AsmPrinter.cpp revision 53d4d78d9a2c26a67ac8f6e81cc149702103fc2c
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineLoopInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/DwarfWriter.h"
27#include "llvm/Analysis/DebugInfo.h"
28#include "llvm/MC/MCContext.h"
29#include "llvm/MC/MCInst.h"
30#include "llvm/MC/MCSection.h"
31#include "llvm/MC/MCStreamer.h"
32#include "llvm/MC/MCSymbol.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/FormattedStream.h"
36#include "llvm/Support/Mangler.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetLoweringObjectFile.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Target/TargetRegisterInfo.h"
44#include "llvm/ADT/SmallPtrSet.h"
45#include "llvm/ADT/SmallString.h"
46#include "llvm/ADT/StringExtras.h"
47#include <cerrno>
48using namespace llvm;
49
50static cl::opt<cl::boolOrDefault>
51AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
52           cl::init(cl::BOU_UNSET));
53
54char AsmPrinter::ID = 0;
55AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
56                       const MCAsmInfo *T, bool VDef)
57  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
58    TM(tm), MAI(T), TRI(tm.getRegisterInfo()),
59
60    OutContext(*new MCContext()),
61    // FIXME: Pass instprinter to streamer.
62    OutStreamer(*createAsmStreamer(OutContext, O, *T, 0)),
63
64    LastMI(0), LastFn(0), Counter(~0U),
65    PrevDLT(0, 0, ~0U, ~0U) {
66  DW = 0; MMI = 0;
67  switch (AsmVerbose) {
68  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
69  case cl::BOU_TRUE:  VerboseAsm = true;  break;
70  case cl::BOU_FALSE: VerboseAsm = false; break;
71  }
72}
73
74AsmPrinter::~AsmPrinter() {
75  for (gcp_iterator I = GCMetadataPrinters.begin(),
76                    E = GCMetadataPrinters.end(); I != E; ++I)
77    delete I->second;
78
79  delete &OutStreamer;
80  delete &OutContext;
81}
82
83TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
84  return TM.getTargetLowering()->getObjFileLowering();
85}
86
87/// getCurrentSection() - Return the current section we are emitting to.
88const MCSection *AsmPrinter::getCurrentSection() const {
89  return OutStreamer.getCurrentSection();
90}
91
92
93void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
94  AU.setPreservesAll();
95  MachineFunctionPass::getAnalysisUsage(AU);
96  AU.addRequired<GCModuleInfo>();
97  if (VerboseAsm)
98    AU.addRequired<MachineLoopInfo>();
99}
100
101bool AsmPrinter::doInitialization(Module &M) {
102  // Initialize TargetLoweringObjectFile.
103  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
104    .Initialize(OutContext, TM);
105
106  Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(),
107                     MAI->getLinkerPrivateGlobalPrefix());
108
109  if (MAI->doesAllowQuotesInName())
110    Mang->setUseQuotes(true);
111
112  if (MAI->doesAllowNameToStartWithDigit())
113    Mang->setSymbolsCanStartWithDigit(true);
114
115  // Allow the target to emit any magic that it wants at the start of the file.
116  EmitStartOfAsmFile(M);
117
118  if (MAI->hasSingleParameterDotFile()) {
119    /* Very minimal debug info. It is ignored if we emit actual
120       debug info. If we don't, this at least helps the user find where
121       a function came from. */
122    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
123  }
124
125  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
126  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
127  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
128    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
129      MP->beginAssembly(O, *this, *MAI);
130
131  if (!M.getModuleInlineAsm().empty())
132    O << MAI->getCommentString() << " Start of file scope inline assembly\n"
133      << M.getModuleInlineAsm()
134      << '\n' << MAI->getCommentString()
135      << " End of file scope inline assembly\n";
136
137  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
138  if (MMI)
139    MMI->AnalyzeModule(M);
140  DW = getAnalysisIfAvailable<DwarfWriter>();
141  if (DW)
142    DW->BeginModule(&M, MMI, O, this, MAI);
143
144  return false;
145}
146
147bool AsmPrinter::doFinalization(Module &M) {
148  // Emit global variables.
149  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
150       I != E; ++I)
151    PrintGlobalVariable(I);
152
153  // Emit final debug information.
154  if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling())
155    DW->EndModule();
156
157  // If the target wants to know about weak references, print them all.
158  if (MAI->getWeakRefDirective()) {
159    // FIXME: This is not lazy, it would be nice to only print weak references
160    // to stuff that is actually used.  Note that doing so would require targets
161    // to notice uses in operands (due to constant exprs etc).  This should
162    // happen with the MC stuff eventually.
163
164    // Print out module-level global variables here.
165    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
166         I != E; ++I) {
167      if (I->hasExternalWeakLinkage())
168        O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
169    }
170
171    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
172      if (I->hasExternalWeakLinkage())
173        O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
174    }
175  }
176
177  if (MAI->getSetDirective()) {
178    O << '\n';
179    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
180         I != E; ++I) {
181      std::string Name = Mang->getMangledName(I);
182
183      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
184      std::string Target = Mang->getMangledName(GV);
185
186      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
187        O << "\t.globl\t" << Name << '\n';
188      else if (I->hasWeakLinkage())
189        O << MAI->getWeakRefDirective() << Name << '\n';
190      else if (!I->hasLocalLinkage())
191        llvm_unreachable("Invalid alias linkage");
192
193      printVisibility(Name, I->getVisibility());
194
195      O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
196    }
197  }
198
199  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
200  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
201  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
202    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
203      MP->finishAssembly(O, *this, *MAI);
204
205  // If we don't have any trampolines, then we don't require stack memory
206  // to be executable. Some targets have a directive to declare this.
207  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
208  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
209    if (MAI->getNonexecutableStackDirective())
210      O << MAI->getNonexecutableStackDirective() << '\n';
211
212
213  // Allow the target to emit any magic that it wants at the end of the file,
214  // after everything else has gone out.
215  EmitEndOfAsmFile(M);
216
217  delete Mang; Mang = 0;
218  DW = 0; MMI = 0;
219
220  OutStreamer.Finish();
221  return false;
222}
223
224void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
225  // What's my mangled name?
