      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
336      return;
337    }
338
339    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
340      Align = 0;
341
342    // .local _foo
343    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
344    // .comm _foo, 42, 4
345    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
346    return;
347  }
348
349  const MCSection *TheSection =
350    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
351
352  // Handle the zerofill directive on darwin, which is a special form of BSS
353  // emission.
354  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
355    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
356
357    // .globl _foo
358    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
359    // .zerofill __DATA, __common, _foo, 400, 5
360    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
361    return;
362  }
363
364  // Handle thread local data for mach-o which requires us to output an
365  // additional structure of data and mangle the original symbol so that we
366  // can reference it later.
367  //
368  // TODO: This should become an "emit thread local global" method on TLOF.
369  // All of this macho specific stuff should be sunk down into TLOFMachO and
370  // stuff like "TLSExtraDataSection" should no longer be part of the parent
371  // TLOF class.  This will also make it more obvious that stuff like
372  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
373  // specific code.
374  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
375    // Emit the .tbss symbol
376    MCSymbol *MangSym =
377      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
378
379    if (GVKind.isThreadBSS()) {
380      TheSection = getObjFileLowering().getTLSBSSSection();
381      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
382    } else if (GVKind.isThreadData()) {
383      OutStreamer.SwitchSection(TheSection);
384
385      EmitAlignment(AlignLog, GV);
386      OutStreamer.EmitLabel(MangSym);
387
388      EmitGlobalConstant(GV->getInitializer());
389    }
390
391    OutStreamer.AddBlankLine();
392
393    // Emit the variable struct for the runtime.
394    const MCSection *TLVSect
395      = getObjFileLowering().getTLSExtraDataSection();
396
397    OutStreamer.SwitchSection(TLVSect);
398    // Emit the linkage here.
399    EmitLinkage(GV->getLinkage(), GVSym);
400    OutStreamer.EmitLabel(GVSym);
401
402    // Three pointers in size:
403    //   - __tlv_bootstrap - used to make sure support exists
404    //   - spare pointer, used when mapped by the runtime
405    //   - pointer to mangled symbol above with initializer
406    unsigned PtrSize = DL->getPointerSizeInBits()/8;
407    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
408                                PtrSize);
409    OutStreamer.EmitIntValue(0, PtrSize);
410    OutStreamer.EmitSymbolValue(MangSym, PtrSize);
411
412    OutStreamer.AddBlankLine();
413    return;
414  }
415
416  OutStreamer.SwitchSection(TheSection);
417
418  EmitLinkage(GV->getLinkage(), GVSym);
419  EmitAlignment(AlignLog, GV);
420
421  OutStreamer.EmitLabel(GVSym);
422
423  EmitGlobalConstant(GV->getInitializer());
424
425  if (MAI->hasDotTypeDotSizeDirective())
426    // .size foo, 42
427    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
428
429  OutStreamer.AddBlankLine();
430}
431
432/// EmitFunctionHeader - This method emits the header for the current
433/// function.
434void AsmPrinter::EmitFunctionHeader() {
435  // Print out constants referenced by the function
436  EmitConstantPool();
437
438  // Print the 'header' of function.
439  const Function *F = MF->getFunction();
440
441  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
442  EmitVisibility(CurrentFnSym, F->getVisibility());
443
444  EmitLinkage(F->getLinkage(), CurrentFnSym);
445  EmitAlignment(MF->getAlignment(), F);
446
447  if (MAI->hasDotTypeDotSizeDirective())
448    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
449
450  if (isVerbose()) {
451    WriteAsOperand(OutStreamer.GetCommentOS(), F,
452                   /*PrintType=*/false, F->getParent());
453    OutStreamer.GetCommentOS() << '\n';
454  }
455
456  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
457  // do their wild and crazy things as required.
458  EmitFunctionEntryLabel();
459
460  // If the function had address-taken blocks that got deleted, then we have
461  // references to the dangling symbols.  Emit them at the start of the function
462  // so that we don't get references to undefined symbols.
463  std::vector<MCSymbol*> DeadBlockSyms;
464  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
465  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
466    OutStreamer.AddComment("Address taken block that was later removed");
467    OutStreamer.EmitLabel(DeadBlockSyms[i]);
468  }
469
470  // Emit pre-function debug and/or EH information.
471  if (DE) {
472    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
473    DE->BeginFunction(MF);
474  }
475  if (DD) {
476    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
477    DD->beginFunction(MF);
478  }
479
480  // Emit the prefix data.
481  if (F->hasPrefixData())
482    EmitGlobalConstant(F->getPrefixData());
483}
484
485/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
486/// function.  This can be overridden by targets as required to do custom stuff.
487void AsmPrinter::EmitFunctionEntryLabel() {
488  // The function label could have already been emitted if two symbols end up
489  // conflicting due to asm renaming.  Detect this and emit an error.
490  if (CurrentFnSym->isUndefined())
491    return OutStreamer.EmitLabel(CurrentFnSym);
492
493  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
494                     "' label emitted multiple times to assembly file");
495}
496
497/// emitComments - Pretty-print comments for instructions.
498static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
499  const MachineFunction *MF = MI.getParent()->getParent();
500  const TargetMachine &TM = MF->getTarget();
501
502  // Check for spills and reloads
503  int FI;
504
505  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
506
507  // We assume a single instruction only has a spill or reload, not
508  // both.
509  const MachineMemOperand *MMO;
510  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
511    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
512      MMO = *MI.memoperands_begin();
513      CommentOS << MMO->getSize() << "-byte Reload\n";
514    }
515  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
516    if (FrameInfo->isSpillSlotObjectIndex(FI))
517      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
518  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
519    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
520      MMO = *MI.memoperands_begin();
521      CommentOS << MMO->getSize() << "-byte Spill\n";
522    }
523  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
524    if (FrameInfo->isSpillSlotObjectIndex(FI))
525      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
526  }
527
528  // Check for spill-induced copies
529  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
530    CommentOS << " Reload Reuse\n";
531}
532
533/// emitImplicitDef - This method emits the specified machine instruction
534/// that is an implicit def.
535void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
536  unsigned RegNo = MI->getOperand(0).getReg();
537  OutStreamer.AddComment(Twine("implicit-def: ") +
538                         TM.getRegisterInfo()->getName(RegNo));
539  OutStreamer.AddBlankLine();
540}
541
542static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
543  std::string Str = "kill:";
544  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
545    const MachineOperand &Op = MI->getOperand(i);
546    assert(Op.isReg() && "KILL instruction must have only register operands");
547    Str += ' ';
548    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
549    Str += (Op.isDef() ? "<def>" : "<kill>");
550  }
551  AP.OutStreamer.AddComment(Str);
552  AP.OutStreamer.AddBlankLine();
553}
554
555/// emitDebugValueComment - This method handles the target-independent form
556/// of DBG_VALUE, returning true if it was able to do so.  A false return
557/// means the target will need to handle MI in EmitInstruction.
558static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
559  // This code handles only the 3-operand target-independent form.
560  if (MI->getNumOperands() != 3)
561    return false;
562
563  SmallString<128> Str;
564  raw_svector_ostream OS(Str);
565  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
566
567  // cast away const; DIetc do not take const operands for some reason.
568  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
569  if (V.getContext().isSubprogram()) {
570    StringRef Name = DISubprogram(V.getContext()).getDisplayName();
571    if (!Name.empty())
572      OS << Name << ":";
573  }
574  OS << V.getName() << " <- ";
575
576  // The second operand is only an offset if it's an immediate.
