AsmPrinter.cpp revision 4172a8abbabea2359d91bb07101166565127d798
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CodeGen/GCMetadataPrinter.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineJumpTableInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/DebugInfo.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/MC/MCContext.h"
35#include "llvm/MC/MCExpr.h"
36#include "llvm/MC/MCInst.h"
37#include "llvm/MC/MCSection.h"
38#include "llvm/MC/MCStreamer.h"
39#include "llvm/MC/MCSymbol.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/Format.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Timer.h"
44#include "llvm/Target/Mangler.h"
45#include "llvm/Target/TargetFrameLowering.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetLoweringObjectFile.h"
49#include "llvm/Target/TargetOptions.h"
50#include "llvm/Target/TargetRegisterInfo.h"
51using namespace llvm;
52
53static const char *const DWARFGroupName = "DWARF Emission";
54static const char *const DbgTimerName = "DWARF Debug Writer";
55static const char *const EHTimerName = "DWARF Exception Writer";
56
57STATISTIC(EmittedInsts, "Number of machine instrs printed");
58
59char AsmPrinter::ID = 0;
60
61typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
62static gcp_map_type &getGCMap(void *&P) {
63  if (P == 0)
64    P = new gcp_map_type();
65  return *(gcp_map_type*)P;
66}
67
68
69/// getGVAlignmentLog2 - Return the alignment to use for the specified global
70/// value in log2 form.  This rounds up to the preferred alignment if possible
71/// and legal.
72static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
73                                   unsigned InBits = 0) {
74  unsigned NumBits = 0;
75  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
76    NumBits = TD.getPreferredAlignmentLog(GVar);
77
78  // If InBits is specified, round it to it.
79  if (InBits > NumBits)
80    NumBits = InBits;
81
82  // If the GV has a specified alignment, take it into account.
83  if (GV->getAlignment() == 0)
84    return NumBits;
85
86  unsigned GVAlign = Log2_32(GV->getAlignment());
87
88  // If the GVAlign is larger than NumBits, or if we are required to obey
89  // NumBits because the GV has an assigned section, obey it.
90  if (GVAlign > NumBits || GV->hasSection())
91    NumBits = GVAlign;
92  return NumBits;
93}
94
95AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
96  : MachineFunctionPass(ID),
97    TM(tm), MAI(tm.getMCAsmInfo()),
98    OutContext(Streamer.getContext()),
99    OutStreamer(Streamer),
100    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
101  DD = 0; DE = 0; MMI = 0; LI = 0; MF = 0;
102  CurrentFnSym = CurrentFnSymForSize = 0;
103  GCMetadataPrinters = 0;
104  VerboseAsm = Streamer.isVerboseAsm();
105}
106
107AsmPrinter::~AsmPrinter() {
108  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
109
110  if (GCMetadataPrinters != 0) {
111    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
112
113    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
114      delete I->second;
115    delete &GCMap;
116    GCMetadataPrinters = 0;
117  }
118
119  delete &OutStreamer;
120}
121
122/// getFunctionNumber - Return a unique ID for the current function.
123///
124unsigned AsmPrinter::getFunctionNumber() const {
125  return MF->getFunctionNumber();
126}
127
128const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
129  return TM.getTargetLowering()->getObjFileLowering();
130}
131
132/// getDataLayout - Return information about data layout.
133const DataLayout &AsmPrinter::getDataLayout() const {
134  return *TM.getDataLayout();
135}
136
137StringRef AsmPrinter::getTargetTriple() const {
138  return TM.getTargetTriple();
139}
140
141/// getCurrentSection() - Return the current section we are emitting to.
142const MCSection *AsmPrinter::getCurrentSection() const {
143  return OutStreamer.getCurrentSection().first;
144}
145
146
147
148void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
149  AU.setPreservesAll();
150  MachineFunctionPass::getAnalysisUsage(AU);
151  AU.addRequired<MachineModuleInfo>();
152  AU.addRequired<GCModuleInfo>();
153  if (isVerbose())
154    AU.addRequired<MachineLoopInfo>();
155}
156
157bool AsmPrinter::doInitialization(Module &M) {
158  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
159  MMI->AnalyzeModule(M);
160
161  // Initialize TargetLoweringObjectFile.
162  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
163    .Initialize(OutContext, TM);
164
165  OutStreamer.InitStreamer();
166
167  Mang = new Mangler(OutContext, &TM);
168
169  // Allow the target to emit any magic that it wants at the start of the file.
170  EmitStartOfAsmFile(M);
171
172  // Very minimal debug info. It is ignored if we emit actual debug info. If we
173  // don't, this at least helps the user find where a global came from.
174  if (MAI->hasSingleParameterDotFile()) {
175    // .file "foo.c"
176    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
177  }
178
179  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
180  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
181  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
182    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
183      MP->beginAssembly(*this);
184
185  // Emit module-level inline asm if it exists.
186  if (!M.getModuleInlineAsm().empty()) {
187    OutStreamer.AddComment("Start of file scope inline assembly");
188    OutStreamer.AddBlankLine();
189    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
190    OutStreamer.AddComment("End of file scope inline assembly");
191    OutStreamer.AddBlankLine();
192  }
193
194  if (MAI->doesSupportDebugInformation())
195    DD = new DwarfDebug(this, &M);
196
197  switch (MAI->getExceptionHandlingType()) {
198  case ExceptionHandling::None:
199    return false;
200  case ExceptionHandling::SjLj:
201  case ExceptionHandling::DwarfCFI:
202    DE = new DwarfCFIException(this);
203    return false;
204  case ExceptionHandling::ARM:
205    DE = new ARMException(this);
206    return false;
207  case ExceptionHandling::Win64:
208    DE = new Win64Exception(this);
209    return false;
210  }
211
212  llvm_unreachable("Unknown exception type.");
213}
214
215void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
216  switch ((GlobalValue::LinkageTypes)Linkage) {
217  case GlobalValue::CommonLinkage:
218  case GlobalValue::LinkOnceAnyLinkage:
219  case GlobalValue::LinkOnceODRLinkage:
220  case GlobalValue::LinkOnceODRAutoHideLinkage:
221  case GlobalValue::WeakAnyLinkage:
222  case GlobalValue::WeakODRLinkage:
223  case GlobalValue::LinkerPrivateWeakLinkage:
224    if (MAI->getWeakDefDirective() != 0) {
225      // .globl _foo
226      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
227
228      if ((GlobalValue::LinkageTypes)Linkage !=
229          GlobalValue::LinkOnceODRAutoHideLinkage)
230        // .weak_definition _foo
231        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
232      else
233        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
234    } else if (MAI->getLinkOnceDirective() != 0) {
235      // .globl _foo
236      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
237      //NOTE: linkonce is handled by the section the symbol was assigned to.
238    } else {
239      // .weak _foo
240      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
241    }
242    break;
243  case GlobalValue::DLLExportLinkage:
244  case GlobalValue::AppendingLinkage:
245    // FIXME: appending linkage variables should go into a section of
246    // their name or something.  For now, just emit them as external.
247  case GlobalValue::ExternalLinkage:
248    // If external or appending, declare as a global symbol.
249    // .globl _foo
250    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
251    break;
252  case GlobalValue::PrivateLinkage:
253  case GlobalValue::InternalLinkage:
254  case GlobalValue::LinkerPrivateLinkage:
255    break;
256  default:
257    llvm_unreachable("Unknown linkage type!");
258  }
259}
260
261
262/// EmitGlobalVariable - Emit the specified global variable to the .s file.
263void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
264  if (GV->hasInitializer()) {
265    // Check to see if this is a special global used by LLVM, if so, emit it.
266    if (EmitSpecialLLVMGlobal(GV))
267      return;
268
269    if (isVerbose()) {
270      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
271                     /*PrintType=*/false, GV->getParent());
272      OutStreamer.GetCommentOS() << '\n';
273    }
274  }
275
276  MCSymbol *GVSym = Mang->getSymbol(GV);
277  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
278
279  if (!GV->hasInitializer())   // External globals require no extra code.
280    return;
281
282  if (MAI->hasDotTypeDotSizeDirective())
283    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
284
285  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
286
287  const DataLayout *TD = TM.getDataLayout();
288  uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
289
290  // If the alignment is specified, we *must* obey it.  Overaligning a global
291  // with a specified alignment is a prompt way to break globals emitted to
292  // sections and expected to be contiguous (e.g. ObjC metadata).
