AsmPrinter.cpp revision 39646d96e76aea5d20bffb386233a0dbb5932a21
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/DebugInfo.h"
19#include "llvm/Module.h"
20#include "llvm/CodeGen/GCMetadataPrinter.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineLoopInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/MC/MCAsmInfo.h"
29#include "llvm/MC/MCContext.h"
30#include "llvm/MC/MCExpr.h"
31#include "llvm/MC/MCInst.h"
32#include "llvm/MC/MCSection.h"
33#include "llvm/MC/MCStreamer.h"
34#include "llvm/MC/MCSymbol.h"
35#include "llvm/Target/Mangler.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetLowering.h"
39#include "llvm/Target/TargetLoweringObjectFile.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Assembly/Writer.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/Format.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/Timer.h"
49using namespace llvm;
50
51static const char *DWARFGroupName = "DWARF Emission";
52static const char *DbgTimerName = "DWARF Debug Writer";
53static const char *EHTimerName = "DWARF Exception Writer";
54
55STATISTIC(EmittedInsts, "Number of machine instrs printed");
56
57char AsmPrinter::ID = 0;
58
59typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
60static gcp_map_type &getGCMap(void *&P) {
61  if (P == 0)
62    P = new gcp_map_type();
63  return *(gcp_map_type*)P;
64}
65
66
67/// getGVAlignmentLog2 - Return the alignment to use for the specified global
68/// value in log2 form.  This rounds up to the preferred alignment if possible
69/// and legal.
70static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
71                                   unsigned InBits = 0) {
72  unsigned NumBits = 0;
73  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
74    NumBits = TD.getPreferredAlignmentLog(GVar);
75
76  // If InBits is specified, round it to it.
77  if (InBits > NumBits)
78    NumBits = InBits;
79
80  // If the GV has a specified alignment, take it into account.
81  if (GV->getAlignment() == 0)
82    return NumBits;
83
84  unsigned GVAlign = Log2_32(GV->getAlignment());
85
86  // If the GVAlign is larger than NumBits, or if we are required to obey
87  // NumBits because the GV has an assigned section, obey it.
88  if (GVAlign > NumBits || GV->hasSection())
89    NumBits = GVAlign;
90  return NumBits;
91}
92
93
94
95
96AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
97  : MachineFunctionPass(ID),
98    TM(tm), MAI(tm.getMCAsmInfo()),
99    OutContext(Streamer.getContext()),
100    OutStreamer(Streamer),
101    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
102  DD = 0; DE = 0; MMI = 0; LI = 0;
103  CurrentFnSym = CurrentFnSymForSize = 0;
104  GCMetadataPrinters = 0;
105  VerboseAsm = Streamer.isVerboseAsm();
106}
107
108AsmPrinter::~AsmPrinter() {
109  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
110
111  if (GCMetadataPrinters != 0) {
112    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
113
114    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
115      delete I->second;
116    delete &GCMap;
117    GCMetadataPrinters = 0;
118  }
119
120  delete &OutStreamer;
121}
122
123/// getFunctionNumber - Return a unique ID for the current function.
124///
125unsigned AsmPrinter::getFunctionNumber() const {
126  return MF->getFunctionNumber();
127}
128
129const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
130  return TM.getTargetLowering()->getObjFileLowering();
131}
132
133
134/// getTargetData - Return information about data layout.
135const TargetData &AsmPrinter::getTargetData() const {
136  return *TM.getTargetData();
137}
138
139/// getCurrentSection() - Return the current section we are emitting to.
140const MCSection *AsmPrinter::getCurrentSection() const {
141  return OutStreamer.getCurrentSection();
142}
143
144
145
146void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
147  AU.setPreservesAll();
148  MachineFunctionPass::getAnalysisUsage(AU);
149  AU.addRequired<MachineModuleInfo>();
150  AU.addRequired<GCModuleInfo>();
151  if (isVerbose())
152    AU.addRequired<MachineLoopInfo>();
153}
154
155bool AsmPrinter::doInitialization(Module &M) {
156  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
157  MMI->AnalyzeModule(M);
158
159  // Initialize TargetLoweringObjectFile.
160  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
161    .Initialize(OutContext, TM);
162
163  Mang = new Mangler(OutContext, *TM.getTargetData());
164
165  // Allow the target to emit any magic that it wants at the start of the file.
166  EmitStartOfAsmFile(M);
167
168  // Very minimal debug info. It is ignored if we emit actual debug info. If we
169  // don't, this at least helps the user find where a global came from.
170  if (MAI->hasSingleParameterDotFile()) {
171    // .file "foo.c"
172    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
173  }
174
175  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
176  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
177  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
178    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
179      MP->beginAssembly(*this);
180
181  // Emit module-level inline asm if it exists.
182  if (!M.getModuleInlineAsm().empty()) {
183    OutStreamer.AddComment("Start of file scope inline assembly");
184    OutStreamer.AddBlankLine();
185    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
186    OutStreamer.AddComment("End of file scope inline assembly");
187    OutStreamer.AddBlankLine();
188  }
189
190  if (MAI->doesSupportDebugInformation())
191    DD = new DwarfDebug(this, &M);
192
193  switch (MAI->getExceptionHandlingType()) {
194  case ExceptionHandling::None:
195    return false;
196  case ExceptionHandling::SjLj:
197  case ExceptionHandling::DwarfCFI:
198    DE = new DwarfCFIException(this);
199    return false;
200  case ExceptionHandling::ARM:
201    DE = new ARMException(this);
202    return false;
203  case ExceptionHandling::Win64:
204    DE = new Win64Exception(this);
205    return false;
206  }
207
208  llvm_unreachable("Unknown exception type.");
209}
210
211void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
212  switch ((GlobalValue::LinkageTypes)Linkage) {
213  case GlobalValue::CommonLinkage:
214  case GlobalValue::LinkOnceAnyLinkage:
215  case GlobalValue::LinkOnceODRLinkage:
216  case GlobalValue::LinkOnceODRAutoHideLinkage:
217  case GlobalValue::WeakAnyLinkage:
218  case GlobalValue::WeakODRLinkage:
219  case GlobalValue::LinkerPrivateWeakLinkage:
220    if (MAI->getWeakDefDirective() != 0) {
221      // .globl _foo
222      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
223
224      if ((GlobalValue::LinkageTypes)Linkage !=
225          GlobalValue::LinkOnceODRAutoHideLinkage)
226        // .weak_definition _foo
227        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
228      else
229        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
230    } else if (MAI->getLinkOnceDirective() != 0) {
231      // .globl _foo
232      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
233      //NOTE: linkonce is handled by the section the symbol was assigned to.
234    } else {
235      // .weak _foo
236      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
237    }
238    break;
239  case GlobalValue::DLLExportLinkage:
240  case GlobalValue::AppendingLinkage:
241    // FIXME: appending linkage variables should go into a section of
242    // their name or something.  For now, just emit them as external.
243  case GlobalValue::ExternalLinkage:
244    // If external or appending, declare as a global symbol.
245    // .globl _foo
246    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
247    break;
248  case GlobalValue::PrivateLinkage:
249  case GlobalValue::InternalLinkage:
250  case GlobalValue::LinkerPrivateLinkage:
251    break;
252  default:
253    llvm_unreachable("Unknown linkage type!");
254  }
255}
256
257
258/// EmitGlobalVariable - Emit the specified global variable to the .s file.
259void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
260  if (GV->hasInitializer()) {
261    // Check to see if this is a special global used by LLVM, if so, emit it.
262    if (EmitSpecialLLVMGlobal(GV))
263      return;
264
265    if (isVerbose()) {
266      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
267                     /*PrintType=*/false, GV->getParent());
268      OutStreamer.GetCommentOS() << '\n';
269    }
270  }
271
272  MCSymbol *GVSym = Mang->getSymbol(GV);
273  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
274
275  if (!GV->hasInitializer())   // External globals require no extra code.
276    return;
277
278  if (MAI->hasDotTypeDotSizeDirective())
279    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
280
281  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
282
283  const TargetData *TD = TM.getTargetData();
284  uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
285
286  // If the alignment is specified, we *must* obey it.  Overaligning a global
287  // with a specified alignment is a prompt way to break globals emitted to
288  // sections and expected to be contiguous (e.g. ObjC metadata).