577  bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
578  int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
579
580  // Register or immediate value. Register 0 means undef.
581  if (MI->getOperand(0).isFPImm()) {
582    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
583    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
584      OS << (double)APF.convertToFloat();
585    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
586      OS << APF.convertToDouble();
587    } else {
588      // There is no good way to print long double.  Convert a copy to
589      // double.  Ah well, it's only a comment.
590      bool ignored;
591      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
592                  &ignored);
593      OS << "(long double) " << APF.convertToDouble();
594    }
595  } else if (MI->getOperand(0).isImm()) {
596    OS << MI->getOperand(0).getImm();
597  } else if (MI->getOperand(0).isCImm()) {
598    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
599  } else {
600    unsigned Reg;
601    if (MI->getOperand(0).isReg()) {
602      Reg = MI->getOperand(0).getReg();
603    } else {
604      assert(MI->getOperand(0).isFI() && "Unknown operand type");
605      const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
606      Offset += TFI->getFrameIndexReference(*AP.MF,
607                                            MI->getOperand(0).getIndex(), Reg);
608      Deref = true;
609    }
610    if (Reg == 0) {
611      // Suppress offset, it is not meaningful here.
612      OS << "undef";
613      // NOTE: Want this comment at start of line, don't emit with AddComment.
614      AP.OutStreamer.EmitRawText(OS.str());
615      return true;
616    }
617    if (Deref)
618      OS << '[';
619    OS << AP.TM.getRegisterInfo()->getName(Reg);
620  }
621
622  if (Deref)
623    OS << '+' << Offset << ']';
624
625  // NOTE: Want this comment at start of line, don't emit with AddComment.
626  AP.OutStreamer.EmitRawText(OS.str());
627  return true;
628}
629
630AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
631  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
632      MF->getFunction()->needsUnwindTableEntry())
633    return CFI_M_EH;
634
635  if (MMI->hasDebugInfo())
636    return CFI_M_Debug;
637
638  return CFI_M_None;
639}
640
641bool AsmPrinter::needsSEHMoves() {
642  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
643    MF->getFunction()->needsUnwindTableEntry();
644}
645
646bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
647  return MAI->doesDwarfUseRelocationsAcrossSections();
648}
649
650void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
651  const MCSymbol *Label = MI.getOperand(0).getMCSymbol();
652
653  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
654    return;
655
656  if (needsCFIMoves() == CFI_M_None)
657    return;
658
659  if (MMI->getCompactUnwindEncoding() != 0)
660    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
661
662  const MachineModuleInfo &MMI = MF->getMMI();
663  const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
664  bool FoundOne = false;
665  (void)FoundOne;
666  for (std::vector<MCCFIInstruction>::const_iterator I = Instrs.begin(),
667         E = Instrs.end(); I != E; ++I) {
668    if (I->getLabel() == Label) {
669      emitCFIInstruction(*I);
670      FoundOne = true;
671    }
672  }
673  assert(FoundOne);
674}
675
676/// EmitFunctionBody - This method emits the body and trailer for a
677/// function.
678void AsmPrinter::EmitFunctionBody() {
679  // Emit target-specific gunk before the function body.
680  EmitFunctionBodyStart();
681
682  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
683
684  // Print out code for the function.
685  bool HasAnyRealCode = false;
686  const MachineInstr *LastMI = 0;
687  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
688       I != E; ++I) {
689    // Print a label for the basic block.
690    EmitBasicBlockStart(I);
691    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
692         II != IE; ++II) {
693      LastMI = II;
694
695      // Print the assembly for the instruction.
696      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
697          !II->isDebugValue()) {
698        HasAnyRealCode = true;
699        ++EmittedInsts;
700      }
701
702      if (ShouldPrintDebugScopes) {
703        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
704        DD->beginInstruction(II);
705      }
706
707      if (isVerbose())
708        emitComments(*II, OutStreamer.GetCommentOS());
709
710      switch (II->getOpcode()) {
711      case TargetOpcode::PROLOG_LABEL:
712        emitPrologLabel(*II);
713        break;
714
715      case TargetOpcode::EH_LABEL:
716      case TargetOpcode::GC_LABEL:
717        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
718        break;
719      case TargetOpcode::INLINEASM:
720        EmitInlineAsm(II);
721        break;
722      case TargetOpcode::DBG_VALUE:
723        if (isVerbose()) {
724          if (!emitDebugValueComment(II, *this))
725            EmitInstruction(II);
726        }
727        break;
728      case TargetOpcode::IMPLICIT_DEF:
729        if (isVerbose()) emitImplicitDef(II);
730        break;
731      case TargetOpcode::KILL:
732        if (isVerbose()) emitKill(II, *this);
733        break;
734      default:
735        if (!TM.hasMCUseLoc())
736          MCLineEntry::Make(&OutStreamer, getCurrentSection());
737
738        EmitInstruction(II);
739        break;
740      }
741
742      if (ShouldPrintDebugScopes) {
743        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
744        DD->endInstruction(II);
745      }
746    }
747  }
748
749  // If the last instruction was a prolog label, then we have a situation where
750  // we emitted a prolog but no function body. This results in the ending prolog
751  // label equaling the end of function label and an invalid "row" in the
752  // FDE. We need to emit a noop in this situation so that the FDE's rows are
753  // valid.
754  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
755
756  // If the function is empty and the object file uses .subsections_via_symbols,
757  // then we need to emit *something* to the function body to prevent the
758  // labels from collapsing together.  Just emit a noop.
759  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
760    MCInst Noop;
761    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
762    if (Noop.getOpcode()) {
763      OutStreamer.AddComment("avoids zero-length function");
764      OutStreamer.EmitInstruction(Noop);
765    } else  // Target not mc-ized yet.
766      OutStreamer.EmitRawText(StringRef("\tnop\n"));
767  }
768
769  const Function *F = MF->getFunction();
770  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
771    const BasicBlock *BB = i;
772    if (!BB->hasAddressTaken())
773      continue;
774    MCSymbol *Sym = GetBlockAddressSymbol(BB);
775    if (Sym->isDefined())
776      continue;
777    OutStreamer.AddComment("Address of block that was removed by CodeGen");
778    OutStreamer.EmitLabel(Sym);
779  }
780
781  // Emit target-specific gunk after the function body.
782  EmitFunctionBodyEnd();
783
784  // If the target wants a .size directive for the size of the function, emit
785  // it.
786  if (MAI->hasDotTypeDotSizeDirective()) {
787    // Create a symbol for the end of function, so we can get the size as
788    // difference between the function label and the temp label.
789    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
790    OutStreamer.EmitLabel(FnEndLabel);
791
792    const MCExpr *SizeExp =
793      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
794                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
795                                                      OutContext),
796                              OutContext);
797    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
798  }
799
800  // Emit post-function debug information.
801  if (DD) {
802    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
803    DD->endFunction(MF);
804  }
805  if (DE) {
806    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
807    DE->EndFunction();
808  }
809  MMI->EndFunction();
810
811  // Print out jump tables referenced by the function.
812  EmitJumpTableInfo();
813
814  OutStreamer.AddBlankLine();
815}
816
817/// EmitDwarfRegOp - Emit dwarf register operation.