293  unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
294
295  // Handle common and BSS local symbols (.lcomm).
296  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
297    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
298    unsigned Align = 1 << AlignLog;
299
300    // Handle common symbols.
301    if (GVKind.isCommon()) {
302      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
303        Align = 0;
304
305      // .comm _foo, 42, 4
306      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
307      return;
308    }
309
310    // Handle local BSS symbols.
311    if (MAI->hasMachoZeroFillDirective()) {
312      const MCSection *TheSection =
313        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
314      // .zerofill __DATA, __bss, _foo, 400, 5
315      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
316      return;
317    }
318
319    // Use .lcomm only if it supports user-specified alignment.
320    // Otherwise, while it would still be correct to use .lcomm in some
321    // cases (e.g. when Align == 1), the external assembler might enfore
322    // some -unknown- default alignment behavior, which could cause
323    // spurious differences between external and integrated assembler.
324    // Prefer to simply fall back to .local / .comm in this case.
325    if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
326      // .lcomm _foo, 42
327      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
328      return;
329    }
330
331    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
332      Align = 0;
333
334    // .local _foo
335    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
336    // .comm _foo, 42, 4
337    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
338    return;
339  }
340
341  const MCSection *TheSection =
342    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
343
344  // Handle the zerofill directive on darwin, which is a special form of BSS
345  // emission.
346  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
347    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
348
349    // .globl _foo
350    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
351    // .zerofill __DATA, __common, _foo, 400, 5
352    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
353    return;
354  }
355
356  // Handle thread local data for mach-o which requires us to output an
357  // additional structure of data and mangle the original symbol so that we
358  // can reference it later.
359  //
360  // TODO: This should become an "emit thread local global" method on TLOF.
361  // All of this macho specific stuff should be sunk down into TLOFMachO and
362  // stuff like "TLSExtraDataSection" should no longer be part of the parent
363  // TLOF class.  This will also make it more obvious that stuff like
364  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
365  // specific code.
366  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
367    // Emit the .tbss symbol
368    MCSymbol *MangSym =
369      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
370
371    if (GVKind.isThreadBSS())
372      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
373    else if (GVKind.isThreadData()) {
374      OutStreamer.SwitchSection(TheSection);
375
376      EmitAlignment(AlignLog, GV);
377      OutStreamer.EmitLabel(MangSym);
378
379      EmitGlobalConstant(GV->getInitializer());
380    }
381
382    OutStreamer.AddBlankLine();
383
384    // Emit the variable struct for the runtime.
385    const MCSection *TLVSect
386      = getObjFileLowering().getTLSExtraDataSection();
387
388    OutStreamer.SwitchSection(TLVSect);
389    // Emit the linkage here.
390    EmitLinkage(GV->getLinkage(), GVSym);
391    OutStreamer.EmitLabel(GVSym);
392
393    // Three pointers in size:
394    //   - __tlv_bootstrap - used to make sure support exists
395    //   - spare pointer, used when mapped by the runtime
396    //   - pointer to mangled symbol above with initializer
397    unsigned PtrSize = TD->getPointerSizeInBits()/8;
398    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
399                                PtrSize);
400    OutStreamer.EmitIntValue(0, PtrSize);
401    OutStreamer.EmitSymbolValue(MangSym, PtrSize);
402
403    OutStreamer.AddBlankLine();
404    return;
405  }
406
407  OutStreamer.SwitchSection(TheSection);
408
409  EmitLinkage(GV->getLinkage(), GVSym);
410  EmitAlignment(AlignLog, GV);
411
412  OutStreamer.EmitLabel(GVSym);
413
414  EmitGlobalConstant(GV->getInitializer());
415
416  if (MAI->hasDotTypeDotSizeDirective())
417    // .size foo, 42
418    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
419
420  OutStreamer.AddBlankLine();
421}
422
423/// EmitFunctionHeader - This method emits the header for the current
424/// function.
425void AsmPrinter::EmitFunctionHeader() {
426  // Print out constants referenced by the function
427  EmitConstantPool();
428
429  // Print the 'header' of function.
430  const Function *F = MF->getFunction();
431
432  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
433  EmitVisibility(CurrentFnSym, F->getVisibility());
434
435  EmitLinkage(F->getLinkage(), CurrentFnSym);
436  EmitAlignment(MF->getAlignment(), F);
437
438  if (MAI->hasDotTypeDotSizeDirective())
439    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
440
441  if (isVerbose()) {
442    WriteAsOperand(OutStreamer.GetCommentOS(), F,
443                   /*PrintType=*/false, F->getParent());
444    OutStreamer.GetCommentOS() << '\n';
445  }
446
447  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
448  // do their wild and crazy things as required.
449  EmitFunctionEntryLabel();
450
451  // If the function had address-taken blocks that got deleted, then we have
452  // references to the dangling symbols.  Emit them at the start of the function
453  // so that we don't get references to undefined symbols.
454  std::vector<MCSymbol*> DeadBlockSyms;
455  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
456  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
457    OutStreamer.AddComment("Address taken block that was later removed");
458    OutStreamer.EmitLabel(DeadBlockSyms[i]);
459  }
460
461  // Add some workaround for linkonce linkage on Cygwin\MinGW.
462  if (MAI->getLinkOnceDirective() != 0 &&
463      (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
464    // FIXME: What is this?
465    MCSymbol *FakeStub =
466      OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
467                                   CurrentFnSym->getName());
468    OutStreamer.EmitLabel(FakeStub);
469  }
470
471  // Emit pre-function debug and/or EH information.
472  if (DE) {
473    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
474    DE->BeginFunction(MF);
475  }
476  if (DD) {
477    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
478    DD->beginFunction(MF);
479  }
480}
481
482/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
483/// function.  This can be overridden by targets as required to do custom stuff.
484void AsmPrinter::EmitFunctionEntryLabel() {
485  // The function label could have already been emitted if two symbols end up
486  // conflicting due to asm renaming.  Detect this and emit an error.
487  if (CurrentFnSym->isUndefined())
488    return OutStreamer.EmitLabel(CurrentFnSym);
489
490  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
491                     "' label emitted multiple times to assembly file");
492}
493
494/// emitComments - Pretty-print comments for instructions.
495static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
496  const MachineFunction *MF = MI.getParent()->getParent();
497  const TargetMachine &TM = MF->getTarget();
498
499  // Check for spills and reloads
500  int FI;
501
502  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
503
504  // We assume a single instruction only has a spill or reload, not
505  // both.
506  const MachineMemOperand *MMO;
507  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
508    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
509      MMO = *MI.memoperands_begin();
510      CommentOS << MMO->getSize() << "-byte Reload\n";
511    }
512  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
513    if (FrameInfo->isSpillSlotObjectIndex(FI))
514      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
515  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
516    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
517      MMO = *MI.memoperands_begin();
518      CommentOS << MMO->getSize() << "-byte Spill\n";
519    }
520  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
521    if (FrameInfo->isSpillSlotObjectIndex(FI))
522      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
523  }
524
525  // Check for spill-induced copies
526  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
527    CommentOS << " Reload Reuse\n";
528}
529
530/// emitImplicitDef - This method emits the specified machine instruction
531/// that is an implicit def.
532static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
533  unsigned RegNo = MI->getOperand(0).getReg();
534  AP.OutStreamer.AddComment(Twine("implicit-def: ") +
535                            AP.TM.getRegisterInfo()->getName(RegNo));
536  AP.OutStreamer.AddBlankLine();
537}
538
539static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
540  std::string Str = "kill:";
541  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
542    const MachineOperand &Op = MI->getOperand(i);
543    assert(Op.isReg() && "KILL instruction must have only register operands");
544    Str += ' ';
545    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
546    Str += (Op.isDef() ? "<def>" : "<kill>");
547  }
548  AP.OutStreamer.AddComment(Str);
549  AP.OutStreamer.AddBlankLine();
550}
551
552/// emitDebugValueComment - This method handles the target-independent form
553/// of DBG_VALUE, returning true if it was able to do so.  A false return
554/// means the target will need to handle MI in EmitInstruction.
555static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
556  // This code handles only the 3-operand target-independent form.
557  if (MI->getNumOperands() != 3)
558    return false;
559
560  SmallString<128> Str;
561  raw_svector_ostream OS(Str);
562  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
563
564  // cast away const; DIetc do not take const operands for some reason.