226  CurrentFnName = Mang->getMangledName(MF.getFunction());
227  IncrementFunctionNumber();
228
229  if (VerboseAsm)
230    LI = &getAnalysis<MachineLoopInfo>();
231}
232
233namespace {
234  // SectionCPs - Keep track the alignment, constpool entries per Section.
235  struct SectionCPs {
236    const MCSection *S;
237    unsigned Alignment;
238    SmallVector<unsigned, 4> CPEs;
239    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
240  };
241}
242
243/// EmitConstantPool - Print to the current output stream assembly
244/// representations of the constants in the constant pool MCP. This is
245/// used to print out constants which have been "spilled to memory" by
246/// the code generator.
247///
248void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
249  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
250  if (CP.empty()) return;
251
252  // Calculate sections for constant pool entries. We collect entries to go into
253  // the same section together to reduce amount of section switch statements.
254  SmallVector<SectionCPs, 4> CPSections;
255  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
256    const MachineConstantPoolEntry &CPE = CP[i];
257    unsigned Align = CPE.getAlignment();
258
259    SectionKind Kind;
260    switch (CPE.getRelocationInfo()) {
261    default: llvm_unreachable("Unknown section kind");
262    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
263    case 1:
264      Kind = SectionKind::getReadOnlyWithRelLocal();
265      break;
266    case 0:
267    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
268    case 4:  Kind = SectionKind::getMergeableConst4(); break;
269    case 8:  Kind = SectionKind::getMergeableConst8(); break;
270    case 16: Kind = SectionKind::getMergeableConst16();break;
271    default: Kind = SectionKind::getMergeableConst(); break;
272    }
273    }
274
275    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
276
277    // The number of sections are small, just do a linear search from the
278    // last section to the first.
279    bool Found = false;
280    unsigned SecIdx = CPSections.size();
281    while (SecIdx != 0) {
282      if (CPSections[--SecIdx].S == S) {
283        Found = true;
284        break;
285      }
286    }
287    if (!Found) {
288      SecIdx = CPSections.size();
289      CPSections.push_back(SectionCPs(S, Align));
290    }
291
292    if (Align > CPSections[SecIdx].Alignment)
293      CPSections[SecIdx].Alignment = Align;
294    CPSections[SecIdx].CPEs.push_back(i);
295  }
296
297  // Now print stuff into the calculated sections.
298  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
299    OutStreamer.SwitchSection(CPSections[i].S);
300    EmitAlignment(Log2_32(CPSections[i].Alignment));
301
302    unsigned Offset = 0;
303    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
304      unsigned CPI = CPSections[i].CPEs[j];
305      MachineConstantPoolEntry CPE = CP[CPI];
306
307      // Emit inter-object padding for alignment.
308      unsigned AlignMask = CPE.getAlignment() - 1;
309      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
310      EmitZeros(NewOffset - Offset);
311
312      const Type *Ty = CPE.getType();
313      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
314
315      O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
316        << CPI << ':';
317      if (VerboseAsm) {
318        O.PadToColumn(MAI->getCommentColumn());
319        O << MAI->getCommentString() << " constant ";
320        WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent());
321      }
322      O << '\n';
323      if (CPE.isMachineConstantPoolEntry())
324        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
325      else
326        EmitGlobalConstant(CPE.Val.ConstVal);
327    }
328  }
329}
330
331/// EmitJumpTableInfo - Print assembly representations of the jump tables used
332/// by the current function to the current output stream.
333///
334void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
335                                   MachineFunction &MF) {
336  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
337  if (JT.empty()) return;
338
339  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
340
341  // Pick the directive to use to print the jump table entries, and switch to
342  // the appropriate section.
343  TargetLowering *LoweringInfo = TM.getTargetLowering();
344
345  const Function *F = MF.getFunction();
346  bool JTInDiffSection = false;
347  if (F->isWeakForLinker() ||
348      (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
349    // In PIC mode, we need to emit the jump table to the same section as the
350    // function body itself, otherwise the label differences won't make sense.
351    // We should also do if the section name is NULL or function is declared in
352    // discardable section.
353    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang,
354                                                                    TM));
355  } else {
356    // Otherwise, drop it in the readonly section.
357    const MCSection *ReadOnlySection =
358      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
359    OutStreamer.SwitchSection(ReadOnlySection);
360    JTInDiffSection = true;
361  }
362
363  EmitAlignment(Log2_32(MJTI->getAlignment()));
364
365  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
366    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
367
368    // If this jump table was deleted, ignore it.
369    if (JTBBs.empty()) continue;
370
371    // For PIC codegen, if possible we want to use the SetDirective to reduce
372    // the number of relocations the assembler will generate for the jump table.
373    // Set directives are all printed before the jump table itself.
374    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
375    if (MAI->getSetDirective() && IsPic)
376      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
377        if (EmittedSets.insert(JTBBs[ii]))
378          printPICJumpTableSetLabel(i, JTBBs[ii]);
379
380    // On some targets (e.g. Darwin) we want to emit two consequtive labels
381    // before each jump table.  The first label is never referenced, but tells
382    // the assembler and linker the extents of the jump table object.  The
383    // second label is actually referenced by the code.
384    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) {
385      O << MAI->getLinkerPrivateGlobalPrefix()
386        << "JTI" << getFunctionNumber() << '_' << i << ":\n";
387    }
388
389    O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
390      << '_' << i << ":\n";
391
392    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
393      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
394      O << '\n';
395    }
396  }
397}
398
399void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
400                                        const MachineBasicBlock *MBB,
401                                        unsigned uid)  const {
402  bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
403
404  // Use JumpTableDirective otherwise honor the entry size from the jump table
405  // info.
406  const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC);
407  bool HadJTEntryDirective = JTEntryDirective != NULL;
408  if (!HadJTEntryDirective) {
409    JTEntryDirective = MJTI->getEntrySize() == 4 ?
410      MAI->getData32bitsDirective() : MAI->getData64bitsDirective();
411  }
412
413  O << JTEntryDirective << ' ';
414
415  // If we have emitted set directives for the jump table entries, print
416  // them rather than the entries themselves.  If we're emitting PIC, then
417  // emit the table entries as differences between two text section labels.