818void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc,
819                                bool Indirect) const {
820  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
821  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
822
823  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
824       ++SR) {
825    Reg = TRI->getDwarfRegNum(*SR, false);
826    // FIXME: Get the bit range this register uses of the superregister
827    // so that we can produce a DW_OP_bit_piece
828  }
829
830  // FIXME: Handle cases like a super register being encoded as
831  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
832
833  // FIXME: We have no reasonable way of handling errors in here. The
834  // caller might be in the middle of an dwarf expression. We should
835  // probably assert that Reg >= 0 once debug info generation is more mature.
836
837  if (MLoc.isIndirect() || Indirect) {
838    if (Reg < 32) {
839      OutStreamer.AddComment(
840        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
841      EmitInt8(dwarf::DW_OP_breg0 + Reg);
842    } else {
843      OutStreamer.AddComment("DW_OP_bregx");
844      EmitInt8(dwarf::DW_OP_bregx);
845      OutStreamer.AddComment(Twine(Reg));
846      EmitULEB128(Reg);
847    }
848    EmitSLEB128(!MLoc.isIndirect() ? 0 : MLoc.getOffset());
849    if (MLoc.isIndirect() && Indirect)
850      EmitInt8(dwarf::DW_OP_deref);
851  } else {
852    if (Reg < 32) {
853      OutStreamer.AddComment(
854        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
855      EmitInt8(dwarf::DW_OP_reg0 + Reg);
856    } else {
857      OutStreamer.AddComment("DW_OP_regx");
858      EmitInt8(dwarf::DW_OP_regx);
859      OutStreamer.AddComment(Twine(Reg));
860      EmitULEB128(Reg);
861    }
862  }
863
864  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
865}
866
867bool AsmPrinter::doFinalization(Module &M) {
868  // Emit global variables.
869  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
870       I != E; ++I)
871    EmitGlobalVariable(I);
872
873  // Emit visibility info for declarations
874  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
875    const Function &F = *I;
876    if (!F.isDeclaration())
877      continue;
878    GlobalValue::VisibilityTypes V = F.getVisibility();
879    if (V == GlobalValue::DefaultVisibility)
880      continue;
881
882    MCSymbol *Name = Mang->getSymbol(&F);
883    EmitVisibility(Name, V, false);
884  }
885
886  // Emit module flags.
887  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
888  M.getModuleFlagsMetadata(ModuleFlags);
889  if (!ModuleFlags.empty())
890    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
891
892  // Make sure we wrote out everything we need.
893  OutStreamer.Flush();
894
895  // Finalize debug and EH information.
896  if (DE) {
897    {
898      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
899      DE->EndModule();
900    }
901    delete DE; DE = 0;
902  }
903  if (DD) {
904    {
905      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
906      DD->endModule();
907    }
908    delete DD; DD = 0;
909  }
910
911  // If the target wants to know about weak references, print them all.
912  if (MAI->getWeakRefDirective()) {
913    // FIXME: This is not lazy, it would be nice to only print weak references
914    // to stuff that is actually used.  Note that doing so would require targets
915    // to notice uses in operands (due to constant exprs etc).  This should
916    // happen with the MC stuff eventually.
917
918    // Print out module-level global variables here.
919    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
920         I != E; ++I) {
921      if (!I->hasExternalWeakLinkage()) continue;
922      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
923    }
924
925    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
926      if (!I->hasExternalWeakLinkage()) continue;
927      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
928    }
929  }
930
931  if (MAI->hasSetDirective()) {
932    OutStreamer.AddBlankLine();
933    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
934         I != E; ++I) {
935      MCSymbol *Name = Mang->getSymbol(I);
936
937      const GlobalValue *GV = I->getAliasedGlobal();
938      MCSymbol *Target = Mang->getSymbol(GV);
939
940      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
941        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
942      else if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
943        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
944      else
945        assert(I->hasLocalLinkage() && "Invalid alias linkage");
946
947      EmitVisibility(Name, I->getVisibility());
948
949      // Emit the directives as assignments aka .set:
950      OutStreamer.EmitAssignment(Name,
951                                 MCSymbolRefExpr::Create(Target, OutContext));
952    }
953  }
954
955  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
956  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
957  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
958    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
959      MP->finishAssembly(*this);
960
961  // Emit llvm.ident metadata in an '.ident' directive.
962  EmitModuleIdents(M);
963
964  // If we don't have any trampolines, then we don't require stack memory
965  // to be executable. Some targets have a directive to declare this.
966  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
967  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
968    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
969      OutStreamer.SwitchSection(S);
970
971  // Allow the target to emit any magic that it wants at the end of the file,
972  // after everything else has gone out.
973  EmitEndOfAsmFile(M);
974
975  delete Mang; Mang = 0;
976  MMI = 0;
977
978  OutStreamer.Finish();
979  OutStreamer.reset();
980
981  return false;
982}
983
984void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
985  this->MF = &MF;
986  // Get the function symbol.
987  CurrentFnSym = Mang->getSymbol(MF.getFunction());
988  CurrentFnSymForSize = CurrentFnSym;
989
990  if (isVerbose())
991    LI = &getAnalysis<MachineLoopInfo>();
992}
993
994namespace {
995  // SectionCPs - Keep track the alignment, constpool entries per Section.
996  struct SectionCPs {
997    const MCSection *S;
998    unsigned Alignment;
999    SmallVector<unsigned, 4> CPEs;
1000    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
1001  };
1002}
1003
1004/// EmitConstantPool - Print to the current output stream assembly
1005/// representations of the constants in the constant pool MCP. This is
1006/// used to print out constants which have been "spilled to memory" by
1007/// the code generator.
1008///
1009void AsmPrinter::EmitConstantPool() {
1010  const MachineConstantPool *MCP = MF->getConstantPool();
1011  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1012  if (CP.empty()) return;
1013
1014  // Calculate sections for constant pool entries. We collect entries to go into
1015  // the same section together to reduce amount of section switch statements.
1016  SmallVector<SectionCPs, 4> CPSections;
1017  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1018    const MachineConstantPoolEntry &CPE = CP[i];
1019    unsigned Align = CPE.getAlignment();
1020
1021    SectionKind Kind;
1022    switch (CPE.getRelocationInfo()) {
1023    default: llvm_unreachable("Unknown section kind");
1024    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1025    case 1:
1026      Kind = SectionKind::getReadOnlyWithRelLocal();
1027      break;
1028    case 0:
1029    switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
1030    case 4:  Kind = SectionKind::getMergeableConst4(); break;
1031    case 8:  Kind = SectionKind::getMergeableConst8(); break;
1032    case 16: Kind = SectionKind::getMergeableConst16();break;
1033    default: Kind = SectionKind::getMergeableConst(); break;
1034    }
1035    }
1036
1037    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1038
1039    // The number of sections are small, just do a linear search from the
1040    // last section to the first.
1041    bool Found = false;
1042    unsigned SecIdx = CPSections.size();
1043    while (SecIdx != 0) {
1044      if (CPSections[--SecIdx].S == S) {
1045        Found = true;
1046        break;
1047      }
1048    }
1049    if (!Found) {
1050      SecIdx = CPSections.size();
1051      CPSections.push_back(SectionCPs(S, Align));
1052    }
1053
1054    if (Align > CPSections[SecIdx].Alignment)
1055      CPSections[SecIdx].Alignment = Align;
1056    CPSections[SecIdx].CPEs.push_back(i);
1057  }
1058
1059  // Now print stuff into the calculated sections.