289  unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
290
291  // Handle common and BSS local symbols (.lcomm).
292  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
293    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
294    unsigned Align = 1 << AlignLog;
295
296    // Handle common symbols.
297    if (GVKind.isCommon()) {
298      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
299        Align = 0;
300
301      // .comm _foo, 42, 4
302      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
303      return;
304    }
305
306    // Handle local BSS symbols.
307    if (MAI->hasMachoZeroFillDirective()) {
308      const MCSection *TheSection =
309        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
310      // .zerofill __DATA, __bss, _foo, 400, 5
311      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
312      return;
313    }
314
315    if (Align == 1 || MAI->getLCOMMDirectiveSupportsAlignment()) {
316      // .lcomm _foo, 42
317      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
318      return;
319    }
320
321    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
322      Align = 0;
323
324    // .local _foo
325    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
326    // .comm _foo, 42, 4
327    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
328    return;
329  }
330
331  const MCSection *TheSection =
332    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
333
334  // Handle the zerofill directive on darwin, which is a special form of BSS
335  // emission.
336  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
337    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
338
339    // .globl _foo
340    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
341    // .zerofill __DATA, __common, _foo, 400, 5
342    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
343    return;
344  }
345
346  // Handle thread local data for mach-o which requires us to output an
347  // additional structure of data and mangle the original symbol so that we
348  // can reference it later.
349  //
350  // TODO: This should become an "emit thread local global" method on TLOF.
351  // All of this macho specific stuff should be sunk down into TLOFMachO and
352  // stuff like "TLSExtraDataSection" should no longer be part of the parent
353  // TLOF class.  This will also make it more obvious that stuff like
354  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
355  // specific code.
356  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
357    // Emit the .tbss symbol
358    MCSymbol *MangSym =
359      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
360
361    if (GVKind.isThreadBSS())
362      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
363    else if (GVKind.isThreadData()) {
364      OutStreamer.SwitchSection(TheSection);
365
366      EmitAlignment(AlignLog, GV);
367      OutStreamer.EmitLabel(MangSym);
368
369      EmitGlobalConstant(GV->getInitializer());
370    }
371
372    OutStreamer.AddBlankLine();
373
374    // Emit the variable struct for the runtime.
375    const MCSection *TLVSect
376      = getObjFileLowering().getTLSExtraDataSection();
377
378    OutStreamer.SwitchSection(TLVSect);
379    // Emit the linkage here.
380    EmitLinkage(GV->getLinkage(), GVSym);
381    OutStreamer.EmitLabel(GVSym);
382
383    // Three pointers in size:
384    //   - __tlv_bootstrap - used to make sure support exists
385    //   - spare pointer, used when mapped by the runtime
386    //   - pointer to mangled symbol above with initializer
387    unsigned PtrSize = TD->getPointerSizeInBits()/8;
388    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
389                          PtrSize, 0);
390    OutStreamer.EmitIntValue(0, PtrSize, 0);
391    OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
392
393    OutStreamer.AddBlankLine();
394    return;
395  }
396
397  OutStreamer.SwitchSection(TheSection);
398
399  EmitLinkage(GV->getLinkage(), GVSym);
400  EmitAlignment(AlignLog, GV);
401
402  OutStreamer.EmitLabel(GVSym);
403
404  EmitGlobalConstant(GV->getInitializer());
405
406  if (MAI->hasDotTypeDotSizeDirective())
407    // .size foo, 42
408    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
409
410  OutStreamer.AddBlankLine();
411}
412
413/// EmitFunctionHeader - This method emits the header for the current
414/// function.
415void AsmPrinter::EmitFunctionHeader() {
416  // Print out constants referenced by the function
417  EmitConstantPool();
418
419  // Print the 'header' of function.
420  const Function *F = MF->getFunction();
421
422  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
423  EmitVisibility(CurrentFnSym, F->getVisibility());
424
425  EmitLinkage(F->getLinkage(), CurrentFnSym);
426  EmitAlignment(MF->getAlignment(), F);
427
428  if (MAI->hasDotTypeDotSizeDirective())
429    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
430
431  if (isVerbose()) {
432    WriteAsOperand(OutStreamer.GetCommentOS(), F,
433                   /*PrintType=*/false, F->getParent());
434    OutStreamer.GetCommentOS() << '\n';
435  }
436
437  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
438  // do their wild and crazy things as required.
439  EmitFunctionEntryLabel();
440
441  // If the function had address-taken blocks that got deleted, then we have
442  // references to the dangling symbols.  Emit them at the start of the function
443  // so that we don't get references to undefined symbols.
444  std::vector<MCSymbol*> DeadBlockSyms;
445  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
446  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
447    OutStreamer.AddComment("Address taken block that was later removed");
448    OutStreamer.EmitLabel(DeadBlockSyms[i]);
449  }
450
451  // Add some workaround for linkonce linkage on Cygwin\MinGW.
452  if (MAI->getLinkOnceDirective() != 0 &&
453      (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
454    // FIXME: What is this?
455    MCSymbol *FakeStub =
456      OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
457                                   CurrentFnSym->getName());
458    OutStreamer.EmitLabel(FakeStub);
459  }
460
461  // Emit pre-function debug and/or EH information.
462  if (DE) {
463    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
464    DE->BeginFunction(MF);
465  }
466  if (DD) {
467    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
468    DD->beginFunction(MF);
469  }
470}
471
472/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
473/// function.  This can be overridden by targets as required to do custom stuff.
474void AsmPrinter::EmitFunctionEntryLabel() {
475  // The function label could have already been emitted if two symbols end up
476  // conflicting due to asm renaming.  Detect this and emit an error.
477  if (CurrentFnSym->isUndefined())
478    return OutStreamer.EmitLabel(CurrentFnSym);
479
480  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
481                     "' label emitted multiple times to assembly file");
482}
483
484
485/// EmitComments - Pretty-print comments for instructions.
486static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
487  const MachineFunction *MF = MI.getParent()->getParent();
488  const TargetMachine &TM = MF->getTarget();
489
490  // Check for spills and reloads
491  int FI;
492
493  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
494
495  // We assume a single instruction only has a spill or reload, not
496  // both.
497  const MachineMemOperand *MMO;
498  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
499    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
500      MMO = *MI.memoperands_begin();
501      CommentOS << MMO->getSize() << "-byte Reload\n";
502    }
503  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
504    if (FrameInfo->isSpillSlotObjectIndex(FI))
505      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
506  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
507    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
508      MMO = *MI.memoperands_begin();
509      CommentOS << MMO->getSize() << "-byte Spill\n";
510    }
511  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
512    if (FrameInfo->isSpillSlotObjectIndex(FI))
513      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
514  }
515
516  // Check for spill-induced copies
517  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
518    CommentOS << " Reload Reuse\n";
519}
520
521/// EmitImplicitDef - This method emits the specified machine instruction
522/// that is an implicit def.
523static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
524  unsigned RegNo = MI->getOperand(0).getReg();
525  AP.OutStreamer.AddComment(Twine("implicit-def: ") +
526                            AP.TM.getRegisterInfo()->getName(RegNo));
527  AP.OutStreamer.AddBlankLine();
528}
529
530static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) {
531  std::string Str = "kill:";
532  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
533    const MachineOperand &Op = MI->getOperand(i);
534    assert(Op.isReg() && "KILL instruction must have only register operands");
535    Str += ' ';
536    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
537    Str += (Op.isDef() ? "<def>" : "<kill>");
538  }
539  AP.OutStreamer.AddComment(Str);
540  AP.OutStreamer.AddBlankLine();
541}
542
543/// EmitDebugValueComment - This method handles the target-independent form
544/// of DBG_VALUE, returning true if it was able to do so.  A false return
545/// means the target will need to handle MI in EmitInstruction.
546static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
547  // This code handles only the 3-operand target-independent form.
548  if (MI->getNumOperands() != 3)
549    return false;
550
551  SmallString<128> Str;
552  raw_svector_ostream OS(Str);
553  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
554
555  // cast away const; DIetc do not take const operands for some reason.