418  // If we're emitting non-PIC code, then emit the entries as direct
419  // references to the target basic blocks.
420  if (!isPIC) {
421    GetMBBSymbol(MBB->getNumber())->print(O, MAI);
422  } else if (MAI->getSetDirective()) {
423    O << MAI->getPrivateGlobalPrefix() << getFunctionNumber()
424      << '_' << uid << "_set_" << MBB->getNumber();
425  } else {
426    GetMBBSymbol(MBB->getNumber())->print(O, MAI);
427    // If the arch uses custom Jump Table directives, don't calc relative to
428    // JT
429    if (!HadJTEntryDirective)
430      O << '-' << MAI->getPrivateGlobalPrefix() << "JTI"
431        << getFunctionNumber() << '_' << uid;
432  }
433}
434
435
436/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
437/// special global used by LLVM.  If so, emit it and return true, otherwise
438/// do nothing and return false.
439bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
440  if (GV->getName() == "llvm.used") {
441    if (MAI->getUsedDirective() != 0)    // No need to emit this at all.
442      EmitLLVMUsedList(GV->getInitializer());
443    return true;
444  }
445
446  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
447  if (GV->getSection() == "llvm.metadata" ||
448      GV->hasAvailableExternallyLinkage())
449    return true;
450
451  if (!GV->hasAppendingLinkage()) return false;
452
453  assert(GV->hasInitializer() && "Not a special LLVM global!");
454
455  const TargetData *TD = TM.getTargetData();
456  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
457  if (GV->getName() == "llvm.global_ctors") {
458    OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection());
459    EmitAlignment(Align, 0);
460    EmitXXStructorList(GV->getInitializer());
461    return true;
462  }
463
464  if (GV->getName() == "llvm.global_dtors") {
465    OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection());
466    EmitAlignment(Align, 0);
467    EmitXXStructorList(GV->getInitializer());
468    return true;
469  }
470
471  return false;
472}
473
474/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
475/// global in the specified llvm.used list for which emitUsedDirectiveFor
476/// is true, as being used with this directive.
477void AsmPrinter::EmitLLVMUsedList(Constant *List) {
478  const char *Directive = MAI->getUsedDirective();
479
480  // Should be an array of 'i8*'.
481  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
482  if (InitList == 0) return;
483
484  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
485    const GlobalValue *GV =
486      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
487    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
488      O << Directive;
489      EmitConstantValueOnly(InitList->getOperand(i));
490      O << '\n';
491    }
492  }
493}
494
495/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
496/// function pointers, ignoring the init priority.
497void AsmPrinter::EmitXXStructorList(Constant *List) {
498  // Should be an array of '{ int, void ()* }' structs.  The first value is the
499  // init priority, which we ignore.
500  if (!isa<ConstantArray>(List)) return;
501  ConstantArray *InitList = cast<ConstantArray>(List);
502  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
503    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
504      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
505
506      if (CS->getOperand(1)->isNullValue())
507        return;  // Found a null terminator, exit printing.
508      // Emit the function pointer.
509      EmitGlobalConstant(CS->getOperand(1));
510    }
511}
512
513
514//===----------------------------------------------------------------------===//
515/// LEB 128 number encoding.
516
517/// PrintULEB128 - Print a series of hexadecimal values (separated by commas)
518/// representing an unsigned leb128 value.
519void AsmPrinter::PrintULEB128(unsigned Value) const {
520  char Buffer[20];
521  do {
522    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
523    Value >>= 7;
524    if (Value) Byte |= 0x80;
525    O << "0x" << utohex_buffer(Byte, Buffer+20);
526    if (Value) O << ", ";
527  } while (Value);
528}
529
530/// PrintSLEB128 - Print a series of hexadecimal values (separated by commas)
531/// representing a signed leb128 value.
532void AsmPrinter::PrintSLEB128(int Value) const {
533  int Sign = Value >> (8 * sizeof(Value) - 1);
534  bool IsMore;
535  char Buffer[20];
536
537  do {
538    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
539    Value >>= 7;
540    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
541    if (IsMore) Byte |= 0x80;
542    O << "0x" << utohex_buffer(Byte, Buffer+20);
543    if (IsMore) O << ", ";
544  } while (IsMore);
545}
546
547//===--------------------------------------------------------------------===//
548// Emission and print routines
549//
550
551/// PrintHex - Print a value as a hexadecimal value.
552///
553void AsmPrinter::PrintHex(int Value) const {
554  char Buffer[20];
555  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
556}
557
558/// EOL - Print a newline character to asm stream.  If a comment is present
559/// then it will be printed first.  Comments should not contain '\n'.
560void AsmPrinter::EOL() const {
561  O << '\n';
562}
563
564void AsmPrinter::EOL(const std::string &Comment) const {
565  if (VerboseAsm && !Comment.empty()) {
566    O.PadToColumn(MAI->getCommentColumn());
567    O << MAI->getCommentString()
568      << ' '
569      << Comment;
570  }
571  O << '\n';
572}
573
574void AsmPrinter::EOL(const char* Comment) const {
575  if (VerboseAsm && *Comment) {
576    O.PadToColumn(MAI->getCommentColumn());
577    O << MAI->getCommentString()
578      << ' '
579      << Comment;
580  }
581  O << '\n';
582}
583
584static const char *DecodeDWARFEncoding(unsigned Encoding) {
585  switch (Encoding) {
586  case dwarf::DW_EH_PE_absptr:
587    return "absptr";
588  case dwarf::DW_EH_PE_omit:
589    return "omit";
590  case dwarf::DW_EH_PE_pcrel:
591    return "pcrel";
592  case dwarf::DW_EH_PE_udata4:
593    return "udata4";
594  case dwarf::DW_EH_PE_udata8:
595    return "udata8";
596  case dwarf::DW_EH_PE_sdata4:
597    return "sdata4";
598  case dwarf::DW_EH_PE_sdata8:
599    return "sdata8";
600  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4:
601    return "pcrel udata4";
602  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4:
603    return "pcrel sdata4";
604  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8:
605    return "pcrel udata8";
606  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8:
607    return "pcrel sdata8";
608  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4:
609    return "indirect pcrel udata4";
610  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4:
611    return "indirect pcrel sdata4";
612  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8:
613    return "indirect pcrel udata8";
614  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8:
615    return "indirect pcrel sdata8";
616  }
617
618  return 0;
619}
620
621void AsmPrinter::EOL(const char *Comment, unsigned Encoding) const {
622  if (VerboseAsm && *Comment) {
623    O.PadToColumn(MAI->getCommentColumn());
624    O << MAI->getCommentString()
625      << ' '
626      << Comment;
627
628    if (const char *EncStr = DecodeDWARFEncoding(Encoding))
629      O << " (" << EncStr << ')';
630  }
631  O << '\n';
632}
633
634/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
635/// unsigned leb128 value.