1060  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1061    OutStreamer.SwitchSection(CPSections[i].S);
1062    EmitAlignment(Log2_32(CPSections[i].Alignment));
1063
1064    unsigned Offset = 0;
1065    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1066      unsigned CPI = CPSections[i].CPEs[j];
1067      MachineConstantPoolEntry CPE = CP[CPI];
1068
1069      // Emit inter-object padding for alignment.
1070      unsigned AlignMask = CPE.getAlignment() - 1;
1071      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1072      OutStreamer.EmitZeros(NewOffset - Offset);
1073
1074      Type *Ty = CPE.getType();
1075      Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1076      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1077
1078      if (CPE.isMachineConstantPoolEntry())
1079        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1080      else
1081        EmitGlobalConstant(CPE.Val.ConstVal);
1082    }
1083  }
1084}
1085
1086/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1087/// by the current function to the current output stream.
1088///
1089void AsmPrinter::EmitJumpTableInfo() {
1090  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1091  if (MJTI == 0) return;
1092  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1093  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1094  if (JT.empty()) return;
1095
1096  // Pick the directive to use to print the jump table entries, and switch to
1097  // the appropriate section.
1098  const Function *F = MF->getFunction();
1099  bool JTInDiffSection = false;
1100  if (// In PIC mode, we need to emit the jump table to the same section as the
1101      // function body itself, otherwise the label differences won't make sense.
1102      // FIXME: Need a better predicate for this: what about custom entries?
1103      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1104      // We should also do if the section name is NULL or function is declared
1105      // in discardable section
1106      // FIXME: this isn't the right predicate, should be based on the MCSection
1107      // for the function.
1108      F->isWeakForLinker()) {
1109    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1110  } else {
1111    // Otherwise, drop it in the readonly section.
1112    const MCSection *ReadOnlySection =
1113      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1114    OutStreamer.SwitchSection(ReadOnlySection);
1115    JTInDiffSection = true;
1116  }
1117
1118  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1119
1120  // Jump tables in code sections are marked with a data_region directive
1121  // where that's supported.
1122  if (!JTInDiffSection)
1123    OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1124
1125  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1126    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1127
1128    // If this jump table was deleted, ignore it.
1129    if (JTBBs.empty()) continue;
1130
1131    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1132    // .set directive for each unique entry.  This reduces the number of
1133    // relocations the assembler will generate for the jump table.
1134    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1135        MAI->hasSetDirective()) {
1136      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1137      const TargetLowering *TLI = TM.getTargetLowering();
1138      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1139      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1140        const MachineBasicBlock *MBB = JTBBs[ii];
1141        if (!EmittedSets.insert(MBB)) continue;
1142
1143        // .set LJTSet, LBB32-base
1144        const MCExpr *LHS =
1145          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1146        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1147                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1148      }
1149    }
1150
1151    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1152    // before each jump table.  The first label is never referenced, but tells
1153    // the assembler and linker the extents of the jump table object.  The
1154    // second label is actually referenced by the code.
1155    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1156      // FIXME: This doesn't have to have any specific name, just any randomly
1157      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1158      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1159
1160    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1161
1162    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1163      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1164  }
1165  if (!JTInDiffSection)
1166    OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1167}
1168
1169/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1170/// current stream.
1171void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1172                                    const MachineBasicBlock *MBB,
1173                                    unsigned UID) const {
1174  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1175  const MCExpr *Value = 0;
1176  switch (MJTI->getEntryKind()) {
1177  case MachineJumpTableInfo::EK_Inline:
1178    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1179  case MachineJumpTableInfo::EK_Custom32:
1180    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1181                                                              OutContext);
1182    break;
1183  case MachineJumpTableInfo::EK_BlockAddress:
1184    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1185    //     .word LBB123
1186    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1187    break;
1188  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1189    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1190    // with a relocation as gp-relative, e.g.:
1191    //     .gprel32 LBB123
1192    MCSymbol *MBBSym = MBB->getSymbol();
1193    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1194    return;
1195  }
1196
1197  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1198    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1199    // with a relocation as gp-relative, e.g.:
1200    //     .gpdword LBB123
1201    MCSymbol *MBBSym = MBB->getSymbol();
1202    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1203    return;
1204  }
1205
1206  case MachineJumpTableInfo::EK_LabelDifference32: {
1207    // EK_LabelDifference32 - Each entry is the address of the block minus
1208    // the address of the jump table.  This is used for PIC jump tables where
1209    // gprel32 is not supported.  e.g.:
1210    //      .word LBB123 - LJTI1_2
1211    // If the .set directive is supported, this is emitted as:
1212    //      .set L4_5_set_123, LBB123 - LJTI1_2
1213    //      .word L4_5_set_123
1214
1215    // If we have emitted set directives for the jump table entries, print
1216    // them rather than the entries themselves.  If we're emitting PIC, then
1217    // emit the table entries as differences between two text section labels.
1218    if (MAI->hasSetDirective()) {
1219      // If we used .set, reference the .set's symbol.
1220      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1221                                      OutContext);
1222      break;
1223    }
1224    // Otherwise, use the difference as the jump table entry.
1225    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1226    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1227    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1228    break;
1229  }
1230  }
1231
1232  assert(Value && "Unknown entry kind!");
1233
1234  unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1235  OutStreamer.EmitValue(Value, EntrySize);
1236}
1237
1238
1239/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1240/// special global used by LLVM.  If so, emit it and return true, otherwise
1241/// do nothing and return false.
1242bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1243  if (GV->getName() == "llvm.used") {
1244    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1245      EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1246    return true;
1247  }
1248
1249  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1250  if (GV->getSection() == "llvm.metadata" ||
1251      GV->hasAvailableExternallyLinkage())
1252    return true;
1253
1254  if (!GV->hasAppendingLinkage()) return false;
1255
1256  assert(GV->hasInitializer() && "Not a special LLVM global!");
1257
1258  if (GV->getName() == "llvm.global_ctors") {
1259    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1260
1261    if (TM.getRelocationModel() == Reloc::Static &&
1262        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1263      StringRef Sym(".constructors_used");
1264      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1265                                      MCSA_Reference);
1266    }
1267    return true;
1268  }
1269
1270  if (GV->getName() == "llvm.global_dtors") {
1271    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1272
1273    if (TM.getRelocationModel() == Reloc::Static &&
1274        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1275      StringRef Sym(".destructors_used");
1276      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1277                                      MCSA_Reference);
1278    }
1279    return true;
1280  }
1281
1282  return false;
1283}
1284
1285/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1286/// global in the specified llvm.used list for which emitUsedDirectiveFor
1287/// is true, as being used with this directive.
1288void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1289  // Should be an array of 'i8*'.
1290  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1291    const GlobalValue *GV =
1292      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1293    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1294      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1295  }
1296}
1297
1298/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1299/// priority.
1300void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1301  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1302  // init priority.
1303  if (!isa<ConstantArray>(List)) return;
1304
1305  // Sanity check the structors list.
1306  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1307  if (!InitList) return; // Not an array!
1308  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1309  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1310  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1311      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1312
1313  // Gather the structors in a form that's convenient for sorting by priority.
1314  typedef std::pair<unsigned, Constant *> Structor;
1315  SmallVector<Structor, 8> Structors;
1316  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1317    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1318    if (!CS) continue; // Malformed.