556  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
557  if (V.getContext().isSubprogram())
558    OS << DISubprogram(V.getContext()).getDisplayName() << ":";
559  OS << V.getName() << " <- ";
560
561  // Register or immediate value. Register 0 means undef.
562  if (MI->getOperand(0).isFPImm()) {
563    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
564    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
565      OS << (double)APF.convertToFloat();
566    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
567      OS << APF.convertToDouble();
568    } else {
569      // There is no good way to print long double.  Convert a copy to
570      // double.  Ah well, it's only a comment.
571      bool ignored;
572      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
573                  &ignored);
574      OS << "(long double) " << APF.convertToDouble();
575    }
576  } else if (MI->getOperand(0).isImm()) {
577    OS << MI->getOperand(0).getImm();
578  } else if (MI->getOperand(0).isCImm()) {
579    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
580  } else {
581    assert(MI->getOperand(0).isReg() && "Unknown operand type");
582    if (MI->getOperand(0).getReg() == 0) {
583      // Suppress offset, it is not meaningful here.
584      OS << "undef";
585      // NOTE: Want this comment at start of line, don't emit with AddComment.
586      AP.OutStreamer.EmitRawText(OS.str());
587      return true;
588    }
589    OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
590  }
591
592  OS << '+' << MI->getOperand(1).getImm();
593  // NOTE: Want this comment at start of line, don't emit with AddComment.
594  AP.OutStreamer.EmitRawText(OS.str());
595  return true;
596}
597
598AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
599  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
600      MF->getFunction()->needsUnwindTableEntry())
601    return CFI_M_EH;
602
603  if (MMI->hasDebugInfo())
604    return CFI_M_Debug;
605
606  return CFI_M_None;
607}
608
609bool AsmPrinter::needsSEHMoves() {
610  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
611    MF->getFunction()->needsUnwindTableEntry();
612}
613
614bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
615  return MAI->doesDwarfUseRelocationsAcrossSections();
616}
617
618void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
619  MCSymbol *Label = MI.getOperand(0).getMCSymbol();
620
621  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
622    return;
623
624  if (needsCFIMoves() == CFI_M_None)
625    return;
626
627  if (MMI->getCompactUnwindEncoding() != 0)
628    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
629
630  MachineModuleInfo &MMI = MF->getMMI();
631  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
632  bool FoundOne = false;
633  (void)FoundOne;
634  for (std::vector<MachineMove>::iterator I = Moves.begin(),
635         E = Moves.end(); I != E; ++I) {
636    if (I->getLabel() == Label) {
637      EmitCFIFrameMove(*I);
638      FoundOne = true;
639    }
640  }
641  assert(FoundOne);
642}
643
644/// EmitFunctionBody - This method emits the body and trailer for a
645/// function.
646void AsmPrinter::EmitFunctionBody() {
647  // Emit target-specific gunk before the function body.
648  EmitFunctionBodyStart();
649
650  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
651
652  // Print out code for the function.
653  bool HasAnyRealCode = false;
654  const MachineInstr *LastMI = 0;
655  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
656       I != E; ++I) {
657    // Print a label for the basic block.
658    EmitBasicBlockStart(I);
659    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
660         II != IE; ++II) {
661      LastMI = II;
662
663      // Print the assembly for the instruction.
664      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
665          !II->isDebugValue()) {
666        HasAnyRealCode = true;
667        ++EmittedInsts;
668      }
669
670      if (ShouldPrintDebugScopes) {
671        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
672        DD->beginInstruction(II);
673      }
674
675      if (isVerbose())
676        EmitComments(*II, OutStreamer.GetCommentOS());
677
678      switch (II->getOpcode()) {
679      case TargetOpcode::PROLOG_LABEL:
680        emitPrologLabel(*II);
681        break;
682
683      case TargetOpcode::EH_LABEL:
684      case TargetOpcode::GC_LABEL:
685        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
686        break;
687      case TargetOpcode::INLINEASM:
688        EmitInlineAsm(II);
689        break;
690      case TargetOpcode::DBG_VALUE:
691        if (isVerbose()) {
692          if (!EmitDebugValueComment(II, *this))
693            EmitInstruction(II);
694        }
695        break;
696      case TargetOpcode::IMPLICIT_DEF:
697        if (isVerbose()) EmitImplicitDef(II, *this);
698        break;
699      case TargetOpcode::KILL:
700        if (isVerbose()) EmitKill(II, *this);
701        break;
702      default:
703        if (!TM.hasMCUseLoc())
704          MCLineEntry::Make(&OutStreamer, getCurrentSection());
705
706        EmitInstruction(II);
707        break;
708      }
709
710      if (ShouldPrintDebugScopes) {
711        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
712        DD->endInstruction(II);
713      }
714    }
715  }
716
717  // If the last instruction was a prolog label, then we have a situation where
718  // we emitted a prolog but no function body. This results in the ending prolog
719  // label equaling the end of function label and an invalid "row" in the
720  // FDE. We need to emit a noop in this situation so that the FDE's rows are
721  // valid.
722  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
723
724  // If the function is empty and the object file uses .subsections_via_symbols,
725  // then we need to emit *something* to the function body to prevent the
726  // labels from collapsing together.  Just emit a noop.
727  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
728    MCInst Noop;
729    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
730    if (Noop.getOpcode()) {
731      OutStreamer.AddComment("avoids zero-length function");
732      OutStreamer.EmitInstruction(Noop);
733    } else  // Target not mc-ized yet.
734      OutStreamer.EmitRawText(StringRef("\tnop\n"));
735  }
736
737  const Function *F = MF->getFunction();
738  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
739    const BasicBlock *BB = i;
740    if (!BB->hasAddressTaken())
741      continue;
742    MCSymbol *Sym = GetBlockAddressSymbol(BB);
743    if (Sym->isDefined())
744      continue;
745    OutStreamer.AddComment("Address of block that was removed by CodeGen");
746    OutStreamer.EmitLabel(Sym);
747  }
748
749  // Emit target-specific gunk after the function body.
750  EmitFunctionBodyEnd();
751
752  // If the target wants a .size directive for the size of the function, emit
753  // it.
754  if (MAI->hasDotTypeDotSizeDirective()) {
755    // Create a symbol for the end of function, so we can get the size as
756    // difference between the function label and the temp label.
757    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
758    OutStreamer.EmitLabel(FnEndLabel);
759
760    const MCExpr *SizeExp =
761      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
762                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
763                                                      OutContext),
764                              OutContext);
765    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
766  }
767
768  // Emit post-function debug information.
769  if (DD) {
770    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
771    DD->endFunction(MF);
772  }
773  if (DE) {
774    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
775    DE->EndFunction();
776  }
777  MMI->EndFunction();
778
779  // Print out jump tables referenced by the function.
780  EmitJumpTableInfo();
781
782  OutStreamer.AddBlankLine();
783}
784
785/// getDebugValueLocation - Get location information encoded by DBG_VALUE
786/// operands.
787MachineLocation AsmPrinter::
788getDebugValueLocation(const MachineInstr *MI) const {
789  // Target specific DBG_VALUE instructions are handled by each target.
790  return MachineLocation();
791}
792
793/// EmitDwarfRegOp - Emit dwarf register operation.
794void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
795  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
796  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
797
798  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
799       ++SR) {
800    Reg = TRI->getDwarfRegNum(*SR, false);
801    // FIXME: Get the bit range this register uses of the superregister
802    // so that we can produce a DW_OP_bit_piece
803  }
804
805  // FIXME: Handle cases like a super register being encoded as
806  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
807
808  // FIXME: We have no reasonable way of handling errors in here. The
809  // caller might be in the middle of an dwarf expression. We should
810  // probably assert that Reg >= 0 once debug info generation is more mature.