636void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
637  if (MAI->hasLEB128()) {
638    O << "\t.uleb128\t"
639      << Value;
640  } else {
641    O << MAI->getData8bitsDirective();
642    PrintULEB128(Value);
643  }
644}
645
646/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
647/// signed leb128 value.
648void AsmPrinter::EmitSLEB128Bytes(int Value) const {
649  if (MAI->hasLEB128()) {
650    O << "\t.sleb128\t"
651      << Value;
652  } else {
653    O << MAI->getData8bitsDirective();
654    PrintSLEB128(Value);
655  }
656}
657
658/// EmitInt8 - Emit a byte directive and value.
659///
660void AsmPrinter::EmitInt8(int Value) const {
661  O << MAI->getData8bitsDirective();
662  PrintHex(Value & 0xFF);
663}
664
665/// EmitInt16 - Emit a short directive and value.
666///
667void AsmPrinter::EmitInt16(int Value) const {
668  O << MAI->getData16bitsDirective();
669  PrintHex(Value & 0xFFFF);
670}
671
672/// EmitInt32 - Emit a long directive and value.
673///
674void AsmPrinter::EmitInt32(int Value) const {
675  O << MAI->getData32bitsDirective();
676  PrintHex(Value);
677}
678
679/// EmitInt64 - Emit a long long directive and value.
680///
681void AsmPrinter::EmitInt64(uint64_t Value) const {
682  if (MAI->getData64bitsDirective()) {
683    O << MAI->getData64bitsDirective();
684    PrintHex(Value);
685  } else {
686    if (TM.getTargetData()->isBigEndian()) {
687      EmitInt32(unsigned(Value >> 32)); O << '\n';
688      EmitInt32(unsigned(Value));
689    } else {
690      EmitInt32(unsigned(Value)); O << '\n';
691      EmitInt32(unsigned(Value >> 32));
692    }
693  }
694}
695
696/// toOctal - Convert the low order bits of X into an octal digit.
697///
698static inline char toOctal(int X) {
699  return (X&7)+'0';
700}
701
702/// printStringChar - Print a char, escaped if necessary.
703///
704static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
705  if (C == '"') {
706    O << "\\\"";
707  } else if (C == '\\') {
708    O << "\\\\";
709  } else if (isprint((unsigned char)C)) {
710    O << C;
711  } else {
712    switch(C) {
713    case '\b': O << "\\b"; break;
714    case '\f': O << "\\f"; break;
715    case '\n': O << "\\n"; break;
716    case '\r': O << "\\r"; break;
717    case '\t': O << "\\t"; break;
718    default:
719      O << '\\';
720      O << toOctal(C >> 6);
721      O << toOctal(C >> 3);
722      O << toOctal(C >> 0);
723      break;
724    }
725  }
726}
727
728/// EmitString - Emit a string with quotes and a null terminator.
729/// Special characters are emitted properly.
730/// \literal (Eg. '\t') \endliteral
731void AsmPrinter::EmitString(const StringRef String) const {
732  EmitString(String.data(), String.size());
733}
734
735void AsmPrinter::EmitString(const char *String, unsigned Size) const {
736  const char* AscizDirective = MAI->getAscizDirective();
737  if (AscizDirective)
738    O << AscizDirective;
739  else
740    O << MAI->getAsciiDirective();
741  O << '\"';
742  for (unsigned i = 0; i < Size; ++i)
743    printStringChar(O, String[i]);
744  if (AscizDirective)
745    O << '\"';
746  else
747    O << "\\0\"";
748}
749
750
751/// EmitFile - Emit a .file directive.
752void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
753  O << "\t.file\t" << Number << " \"";
754  for (unsigned i = 0, N = Name.size(); i < N; ++i)
755    printStringChar(O, Name[i]);
756  O << '\"';
757}
758
759
760//===----------------------------------------------------------------------===//
761
762// EmitAlignment - Emit an alignment directive to the specified power of
763// two boundary.  For example, if you pass in 3 here, you will get an 8
764// byte alignment.  If a global value is specified, and if that global has
765// an explicit alignment requested, it will unconditionally override the
766// alignment request.  However, if ForcedAlignBits is specified, this value
767// has final say: the ultimate alignment will be the max of ForcedAlignBits
768// and the alignment computed with NumBits and the global.
769//
770// The algorithm is:
771//     Align = NumBits;
772//     if (GV && GV->hasalignment) Align = GV->getalignment();
773//     Align = std::max(Align, ForcedAlignBits);
774//
775void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
776                               unsigned ForcedAlignBits,
777                               bool UseFillExpr) const {
778  if (GV && GV->getAlignment())
779    NumBits = Log2_32(GV->getAlignment());
780  NumBits = std::max(NumBits, ForcedAlignBits);
781
782  if (NumBits == 0) return;   // No need to emit alignment.
783
784  unsigned FillValue = 0;
785  if (getCurrentSection()->getKind().isText())
786    FillValue = MAI->getTextAlignFillValue();
787
788  OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0);
789}
790
791/// EmitZeros - Emit a block of zeros.