565  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
566  if (V.getContext().isSubprogram()) {
567    StringRef Name = DISubprogram(V.getContext()).getDisplayName();
568    if (!Name.empty())
569      OS << Name << ":";
570  }
571  OS << V.getName() << " <- ";
572
573  // The second operand is only an offset if it's an immediate.
574  bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
575  int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
576
577  // Register or immediate value. Register 0 means undef.
578  if (MI->getOperand(0).isFPImm()) {
579    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
580    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
581      OS << (double)APF.convertToFloat();
582    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
583      OS << APF.convertToDouble();
584    } else {
585      // There is no good way to print long double.  Convert a copy to
586      // double.  Ah well, it's only a comment.
587      bool ignored;
588      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
589                  &ignored);
590      OS << "(long double) " << APF.convertToDouble();
591    }
592  } else if (MI->getOperand(0).isImm()) {
593    OS << MI->getOperand(0).getImm();
594  } else if (MI->getOperand(0).isCImm()) {
595    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
596  } else {
597    unsigned Reg;
598    if (MI->getOperand(0).isReg()) {
599      Reg = MI->getOperand(0).getReg();
600    } else {
601      assert(MI->getOperand(0).isFI() && "Unknown operand type");
602      const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
603      Offset += TFI->getFrameIndexReference(*AP.MF,
604                                            MI->getOperand(0).getIndex(), Reg);
605      Deref = true;
606    }
607    if (Reg == 0) {
608      // Suppress offset, it is not meaningful here.
609      OS << "undef";
610      // NOTE: Want this comment at start of line, don't emit with AddComment.
611      AP.OutStreamer.EmitRawText(OS.str());
612      return true;
613    }
614    if (Deref)
615      OS << '[';
616    OS << AP.TM.getRegisterInfo()->getName(Reg);
617  }
618
619  if (Deref)
620    OS << '+' << Offset << ']';
621
622  // NOTE: Want this comment at start of line, don't emit with AddComment.
623  AP.OutStreamer.EmitRawText(OS.str());
624  return true;
625}
626
627AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
628  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
629      MF->getFunction()->needsUnwindTableEntry())
630    return CFI_M_EH;
631
632  if (MMI->hasDebugInfo())
633    return CFI_M_Debug;
634
635  return CFI_M_None;
636}
637
638bool AsmPrinter::needsSEHMoves() {
639  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
640    MF->getFunction()->needsUnwindTableEntry();
641}
642
643bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
644  return MAI->doesDwarfUseRelocationsAcrossSections();
645}
646
647void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
648  MCSymbol *Label = MI.getOperand(0).getMCSymbol();
649
650  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
651    return;
652
653  if (needsCFIMoves() == CFI_M_None)
654    return;
655
656  if (MMI->getCompactUnwindEncoding() != 0)
657    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
658
659  MachineModuleInfo &MMI = MF->getMMI();
660  std::vector<MCCFIInstruction> Instructions = MMI.getFrameInstructions();
661  bool FoundOne = false;
662  (void)FoundOne;
663  for (std::vector<MCCFIInstruction>::iterator I = Instructions.begin(),
664         E = Instructions.end(); I != E; ++I) {
665    if (I->getLabel() == Label) {
666      emitCFIInstruction(*I);
667      FoundOne = true;
668    }
669  }
670  assert(FoundOne);
671}
672
673/// EmitFunctionBody - This method emits the body and trailer for a
674/// function.
675void AsmPrinter::EmitFunctionBody() {
676  // Emit target-specific gunk before the function body.
677  EmitFunctionBodyStart();
678
679  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
680
681  // Print out code for the function.
682  bool HasAnyRealCode = false;
683  const MachineInstr *LastMI = 0;
684  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
685       I != E; ++I) {
686    // Print a label for the basic block.
687    EmitBasicBlockStart(I);
688    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
689         II != IE; ++II) {
690      LastMI = II;
691
692      // Print the assembly for the instruction.
693      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
694          !II->isDebugValue()) {
695        HasAnyRealCode = true;
696        ++EmittedInsts;
697      }
698
699      if (ShouldPrintDebugScopes) {
700        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
701        DD->beginInstruction(II);
702      }
703
704      if (isVerbose())
705        emitComments(*II, OutStreamer.GetCommentOS());
706
707      switch (II->getOpcode()) {
708      case TargetOpcode::PROLOG_LABEL:
709        emitPrologLabel(*II);
710        break;
711
712      case TargetOpcode::EH_LABEL:
713      case TargetOpcode::GC_LABEL:
714        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
715        break;
716      case TargetOpcode::INLINEASM:
717        EmitInlineAsm(II);
718        break;
719      case TargetOpcode::DBG_VALUE:
720        if (isVerbose()) {
721          if (!emitDebugValueComment(II, *this))
722            EmitInstruction(II);
723        }
724        break;
725      case TargetOpcode::IMPLICIT_DEF:
726        if (isVerbose()) emitImplicitDef(II, *this);
727        break;
728      case TargetOpcode::KILL:
729        if (isVerbose()) emitKill(II, *this);
730        break;
731      default:
732        if (!TM.hasMCUseLoc())
733          MCLineEntry::Make(&OutStreamer, getCurrentSection());
734
735        EmitInstruction(II);
736        break;
737      }
738
739      if (ShouldPrintDebugScopes) {
740        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
741        DD->endInstruction(II);
742      }
743    }
744  }
745
746  // If the last instruction was a prolog label, then we have a situation where
747  // we emitted a prolog but no function body. This results in the ending prolog
748  // label equaling the end of function label and an invalid "row" in the
749  // FDE. We need to emit a noop in this situation so that the FDE's rows are
750  // valid.
751  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
752
753  // If the function is empty and the object file uses .subsections_via_symbols,
754  // then we need to emit *something* to the function body to prevent the
755  // labels from collapsing together.  Just emit a noop.
756  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
757    MCInst Noop;
758    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
759    if (Noop.getOpcode()) {
760      OutStreamer.AddComment("avoids zero-length function");
761      OutStreamer.EmitInstruction(Noop);
762    } else  // Target not mc-ized yet.
763      OutStreamer.EmitRawText(StringRef("\tnop\n"));
764  }
765
766  const Function *F = MF->getFunction();
767  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
768    const BasicBlock *BB = i;
769    if (!BB->hasAddressTaken())
770      continue;
771    MCSymbol *Sym = GetBlockAddressSymbol(BB);
772    if (Sym->isDefined())
773      continue;
774    OutStreamer.AddComment("Address of block that was removed by CodeGen");
775    OutStreamer.EmitLabel(Sym);
776  }
777
778  // Emit target-specific gunk after the function body.
779  EmitFunctionBodyEnd();
780
781  // If the target wants a .size directive for the size of the function, emit
782  // it.
783  if (MAI->hasDotTypeDotSizeDirective()) {
784    // Create a symbol for the end of function, so we can get the size as
785    // difference between the function label and the temp label.
786    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
787    OutStreamer.EmitLabel(FnEndLabel);
788
789    const MCExpr *SizeExp =
790      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
791                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
792                                                      OutContext),
793                              OutContext);
794    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
795  }
796
797  // Emit post-function debug information.
798  if (DD) {
799    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
800    DD->endFunction(MF);
801  }
802  if (DE) {
803    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
804    DE->EndFunction();
805  }
806  MMI->EndFunction();
807
808  // Print out jump tables referenced by the function.
809  EmitJumpTableInfo();
810
811  OutStreamer.AddBlankLine();
812}
813
814/// EmitDwarfRegOp - Emit dwarf register operation.
815void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc,
816                                bool Indirect) const {
817  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
818  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
819
820  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
821       ++SR) {
822    Reg = TRI->getDwarfRegNum(*SR, false);
823    // FIXME: Get the bit range this register uses of the superregister
824    // so that we can produce a DW_OP_bit_piece
825  }
826
827  // FIXME: Handle cases like a super register being encoded as
828  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
829
830  // FIXME: We have no reasonable way of handling errors in here. The
831  // caller might be in the middle of an dwarf expression. We should
832  // probably assert that Reg >= 0 once debug info generation is more mature.