811
812  if (int Offset =  MLoc.getOffset()) {
813    if (Reg < 32) {
814      OutStreamer.AddComment(
815        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
816      EmitInt8(dwarf::DW_OP_breg0 + Reg);
817    } else {
818      OutStreamer.AddComment("DW_OP_bregx");
819      EmitInt8(dwarf::DW_OP_bregx);
820      OutStreamer.AddComment(Twine(Reg));
821      EmitULEB128(Reg);
822    }
823    EmitSLEB128(Offset);
824  } else {
825    if (Reg < 32) {
826      OutStreamer.AddComment(
827        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
828      EmitInt8(dwarf::DW_OP_reg0 + Reg);
829    } else {
830      OutStreamer.AddComment("DW_OP_regx");
831      EmitInt8(dwarf::DW_OP_regx);
832      OutStreamer.AddComment(Twine(Reg));
833      EmitULEB128(Reg);
834    }
835  }
836
837  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
838}
839
840bool AsmPrinter::doFinalization(Module &M) {
841  // Emit global variables.
842  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
843       I != E; ++I)
844    EmitGlobalVariable(I);
845
846  // Emit visibility info for declarations
847  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
848    const Function &F = *I;
849    if (!F.isDeclaration())
850      continue;
851    GlobalValue::VisibilityTypes V = F.getVisibility();
852    if (V == GlobalValue::DefaultVisibility)
853      continue;
854
855    MCSymbol *Name = Mang->getSymbol(&F);
856    EmitVisibility(Name, V, false);
857  }
858
859  // Emit module flags.
860  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
861  M.getModuleFlagsMetadata(ModuleFlags);
862  if (!ModuleFlags.empty())
863    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
864
865  // Finalize debug and EH information.
866  if (DE) {
867    {
868      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
869      DE->EndModule();
870    }
871    delete DE; DE = 0;
872  }
873  if (DD) {
874    {
875      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
876      DD->endModule();
877    }
878    delete DD; DD = 0;
879  }
880
881  // If the target wants to know about weak references, print them all.
882  if (MAI->getWeakRefDirective()) {
883    // FIXME: This is not lazy, it would be nice to only print weak references
884    // to stuff that is actually used.  Note that doing so would require targets
885    // to notice uses in operands (due to constant exprs etc).  This should
886    // happen with the MC stuff eventually.
887
888    // Print out module-level global variables here.
889    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
890         I != E; ++I) {
891      if (!I->hasExternalWeakLinkage()) continue;
892      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
893    }
894
895    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
896      if (!I->hasExternalWeakLinkage()) continue;
897      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
898    }
899  }
900
901  if (MAI->hasSetDirective()) {
902    OutStreamer.AddBlankLine();
903    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
904         I != E; ++I) {
905      MCSymbol *Name = Mang->getSymbol(I);
906
907      const GlobalValue *GV = I->getAliasedGlobal();
908      MCSymbol *Target = Mang->getSymbol(GV);
909
910      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
911        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
912      else if (I->hasWeakLinkage())
913        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
914      else
915        assert(I->hasLocalLinkage() && "Invalid alias linkage");
916
917      EmitVisibility(Name, I->getVisibility());
918
919      // Emit the directives as assignments aka .set:
920      OutStreamer.EmitAssignment(Name,
921                                 MCSymbolRefExpr::Create(Target, OutContext));
922    }
923  }
924
925  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
926  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
927  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
928    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
929      MP->finishAssembly(*this);
930
931  // If we don't have any trampolines, then we don't require stack memory
932  // to be executable. Some targets have a directive to declare this.
933  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
934  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
935    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
936      OutStreamer.SwitchSection(S);
937
938  // Allow the target to emit any magic that it wants at the end of the file,
939  // after everything else has gone out.
940  EmitEndOfAsmFile(M);
941
942  delete Mang; Mang = 0;
943  MMI = 0;
944
945  OutStreamer.Finish();
946  return false;
947}
948
949void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
950  this->MF = &MF;
951  // Get the function symbol.
952  CurrentFnSym = Mang->getSymbol(MF.getFunction());
953  CurrentFnSymForSize = CurrentFnSym;
954
955  if (isVerbose())
956    LI = &getAnalysis<MachineLoopInfo>();
957}
958
959namespace {
960  // SectionCPs - Keep track the alignment, constpool entries per Section.
961  struct SectionCPs {
962    const MCSection *S;
963    unsigned Alignment;
964    SmallVector<unsigned, 4> CPEs;
965    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
966  };
967}
968
969/// EmitConstantPool - Print to the current output stream assembly
970/// representations of the constants in the constant pool MCP. This is
971/// used to print out constants which have been "spilled to memory" by
972/// the code generator.
973///
974void AsmPrinter::EmitConstantPool() {
975  const MachineConstantPool *MCP = MF->getConstantPool();
976  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
977  if (CP.empty()) return;
978
979  // Calculate sections for constant pool entries. We collect entries to go into
980  // the same section together to reduce amount of section switch statements.
981  SmallVector<SectionCPs, 4> CPSections;
982  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
983    const MachineConstantPoolEntry &CPE = CP[i];
984    unsigned Align = CPE.getAlignment();
985
986    SectionKind Kind;
987    switch (CPE.getRelocationInfo()) {
988    default: llvm_unreachable("Unknown section kind");
989    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
990    case 1:
991      Kind = SectionKind::getReadOnlyWithRelLocal();
992      break;
993    case 0:
994    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
995    case 4:  Kind = SectionKind::getMergeableConst4(); break;
996    case 8:  Kind = SectionKind::getMergeableConst8(); break;
997    case 16: Kind = SectionKind::getMergeableConst16();break;
998    default: Kind = SectionKind::getMergeableConst(); break;
999    }
1000    }
1001
1002    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1003
1004    // The number of sections are small, just do a linear search from the
1005    // last section to the first.
1006    bool Found = false;
1007    unsigned SecIdx = CPSections.size();
1008    while (SecIdx != 0) {
1009      if (CPSections[--SecIdx].S == S) {
1010        Found = true;
1011        break;
1012      }
1013    }
1014    if (!Found) {
1015      SecIdx = CPSections.size();
1016      CPSections.push_back(SectionCPs(S, Align));
1017    }
1018
1019    if (Align > CPSections[SecIdx].Alignment)
1020      CPSections[SecIdx].Alignment = Align;
1021    CPSections[SecIdx].CPEs.push_back(i);
1022  }
1023
1024  // Now print stuff into the calculated sections.
1025  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1026    OutStreamer.SwitchSection(CPSections[i].S);
1027    EmitAlignment(Log2_32(CPSections[i].Alignment));
1028
1029    unsigned Offset = 0;
1030    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1031      unsigned CPI = CPSections[i].CPEs[j];
1032      MachineConstantPoolEntry CPE = CP[CPI];
1033
1034      // Emit inter-object padding for alignment.
1035      unsigned AlignMask = CPE.getAlignment() - 1;
1036      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1037      OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1038
1039      Type *Ty = CPE.getType();
1040      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
1041      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1042
1043      if (CPE.isMachineConstantPoolEntry())
1044        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1045      else
1046        EmitGlobalConstant(CPE.Val.ConstVal);
1047    }
1048  }
1049}
1050
1051/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1052/// by the current function to the current output stream.
1053///
1054void AsmPrinter::EmitJumpTableInfo() {
1055  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1056  if (MJTI == 0) return;
1057  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1058  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1059  if (JT.empty()) return;
1060
1061  // Pick the directive to use to print the jump table entries, and switch to
1062  // the appropriate section.
1063  const Function *F = MF->getFunction();
1064  bool JTInDiffSection = false;
1065  if (// In PIC mode, we need to emit the jump table to the same section as the
1066      // function body itself, otherwise the label differences won't make sense.
1067      // FIXME: Need a better predicate for this: what about custom entries?
1068      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1069      // We should also do if the section name is NULL or function is declared
1070      // in discardable section
1071      // FIXME: this isn't the right predicate, should be based on the MCSection
1072      // for the function.
1073      F->isWeakForLinker()) {
1074    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1075  } else {
1076    // Otherwise, drop it in the readonly section.
1077    const MCSection *ReadOnlySection =
1078      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1079    OutStreamer.SwitchSection(ReadOnlySection);
1080    JTInDiffSection = true;
1081  }
1082
1083  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
1084
1085  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1086    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1087
1088    // If this jump table was deleted, ignore it.
1089    if (JTBBs.empty()) continue;
1090
1091    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1092    // .set directive for each unique entry.  This reduces the number of
1093    // relocations the assembler will generate for the jump table.