1319    if (CS->getOperand(1)->isNullValue())
1320      break;  // Found a null terminator, skip the rest.
1321    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1322    if (!Priority) continue; // Malformed.
1323    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1324                                       CS->getOperand(1)));
1325  }
1326
1327  // Emit the function pointers in the target-specific order
1328  const DataLayout *DL = TM.getDataLayout();
1329  unsigned Align = Log2_32(DL->getPointerPrefAlignment());
1330  std::stable_sort(Structors.begin(), Structors.end(), less_first());
1331  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1332    const MCSection *OutputSection =
1333      (isCtor ?
1334       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1335       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1336    OutStreamer.SwitchSection(OutputSection);
1337    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1338      EmitAlignment(Align);
1339    EmitXXStructor(Structors[i].second);
1340  }
1341}
1342
1343void AsmPrinter::EmitModuleIdents(Module &M) {
1344  if (!MAI->hasIdentDirective())
1345    return;
1346
1347  if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1348    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1349      const MDNode *N = NMD->getOperand(i);
1350      assert(N->getNumOperands() == 1 &&
1351             "llvm.ident metadata entry can have only one operand");
1352      const MDString *S = cast<MDString>(N->getOperand(0));
1353      OutStreamer.EmitIdent(S->getString());
1354    }
1355  }
1356}
1357
1358//===--------------------------------------------------------------------===//
1359// Emission and print routines
1360//
1361
1362/// EmitInt8 - Emit a byte directive and value.
1363///
1364void AsmPrinter::EmitInt8(int Value) const {
1365  OutStreamer.EmitIntValue(Value, 1);
1366}
1367
1368/// EmitInt16 - Emit a short directive and value.
1369///
1370void AsmPrinter::EmitInt16(int Value) const {
1371  OutStreamer.EmitIntValue(Value, 2);
1372}
1373
1374/// EmitInt32 - Emit a long directive and value.
1375///
1376void AsmPrinter::EmitInt32(int Value) const {
1377  OutStreamer.EmitIntValue(Value, 4);
1378}
1379
1380/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1381/// in bytes of the directive is specified by Size and Hi/Lo specify the
1382/// labels.  This implicitly uses .set if it is available.
1383void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1384                                     unsigned Size) const {
1385  // Get the Hi-Lo expression.
1386  const MCExpr *Diff =
1387    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1388                            MCSymbolRefExpr::Create(Lo, OutContext),
1389                            OutContext);
1390
1391  if (!MAI->hasSetDirective()) {
1392    OutStreamer.EmitValue(Diff, Size);
1393    return;
1394  }
1395
1396  // Otherwise, emit with .set (aka assignment).
1397  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1398  OutStreamer.EmitAssignment(SetLabel, Diff);
1399  OutStreamer.EmitSymbolValue(SetLabel, Size);
1400}
1401
1402/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1403/// where the size in bytes of the directive is specified by Size and Hi/Lo
1404/// specify the labels.  This implicitly uses .set if it is available.
1405void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1406                                           const MCSymbol *Lo, unsigned Size)
1407  const {
1408
1409  // Emit Hi+Offset - Lo
1410  // Get the Hi+Offset expression.
1411  const MCExpr *Plus =
1412    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1413                            MCConstantExpr::Create(Offset, OutContext),
1414                            OutContext);
1415
1416  // Get the Hi+Offset-Lo expression.
1417  const MCExpr *Diff =
1418    MCBinaryExpr::CreateSub(Plus,
1419                            MCSymbolRefExpr::Create(Lo, OutContext),
1420                            OutContext);
1421
1422  if (!MAI->hasSetDirective())
1423    OutStreamer.EmitValue(Diff, 4);
1424  else {
1425    // Otherwise, emit with .set (aka assignment).
1426    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1427    OutStreamer.EmitAssignment(SetLabel, Diff);
1428    OutStreamer.EmitSymbolValue(SetLabel, 4);
1429  }
1430}
1431
1432/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1433/// where the size in bytes of the directive is specified by Size and Label
1434/// specifies the label.  This implicitly uses .set if it is available.
1435void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1436                                      unsigned Size, bool IsSectionRelative)
1437  const {
1438  if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1439    OutStreamer.EmitCOFFSecRel32(Label);
1440    return;
1441  }
1442
1443  // Emit Label+Offset (or just Label if Offset is zero)
1444  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1445  if (Offset)
1446    Expr = MCBinaryExpr::CreateAdd(Expr,
1447                                   MCConstantExpr::Create(Offset, OutContext),
1448                                   OutContext);
1449
1450  OutStreamer.EmitValue(Expr, Size);
1451}
1452
1453
1454//===----------------------------------------------------------------------===//
1455
1456// EmitAlignment - Emit an alignment directive to the specified power of
1457// two boundary.  For example, if you pass in 3 here, you will get an 8
1458// byte alignment.  If a global value is specified, and if that global has
1459// an explicit alignment requested, it will override the alignment request
1460// if required for correctness.
1461//
1462void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1463  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1464
1465  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1466
1467  if (getCurrentSection()->getKind().isText())
1468    OutStreamer.EmitCodeAlignment(1 << NumBits);
1469  else
1470    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1471}
1472
1473//===----------------------------------------------------------------------===//
1474// Constant emission.
1475//===----------------------------------------------------------------------===//
1476
1477/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1478///
1479static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1480  MCContext &Ctx = AP.OutContext;
1481
1482  if (CV->isNullValue() || isa<UndefValue>(CV))
1483    return MCConstantExpr::Create(0, Ctx);
1484
1485  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1486    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1487
1488  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1489    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1490
1491  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1492    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1493
1494  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1495  if (CE == 0) {
1496    llvm_unreachable("Unknown constant value to lower!");
1497  }
1498
1499  switch (CE->getOpcode()) {
1500  default:
1501    // If the code isn't optimized, there may be outstanding folding
1502    // opportunities. Attempt to fold the expression using DataLayout as a
1503    // last resort before giving up.
1504    if (Constant *C =
1505          ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1506      if (C != CE)
1507        return lowerConstant(C, AP);
1508
1509    // Otherwise report the problem to the user.
1510    {
1511      std::string S;
1512      raw_string_ostream OS(S);
1513      OS << "Unsupported expression in static initializer: ";
1514      WriteAsOperand(OS, CE, /*PrintType=*/false,
1515                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1516      report_fatal_error(OS.str());
1517    }
1518  case Instruction::GetElementPtr: {
1519    const DataLayout &DL = *AP.TM.getDataLayout();
1520    // Generate a symbolic expression for the byte address
1521    APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
1522    cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
1523
1524    const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1525    if (!OffsetAI)
1526      return Base;
1527
1528    int64_t Offset = OffsetAI.getSExtValue();
1529    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1530                                   Ctx);
1531  }
1532
1533  case Instruction::Trunc:
1534    // We emit the value and depend on the assembler to truncate the generated
1535    // expression properly.  This is important for differences between
1536    // blockaddress labels.  Since the two labels are in the same function, it
1537    // is reasonable to treat their delta as a 32-bit value.
1538    // FALL THROUGH.
1539  case Instruction::BitCast:
1540    return lowerConstant(CE->getOperand(0), AP);
1541
1542  case Instruction::IntToPtr: {
1543    const DataLayout &DL = *AP.TM.getDataLayout();
1544    // Handle casts to pointers by changing them into casts to the appropriate
1545    // integer type.  This promotes constant folding and simplifies this code.