833
834  if (MLoc.isIndirect() || Indirect) {
835    if (Reg < 32) {
836      OutStreamer.AddComment(
837        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
838      EmitInt8(dwarf::DW_OP_breg0 + Reg);
839    } else {
840      OutStreamer.AddComment("DW_OP_bregx");
841      EmitInt8(dwarf::DW_OP_bregx);
842      OutStreamer.AddComment(Twine(Reg));
843      EmitULEB128(Reg);
844    }
845    EmitSLEB128(!MLoc.isIndirect() ? 0 : MLoc.getOffset());
846    if (MLoc.isIndirect() && Indirect)
847      EmitInt8(dwarf::DW_OP_deref);
848  } else {
849    if (Reg < 32) {
850      OutStreamer.AddComment(
851        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
852      EmitInt8(dwarf::DW_OP_reg0 + Reg);
853    } else {
854      OutStreamer.AddComment("DW_OP_regx");
855      EmitInt8(dwarf::DW_OP_regx);
856      OutStreamer.AddComment(Twine(Reg));
857      EmitULEB128(Reg);
858    }
859  }
860
861  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
862}
863
864bool AsmPrinter::doFinalization(Module &M) {
865  // Emit global variables.
866  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
867       I != E; ++I)
868    EmitGlobalVariable(I);
869
870  // Emit visibility info for declarations
871  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
872    const Function &F = *I;
873    if (!F.isDeclaration())
874      continue;
875    GlobalValue::VisibilityTypes V = F.getVisibility();
876    if (V == GlobalValue::DefaultVisibility)
877      continue;
878
879    MCSymbol *Name = Mang->getSymbol(&F);
880    EmitVisibility(Name, V, false);
881  }
882
883  // Emit module flags.
884  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
885  M.getModuleFlagsMetadata(ModuleFlags);
886  if (!ModuleFlags.empty())
887    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
888
889  // Finalize debug and EH information.
890  if (DE) {
891    {
892      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
893      DE->EndModule();
894    }
895    delete DE; DE = 0;
896  }
897  if (DD) {
898    {
899      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
900      DD->endModule();
901    }
902    delete DD; DD = 0;
903  }
904
905  // If the target wants to know about weak references, print them all.
906  if (MAI->getWeakRefDirective()) {
907    // FIXME: This is not lazy, it would be nice to only print weak references
908    // to stuff that is actually used.  Note that doing so would require targets
909    // to notice uses in operands (due to constant exprs etc).  This should
910    // happen with the MC stuff eventually.
911
912    // Print out module-level global variables here.
913    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
914         I != E; ++I) {
915      if (!I->hasExternalWeakLinkage()) continue;
916      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
917    }
918
919    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
920      if (!I->hasExternalWeakLinkage()) continue;
921      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
922    }
923  }
924
925  if (MAI->hasSetDirective()) {
926    OutStreamer.AddBlankLine();
927    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
928         I != E; ++I) {
929      MCSymbol *Name = Mang->getSymbol(I);
930
931      const GlobalValue *GV = I->getAliasedGlobal();
932      MCSymbol *Target = Mang->getSymbol(GV);
933
934      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
935        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
936      else if (I->hasWeakLinkage())
937        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
938      else
939        assert(I->hasLocalLinkage() && "Invalid alias linkage");
940
941      EmitVisibility(Name, I->getVisibility());
942
943      // Emit the directives as assignments aka .set:
944      OutStreamer.EmitAssignment(Name,
945                                 MCSymbolRefExpr::Create(Target, OutContext));
946    }
947  }
948
949  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
950  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
951  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
952    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
953      MP->finishAssembly(*this);
954
955  // If we don't have any trampolines, then we don't require stack memory
956  // to be executable. Some targets have a directive to declare this.
957  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
958  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
959    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
960      OutStreamer.SwitchSection(S);
961
962  // Allow the target to emit any magic that it wants at the end of the file,
963  // after everything else has gone out.
964  EmitEndOfAsmFile(M);
965
966  delete Mang; Mang = 0;
967  MMI = 0;
968
969  OutStreamer.Finish();
970  OutStreamer.reset();
971
972  return false;
973}
974
975void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
976  this->MF = &MF;
977  // Get the function symbol.
978  CurrentFnSym = Mang->getSymbol(MF.getFunction());
979  CurrentFnSymForSize = CurrentFnSym;
980
981  if (isVerbose())
982    LI = &getAnalysis<MachineLoopInfo>();
983}
984
985namespace {
986  // SectionCPs - Keep track the alignment, constpool entries per Section.
987  struct SectionCPs {
988    const MCSection *S;
989    unsigned Alignment;
990    SmallVector<unsigned, 4> CPEs;
991    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
992  };
993}
994
995/// EmitConstantPool - Print to the current output stream assembly
996/// representations of the constants in the constant pool MCP. This is
997/// used to print out constants which have been "spilled to memory" by
998/// the code generator.
999///
1000void AsmPrinter::EmitConstantPool() {
1001  const MachineConstantPool *MCP = MF->getConstantPool();
1002  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1003  if (CP.empty()) return;
1004
1005  // Calculate sections for constant pool entries. We collect entries to go into
1006  // the same section together to reduce amount of section switch statements.
1007  SmallVector<SectionCPs, 4> CPSections;
1008  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1009    const MachineConstantPoolEntry &CPE = CP[i];
1010    unsigned Align = CPE.getAlignment();
1011
1012    SectionKind Kind;
1013    switch (CPE.getRelocationInfo()) {
1014    default: llvm_unreachable("Unknown section kind");
1015    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1016    case 1:
1017      Kind = SectionKind::getReadOnlyWithRelLocal();
1018      break;
1019    case 0:
1020    switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
1021    case 4:  Kind = SectionKind::getMergeableConst4(); break;
1022    case 8:  Kind = SectionKind::getMergeableConst8(); break;
1023    case 16: Kind = SectionKind::getMergeableConst16();break;
1024    default: Kind = SectionKind::getMergeableConst(); break;
1025    }
1026    }
1027
1028    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1029
1030    // The number of sections are small, just do a linear search from the
1031    // last section to the first.
1032    bool Found = false;
1033    unsigned SecIdx = CPSections.size();
1034    while (SecIdx != 0) {
1035      if (CPSections[--SecIdx].S == S) {
1036        Found = true;
1037        break;
1038      }
1039    }
1040    if (!Found) {
1041      SecIdx = CPSections.size();
1042      CPSections.push_back(SectionCPs(S, Align));
1043    }
1044
1045    if (Align > CPSections[SecIdx].Alignment)
1046      CPSections[SecIdx].Alignment = Align;
1047    CPSections[SecIdx].CPEs.push_back(i);
1048  }
1049
1050  // Now print stuff into the calculated sections.
1051  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1052    OutStreamer.SwitchSection(CPSections[i].S);
1053    EmitAlignment(Log2_32(CPSections[i].Alignment));
1054
1055    unsigned Offset = 0;
1056    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1057      unsigned CPI = CPSections[i].CPEs[j];
1058      MachineConstantPoolEntry CPE = CP[CPI];
1059
1060      // Emit inter-object padding for alignment.
1061      unsigned AlignMask = CPE.getAlignment() - 1;
1062      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1063      OutStreamer.EmitZeros(NewOffset - Offset);
1064
1065      Type *Ty = CPE.getType();
1066      Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1067      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1068
1069      if (CPE.isMachineConstantPoolEntry())
1070        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1071      else
1072        EmitGlobalConstant(CPE.Val.ConstVal);
1073    }
1074  }
1075}
1076
1077/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1078/// by the current function to the current output stream.
1079///
1080void AsmPrinter::EmitJumpTableInfo() {
1081  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1082  if (MJTI == 0) return;
1083  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1084  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1085  if (JT.empty()) return;
1086
1087  // Pick the directive to use to print the jump table entries, and switch to
1088  // the appropriate section.
1089  const Function *F = MF->getFunction();
1090  bool JTInDiffSection = false;
1091  if (// In PIC mode, we need to emit the jump table to the same section as the
1092      // function body itself, otherwise the label differences won't make sense.
1093      // FIXME: Need a better predicate for this: what about custom entries?
1094      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1095      // We should also do if the section name is NULL or function is declared
1096      // in discardable section
1097      // FIXME: this isn't the right predicate, should be based on the MCSection
1098      // for the function.
1099      F->isWeakForLinker()) {
1100    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1101  } else {
1102    // Otherwise, drop it in the readonly section.
1103    const MCSection *ReadOnlySection =
1104      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1105    OutStreamer.SwitchSection(ReadOnlySection);
1106    JTInDiffSection = true;
1107  }
1108
1109  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1110
1111  // Jump tables in code sections are marked with a data_region directive
1112  // where that's supported.
1113  if (!JTInDiffSection)
1114    OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1115
1116  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1117    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1118
1119    // If this jump table was deleted, ignore it.