1094    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1095        MAI->hasSetDirective()) {
1096      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1097      const TargetLowering *TLI = TM.getTargetLowering();
1098      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1099      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1100        const MachineBasicBlock *MBB = JTBBs[ii];
1101        if (!EmittedSets.insert(MBB)) continue;
1102
1103        // .set LJTSet, LBB32-base
1104        const MCExpr *LHS =
1105          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1106        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1107                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1108      }
1109    }
1110
1111    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1112    // before each jump table.  The first label is never referenced, but tells
1113    // the assembler and linker the extents of the jump table object.  The
1114    // second label is actually referenced by the code.
1115    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1116      // FIXME: This doesn't have to have any specific name, just any randomly
1117      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1118      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1119
1120    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1121
1122    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1123      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1124  }
1125}
1126
1127/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1128/// current stream.
1129void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1130                                    const MachineBasicBlock *MBB,
1131                                    unsigned UID) const {
1132  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1133  const MCExpr *Value = 0;
1134  switch (MJTI->getEntryKind()) {
1135  case MachineJumpTableInfo::EK_Inline:
1136    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1137  case MachineJumpTableInfo::EK_Custom32:
1138    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1139                                                              OutContext);
1140    break;
1141  case MachineJumpTableInfo::EK_BlockAddress:
1142    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1143    //     .word LBB123
1144    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1145    break;
1146  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1147    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1148    // with a relocation as gp-relative, e.g.:
1149    //     .gprel32 LBB123
1150    MCSymbol *MBBSym = MBB->getSymbol();
1151    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1152    return;
1153  }
1154
1155  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1156    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1157    // with a relocation as gp-relative, e.g.:
1158    //     .gpdword LBB123
1159    MCSymbol *MBBSym = MBB->getSymbol();
1160    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1161    return;
1162  }
1163
1164  case MachineJumpTableInfo::EK_LabelDifference32: {
1165    // EK_LabelDifference32 - Each entry is the address of the block minus
1166    // the address of the jump table.  This is used for PIC jump tables where
1167    // gprel32 is not supported.  e.g.:
1168    //      .word LBB123 - LJTI1_2
1169    // If the .set directive is supported, this is emitted as:
1170    //      .set L4_5_set_123, LBB123 - LJTI1_2
1171    //      .word L4_5_set_123
1172
1173    // If we have emitted set directives for the jump table entries, print
1174    // them rather than the entries themselves.  If we're emitting PIC, then
1175    // emit the table entries as differences between two text section labels.
1176    if (MAI->hasSetDirective()) {
1177      // If we used .set, reference the .set's symbol.
1178      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1179                                      OutContext);
1180      break;
1181    }
1182    // Otherwise, use the difference as the jump table entry.
1183    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1184    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1185    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1186    break;
1187  }
1188  }
1189
1190  assert(Value && "Unknown entry kind!");
1191
1192  unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
1193  OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1194}
1195
1196
1197/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1198/// special global used by LLVM.  If so, emit it and return true, otherwise
1199/// do nothing and return false.
1200bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1201  if (GV->getName() == "llvm.used") {
1202    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1203      EmitLLVMUsedList(GV->getInitializer());
1204    return true;
1205  }
1206
1207  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1208  if (GV->getSection() == "llvm.metadata" ||
1209      GV->hasAvailableExternallyLinkage())
1210    return true;
1211
1212  if (!GV->hasAppendingLinkage()) return false;
1213
1214  assert(GV->hasInitializer() && "Not a special LLVM global!");
1215
1216  if (GV->getName() == "llvm.global_ctors") {
1217    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1218
1219    if (TM.getRelocationModel() == Reloc::Static &&
1220        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1221      StringRef Sym(".constructors_used");
1222      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1223                                      MCSA_Reference);
1224    }
1225    return true;
1226  }
1227
1228  if (GV->getName() == "llvm.global_dtors") {
1229    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1230
1231    if (TM.getRelocationModel() == Reloc::Static &&
1232        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1233      StringRef Sym(".destructors_used");
1234      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1235                                      MCSA_Reference);
1236    }
1237    return true;
1238  }
1239
1240  return false;
1241}
1242
1243/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1244/// global in the specified llvm.used list for which emitUsedDirectiveFor
1245/// is true, as being used with this directive.
1246void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1247  // Should be an array of 'i8*'.
1248  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1249  if (InitList == 0) return;
1250
1251  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1252    const GlobalValue *GV =
1253      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1254    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1255      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1256  }
1257}
1258
1259typedef std::pair<unsigned, Constant*> Structor;
1260
1261static bool priority_order(const Structor& lhs, const Structor& rhs) {
1262  return lhs.first < rhs.first;
1263}
1264
1265/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1266/// priority.
1267void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1268  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1269  // init priority.
1270  if (!isa<ConstantArray>(List)) return;
1271
1272  // Sanity check the structors list.
1273  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1274  if (!InitList) return; // Not an array!
1275  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1276  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1277  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1278      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1279
1280  // Gather the structors in a form that's convenient for sorting by priority.
1281  SmallVector<Structor, 8> Structors;
1282  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1283    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1284    if (!CS) continue; // Malformed.
1285    if (CS->getOperand(1)->isNullValue())
1286      break;  // Found a null terminator, skip the rest.
1287    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1288    if (!Priority) continue; // Malformed.
1289    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1290                                       CS->getOperand(1)));
1291  }
1292
1293  // Emit the function pointers in the target-specific order
1294  const TargetData *TD = TM.getTargetData();
1295  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1296  std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1297  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1298    const MCSection *OutputSection =
1299      (isCtor ?
1300       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1301       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1302    OutStreamer.SwitchSection(OutputSection);
1303    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1304      EmitAlignment(Align);
1305    EmitXXStructor(Structors[i].second);
1306  }
1307}
1308
1309//===--------------------------------------------------------------------===//
1310// Emission and print routines
1311//
1312
1313/// EmitInt8 - Emit a byte directive and value.
1314///
1315void AsmPrinter::EmitInt8(int Value) const {
1316  OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1317}
1318
1319/// EmitInt16 - Emit a short directive and value.
1320///
1321void AsmPrinter::EmitInt16(int Value) const {
1322  OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1323}
1324
1325/// EmitInt32 - Emit a long directive and value.
1326///
1327void AsmPrinter::EmitInt32(int Value) const {
1328  OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1329}
1330
1331/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1332/// in bytes of the directive is specified by Size and Hi/Lo specify the
1333/// labels.  This implicitly uses .set if it is available.
1334void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1335                                     unsigned Size) const {
1336  // Get the Hi-Lo expression.
1337  const MCExpr *Diff =
1338    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1339                            MCSymbolRefExpr::Create(Lo, OutContext),
1340                            OutContext);
1341
1342  if (!MAI->hasSetDirective()) {
1343    OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1344    return;
1345  }
1346
1347  // Otherwise, emit with .set (aka assignment).
1348  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1349  OutStreamer.EmitAssignment(SetLabel, Diff);
1350  OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1351}
1352
1353/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1354/// where the size in bytes of the directive is specified by Size and Hi/Lo
1355/// specify the labels.  This implicitly uses .set if it is available.
1356void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1357                                           const MCSymbol *Lo, unsigned Size)
1358  const {
1359
1360  // Emit Hi+Offset - Lo
1361  // Get the Hi+Offset expression.
1362  const MCExpr *Plus =
1363    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1364                            MCConstantExpr::Create(Offset, OutContext),
1365                            OutContext);
1366
1367  // Get the Hi+Offset-Lo expression.
1368  const MCExpr *Diff =
1369    MCBinaryExpr::CreateSub(Plus,
1370                            MCSymbolRefExpr::Create(Lo, OutContext),
1371                            OutContext);
1372
1373  if (!MAI->hasSetDirective())
1374    OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1375  else {
1376    // Otherwise, emit with .set (aka assignment).
1377    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1378    OutStreamer.EmitAssignment(SetLabel, Diff);
1379    OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1380  }
1381}
1382
1383/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1384/// where the size in bytes of the directive is specified by Size and Label
1385/// specifies the label.  This implicitly uses .set if it is available.