792///
793void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
794  if (NumZeros) {
795    if (MAI->getZeroDirective()) {
796      O << MAI->getZeroDirective() << NumZeros;
797      if (MAI->getZeroDirectiveSuffix())
798        O << MAI->getZeroDirectiveSuffix();
799      O << '\n';
800    } else {
801      for (; NumZeros; --NumZeros)
802        O << MAI->getData8bitsDirective(AddrSpace) << "0\n";
803    }
804  }
805}
806
807// Print out the specified constant, without a storage class.  Only the
808// constants valid in constant expressions can occur here.
809void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
810  if (CV->isNullValue() || isa<UndefValue>(CV)) {
811    O << '0';
812    return;
813  }
814
815  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
816    O << CI->getZExtValue();
817    return;
818  }
819
820  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
821    // This is a constant address for a global variable or function. Use the
822    // name of the variable or function as the address value.
823    O << Mang->getMangledName(GV);
824    return;
825  }
826
827  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
828    GetBlockAddressSymbol(BA)->print(O, MAI);
829    return;
830  }
831
832  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
833  if (CE == 0) {
834    llvm_unreachable("Unknown constant value!");
835    O << '0';
836    return;
837  }
838
839  switch (CE->getOpcode()) {
840  case Instruction::ZExt:
841  case Instruction::SExt:
842  case Instruction::FPTrunc:
843  case Instruction::FPExt:
844  case Instruction::UIToFP:
845  case Instruction::SIToFP:
846  case Instruction::FPToUI:
847  case Instruction::FPToSI:
848  default:
849    llvm_unreachable("FIXME: Don't support this constant cast expr");
850  case Instruction::GetElementPtr: {
851    // generate a symbolic expression for the byte address
852    const TargetData *TD = TM.getTargetData();
853    const Constant *ptrVal = CE->getOperand(0);
854    SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
855    int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
856                                          idxVec.size());
857    if (Offset == 0)
858      return EmitConstantValueOnly(ptrVal);
859
860    // Truncate/sext the offset to the pointer size.
861    if (TD->getPointerSizeInBits() != 64) {
862      int SExtAmount = 64-TD->getPointerSizeInBits();
863      Offset = (Offset << SExtAmount) >> SExtAmount;
864    }
865
866    if (Offset)
867      O << '(';
868    EmitConstantValueOnly(ptrVal);
869    if (Offset > 0)
870      O << ") + " << Offset;
871    else
872      O << ") - " << -Offset;
873    return;
874  }
875  case Instruction::BitCast:
876    return EmitConstantValueOnly(CE->getOperand(0));
877
878  case Instruction::IntToPtr: {
879    // Handle casts to pointers by changing them into casts to the appropriate
880    // integer type.  This promotes constant folding and simplifies this code.
881    const TargetData *TD = TM.getTargetData();
882    Constant *Op = CE->getOperand(0);
883    Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
884                                      false/*ZExt*/);
885    return EmitConstantValueOnly(Op);
886  }
887
888  case Instruction::PtrToInt: {
889    // Support only foldable casts to/from pointers that can be eliminated by
890    // changing the pointer to the appropriately sized integer type.
891    Constant *Op = CE->getOperand(0);
892    const Type *Ty = CE->getType();
893    const TargetData *TD = TM.getTargetData();
894
895    // We can emit the pointer value into this slot if the slot is an
896    // integer slot greater or equal to the size of the pointer.
897    if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
898      return EmitConstantValueOnly(Op);
899
900    O << "((";
901    EmitConstantValueOnly(Op);
902    APInt ptrMask =
903      APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
904
905    SmallString<40> S;
906    ptrMask.toStringUnsigned(S);
907    O << ") & " << S.str() << ')';
908    return;
909  }
910
911  case Instruction::Trunc:
912    // We emit the value and depend on the assembler to truncate the generated
913    // expression properly.  This is important for differences between
914    // blockaddress labels.  Since the two labels are in the same function, it
915    // is reasonable to treat their delta as a 32-bit value.
916    return EmitConstantValueOnly(CE->getOperand(0));
917
918  case Instruction::Add:
919  case Instruction::Sub:
920  case Instruction::And:
921  case Instruction::Or:
922  case Instruction::Xor:
923    O << '(';
924    EmitConstantValueOnly(CE->getOperand(0));
925    O << ')';
926    switch (CE->getOpcode()) {
927    case Instruction::Add:
928     O << " + ";
929     break;
930    case Instruction::Sub:
931     O << " - ";
932     break;
933    case Instruction::And:
934     O << " & ";
935     break;
936    case Instruction::Or:
937     O << " | ";
938     break;
939    case Instruction::Xor:
940     O << " ^ ";
941     break;
942    default:
943     break;
944    }
945    O << '(';
946    EmitConstantValueOnly(CE->getOperand(1));
947    O << ')';
948    break;
949  }
950}
951
952/// printAsCString - Print the specified array as a C compatible string, only if
953/// the predicate isString is true.
954///
955static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
956                           unsigned LastElt) {
957  assert(CVA->isString() && "Array is not string compatible!");
958
959  O << '\"';
960  for (unsigned i = 0; i != LastElt; ++i) {
961    unsigned char C =
962        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
963    printStringChar(O, C);
964  }
965  O << '\"';
966}
967
968/// EmitString - Emit a zero-byte-terminated string constant.
969///
970void AsmPrinter::EmitString(const ConstantArray *CVA) const {
971  unsigned NumElts = CVA->getNumOperands();
972  if (MAI->getAscizDirective() && NumElts &&
973      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
974    O << MAI->getAscizDirective();
975    printAsCString(O, CVA, NumElts-1);
976  } else {
977    O << MAI->getAsciiDirective();
978    printAsCString(O, CVA, NumElts);
979  }
980  O << '\n';
981}
982
983void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
984                                         unsigned AddrSpace) {
985  if (CVA->isString()) {
986    EmitString(CVA);
987  } else { // Not a string.  Print the values in successive locations
988    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
989      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
990  }
991}
992
993void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
994  const VectorType *PTy = CP->getType();
995
996  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
997    EmitGlobalConstant(CP->getOperand(I));
998}
999
1000void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
1001                                          unsigned AddrSpace) {
1002  // Print the fields in successive locations. Pad to align if needed!