1120    if (JTBBs.empty()) continue;
1121
1122    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1123    // .set directive for each unique entry.  This reduces the number of
1124    // relocations the assembler will generate for the jump table.
1125    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1126        MAI->hasSetDirective()) {
1127      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1128      const TargetLowering *TLI = TM.getTargetLowering();
1129      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1130      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1131        const MachineBasicBlock *MBB = JTBBs[ii];
1132        if (!EmittedSets.insert(MBB)) continue;
1133
1134        // .set LJTSet, LBB32-base
1135        const MCExpr *LHS =
1136          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1137        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1138                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1139      }
1140    }
1141
1142    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1143    // before each jump table.  The first label is never referenced, but tells
1144    // the assembler and linker the extents of the jump table object.  The
1145    // second label is actually referenced by the code.
1146    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1147      // FIXME: This doesn't have to have any specific name, just any randomly
1148      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1149      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1150
1151    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1152
1153    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1154      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1155  }
1156  if (!JTInDiffSection)
1157    OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1158}
1159
1160/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1161/// current stream.
1162void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1163                                    const MachineBasicBlock *MBB,
1164                                    unsigned UID) const {
1165  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1166  const MCExpr *Value = 0;
1167  switch (MJTI->getEntryKind()) {
1168  case MachineJumpTableInfo::EK_Inline:
1169    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1170  case MachineJumpTableInfo::EK_Custom32:
1171    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1172                                                              OutContext);
1173    break;
1174  case MachineJumpTableInfo::EK_BlockAddress:
1175    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1176    //     .word LBB123
1177    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1178    break;
1179  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1180    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1181    // with a relocation as gp-relative, e.g.:
1182    //     .gprel32 LBB123
1183    MCSymbol *MBBSym = MBB->getSymbol();
1184    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1185    return;
1186  }
1187
1188  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1189    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1190    // with a relocation as gp-relative, e.g.:
1191    //     .gpdword LBB123
1192    MCSymbol *MBBSym = MBB->getSymbol();
1193    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1194    return;
1195  }
1196
1197  case MachineJumpTableInfo::EK_LabelDifference32: {
1198    // EK_LabelDifference32 - Each entry is the address of the block minus
1199    // the address of the jump table.  This is used for PIC jump tables where
1200    // gprel32 is not supported.  e.g.:
1201    //      .word LBB123 - LJTI1_2
1202    // If the .set directive is supported, this is emitted as:
1203    //      .set L4_5_set_123, LBB123 - LJTI1_2
1204    //      .word L4_5_set_123
1205
1206    // If we have emitted set directives for the jump table entries, print
1207    // them rather than the entries themselves.  If we're emitting PIC, then
1208    // emit the table entries as differences between two text section labels.
1209    if (MAI->hasSetDirective()) {
1210      // If we used .set, reference the .set's symbol.
1211      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1212                                      OutContext);
1213      break;
1214    }
1215    // Otherwise, use the difference as the jump table entry.
1216    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1217    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1218    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1219    break;
1220  }
1221  }
1222
1223  assert(Value && "Unknown entry kind!");
1224
1225  unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1226  OutStreamer.EmitValue(Value, EntrySize);
1227}
1228
1229
1230/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1231/// special global used by LLVM.  If so, emit it and return true, otherwise
1232/// do nothing and return false.
1233bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1234  if (GV->getName() == "llvm.used") {
1235    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1236      EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1237    return true;
1238  }
1239
1240  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1241  if (GV->getSection() == "llvm.metadata" ||
1242      GV->hasAvailableExternallyLinkage())
1243    return true;
1244
1245  if (!GV->hasAppendingLinkage()) return false;
1246
1247  assert(GV->hasInitializer() && "Not a special LLVM global!");
1248
1249  if (GV->getName() == "llvm.global_ctors") {
1250    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1251
1252    if (TM.getRelocationModel() == Reloc::Static &&
1253        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1254      StringRef Sym(".constructors_used");
1255      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1256                                      MCSA_Reference);
1257    }
1258    return true;
1259  }
1260
1261  if (GV->getName() == "llvm.global_dtors") {
1262    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1263
1264    if (TM.getRelocationModel() == Reloc::Static &&
1265        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1266      StringRef Sym(".destructors_used");
1267      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1268                                      MCSA_Reference);
1269    }
1270    return true;
1271  }
1272
1273  return false;
1274}
1275
1276/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1277/// global in the specified llvm.used list for which emitUsedDirectiveFor
1278/// is true, as being used with this directive.
1279void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1280  // Should be an array of 'i8*'.
1281  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1282    const GlobalValue *GV =
1283      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1284    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1285      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1286  }
1287}
1288
1289typedef std::pair<unsigned, Constant*> Structor;
1290
1291static bool priority_order(const Structor& lhs, const Structor& rhs) {
1292  return lhs.first < rhs.first;
1293}
1294
1295/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1296/// priority.
1297void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1298  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1299  // init priority.
1300  if (!isa<ConstantArray>(List)) return;
1301
1302  // Sanity check the structors list.
1303  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1304  if (!InitList) return; // Not an array!
1305  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1306  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1307  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1308      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1309
1310  // Gather the structors in a form that's convenient for sorting by priority.
1311  SmallVector<Structor, 8> Structors;
1312  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1313    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1314    if (!CS) continue; // Malformed.
1315    if (CS->getOperand(1)->isNullValue())
1316      break;  // Found a null terminator, skip the rest.
1317    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1318    if (!Priority) continue; // Malformed.
1319    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1320                                       CS->getOperand(1)));
1321  }
1322
1323  // Emit the function pointers in the target-specific order
1324  const DataLayout *TD = TM.getDataLayout();
1325  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1326  std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1327  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1328    const MCSection *OutputSection =
1329      (isCtor ?
1330       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1331       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1332    OutStreamer.SwitchSection(OutputSection);
1333    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1334      EmitAlignment(Align);
1335    EmitXXStructor(Structors[i].second);
1336  }
1337}
1338
1339//===--------------------------------------------------------------------===//
1340// Emission and print routines
1341//
1342
1343/// EmitInt8 - Emit a byte directive and value.
1344///
1345void AsmPrinter::EmitInt8(int Value) const {
1346  OutStreamer.EmitIntValue(Value, 1);
1347}
1348
1349/// EmitInt16 - Emit a short directive and value.
1350///
1351void AsmPrinter::EmitInt16(int Value) const {
1352  OutStreamer.EmitIntValue(Value, 2);
1353}
1354
1355/// EmitInt32 - Emit a long directive and value.
1356///
1357void AsmPrinter::EmitInt32(int Value) const {
1358  OutStreamer.EmitIntValue(Value, 4);
1359}
1360
1361/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1362/// in bytes of the directive is specified by Size and Hi/Lo specify the
1363/// labels.  This implicitly uses .set if it is available.
1364void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1365                                     unsigned Size) const {
1366  // Get the Hi-Lo expression.
1367  const MCExpr *Diff =
1368    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1369                            MCSymbolRefExpr::Create(Lo, OutContext),
1370                            OutContext);
1371
1372  if (!MAI->hasSetDirective()) {
1373    OutStreamer.EmitValue(Diff, Size);
1374    return;
1375  }
1376
1377  // Otherwise, emit with .set (aka assignment).
1378  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1379  OutStreamer.EmitAssignment(SetLabel, Diff);
1380  OutStreamer.EmitSymbolValue(SetLabel, Size);
1381}
1382
1383/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1384/// where the size in bytes of the directive is specified by Size and Hi/Lo
1385/// specify the labels.  This implicitly uses .set if it is available.
1386void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1387                                           const MCSymbol *Lo, unsigned Size)
1388  const {
1389
1390  // Emit Hi+Offset - Lo
1391  // Get the Hi+Offset expression.
1392  const MCExpr *Plus =
1393    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1394                            MCConstantExpr::Create(Offset, OutContext),
1395                            OutContext);
1396
1397  // Get the Hi+Offset-Lo expression.
1398  const MCExpr *Diff =
1399    MCBinaryExpr::CreateSub(Plus,
1400                            MCSymbolRefExpr::Create(Lo, OutContext),
1401                            OutContext);
1402
1403  if (!MAI->hasSetDirective())
1404    OutStreamer.EmitValue(Diff, 4);
1405  else {
1406    // Otherwise, emit with .set (aka assignment).
1407    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1408    OutStreamer.EmitAssignment(SetLabel, Diff);
1409    OutStreamer.EmitSymbolValue(SetLabel, 4);
1410  }
1411}
1412
1413/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1414/// where the size in bytes of the directive is specified by Size and Label
1415/// specifies the label.  This implicitly uses .set if it is available.