1386void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1387                                      unsigned Size)
1388  const {
1389
1390  // Emit Label+Offset (or just Label if Offset is zero)
1391  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1392  if (Offset)
1393    Expr = MCBinaryExpr::CreateAdd(Expr,
1394                                   MCConstantExpr::Create(Offset, OutContext),
1395                                   OutContext);
1396
1397  OutStreamer.EmitValue(Expr, Size, 0/*AddrSpace*/);
1398}
1399
1400
1401//===----------------------------------------------------------------------===//
1402
1403// EmitAlignment - Emit an alignment directive to the specified power of
1404// two boundary.  For example, if you pass in 3 here, you will get an 8
1405// byte alignment.  If a global value is specified, and if that global has
1406// an explicit alignment requested, it will override the alignment request
1407// if required for correctness.
1408//
1409void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1410  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
1411
1412  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1413
1414  if (getCurrentSection()->getKind().isText())
1415    OutStreamer.EmitCodeAlignment(1 << NumBits);
1416  else
1417    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1418}
1419
1420//===----------------------------------------------------------------------===//
1421// Constant emission.
1422//===----------------------------------------------------------------------===//
1423
1424/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
1425///
1426static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) {
1427  MCContext &Ctx = AP.OutContext;
1428
1429  if (CV->isNullValue() || isa<UndefValue>(CV))
1430    return MCConstantExpr::Create(0, Ctx);
1431
1432  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1433    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1434
1435  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1436    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1437
1438  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1439    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1440
1441  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1442  if (CE == 0) {
1443    llvm_unreachable("Unknown constant value to lower!");
1444  }
1445
1446  switch (CE->getOpcode()) {
1447  default:
1448    // If the code isn't optimized, there may be outstanding folding
1449    // opportunities. Attempt to fold the expression using TargetData as a
1450    // last resort before giving up.
1451    if (Constant *C =
1452          ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
1453      if (C != CE)
1454        return LowerConstant(C, AP);
1455
1456    // Otherwise report the problem to the user.
1457    {
1458      std::string S;
1459      raw_string_ostream OS(S);
1460      OS << "Unsupported expression in static initializer: ";
1461      WriteAsOperand(OS, CE, /*PrintType=*/false,
1462                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1463      report_fatal_error(OS.str());
1464    }
1465  case Instruction::GetElementPtr: {
1466    const TargetData &TD = *AP.TM.getTargetData();
1467    // Generate a symbolic expression for the byte address
1468    const Constant *PtrVal = CE->getOperand(0);
1469    SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1470    int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
1471
1472    const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
1473    if (Offset == 0)
1474      return Base;
1475
1476    // Truncate/sext the offset to the pointer size.
1477    unsigned Width = TD.getPointerSizeInBits();
1478    if (Width < 64)
1479      Offset = SignExtend64(Offset, Width);
1480
1481    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1482                                   Ctx);
1483  }
1484
1485  case Instruction::Trunc:
1486    // We emit the value and depend on the assembler to truncate the generated
1487    // expression properly.  This is important for differences between
1488    // blockaddress labels.  Since the two labels are in the same function, it
1489    // is reasonable to treat their delta as a 32-bit value.
1490    // FALL THROUGH.
1491  case Instruction::BitCast:
1492    return LowerConstant(CE->getOperand(0), AP);
1493
1494  case Instruction::IntToPtr: {
1495    const TargetData &TD = *AP.TM.getTargetData();
1496    // Handle casts to pointers by changing them into casts to the appropriate
1497    // integer type.  This promotes constant folding and simplifies this code.
1498    Constant *Op = CE->getOperand(0);
1499    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1500                                      false/*ZExt*/);
1501    return LowerConstant(Op, AP);
1502  }
1503
1504  case Instruction::PtrToInt: {
1505    const TargetData &TD = *AP.TM.getTargetData();
1506    // Support only foldable casts to/from pointers that can be eliminated by
1507    // changing the pointer to the appropriately sized integer type.
1508    Constant *Op = CE->getOperand(0);
1509    Type *Ty = CE->getType();
1510
1511    const MCExpr *OpExpr = LowerConstant(Op, AP);
1512
1513    // We can emit the pointer value into this slot if the slot is an
1514    // integer slot equal to the size of the pointer.
1515    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1516      return OpExpr;
1517
1518    // Otherwise the pointer is smaller than the resultant integer, mask off
1519    // the high bits so we are sure to get a proper truncation if the input is
1520    // a constant expr.
1521    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1522    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1523    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1524  }
1525
1526  // The MC library also has a right-shift operator, but it isn't consistently
1527  // signed or unsigned between different targets.
1528  case Instruction::Add:
1529  case Instruction::Sub:
1530  case Instruction::Mul:
1531  case Instruction::SDiv:
1532  case Instruction::SRem:
1533  case Instruction::Shl:
1534  case Instruction::And:
1535  case Instruction::Or:
1536  case Instruction::Xor: {
1537    const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
1538    const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
1539    switch (CE->getOpcode()) {
1540    default: llvm_unreachable("Unknown binary operator constant cast expr");
1541    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1542    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1543    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1544    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1545    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1546    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1547    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1548    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1549    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1550    }
1551  }
1552  }
1553}
1554
1555static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1556                                   AsmPrinter &AP);
1557
1558/// isRepeatedByteSequence - Determine whether the given value is
1559/// composed of a repeated sequence of identical bytes and return the
1560/// byte value.  If it is not a repeated sequence, return -1.
1561static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1562  StringRef Data = V->getRawDataValues();
1563  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1564  char C = Data[0];
1565  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1566    if (Data[i] != C) return -1;
1567  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1568}
1569
1570
1571/// isRepeatedByteSequence - Determine whether the given value is
1572/// composed of a repeated sequence of identical bytes and return the
1573/// byte value.  If it is not a repeated sequence, return -1.
1574static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1575
1576  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1577    if (CI->getBitWidth() > 64) return -1;
1578
1579    uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
1580    uint64_t Value = CI->getZExtValue();
1581
1582    // Make sure the constant is at least 8 bits long and has a power
1583    // of 2 bit width.  This guarantees the constant bit width is
1584    // always a multiple of 8 bits, avoiding issues with padding out
1585    // to Size and other such corner cases.
1586    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1587
1588    uint8_t Byte = static_cast<uint8_t>(Value);
1589
1590    for (unsigned i = 1; i < Size; ++i) {
1591      Value >>= 8;
1592      if (static_cast<uint8_t>(Value) != Byte) return -1;
1593    }
1594    return Byte;
1595  }
1596  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1597    // Make sure all array elements are sequences of the same repeated
1598    // byte.
1599    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1600    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1601    if (Byte == -1) return -1;
1602
1603    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1604      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1605      if (ThisByte == -1) return -1;
1606      if (Byte != ThisByte) return -1;
1607    }
1608    return Byte;
1609  }
1610
1611  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1612    return isRepeatedByteSequence(CDS);
1613
1614  return -1;
1615}
1616
1617static void EmitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1618                                             unsigned AddrSpace,AsmPrinter &AP){
1619
1620  // See if we can aggregate this into a .fill, if so, emit it as such.
1621  int Value = isRepeatedByteSequence(CDS, AP.TM);
1622  if (Value != -1) {
1623    uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
1624    // Don't emit a 1-byte object as a .fill.
1625    if (Bytes > 1)
1626      return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1627  }
1628
1629  // If this can be emitted with .ascii/.asciz, emit it as such.
1630  if (CDS->isString())
1631    return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1632
1633  // Otherwise, emit the values in successive locations.
1634  unsigned ElementByteSize = CDS->getElementByteSize();
1635  if (isa<IntegerType>(CDS->getElementType())) {
1636    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1637      if (AP.isVerbose())
1638        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1639                                                CDS->getElementAsInteger(i));
1640      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1641                                  ElementByteSize, AddrSpace);
1642    }
1643  } else if (ElementByteSize == 4) {
1644    // FP Constants are printed as integer constants to avoid losing
1645    // precision.