1546    Constant *Op = CE->getOperand(0);
1547    Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1548                                      false/*ZExt*/);
1549    return lowerConstant(Op, AP);
1550  }
1551
1552  case Instruction::PtrToInt: {
1553    const DataLayout &DL = *AP.TM.getDataLayout();
1554    // Support only foldable casts to/from pointers that can be eliminated by
1555    // changing the pointer to the appropriately sized integer type.
1556    Constant *Op = CE->getOperand(0);
1557    Type *Ty = CE->getType();
1558
1559    const MCExpr *OpExpr = lowerConstant(Op, AP);
1560
1561    // We can emit the pointer value into this slot if the slot is an
1562    // integer slot equal to the size of the pointer.
1563    if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1564      return OpExpr;
1565
1566    // Otherwise the pointer is smaller than the resultant integer, mask off
1567    // the high bits so we are sure to get a proper truncation if the input is
1568    // a constant expr.
1569    unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1570    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1571    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1572  }
1573
1574  // The MC library also has a right-shift operator, but it isn't consistently
1575  // signed or unsigned between different targets.
1576  case Instruction::Add:
1577  case Instruction::Sub:
1578  case Instruction::Mul:
1579  case Instruction::SDiv:
1580  case Instruction::SRem:
1581  case Instruction::Shl:
1582  case Instruction::And:
1583  case Instruction::Or:
1584  case Instruction::Xor: {
1585    const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1586    const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1587    switch (CE->getOpcode()) {
1588    default: llvm_unreachable("Unknown binary operator constant cast expr");
1589    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1590    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1591    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1592    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1593    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1594    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1595    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1596    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1597    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1598    }
1599  }
1600  }
1601}
1602
1603static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP);
1604
1605/// isRepeatedByteSequence - Determine whether the given value is
1606/// composed of a repeated sequence of identical bytes and return the
1607/// byte value.  If it is not a repeated sequence, return -1.
1608static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1609  StringRef Data = V->getRawDataValues();
1610  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1611  char C = Data[0];
1612  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1613    if (Data[i] != C) return -1;
1614  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1615}
1616
1617
1618/// isRepeatedByteSequence - Determine whether the given value is
1619/// composed of a repeated sequence of identical bytes and return the
1620/// byte value.  If it is not a repeated sequence, return -1.
1621static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1622
1623  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1624    if (CI->getBitWidth() > 64) return -1;
1625
1626    uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1627    uint64_t Value = CI->getZExtValue();
1628
1629    // Make sure the constant is at least 8 bits long and has a power
1630    // of 2 bit width.  This guarantees the constant bit width is
1631    // always a multiple of 8 bits, avoiding issues with padding out
1632    // to Size and other such corner cases.
1633    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1634
1635    uint8_t Byte = static_cast<uint8_t>(Value);
1636
1637    for (unsigned i = 1; i < Size; ++i) {
1638      Value >>= 8;
1639      if (static_cast<uint8_t>(Value) != Byte) return -1;
1640    }
1641    return Byte;
1642  }
1643  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1644    // Make sure all array elements are sequences of the same repeated
1645    // byte.
1646    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1647    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1648    if (Byte == -1) return -1;
1649
1650    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1651      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1652      if (ThisByte == -1) return -1;
1653      if (Byte != ThisByte) return -1;
1654    }
1655    return Byte;
1656  }
1657
1658  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1659    return isRepeatedByteSequence(CDS);
1660
1661  return -1;
1662}
1663
1664static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1665                                             AsmPrinter &AP){
1666
1667  // See if we can aggregate this into a .fill, if so, emit it as such.
1668  int Value = isRepeatedByteSequence(CDS, AP.TM);
1669  if (Value != -1) {
1670    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1671    // Don't emit a 1-byte object as a .fill.
1672    if (Bytes > 1)
1673      return AP.OutStreamer.EmitFill(Bytes, Value);
1674  }
1675
1676  // If this can be emitted with .ascii/.asciz, emit it as such.
1677  if (CDS->isString())
1678    return AP.OutStreamer.EmitBytes(CDS->getAsString());
1679
1680  // Otherwise, emit the values in successive locations.
1681  unsigned ElementByteSize = CDS->getElementByteSize();
1682  if (isa<IntegerType>(CDS->getElementType())) {
1683    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1684      if (AP.isVerbose())
1685        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1686                                                CDS->getElementAsInteger(i));
1687      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1688                                  ElementByteSize);
1689    }
1690  } else if (ElementByteSize == 4) {
1691    // FP Constants are printed as integer constants to avoid losing
1692    // precision.
1693    assert(CDS->getElementType()->isFloatTy());
1694    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1695      union {
1696        float F;
1697        uint32_t I;
1698      };
1699
1700      F = CDS->getElementAsFloat(i);
1701      if (AP.isVerbose())
1702        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1703      AP.OutStreamer.EmitIntValue(I, 4);
1704    }
1705  } else {
1706    assert(CDS->getElementType()->isDoubleTy());
1707    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1708      union {
1709        double F;
1710        uint64_t I;
1711      };
1712
1713      F = CDS->getElementAsDouble(i);
1714      if (AP.isVerbose())
1715        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1716      AP.OutStreamer.EmitIntValue(I, 8);
1717    }
1718  }
1719
1720  const DataLayout &DL = *AP.TM.getDataLayout();
1721  unsigned Size = DL.getTypeAllocSize(CDS->getType());
1722  unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
1723                        CDS->getNumElements();
1724  if (unsigned Padding = Size - EmittedSize)
1725    AP.OutStreamer.EmitZeros(Padding);
1726
1727}
1728
1729static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
1730  // See if we can aggregate some values.  Make sure it can be
1731  // represented as a series of bytes of the constant value.
1732  int Value = isRepeatedByteSequence(CA, AP.TM);
1733
1734  if (Value != -1) {
1735    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1736    AP.OutStreamer.EmitFill(Bytes, Value);
1737  }
1738  else {
1739    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1740      emitGlobalConstantImpl(CA->getOperand(i), AP);
1741  }
1742}
1743
1744static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
1745  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1746    emitGlobalConstantImpl(CV->getOperand(i), AP);
1747
1748  const DataLayout &DL = *AP.TM.getDataLayout();
1749  unsigned Size = DL.getTypeAllocSize(CV->getType());
1750  unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
1751                         CV->getType()->getNumElements();
1752  if (unsigned Padding = Size - EmittedSize)
1753    AP.OutStreamer.EmitZeros(Padding);
1754}
1755
1756static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
1757  // Print the fields in successive locations. Pad to align if needed!
1758  const DataLayout *DL = AP.TM.getDataLayout();
1759  unsigned Size = DL->getTypeAllocSize(CS->getType());
1760  const StructLayout *Layout = DL->getStructLayout(CS->getType());
1761  uint64_t SizeSoFar = 0;
1762  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1763    const Constant *Field = CS->getOperand(i);
1764
1765    // Check if padding is needed and insert one or more 0s.
1766    uint64_t FieldSize = DL->getTypeAllocSize(Field->getType());
1767    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1768                        - Layout->getElementOffset(i)) - FieldSize;
1769    SizeSoFar += FieldSize + PadSize;
1770
1771    // Now print the actual field value.