1416void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1417                                      unsigned Size)
1418  const {
1419
1420  // Emit Label+Offset (or just Label if Offset is zero)
1421  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1422  if (Offset)
1423    Expr = MCBinaryExpr::CreateAdd(Expr,
1424                                   MCConstantExpr::Create(Offset, OutContext),
1425                                   OutContext);
1426
1427  OutStreamer.EmitValue(Expr, Size);
1428}
1429
1430
1431//===----------------------------------------------------------------------===//
1432
1433// EmitAlignment - Emit an alignment directive to the specified power of
1434// two boundary.  For example, if you pass in 3 here, you will get an 8
1435// byte alignment.  If a global value is specified, and if that global has
1436// an explicit alignment requested, it will override the alignment request
1437// if required for correctness.
1438//
1439void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1440  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1441
1442  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1443
1444  if (getCurrentSection()->getKind().isText())
1445    OutStreamer.EmitCodeAlignment(1 << NumBits);
1446  else
1447    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1448}
1449
1450//===----------------------------------------------------------------------===//
1451// Constant emission.
1452//===----------------------------------------------------------------------===//
1453
1454/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1455///
1456static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1457  MCContext &Ctx = AP.OutContext;
1458
1459  if (CV->isNullValue() || isa<UndefValue>(CV))
1460    return MCConstantExpr::Create(0, Ctx);
1461
1462  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1463    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1464
1465  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1466    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1467
1468  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1469    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1470
1471  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1472  if (CE == 0) {
1473    llvm_unreachable("Unknown constant value to lower!");
1474  }
1475
1476  switch (CE->getOpcode()) {
1477  default:
1478    // If the code isn't optimized, there may be outstanding folding
1479    // opportunities. Attempt to fold the expression using DataLayout as a
1480    // last resort before giving up.
1481    if (Constant *C =
1482          ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1483      if (C != CE)
1484        return lowerConstant(C, AP);
1485
1486    // Otherwise report the problem to the user.
1487    {
1488      std::string S;
1489      raw_string_ostream OS(S);
1490      OS << "Unsupported expression in static initializer: ";
1491      WriteAsOperand(OS, CE, /*PrintType=*/false,
1492                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1493      report_fatal_error(OS.str());
1494    }
1495  case Instruction::GetElementPtr: {
1496    const DataLayout &TD = *AP.TM.getDataLayout();
1497    // Generate a symbolic expression for the byte address
1498    APInt OffsetAI(TD.getPointerSizeInBits(), 0);
1499    cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
1500
1501    const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1502    if (!OffsetAI)
1503      return Base;
1504
1505    int64_t Offset = OffsetAI.getSExtValue();
1506    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1507                                   Ctx);
1508  }
1509
1510  case Instruction::Trunc:
1511    // We emit the value and depend on the assembler to truncate the generated
1512    // expression properly.  This is important for differences between
1513    // blockaddress labels.  Since the two labels are in the same function, it
1514    // is reasonable to treat their delta as a 32-bit value.
1515    // FALL THROUGH.
1516  case Instruction::BitCast:
1517    return lowerConstant(CE->getOperand(0), AP);
1518
1519  case Instruction::IntToPtr: {
1520    const DataLayout &TD = *AP.TM.getDataLayout();
1521    // Handle casts to pointers by changing them into casts to the appropriate
1522    // integer type.  This promotes constant folding and simplifies this code.
1523    Constant *Op = CE->getOperand(0);
1524    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1525                                      false/*ZExt*/);
1526    return lowerConstant(Op, AP);
1527  }
1528
1529  case Instruction::PtrToInt: {
1530    const DataLayout &TD = *AP.TM.getDataLayout();
1531    // Support only foldable casts to/from pointers that can be eliminated by
1532    // changing the pointer to the appropriately sized integer type.
1533    Constant *Op = CE->getOperand(0);
1534    Type *Ty = CE->getType();
1535
1536    const MCExpr *OpExpr = lowerConstant(Op, AP);
1537
1538    // We can emit the pointer value into this slot if the slot is an
1539    // integer slot equal to the size of the pointer.
1540    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1541      return OpExpr;
1542
1543    // Otherwise the pointer is smaller than the resultant integer, mask off
1544    // the high bits so we are sure to get a proper truncation if the input is
1545    // a constant expr.
1546    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1547    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1548    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1549  }
1550
1551  // The MC library also has a right-shift operator, but it isn't consistently
1552  // signed or unsigned between different targets.
1553  case Instruction::Add:
1554  case Instruction::Sub:
1555  case Instruction::Mul:
1556  case Instruction::SDiv:
1557  case Instruction::SRem:
1558  case Instruction::Shl:
1559  case Instruction::And:
1560  case Instruction::Or:
1561  case Instruction::Xor: {
1562    const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1563    const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1564    switch (CE->getOpcode()) {
1565    default: llvm_unreachable("Unknown binary operator constant cast expr");
1566    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1567    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1568    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1569    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1570    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1571    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1572    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1573    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1574    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1575    }
1576  }
1577  }
1578}
1579
1580static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP);
1581
1582/// isRepeatedByteSequence - Determine whether the given value is
1583/// composed of a repeated sequence of identical bytes and return the
1584/// byte value.  If it is not a repeated sequence, return -1.
1585static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1586  StringRef Data = V->getRawDataValues();
1587  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1588  char C = Data[0];
1589  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1590    if (Data[i] != C) return -1;
1591  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1592}
1593
1594
1595/// isRepeatedByteSequence - Determine whether the given value is
1596/// composed of a repeated sequence of identical bytes and return the
1597/// byte value.  If it is not a repeated sequence, return -1.
1598static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1599
1600  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1601    if (CI->getBitWidth() > 64) return -1;
1602
1603    uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1604    uint64_t Value = CI->getZExtValue();
1605
1606    // Make sure the constant is at least 8 bits long and has a power
1607    // of 2 bit width.  This guarantees the constant bit width is
1608    // always a multiple of 8 bits, avoiding issues with padding out
1609    // to Size and other such corner cases.
1610    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1611
1612    uint8_t Byte = static_cast<uint8_t>(Value);
1613
1614    for (unsigned i = 1; i < Size; ++i) {
1615      Value >>= 8;
1616      if (static_cast<uint8_t>(Value) != Byte) return -1;
1617    }
1618    return Byte;
1619  }
1620  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1621    // Make sure all array elements are sequences of the same repeated
1622    // byte.
1623    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1624    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1625    if (Byte == -1) return -1;
1626
1627    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1628      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1629      if (ThisByte == -1) return -1;
1630      if (Byte != ThisByte) return -1;
1631    }
1632    return Byte;
1633  }
1634
1635  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1636    return isRepeatedByteSequence(CDS);
1637
1638  return -1;
1639}
1640
1641static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1642                                             AsmPrinter &AP){
1643
1644  // See if we can aggregate this into a .fill, if so, emit it as such.
1645  int Value = isRepeatedByteSequence(CDS, AP.TM);
1646  if (Value != -1) {
1647    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1648    // Don't emit a 1-byte object as a .fill.
1649    if (Bytes > 1)
1650      return AP.OutStreamer.EmitFill(Bytes, Value);
1651  }
1652
1653  // If this can be emitted with .ascii/.asciz, emit it as such.
1654  if (CDS->isString())
1655    return AP.OutStreamer.EmitBytes(CDS->getAsString());
1656
1657  // Otherwise, emit the values in successive locations.
1658  unsigned ElementByteSize = CDS->getElementByteSize();
1659  if (isa<IntegerType>(CDS->getElementType())) {
1660    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1661      if (AP.isVerbose())
1662        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1663                                                CDS->getElementAsInteger(i));
1664      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1665                                  ElementByteSize);
1666    }
1667  } else if (ElementByteSize == 4) {
1668    // FP Constants are printed as integer constants to avoid losing
1669    // precision.