1646    assert(CDS->getElementType()->isFloatTy());
1647    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1648      union {
1649        float F;
1650        uint32_t I;
1651      };
1652
1653      F = CDS->getElementAsFloat(i);
1654      if (AP.isVerbose())
1655        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1656      AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1657    }
1658  } else {
1659    assert(CDS->getElementType()->isDoubleTy());
1660    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1661      union {
1662        double F;
1663        uint64_t I;
1664      };
1665
1666      F = CDS->getElementAsDouble(i);
1667      if (AP.isVerbose())
1668        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1669      AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1670    }
1671  }
1672
1673  const TargetData &TD = *AP.TM.getTargetData();
1674  unsigned Size = TD.getTypeAllocSize(CDS->getType());
1675  unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1676                        CDS->getNumElements();
1677  if (unsigned Padding = Size - EmittedSize)
1678    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1679
1680}
1681
1682static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1683                                    AsmPrinter &AP) {
1684  // See if we can aggregate some values.  Make sure it can be
1685  // represented as a series of bytes of the constant value.
1686  int Value = isRepeatedByteSequence(CA, AP.TM);
1687
1688  if (Value != -1) {
1689    uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
1690    AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1691  }
1692  else {
1693    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1694      EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1695  }
1696}
1697
1698static void EmitGlobalConstantVector(const ConstantVector *CV,
1699                                     unsigned AddrSpace, AsmPrinter &AP) {
1700  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1701    EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1702
1703  const TargetData &TD = *AP.TM.getTargetData();
1704  unsigned Size = TD.getTypeAllocSize(CV->getType());
1705  unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1706                         CV->getType()->getNumElements();
1707  if (unsigned Padding = Size - EmittedSize)
1708    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1709}
1710
1711static void EmitGlobalConstantStruct(const ConstantStruct *CS,
1712                                     unsigned AddrSpace, AsmPrinter &AP) {
1713  // Print the fields in successive locations. Pad to align if needed!
1714  const TargetData *TD = AP.TM.getTargetData();
1715  unsigned Size = TD->getTypeAllocSize(CS->getType());
1716  const StructLayout *Layout = TD->getStructLayout(CS->getType());
1717  uint64_t SizeSoFar = 0;
1718  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1719    const Constant *Field = CS->getOperand(i);
1720
1721    // Check if padding is needed and insert one or more 0s.
1722    uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1723    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1724                        - Layout->getElementOffset(i)) - FieldSize;
1725    SizeSoFar += FieldSize + PadSize;
1726
1727    // Now print the actual field value.
1728    EmitGlobalConstantImpl(Field, AddrSpace, AP);
1729
1730    // Insert padding - this may include padding to increase the size of the
1731    // current field up to the ABI size (if the struct is not packed) as well
1732    // as padding to ensure that the next field starts at the right offset.
1733    AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1734  }
1735  assert(SizeSoFar == Layout->getSizeInBytes() &&
1736         "Layout of constant struct may be incorrect!");
1737}
1738
1739static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1740                                 AsmPrinter &AP) {
1741  if (CFP->getType()->isHalfTy()) {
1742    if (AP.isVerbose()) {
1743      SmallString<10> Str;
1744      CFP->getValueAPF().toString(Str);
1745      AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
1746    }
1747    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1748    AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
1749    return;
1750  }
1751
1752  if (CFP->getType()->isFloatTy()) {
1753    if (AP.isVerbose()) {
1754      float Val = CFP->getValueAPF().convertToFloat();
1755      uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1756      AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'
1757                                    << " (" << format("0x%x", IntVal) << ")\n";
1758    }
1759    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1760    AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1761    return;
1762  }
1763
1764  // FP Constants are printed as integer constants to avoid losing
1765  // precision.
1766  if (CFP->getType()->isDoubleTy()) {
1767    if (AP.isVerbose()) {
1768      double Val = CFP->getValueAPF().convertToDouble();
1769      uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1770      AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'
1771                                    << " (" << format("0x%lx", IntVal) << ")\n";
1772    }
1773
1774    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1775    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1776    return;
1777  }
1778
1779  if (CFP->getType()->isX86_FP80Ty()) {
1780    // all long double variants are printed as hex
1781    // API needed to prevent premature destruction
1782    APInt API = CFP->getValueAPF().bitcastToAPInt();
1783    const uint64_t *p = API.getRawData();
1784    if (AP.isVerbose()) {
1785      // Convert to double so we can print the approximate val as a comment.
1786      APFloat DoubleVal = CFP->getValueAPF();
1787      bool ignored;
1788      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1789                        &ignored);
1790      AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1791        << DoubleVal.convertToDouble() << '\n';
1792    }
1793
1794    if (AP.TM.getTargetData()->isBigEndian()) {
1795      AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1796      AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1797    } else {
1798      AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1799      AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1800    }
1801
1802    // Emit the tail padding for the long double.
1803    const TargetData &TD = *AP.TM.getTargetData();
1804    AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1805                             TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1806    return;
1807  }
1808
1809  assert(CFP->getType()->isPPC_FP128Ty() &&
1810         "Floating point constant type not handled");
1811  // All long double variants are printed as hex
1812  // API needed to prevent premature destruction.
1813  APInt API = CFP->getValueAPF().bitcastToAPInt();
1814  const uint64_t *p = API.getRawData();
1815  if (AP.TM.getTargetData()->isBigEndian()) {
1816    AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1817    AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1818  } else {
1819    AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1820    AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1821  }
1822}
1823
1824static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
1825                                       unsigned AddrSpace, AsmPrinter &AP) {
1826  const TargetData *TD = AP.TM.getTargetData();
1827  unsigned BitWidth = CI->getBitWidth();
1828  assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1829
1830  // We don't expect assemblers to support integer data directives
1831  // for more than 64 bits, so we emit the data in at most 64-bit
1832  // quantities at a time.
1833  const uint64_t *RawData = CI->getValue().getRawData();
1834  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1835    uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1836    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1837  }
1838}
1839
1840static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1841                                   AsmPrinter &AP) {
1842  const TargetData *TD = AP.TM.getTargetData();
1843  uint64_t Size = TD->getTypeAllocSize(CV->getType());
1844  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1845    return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1846
1847  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1848    switch (Size) {
1849    case 1:
1850    case 2:
1851    case 4:
1852    case 8:
1853      if (AP.isVerbose())
1854        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1855                                                CI->getZExtValue());
1856      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1857      return;
1858    default:
1859      EmitGlobalConstantLargeInt(CI, AddrSpace, AP);
1860      return;
1861    }
1862  }
1863
1864  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1865    return EmitGlobalConstantFP(CFP, AddrSpace, AP);
1866
1867  if (isa<ConstantPointerNull>(CV)) {
1868    AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1869    return;
1870  }
1871
1872  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1873    return EmitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1874
1875  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1876    return EmitGlobalConstantArray(CVA, AddrSpace, AP);
1877
1878  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1879    return EmitGlobalConstantStruct(CVS, AddrSpace, AP);
1880
1881  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1882    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1883    // vectors).
1884    if (CE->getOpcode() == Instruction::BitCast)
1885      return EmitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1886
1887    if (Size > 8) {
1888      // If the constant expression's size is greater than 64-bits, then we have
1889      // to emit the value in chunks. Try to constant fold the value and emit it
1890      // that way.
1891      Constant *New = ConstantFoldConstantExpression(CE, TD);
1892      if (New && New != CE)
1893        return EmitGlobalConstantImpl(New, AddrSpace, AP);
1894    }
1895  }
1896
1897  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1898    return EmitGlobalConstantVector(V, AddrSpace, AP);
1899
1900  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1901  // thread the streamer with EmitValue.
1902  AP.OutStreamer.EmitValue(LowerConstant(CV, AP), Size, AddrSpace);
1903}
1904
1905/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1906void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1907  uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
1908  if (Size)
1909    EmitGlobalConstantImpl(CV, AddrSpace, *this);
1910  else if (MAI->hasSubsectionsViaSymbols()) {
1911    // If the global has zero size, emit a single byte so that two labels don't
1912    // look like they are at the same location.
1913    OutStreamer.EmitIntValue(0, 1, AddrSpace);
1914  }
1915}
1916
1917void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1918  // Target doesn't support this yet!
1919  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1920}
1921
1922void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1923  if (Offset > 0)
1924    OS << '+' << Offset;
1925  else if (Offset < 0)
1926    OS << Offset;
1927}
1928
1929//===----------------------------------------------------------------------===//
1930// Symbol Lowering Routines.