1772    emitGlobalConstantImpl(Field, AP);
1773
1774    // Insert padding - this may include padding to increase the size of the
1775    // current field up to the ABI size (if the struct is not packed) as well
1776    // as padding to ensure that the next field starts at the right offset.
1777    AP.OutStreamer.EmitZeros(PadSize);
1778  }
1779  assert(SizeSoFar == Layout->getSizeInBytes() &&
1780         "Layout of constant struct may be incorrect!");
1781}
1782
1783static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
1784  APInt API = CFP->getValueAPF().bitcastToAPInt();
1785
1786  // First print a comment with what we think the original floating-point value
1787  // should have been.
1788  if (AP.isVerbose()) {
1789    SmallString<8> StrVal;
1790    CFP->getValueAPF().toString(StrVal);
1791
1792    CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1793    AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1794  }
1795
1796  // Now iterate through the APInt chunks, emitting them in endian-correct
1797  // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1798  // floats).
1799  unsigned NumBytes = API.getBitWidth() / 8;
1800  unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1801  const uint64_t *p = API.getRawData();
1802
1803  // PPC's long double has odd notions of endianness compared to how LLVM
1804  // handles it: p[0] goes first for *big* endian on PPC.
1805  if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
1806    int Chunk = API.getNumWords() - 1;
1807
1808    if (TrailingBytes)
1809      AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
1810
1811    for (; Chunk >= 0; --Chunk)
1812      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1813  } else {
1814    unsigned Chunk;
1815    for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
1816      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1817
1818    if (TrailingBytes)
1819      AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
1820  }
1821
1822  // Emit the tail padding for the long double.
1823  const DataLayout &DL = *AP.TM.getDataLayout();
1824  AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
1825                           DL.getTypeStoreSize(CFP->getType()));
1826}
1827
1828static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
1829  const DataLayout *DL = AP.TM.getDataLayout();
1830  unsigned BitWidth = CI->getBitWidth();
1831
1832  // Copy the value as we may massage the layout for constants whose bit width
1833  // is not a multiple of 64-bits.
1834  APInt Realigned(CI->getValue());
1835  uint64_t ExtraBits = 0;
1836  unsigned ExtraBitsSize = BitWidth & 63;
1837
1838  if (ExtraBitsSize) {
1839    // The bit width of the data is not a multiple of 64-bits.
1840    // The extra bits are expected to be at the end of the chunk of the memory.
1841    // Little endian:
1842    // * Nothing to be done, just record the extra bits to emit.
1843    // Big endian:
1844    // * Record the extra bits to emit.
1845    // * Realign the raw data to emit the chunks of 64-bits.
1846    if (DL->isBigEndian()) {
1847      // Basically the structure of the raw data is a chunk of 64-bits cells:
1848      //    0        1         BitWidth / 64
1849      // [chunk1][chunk2] ... [chunkN].
1850      // The most significant chunk is chunkN and it should be emitted first.
1851      // However, due to the alignment issue chunkN contains useless bits.
1852      // Realign the chunks so that they contain only useless information:
1853      // ExtraBits     0       1       (BitWidth / 64) - 1
1854      //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
1855      ExtraBits = Realigned.getRawData()[0] &
1856        (((uint64_t)-1) >> (64 - ExtraBitsSize));
1857      Realigned = Realigned.lshr(ExtraBitsSize);
1858    } else
1859      ExtraBits = Realigned.getRawData()[BitWidth / 64];
1860  }
1861
1862  // We don't expect assemblers to support integer data directives
1863  // for more than 64 bits, so we emit the data in at most 64-bit
1864  // quantities at a time.
1865  const uint64_t *RawData = Realigned.getRawData();
1866  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1867    uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1868    AP.OutStreamer.EmitIntValue(Val, 8);
1869  }
1870
1871  if (ExtraBitsSize) {
1872    // Emit the extra bits after the 64-bits chunks.
1873
1874    // Emit a directive that fills the expected size.
1875    uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
1876    Size -= (BitWidth / 64) * 8;
1877    assert(Size && Size * 8 >= ExtraBitsSize &&
1878           (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
1879           == ExtraBits && "Directive too small for extra bits.");
1880    AP.OutStreamer.EmitIntValue(ExtraBits, Size);
1881  }
1882}
1883
1884static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
1885  const DataLayout *DL = AP.TM.getDataLayout();
1886  uint64_t Size = DL->getTypeAllocSize(CV->getType());
1887  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1888    return AP.OutStreamer.EmitZeros(Size);
1889
1890  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1891    switch (Size) {
1892    case 1:
1893    case 2:
1894    case 4:
1895    case 8:
1896      if (AP.isVerbose())
1897        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1898                                                CI->getZExtValue());
1899      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
1900      return;
1901    default:
1902      emitGlobalConstantLargeInt(CI, AP);
1903      return;
1904    }
1905  }
1906
1907  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1908    return emitGlobalConstantFP(CFP, AP);
1909
1910  if (isa<ConstantPointerNull>(CV)) {
1911    AP.OutStreamer.EmitIntValue(0, Size);
1912    return;
1913  }
1914
1915  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1916    return emitGlobalConstantDataSequential(CDS, AP);
1917
1918  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1919    return emitGlobalConstantArray(CVA, AP);
1920
1921  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1922    return emitGlobalConstantStruct(CVS, AP);
1923
1924  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1925    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1926    // vectors).
1927    if (CE->getOpcode() == Instruction::BitCast)
1928      return emitGlobalConstantImpl(CE->getOperand(0), AP);
1929
1930    if (Size > 8) {
1931      // If the constant expression's size is greater than 64-bits, then we have
1932      // to emit the value in chunks. Try to constant fold the value and emit it
1933      // that way.
1934      Constant *New = ConstantFoldConstantExpression(CE, DL);
1935      if (New && New != CE)
1936        return emitGlobalConstantImpl(New, AP);
1937    }
1938  }
1939
1940  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1941    return emitGlobalConstantVector(V, AP);
1942
1943  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1944  // thread the streamer with EmitValue.
1945  AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size);
1946}
1947
1948/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1949void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
1950  uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
1951  if (Size)
1952    emitGlobalConstantImpl(CV, *this);
1953  else if (MAI->hasSubsectionsViaSymbols()) {
1954    // If the global has zero size, emit a single byte so that two labels don't
1955    // look like they are at the same location.
1956    OutStreamer.EmitIntValue(0, 1);
1957  }
1958}
1959
1960void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1961  // Target doesn't support this yet!
1962  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1963}
1964
1965void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1966  if (Offset > 0)
1967    OS << '+' << Offset;
1968  else if (Offset < 0)
1969    OS << Offset;
1970}
1971
1972//===----------------------------------------------------------------------===//
1973// Symbol Lowering Routines.
1974//===----------------------------------------------------------------------===//
1975
1976/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1977/// temporary label with the specified stem and unique ID.
1978MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1979  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1980                                      Name + Twine(ID));
1981}
1982
1983/// GetTempSymbol - Return an assembler temporary label with the specified
1984/// stem.
1985MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1986  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1987                                      Name);
1988}
1989
1990
1991MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1992  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1993}
1994
1995MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1996  return MMI->getAddrLabelSymbol(BB);
1997}
1998
1999/// GetCPISymbol - Return the symbol for the specified constant pool entry.
2000MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2001  return OutContext.GetOrCreateSymbol
2002    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
2003     + "_" + Twine(CPID));
2004}
2005
2006/// GetJTISymbol - Return the symbol for the specified jump table entry.