1003  const TargetData *TD = TM.getTargetData();
1004  unsigned Size = TD->getTypeAllocSize(CVS->getType());
1005  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
1006  uint64_t sizeSoFar = 0;
1007  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
1008    const Constant* field = CVS->getOperand(i);
1009
1010    // Check if padding is needed and insert one or more 0s.
1011    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
1012    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1013                        - cvsLayout->getElementOffset(i)) - fieldSize;
1014    sizeSoFar += fieldSize + padSize;
1015
1016    // Now print the actual field value.
1017    EmitGlobalConstant(field, AddrSpace);
1018
1019    // Insert padding - this may include padding to increase the size of the
1020    // current field up to the ABI size (if the struct is not packed) as well
1021    // as padding to ensure that the next field starts at the right offset.
1022    EmitZeros(padSize, AddrSpace);
1023  }
1024  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1025         "Layout of constant struct may be incorrect!");
1026}
1027
1028void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1029                                      unsigned AddrSpace) {
1030  // FP Constants are printed as integer constants to avoid losing
1031  // precision...
1032  LLVMContext &Context = CFP->getContext();
1033  const TargetData *TD = TM.getTargetData();
1034  if (CFP->getType()->isDoubleTy()) {
1035    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1036    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1037    if (MAI->getData64bitsDirective(AddrSpace)) {
1038      O << MAI->getData64bitsDirective(AddrSpace) << i;
1039      if (VerboseAsm) {
1040        O.PadToColumn(MAI->getCommentColumn());
1041        O << MAI->getCommentString() << " double " << Val;
1042      }
1043      O << '\n';
1044    } else if (TD->isBigEndian()) {
1045      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1046      if (VerboseAsm) {
1047        O.PadToColumn(MAI->getCommentColumn());
1048        O << MAI->getCommentString()
1049          << " most significant word of double " << Val;
1050      }
1051      O << '\n';
1052      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1053      if (VerboseAsm) {
1054        O.PadToColumn(MAI->getCommentColumn());
1055        O << MAI->getCommentString()
1056          << " least significant word of double " << Val;
1057      }
1058      O << '\n';
1059    } else {
1060      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1061      if (VerboseAsm) {
1062        O.PadToColumn(MAI->getCommentColumn());
1063        O << MAI->getCommentString()
1064          << " least significant word of double " << Val;
1065      }
1066      O << '\n';
1067      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1068      if (VerboseAsm) {
1069        O.PadToColumn(MAI->getCommentColumn());
1070        O << MAI->getCommentString()
1071          << " most significant word of double " << Val;
1072      }
1073      O << '\n';
1074    }
1075    return;
1076  }
1077
1078  if (CFP->getType()->isFloatTy()) {
1079    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1080    O << MAI->getData32bitsDirective(AddrSpace)
1081      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1082    if (VerboseAsm) {
1083      O.PadToColumn(MAI->getCommentColumn());
1084      O << MAI->getCommentString() << " float " << Val;
1085    }
1086    O << '\n';
1087    return;
1088  }
1089
1090  if (CFP->getType()->isX86_FP80Ty()) {
1091    // all long double variants are printed as hex
1092    // api needed to prevent premature destruction
1093    APInt api = CFP->getValueAPF().bitcastToAPInt();
1094    const uint64_t *p = api.getRawData();
1095    // Convert to double so we can print the approximate val as a comment.
1096    APFloat DoubleVal = CFP->getValueAPF();
1097    bool ignored;
1098    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1099                      &ignored);
1100    if (TD->isBigEndian()) {
1101      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1102      if (VerboseAsm) {
1103        O.PadToColumn(MAI->getCommentColumn());
1104        O << MAI->getCommentString()
1105          << " most significant halfword of x86_fp80 ~"
1106          << DoubleVal.convertToDouble();
1107      }
1108      O << '\n';
1109      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1110      if (VerboseAsm) {
1111        O.PadToColumn(MAI->getCommentColumn());
1112        O << MAI->getCommentString() << " next halfword";
1113      }
1114      O << '\n';
1115      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1116      if (VerboseAsm) {
1117        O.PadToColumn(MAI->getCommentColumn());
1118        O << MAI->getCommentString() << " next halfword";
1119      }
1120      O << '\n';
1121      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1122      if (VerboseAsm) {
1123        O.PadToColumn(MAI->getCommentColumn());
1124        O << MAI->getCommentString() << " next halfword";
1125      }
1126      O << '\n';
1127      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1128      if (VerboseAsm) {
1129        O.PadToColumn(MAI->getCommentColumn());
1130        O << MAI->getCommentString()
1131          << " least significant halfword";
1132      }
1133      O << '\n';
1134     } else {
1135      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1136      if (VerboseAsm) {
1137        O.PadToColumn(MAI->getCommentColumn());
1138        O << MAI->getCommentString()
1139          << " least significant halfword of x86_fp80 ~"
1140          << DoubleVal.convertToDouble();
1141      }
1142      O << '\n';
1143      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1144      if (VerboseAsm) {
1145        O.PadToColumn(MAI->getCommentColumn());
1146        O << MAI->getCommentString()
1147          << " next halfword";
1148      }
1149      O << '\n';
1150      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1151      if (VerboseAsm) {
1152        O.PadToColumn(MAI->getCommentColumn());
1153        O << MAI->getCommentString()
1154          << " next halfword";
1155      }
1156      O << '\n';
1157      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1158      if (VerboseAsm) {
1159        O.PadToColumn(MAI->getCommentColumn());
1160        O << MAI->getCommentString()
1161          << " next halfword";
1162      }
1163      O << '\n';
1164      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1165      if (VerboseAsm) {
1166        O.PadToColumn(MAI->getCommentColumn());
1167        O << MAI->getCommentString()
1168          << " most significant halfword";
1169      }
1170      O << '\n';
1171    }
1172    EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) -