1670    assert(CDS->getElementType()->isFloatTy());
1671    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1672      union {
1673        float F;
1674        uint32_t I;
1675      };
1676
1677      F = CDS->getElementAsFloat(i);
1678      if (AP.isVerbose())
1679        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1680      AP.OutStreamer.EmitIntValue(I, 4);
1681    }
1682  } else {
1683    assert(CDS->getElementType()->isDoubleTy());
1684    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1685      union {
1686        double F;
1687        uint64_t I;
1688      };
1689
1690      F = CDS->getElementAsDouble(i);
1691      if (AP.isVerbose())
1692        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1693      AP.OutStreamer.EmitIntValue(I, 8);
1694    }
1695  }
1696
1697  const DataLayout &TD = *AP.TM.getDataLayout();
1698  unsigned Size = TD.getTypeAllocSize(CDS->getType());
1699  unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1700                        CDS->getNumElements();
1701  if (unsigned Padding = Size - EmittedSize)
1702    AP.OutStreamer.EmitZeros(Padding);
1703
1704}
1705
1706static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
1707  // See if we can aggregate some values.  Make sure it can be
1708  // represented as a series of bytes of the constant value.
1709  int Value = isRepeatedByteSequence(CA, AP.TM);
1710
1711  if (Value != -1) {
1712    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1713    AP.OutStreamer.EmitFill(Bytes, Value);
1714  }
1715  else {
1716    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1717      emitGlobalConstantImpl(CA->getOperand(i), AP);
1718  }
1719}
1720
1721static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
1722  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1723    emitGlobalConstantImpl(CV->getOperand(i), AP);
1724
1725  const DataLayout &TD = *AP.TM.getDataLayout();
1726  unsigned Size = TD.getTypeAllocSize(CV->getType());
1727  unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1728                         CV->getType()->getNumElements();
1729  if (unsigned Padding = Size - EmittedSize)
1730    AP.OutStreamer.EmitZeros(Padding);
1731}
1732
1733static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
1734  // Print the fields in successive locations. Pad to align if needed!
1735  const DataLayout *TD = AP.TM.getDataLayout();
1736  unsigned Size = TD->getTypeAllocSize(CS->getType());
1737  const StructLayout *Layout = TD->getStructLayout(CS->getType());
1738  uint64_t SizeSoFar = 0;
1739  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1740    const Constant *Field = CS->getOperand(i);
1741
1742    // Check if padding is needed and insert one or more 0s.
1743    uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1744    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1745                        - Layout->getElementOffset(i)) - FieldSize;
1746    SizeSoFar += FieldSize + PadSize;
1747
1748    // Now print the actual field value.
1749    emitGlobalConstantImpl(Field, AP);
1750
1751    // Insert padding - this may include padding to increase the size of the
1752    // current field up to the ABI size (if the struct is not packed) as well
1753    // as padding to ensure that the next field starts at the right offset.
1754    AP.OutStreamer.EmitZeros(PadSize);
1755  }
1756  assert(SizeSoFar == Layout->getSizeInBytes() &&
1757         "Layout of constant struct may be incorrect!");
1758}
1759
1760static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
1761  APInt API = CFP->getValueAPF().bitcastToAPInt();
1762
1763  // First print a comment with what we think the original floating-point value
1764  // should have been.
1765  if (AP.isVerbose()) {
1766    SmallString<8> StrVal;
1767    CFP->getValueAPF().toString(StrVal);
1768
1769    CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1770    AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1771  }
1772
1773  // Now iterate through the APInt chunks, emitting them in endian-correct
1774  // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1775  // floats).
1776  unsigned NumBytes = API.getBitWidth() / 8;
1777  unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1778  const uint64_t *p = API.getRawData();
1779
1780  // PPC's long double has odd notions of endianness compared to how LLVM
1781  // handles it: p[0] goes first for *big* endian on PPC.
1782  if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
1783    int Chunk = API.getNumWords() - 1;
1784
1785    if (TrailingBytes)
1786      AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
1787
1788    for (; Chunk >= 0; --Chunk)
1789      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1790  } else {
1791    unsigned Chunk;
1792    for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
1793      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1794
1795    if (TrailingBytes)
1796      AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
1797  }
1798
1799  // Emit the tail padding for the long double.
1800  const DataLayout &TD = *AP.TM.getDataLayout();
1801  AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1802                           TD.getTypeStoreSize(CFP->getType()));
1803}
1804
1805static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
1806  const DataLayout *TD = AP.TM.getDataLayout();
1807  unsigned BitWidth = CI->getBitWidth();
1808
1809  // Copy the value as we may massage the layout for constants whose bit width
1810  // is not a multiple of 64-bits.
1811  APInt Realigned(CI->getValue());
1812  uint64_t ExtraBits = 0;
1813  unsigned ExtraBitsSize = BitWidth & 63;
1814
1815  if (ExtraBitsSize) {
1816    // The bit width of the data is not a multiple of 64-bits.
1817    // The extra bits are expected to be at the end of the chunk of the memory.
1818    // Little endian:
1819    // * Nothing to be done, just record the extra bits to emit.
1820    // Big endian:
1821    // * Record the extra bits to emit.
1822    // * Realign the raw data to emit the chunks of 64-bits.
1823    if (TD->isBigEndian()) {
1824      // Basically the structure of the raw data is a chunk of 64-bits cells:
1825      //    0        1         BitWidth / 64
1826      // [chunk1][chunk2] ... [chunkN].
1827      // The most significant chunk is chunkN and it should be emitted first.
1828      // However, due to the alignment issue chunkN contains useless bits.
1829      // Realign the chunks so that they contain only useless information:
1830      // ExtraBits     0       1       (BitWidth / 64) - 1
1831      //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
1832      ExtraBits = Realigned.getRawData()[0] &
1833        (((uint64_t)-1) >> (64 - ExtraBitsSize));
1834      Realigned = Realigned.lshr(ExtraBitsSize);
1835    } else
1836      ExtraBits = Realigned.getRawData()[BitWidth / 64];
1837  }
1838
1839  // We don't expect assemblers to support integer data directives
1840  // for more than 64 bits, so we emit the data in at most 64-bit
1841  // quantities at a time.
1842  const uint64_t *RawData = Realigned.getRawData();
1843  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1844    uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1845    AP.OutStreamer.EmitIntValue(Val, 8);
1846  }
1847
1848  if (ExtraBitsSize) {
1849    // Emit the extra bits after the 64-bits chunks.
1850
1851    // Emit a directive that fills the expected size.
1852    uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
1853    Size -= (BitWidth / 64) * 8;
1854    assert(Size && Size * 8 >= ExtraBitsSize &&
1855           (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
1856           == ExtraBits && "Directive too small for extra bits.");
1857    AP.OutStreamer.EmitIntValue(ExtraBits, Size);
1858  }
1859}
1860
1861static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
1862  const DataLayout *TD = AP.TM.getDataLayout();
1863  uint64_t Size = TD->getTypeAllocSize(CV->getType());
1864  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1865    return AP.OutStreamer.EmitZeros(Size);
1866
1867  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1868    switch (Size) {
1869    case 1:
1870    case 2:
1871    case 4:
1872    case 8:
1873      if (AP.isVerbose())
1874        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1875                                                CI->getZExtValue());
1876      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
1877      return;
1878    default:
1879      emitGlobalConstantLargeInt(CI, AP);
1880      return;
1881    }
1882  }
1883
1884  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1885    return emitGlobalConstantFP(CFP, AP);
1886
1887  if (isa<ConstantPointerNull>(CV)) {
1888    AP.OutStreamer.EmitIntValue(0, Size);
1889    return;
1890  }
1891
1892  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1893    return emitGlobalConstantDataSequential(CDS, AP);
1894
1895  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1896    return emitGlobalConstantArray(CVA, AP);
1897
1898  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1899    return emitGlobalConstantStruct(CVS, AP);
1900
1901  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1902    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1903    // vectors).
1904    if (CE->getOpcode() == Instruction::BitCast)
1905      return emitGlobalConstantImpl(CE->getOperand(0), AP);
1906
1907    if (Size > 8) {
1908      // If the constant expression's size is greater than 64-bits, then we have
1909      // to emit the value in chunks. Try to constant fold the value and emit it
1910      // that way.
1911      Constant *New = ConstantFoldConstantExpression(CE, TD);
1912      if (New && New != CE)
1913        return emitGlobalConstantImpl(New, AP);
1914    }
1915  }
1916
1917  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1918    return emitGlobalConstantVector(V, AP);
1919
1920  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1921  // thread the streamer with EmitValue.
1922  AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size);
1923}
1924
1925/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1926void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
1927  uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
1928  if (Size)
1929    emitGlobalConstantImpl(CV, *this);
1930  else if (MAI->hasSubsectionsViaSymbols()) {
1931    // If the global has zero size, emit a single byte so that two labels don't
1932    // look like they are at the same location.