2007MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2008  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2009}
2010
2011/// GetJTSetSymbol - Return the symbol for the specified jump table .set
2012/// FIXME: privatize to AsmPrinter.
2013MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2014  return OutContext.GetOrCreateSymbol
2015  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
2016   Twine(UID) + "_set_" + Twine(MBBID));
2017}
2018
2019/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
2020/// global value name as its base, with the specified suffix, and where the
2021/// symbol is forced to have private linkage if ForcePrivate is true.
2022MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
2023                                                   StringRef Suffix,
2024                                                   bool ForcePrivate) const {
2025  SmallString<60> NameStr;
2026  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
2027  NameStr.append(Suffix.begin(), Suffix.end());
2028  return OutContext.GetOrCreateSymbol(NameStr.str());
2029}
2030
2031/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2032/// ExternalSymbol.
2033MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2034  SmallString<60> NameStr;
2035  Mang->getNameWithPrefix(NameStr, Sym);
2036  return OutContext.GetOrCreateSymbol(NameStr.str());
2037}
2038
2039
2040
2041/// PrintParentLoopComment - Print comments about parent loops of this one.
2042static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2043                                   unsigned FunctionNumber) {
2044  if (Loop == 0) return;
2045  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2046  OS.indent(Loop->getLoopDepth()*2)
2047    << "Parent Loop BB" << FunctionNumber << "_"
2048    << Loop->getHeader()->getNumber()
2049    << " Depth=" << Loop->getLoopDepth() << '\n';
2050}
2051
2052
2053/// PrintChildLoopComment - Print comments about child loops within
2054/// the loop for this basic block, with nesting.
2055static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2056                                  unsigned FunctionNumber) {
2057  // Add child loop information
2058  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2059    OS.indent((*CL)->getLoopDepth()*2)
2060      << "Child Loop BB" << FunctionNumber << "_"
2061      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2062      << '\n';
2063    PrintChildLoopComment(OS, *CL, FunctionNumber);
2064  }
2065}
2066
2067/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2068static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2069                                       const MachineLoopInfo *LI,
2070                                       const AsmPrinter &AP) {
2071  // Add loop depth information
2072  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2073  if (Loop == 0) return;
2074
2075  MachineBasicBlock *Header = Loop->getHeader();
2076  assert(Header && "No header for loop");
2077
2078  // If this block is not a loop header, just print out what is the loop header
2079  // and return.
2080  if (Header != &MBB) {
2081    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2082                              Twine(AP.getFunctionNumber())+"_" +
2083                              Twine(Loop->getHeader()->getNumber())+
2084                              " Depth="+Twine(Loop->getLoopDepth()));
2085    return;
2086  }
2087
2088  // Otherwise, it is a loop header.  Print out information about child and
2089  // parent loops.
2090  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2091
2092  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2093
2094  OS << "=>";
2095  OS.indent(Loop->getLoopDepth()*2-2);
2096
2097  OS << "This ";
2098  if (Loop->empty())
2099    OS << "Inner ";
2100  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2101
2102  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2103}
2104
2105
2106/// EmitBasicBlockStart - This method prints the label for the specified
2107/// MachineBasicBlock, an alignment (if present) and a comment describing
2108/// it if appropriate.
2109void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2110  // Emit an alignment directive for this block, if needed.
2111  if (unsigned Align = MBB->getAlignment())
2112    EmitAlignment(Align);
2113
2114  // If the block has its address taken, emit any labels that were used to
2115  // reference the block.  It is possible that there is more than one label
2116  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2117  // the references were generated.
2118  if (MBB->hasAddressTaken()) {
2119    const BasicBlock *BB = MBB->getBasicBlock();
2120    if (isVerbose())
2121      OutStreamer.AddComment("Block address taken");
2122
2123    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2124
2125    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2126      OutStreamer.EmitLabel(Syms[i]);
2127  }
2128
2129  // Print some verbose block comments.
2130  if (isVerbose()) {
2131    if (const BasicBlock *BB = MBB->getBasicBlock())
2132      if (BB->hasName())
2133        OutStreamer.AddComment("%" + BB->getName());
2134    emitBasicBlockLoopComments(*MBB, LI, *this);
2135  }
2136
2137  // Print the main label for the block.
2138  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2139    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2140      // NOTE: Want this comment at start of line, don't emit with AddComment.
2141      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2142                              Twine(MBB->getNumber()) + ":");
2143    }
2144  } else {
2145    OutStreamer.EmitLabel(MBB->getSymbol());
2146  }
2147}
2148
2149void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2150                                bool IsDefinition) const {
2151  MCSymbolAttr Attr = MCSA_Invalid;
2152
2153  switch (Visibility) {
2154  default: break;
2155  case GlobalValue::HiddenVisibility:
2156    if (IsDefinition)
2157      Attr = MAI->getHiddenVisibilityAttr();
2158    else
2159      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2160    break;
2161  case GlobalValue::ProtectedVisibility:
2162    Attr = MAI->getProtectedVisibilityAttr();
2163    break;
2164  }
2165
2166  if (Attr != MCSA_Invalid)
2167    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2168}
2169
2170/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2171/// exactly one predecessor and the control transfer mechanism between
2172/// the predecessor and this block is a fall-through.
2173bool AsmPrinter::
2174isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2175  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2176  // then nothing falls through to it.
2177  if (MBB->isLandingPad() || MBB->pred_empty())
2178    return false;
2179
2180  // If there isn't exactly one predecessor, it can't be a fall through.
2181  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2182  ++PI2;
2183  if (PI2 != MBB->pred_end())
2184    return false;
2185
2186  // The predecessor has to be immediately before this block.
2187  MachineBasicBlock *Pred = *PI;
2188
2189  if (!Pred->isLayoutSuccessor(MBB))
2190    return false;
2191
2192  // If the block is completely empty, then it definitely does fall through.
2193  if (Pred->empty())
2194    return true;
2195
2196  // Check the terminators in the previous blocks
2197  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2198         IE = Pred->end(); II != IE; ++II) {
2199    MachineInstr &MI = *II;
2200
2201    // If it is not a simple branch, we are in a table somewhere.
2202    if (!MI.isBranch() || MI.isIndirectBranch())
2203      return false;
2204
2205    // If we are the operands of one of the branches, this is not
2206    // a fall through.
2207    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2208           OE = MI.operands_end(); OI != OE; ++OI) {
2209      const MachineOperand& OP = *OI;
2210      if (OP.isJTI())
2211        return false;
2212      if (OP.isMBB() && OP.getMBB() == MBB)
2213        return false;
2214    }
2215  }
2216
2217  return true;
2218}
2219
2220
2221
2222GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2223  if (!S->usesMetadata())
2224    return 0;
2225
2226  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2227  gcp_map_type::iterator GCPI = GCMap.find(S);
2228  if (GCPI != GCMap.end())
2229    return GCPI->second;
2230
2231  const char *Name = S->getName().c_str();
2232
2233  for (GCMetadataPrinterRegistry::iterator
2234         I = GCMetadataPrinterRegistry::begin(),
2235         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2236    if (strcmp(Name, I->getName()) == 0) {
2237      GCMetadataPrinter *GMP = I->instantiate();
2238      GMP->S = S;
2239      GCMap.insert(std::make_pair(S, GMP));
2240      return GMP;
2241    }
2242
2243  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2244}
2245