1173              TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace);
1174    return;
1175  }
1176
1177  if (CFP->getType()->isPPC_FP128Ty()) {
1178    // all long double variants are printed as hex
1179    // api needed to prevent premature destruction
1180    APInt api = CFP->getValueAPF().bitcastToAPInt();
1181    const uint64_t *p = api.getRawData();
1182    if (TD->isBigEndian()) {
1183      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1184      if (VerboseAsm) {
1185        O.PadToColumn(MAI->getCommentColumn());
1186        O << MAI->getCommentString()
1187          << " most significant word of ppc_fp128";
1188      }
1189      O << '\n';
1190      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1191      if (VerboseAsm) {
1192        O.PadToColumn(MAI->getCommentColumn());
1193        O << MAI->getCommentString()
1194        << " next word";
1195      }
1196      O << '\n';
1197      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1198      if (VerboseAsm) {
1199        O.PadToColumn(MAI->getCommentColumn());
1200        O << MAI->getCommentString()
1201          << " next word";
1202      }
1203      O << '\n';
1204      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1205      if (VerboseAsm) {
1206        O.PadToColumn(MAI->getCommentColumn());
1207        O << MAI->getCommentString()
1208          << " least significant word";
1209      }
1210      O << '\n';
1211     } else {
1212      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1213      if (VerboseAsm) {
1214        O.PadToColumn(MAI->getCommentColumn());
1215        O << MAI->getCommentString()
1216          << " least significant word of ppc_fp128";
1217      }
1218      O << '\n';
1219      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1220      if (VerboseAsm) {
1221        O.PadToColumn(MAI->getCommentColumn());
1222        O << MAI->getCommentString()
1223          << " next word";
1224      }
1225      O << '\n';
1226      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1227      if (VerboseAsm) {
1228        O.PadToColumn(MAI->getCommentColumn());
1229        O << MAI->getCommentString()
1230          << " next word";
1231      }
1232      O << '\n';
1233      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1234      if (VerboseAsm) {
1235        O.PadToColumn(MAI->getCommentColumn());
1236        O << MAI->getCommentString()
1237          << " most significant word";
1238      }
1239      O << '\n';
1240    }
1241    return;
1242  } else llvm_unreachable("Floating point constant type not handled");
1243}
1244
1245void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1246                                            unsigned AddrSpace) {
1247  const TargetData *TD = TM.getTargetData();
1248  unsigned BitWidth = CI->getBitWidth();
1249  assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1250
1251  // We don't expect assemblers to support integer data directives
1252  // for more than 64 bits, so we emit the data in at most 64-bit
1253  // quantities at a time.
1254  const uint64_t *RawData = CI->getValue().getRawData();
1255  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1256    uint64_t Val;
1257    if (TD->isBigEndian())
1258      Val = RawData[e - i - 1];
1259    else
1260      Val = RawData[i];
1261
1262    if (MAI->getData64bitsDirective(AddrSpace)) {
1263      O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1264      continue;
1265    }
1266
1267    // Emit two 32-bit chunks, order depends on endianness.
1268    unsigned FirstChunk = unsigned(Val), SecondChunk = unsigned(Val >> 32);
1269    const char *FirstName = " least", *SecondName = " most";
1270    if (TD->isBigEndian()) {
1271      std::swap(FirstChunk, SecondChunk);
1272      std::swap(FirstName, SecondName);
1273    }
1274
1275    O << MAI->getData32bitsDirective(AddrSpace) << FirstChunk;
1276    if (VerboseAsm) {
1277      O.PadToColumn(MAI->getCommentColumn());
1278      O << MAI->getCommentString()
1279        << FirstName << " significant half of i64 " << Val;
1280    }
1281    O << '\n';
1282
1283    O << MAI->getData32bitsDirective(AddrSpace) << SecondChunk;
1284    if (VerboseAsm) {
1285      O.PadToColumn(MAI->getCommentColumn());
1286      O << MAI->getCommentString()
1287        << SecondName << " significant half of i64 " << Val;
1288    }
1289    O << '\n';
1290  }
1291}
1292
1293/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1294void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1295  const TargetData *TD = TM.getTargetData();
1296  const Type *type = CV->getType();
1297  unsigned Size = TD->getTypeAllocSize(type);
1298
1299  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1300    EmitZeros(Size, AddrSpace);
1301    return;
1302  }
1303
1304  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1305    EmitGlobalConstantArray(CVA , AddrSpace);
1306    return;
1307  }
1308
1309  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1310    EmitGlobalConstantStruct(CVS, AddrSpace);
1311    return;
1312  }
1313
1314  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1315    EmitGlobalConstantFP(CFP, AddrSpace);
1316    return;
1317  }
1318
1319  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1320    // If we can directly emit an 8-byte constant, do it.
1321    if (Size == 8)
1322      if (const char *Data64Dir = MAI->getData64bitsDirective(AddrSpace)) {
1323        O << Data64Dir << CI->getZExtValue() << '\n';
1324        return;
1325      }
1326
1327    // Small integers are handled below; large integers are handled here.
1328    if (Size > 4) {
1329      EmitGlobalConstantLargeInt(CI, AddrSpace);
1330      return;
1331    }
1332  }
1333
1334  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1335    EmitGlobalConstantVector(CP);
1336    return;
1337  }
1338
1339  printDataDirective(type, AddrSpace);
1340  EmitConstantValueOnly(CV);
1341  if (VerboseAsm) {
1342    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1343      SmallString<40> S;
1344      CI->getValue().toStringUnsigned(S, 16);
1345      O.PadToColumn(MAI->getCommentColumn());
1346      O << MAI->getCommentString() << " 0x" << S.str();
1347    }
1348  }
1349  O << '\n';
1350}
1351
1352void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1353  // Target doesn't support this yet!
1354  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1355}
1356
1357/// PrintSpecial - Print information related to the specified machine instr
1358/// that is independent of the operand, and may be independent of the instr
1359/// itself.  This can be useful for portably encoding the comment character
1360/// or other bits of target-specific knowledge into the asmstrings.  The
1361/// syntax used is ${:comment}.  Targets can override this to add support
1362/// for their own strange codes.