1933    OutStreamer.EmitIntValue(0, 1);
1934  }
1935}
1936
1937void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1938  // Target doesn't support this yet!
1939  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1940}
1941
1942void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1943  if (Offset > 0)
1944    OS << '+' << Offset;
1945  else if (Offset < 0)
1946    OS << Offset;
1947}
1948
1949//===----------------------------------------------------------------------===//
1950// Symbol Lowering Routines.
1951//===----------------------------------------------------------------------===//
1952
1953/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1954/// temporary label with the specified stem and unique ID.
1955MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1956  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1957                                      Name + Twine(ID));
1958}
1959
1960/// GetTempSymbol - Return an assembler temporary label with the specified
1961/// stem.
1962MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1963  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1964                                      Name);
1965}
1966
1967
1968MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1969  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1970}
1971
1972MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1973  return MMI->getAddrLabelSymbol(BB);
1974}
1975
1976/// GetCPISymbol - Return the symbol for the specified constant pool entry.
1977MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1978  return OutContext.GetOrCreateSymbol
1979    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1980     + "_" + Twine(CPID));
1981}
1982
1983/// GetJTISymbol - Return the symbol for the specified jump table entry.
1984MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1985  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1986}
1987
1988/// GetJTSetSymbol - Return the symbol for the specified jump table .set
1989/// FIXME: privatize to AsmPrinter.
1990MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1991  return OutContext.GetOrCreateSymbol
1992  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1993   Twine(UID) + "_set_" + Twine(MBBID));
1994}
1995
1996/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1997/// global value name as its base, with the specified suffix, and where the
1998/// symbol is forced to have private linkage if ForcePrivate is true.
1999MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
2000                                                   StringRef Suffix,
2001                                                   bool ForcePrivate) const {
2002  SmallString<60> NameStr;
2003  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
2004  NameStr.append(Suffix.begin(), Suffix.end());
2005  return OutContext.GetOrCreateSymbol(NameStr.str());
2006}
2007
2008/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2009/// ExternalSymbol.
2010MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2011  SmallString<60> NameStr;
2012  Mang->getNameWithPrefix(NameStr, Sym);
2013  return OutContext.GetOrCreateSymbol(NameStr.str());
2014}
2015
2016
2017
2018/// PrintParentLoopComment - Print comments about parent loops of this one.
2019static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2020                                   unsigned FunctionNumber) {
2021  if (Loop == 0) return;
2022  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2023  OS.indent(Loop->getLoopDepth()*2)
2024    << "Parent Loop BB" << FunctionNumber << "_"
2025    << Loop->getHeader()->getNumber()
2026    << " Depth=" << Loop->getLoopDepth() << '\n';
2027}
2028
2029
2030/// PrintChildLoopComment - Print comments about child loops within
2031/// the loop for this basic block, with nesting.
2032static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2033                                  unsigned FunctionNumber) {
2034  // Add child loop information
2035  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2036    OS.indent((*CL)->getLoopDepth()*2)
2037      << "Child Loop BB" << FunctionNumber << "_"
2038      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2039      << '\n';
2040    PrintChildLoopComment(OS, *CL, FunctionNumber);
2041  }
2042}
2043
2044/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2045static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2046                                       const MachineLoopInfo *LI,
2047                                       const AsmPrinter &AP) {
2048  // Add loop depth information
2049  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2050  if (Loop == 0) return;
2051
2052  MachineBasicBlock *Header = Loop->getHeader();
2053  assert(Header && "No header for loop");
2054
2055  // If this block is not a loop header, just print out what is the loop header
2056  // and return.
2057  if (Header != &MBB) {
2058    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2059                              Twine(AP.getFunctionNumber())+"_" +
2060                              Twine(Loop->getHeader()->getNumber())+
2061                              " Depth="+Twine(Loop->getLoopDepth()));
2062    return;
2063  }
2064
2065  // Otherwise, it is a loop header.  Print out information about child and
2066  // parent loops.
2067  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2068
2069  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2070
2071  OS << "=>";
2072  OS.indent(Loop->getLoopDepth()*2-2);
2073
2074  OS << "This ";
2075  if (Loop->empty())
2076    OS << "Inner ";
2077  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2078
2079  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2080}
2081
2082
2083/// EmitBasicBlockStart - This method prints the label for the specified
2084/// MachineBasicBlock, an alignment (if present) and a comment describing
2085/// it if appropriate.
2086void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2087  // Emit an alignment directive for this block, if needed.
2088  if (unsigned Align = MBB->getAlignment())
2089    EmitAlignment(Align);
2090
2091  // If the block has its address taken, emit any labels that were used to
2092  // reference the block.  It is possible that there is more than one label
2093  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2094  // the references were generated.
2095  if (MBB->hasAddressTaken()) {
2096    const BasicBlock *BB = MBB->getBasicBlock();
2097    if (isVerbose())
2098      OutStreamer.AddComment("Block address taken");
2099
2100    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2101
2102    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2103      OutStreamer.EmitLabel(Syms[i]);
2104  }
2105
2106  // Print some verbose block comments.
2107  if (isVerbose()) {
2108    if (const BasicBlock *BB = MBB->getBasicBlock())
2109      if (BB->hasName())
2110        OutStreamer.AddComment("%" + BB->getName());
2111    emitBasicBlockLoopComments(*MBB, LI, *this);
2112  }
2113
2114  // Print the main label for the block.
2115  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2116    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2117      // NOTE: Want this comment at start of line, don't emit with AddComment.
2118      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2119                              Twine(MBB->getNumber()) + ":");
2120    }
2121  } else {
2122    OutStreamer.EmitLabel(MBB->getSymbol());
2123  }
2124}
2125
2126void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2127                                bool IsDefinition) const {
2128  MCSymbolAttr Attr = MCSA_Invalid;
2129
2130  switch (Visibility) {
2131  default: break;
2132  case GlobalValue::HiddenVisibility:
2133    if (IsDefinition)
2134      Attr = MAI->getHiddenVisibilityAttr();
2135    else
2136      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2137    break;
2138  case GlobalValue::ProtectedVisibility:
2139    Attr = MAI->getProtectedVisibilityAttr();
2140    break;
2141  }
2142
2143  if (Attr != MCSA_Invalid)
2144    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2145}
2146
2147/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2148/// exactly one predecessor and the control transfer mechanism between
2149/// the predecessor and this block is a fall-through.
2150bool AsmPrinter::
2151isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2152  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2153  // then nothing falls through to it.
2154  if (MBB->isLandingPad() || MBB->pred_empty())
2155    return false;
2156
2157  // If there isn't exactly one predecessor, it can't be a fall through.
2158  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2159  ++PI2;
2160  if (PI2 != MBB->pred_end())
2161    return false;
2162
2163  // The predecessor has to be immediately before this block.
2164  MachineBasicBlock *Pred = *PI;
2165
2166  if (!Pred->isLayoutSuccessor(MBB))
2167    return false;
2168
2169  // If the block is completely empty, then it definitely does fall through.
2170  if (Pred->empty())
2171    return true;
2172
2173  // Check the terminators in the previous blocks
2174  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2175         IE = Pred->end(); II != IE; ++II) {
2176    MachineInstr &MI = *II;
2177
2178    // If it is not a simple branch, we are in a table somewhere.
2179    if (!MI.isBranch() || MI.isIndirectBranch())
2180      return false;
2181
2182    // If we are the operands of one of the branches, this is not
2183    // a fall through.
2184    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2185           OE = MI.operands_end(); OI != OE; ++OI) {
2186      const MachineOperand& OP = *OI;
2187      if (OP.isJTI())
2188        return false;
2189      if (OP.isMBB() && OP.getMBB() == MBB)
2190        return false;
2191    }
2192  }
2193
2194  return true;
2195}
2196
2197
2198
2199GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2200  if (!S->usesMetadata())
2201    return 0;
2202
2203  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2204  gcp_map_type::iterator GCPI = GCMap.find(S);
2205  if (GCPI != GCMap.end())
2206    return GCPI->second;
2207
2208  const char *Name = S->getName().c_str();
2209
2210  for (GCMetadataPrinterRegistry::iterator
2211         I = GCMetadataPrinterRegistry::begin(),
2212         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2213    if (strcmp(Name, I->getName()) == 0) {
2214      GCMetadataPrinter *GMP = I->instantiate();
2215      GMP->S = S;
2216      GCMap.insert(std::make_pair(S, GMP));
2217      return GMP;
2218    }
2219
2220  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2221}
2222