1931//===----------------------------------------------------------------------===//
1932
1933/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1934/// temporary label with the specified stem and unique ID.
1935MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1936  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1937                                      Name + Twine(ID));
1938}
1939
1940/// GetTempSymbol - Return an assembler temporary label with the specified
1941/// stem.
1942MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1943  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1944                                      Name);
1945}
1946
1947
1948MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1949  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1950}
1951
1952MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1953  return MMI->getAddrLabelSymbol(BB);
1954}
1955
1956/// GetCPISymbol - Return the symbol for the specified constant pool entry.
1957MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1958  return OutContext.GetOrCreateSymbol
1959    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1960     + "_" + Twine(CPID));
1961}
1962
1963/// GetJTISymbol - Return the symbol for the specified jump table entry.
1964MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1965  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1966}
1967
1968/// GetJTSetSymbol - Return the symbol for the specified jump table .set
1969/// FIXME: privatize to AsmPrinter.
1970MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1971  return OutContext.GetOrCreateSymbol
1972  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1973   Twine(UID) + "_set_" + Twine(MBBID));
1974}
1975
1976/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1977/// global value name as its base, with the specified suffix, and where the
1978/// symbol is forced to have private linkage if ForcePrivate is true.
1979MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1980                                                   StringRef Suffix,
1981                                                   bool ForcePrivate) const {
1982  SmallString<60> NameStr;
1983  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1984  NameStr.append(Suffix.begin(), Suffix.end());
1985  return OutContext.GetOrCreateSymbol(NameStr.str());
1986}
1987
1988/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1989/// ExternalSymbol.
1990MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1991  SmallString<60> NameStr;
1992  Mang->getNameWithPrefix(NameStr, Sym);
1993  return OutContext.GetOrCreateSymbol(NameStr.str());
1994}
1995
1996
1997
1998/// PrintParentLoopComment - Print comments about parent loops of this one.
1999static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2000                                   unsigned FunctionNumber) {
2001  if (Loop == 0) return;
2002  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2003  OS.indent(Loop->getLoopDepth()*2)
2004    << "Parent Loop BB" << FunctionNumber << "_"
2005    << Loop->getHeader()->getNumber()
2006    << " Depth=" << Loop->getLoopDepth() << '\n';
2007}
2008
2009
2010/// PrintChildLoopComment - Print comments about child loops within
2011/// the loop for this basic block, with nesting.
2012static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2013                                  unsigned FunctionNumber) {
2014  // Add child loop information
2015  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2016    OS.indent((*CL)->getLoopDepth()*2)
2017      << "Child Loop BB" << FunctionNumber << "_"
2018      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2019      << '\n';
2020    PrintChildLoopComment(OS, *CL, FunctionNumber);
2021  }
2022}
2023
2024/// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2025static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2026                                       const MachineLoopInfo *LI,
2027                                       const AsmPrinter &AP) {
2028  // Add loop depth information
2029  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2030  if (Loop == 0) return;
2031
2032  MachineBasicBlock *Header = Loop->getHeader();
2033  assert(Header && "No header for loop");
2034
2035  // If this block is not a loop header, just print out what is the loop header
2036  // and return.
2037  if (Header != &MBB) {
2038    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2039                              Twine(AP.getFunctionNumber())+"_" +
2040                              Twine(Loop->getHeader()->getNumber())+
2041                              " Depth="+Twine(Loop->getLoopDepth()));
2042    return;
2043  }
2044
2045  // Otherwise, it is a loop header.  Print out information about child and
2046  // parent loops.
2047  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2048
2049  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2050
2051  OS << "=>";
2052  OS.indent(Loop->getLoopDepth()*2-2);
2053
2054  OS << "This ";
2055  if (Loop->empty())
2056    OS << "Inner ";
2057  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2058
2059  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2060}
2061
2062
2063/// EmitBasicBlockStart - This method prints the label for the specified
2064/// MachineBasicBlock, an alignment (if present) and a comment describing
2065/// it if appropriate.
2066void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2067  // Emit an alignment directive for this block, if needed.
2068  if (unsigned Align = MBB->getAlignment())
2069    EmitAlignment(Align);
2070
2071  // If the block has its address taken, emit any labels that were used to
2072  // reference the block.  It is possible that there is more than one label
2073  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2074  // the references were generated.
2075  if (MBB->hasAddressTaken()) {
2076    const BasicBlock *BB = MBB->getBasicBlock();
2077    if (isVerbose())
2078      OutStreamer.AddComment("Block address taken");
2079
2080    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2081
2082    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2083      OutStreamer.EmitLabel(Syms[i]);
2084  }
2085
2086  // Print some verbose block comments.
2087  if (isVerbose()) {
2088    if (const BasicBlock *BB = MBB->getBasicBlock())
2089      if (BB->hasName())
2090        OutStreamer.AddComment("%" + BB->getName());
2091    EmitBasicBlockLoopComments(*MBB, LI, *this);
2092  }
2093
2094  // Print the main label for the block.
2095  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2096    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2097      // NOTE: Want this comment at start of line, don't emit with AddComment.
2098      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2099                              Twine(MBB->getNumber()) + ":");
2100    }
2101  } else {
2102    OutStreamer.EmitLabel(MBB->getSymbol());
2103  }
2104}
2105
2106void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2107                                bool IsDefinition) const {
2108  MCSymbolAttr Attr = MCSA_Invalid;
2109
2110  switch (Visibility) {
2111  default: break;
2112  case GlobalValue::HiddenVisibility:
2113    if (IsDefinition)
2114      Attr = MAI->getHiddenVisibilityAttr();
2115    else
2116      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2117    break;
2118  case GlobalValue::ProtectedVisibility:
2119    Attr = MAI->getProtectedVisibilityAttr();
2120    break;
2121  }
2122
2123  if (Attr != MCSA_Invalid)
2124    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2125}
2126
2127/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2128/// exactly one predecessor and the control transfer mechanism between
2129/// the predecessor and this block is a fall-through.
2130bool AsmPrinter::
2131isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2132  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2133  // then nothing falls through to it.
2134  if (MBB->isLandingPad() || MBB->pred_empty())
2135    return false;
2136
2137  // If there isn't exactly one predecessor, it can't be a fall through.
2138  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2139  ++PI2;
2140  if (PI2 != MBB->pred_end())
2141    return false;
2142
2143  // The predecessor has to be immediately before this block.
2144  MachineBasicBlock *Pred = *PI;
2145
2146  if (!Pred->isLayoutSuccessor(MBB))
2147    return false;
2148
2149  // If the block is completely empty, then it definitely does fall through.
2150  if (Pred->empty())
2151    return true;
2152
2153  // Check the terminators in the previous blocks
2154  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2155         IE = Pred->end(); II != IE; ++II) {
2156    MachineInstr &MI = *II;
2157
2158    // If it is not a simple branch, we are in a table somewhere.
2159    if (!MI.isBranch() || MI.isIndirectBranch())
2160      return false;
2161
2162    // If we are the operands of one of the branches, this is not
2163    // a fall through.
2164    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2165           OE = MI.operands_end(); OI != OE; ++OI) {
2166      const MachineOperand& OP = *OI;
2167      if (OP.isJTI())
2168        return false;
2169      if (OP.isMBB() && OP.getMBB() == MBB)
2170        return false;
2171    }
2172  }
2173
2174  return true;
2175}
2176
2177
2178
2179GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2180  if (!S->usesMetadata())
2181    return 0;
2182
2183  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2184  gcp_map_type::iterator GCPI = GCMap.find(S);
2185  if (GCPI != GCMap.end())
2186    return GCPI->second;
2187
2188  const char *Name = S->getName().c_str();
2189
2190  for (GCMetadataPrinterRegistry::iterator
2191         I = GCMetadataPrinterRegistry::begin(),
2192         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2193    if (strcmp(Name, I->getName()) == 0) {
2194      GCMetadataPrinter *GMP = I->instantiate();
2195      GMP->S = S;
2196      GCMap.insert(std::make_pair(S, GMP));
2197      return GMP;
2198    }
2199
2200  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2201}
2202