1363void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1364  if (!strcmp(Code, "private")) {
1365    O << MAI->getPrivateGlobalPrefix();
1366  } else if (!strcmp(Code, "comment")) {
1367    if (VerboseAsm)
1368      O << MAI->getCommentString();
1369  } else if (!strcmp(Code, "uid")) {
1370    // Comparing the address of MI isn't sufficient, because machineinstrs may
1371    // be allocated to the same address across functions.
1372    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1373
1374    // If this is a new LastFn instruction, bump the counter.
1375    if (LastMI != MI || LastFn != ThisF) {
1376      ++Counter;
1377      LastMI = MI;
1378      LastFn = ThisF;
1379    }
1380    O << Counter;
1381  } else {
1382    std::string msg;
1383    raw_string_ostream Msg(msg);
1384    Msg << "Unknown special formatter '" << Code
1385         << "' for machine instr: " << *MI;
1386    llvm_report_error(Msg.str());
1387  }
1388}
1389
1390/// processDebugLoc - Processes the debug information of each machine
1391/// instruction's DebugLoc.
1392void AsmPrinter::processDebugLoc(const MachineInstr *MI,
1393                                 bool BeforePrintingInsn) {
1394  if (!MAI || !DW || !MAI->doesSupportDebugInformation()
1395      || !DW->ShouldEmitDwarfDebug())
1396    return;
1397  DebugLoc DL = MI->getDebugLoc();
1398  if (DL.isUnknown())
1399    return;
1400  DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1401  if (CurDLT.Scope == 0)
1402    return;
1403
1404  if (BeforePrintingInsn) {
1405    if (CurDLT != PrevDLT) {
1406      unsigned L = DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1407                                        CurDLT.Scope);
1408      printLabel(L);
1409      O << '\n';
1410      DW->BeginScope(MI, L);
1411      PrevDLT = CurDLT;
1412    }
1413  } else {
1414    // After printing instruction
1415    DW->EndScope(MI);
1416  }
1417}
1418
1419
1420/// printInlineAsm - This method formats and prints the specified machine
1421/// instruction that is an inline asm.
1422void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1423  unsigned NumOperands = MI->getNumOperands();
1424
1425  // Count the number of register definitions.
1426  unsigned NumDefs = 0;
1427  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1428       ++NumDefs)
1429    assert(NumDefs != NumOperands-1 && "No asm string?");
1430
1431  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1432
1433  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1434  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1435
1436  O << '\t';
1437
1438  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1439  // These are useful to see where empty asm's wound up.
1440  if (AsmStr[0] == 0) {
1441    O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
1442    O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n';
1443    return;
1444  }
1445
1446  O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
1447
1448  // The variant of the current asmprinter.
1449  int AsmPrinterVariant = MAI->getAssemblerDialect();
1450
1451  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1452  const char *LastEmitted = AsmStr; // One past the last character emitted.
1453
1454  while (*LastEmitted) {
1455    switch (*LastEmitted) {
1456    default: {
1457      // Not a special case, emit the string section literally.
1458      const char *LiteralEnd = LastEmitted+1;
1459      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1460             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1461        ++LiteralEnd;
1462      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1463        O.write(LastEmitted, LiteralEnd-LastEmitted);
1464      LastEmitted = LiteralEnd;
1465      break;
1466    }
1467    case '\n':
1468      ++LastEmitted;   // Consume newline character.
1469      O << '\n';       // Indent code with newline.
1470      break;
1471    case '$': {
1472      ++LastEmitted;   // Consume '$' character.
1473      bool Done = true;
1474
1475      // Handle escapes.
1476      switch (*LastEmitted) {
1477      default: Done = false; break;
1478      case '$':     // $$ -> $
1479        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1480          O << '$';
1481        ++LastEmitted;  // Consume second '$' character.
1482        break;
1483      case '(':             // $( -> same as GCC's { character.
1484        ++LastEmitted;      // Consume '(' character.
1485        if (CurVariant != -1) {
1486          llvm_report_error("Nested variants found in inline asm string: '"
1487                            + std::string(AsmStr) + "'");
1488        }
1489        CurVariant = 0;     // We're in the first variant now.
1490        break;
1491      case '|':
1492        ++LastEmitted;  // consume '|' character.
1493        if (CurVariant == -1)
1494          O << '|';       // this is gcc's behavior for | outside a variant
1495        else
1496          ++CurVariant;   // We're in the next variant.
1497        break;
1498      case ')':         // $) -> same as GCC's } char.
1499        ++LastEmitted;  // consume ')' character.
1500        if (CurVariant == -1)
1501          O << '}';     // this is gcc's behavior for } outside a variant
1502        else
1503          CurVariant = -1;
1504        break;
1505      }
1506      if (Done) break;
1507
1508      bool HasCurlyBraces = false;
1509      if (*LastEmitted == '{') {     // ${variable}
1510        ++LastEmitted;               // Consume '{' character.
1511        HasCurlyBraces = true;
1512      }
1513
1514      // If we have ${:foo}, then this is not a real operand reference, it is a
1515      // "magic" string reference, just like in .td files.  Arrange to call
1516      // PrintSpecial.
1517      if (HasCurlyBraces && *LastEmitted == ':') {
1518        ++LastEmitted;
1519        const char *StrStart = LastEmitted;
1520        const char *StrEnd = strchr(StrStart, '}');
1521        if (StrEnd == 0) {
1522          llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1523                            + std::string(AsmStr) + "'");
1524        }
1525
1526        std::string Val(StrStart, StrEnd);
1527        PrintSpecial(MI, Val.c_str());
1528        LastEmitted = StrEnd+1;
1529        break;
1530      }
1531
1532      const char *IDStart = LastEmitted;
1533      char *IDEnd;
1534      errno = 0;
1535      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1536      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1537        llvm_report_error("Bad $ operand number in inline asm string: '"
1538                          + std::string(AsmStr) + "'");
1539      }
1540      LastEmitted = IDEnd;
1541
1542      char Modifier[2] = { 0, 0 };
1543
1544      if (HasCurlyBraces) {
1545        // If we have curly braces, check for a modifier character.  This
1546        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1547        if (*LastEmitted == ':') {
1548          ++LastEmitted;    // Consume ':' character.
1549          if (*LastEmitted == 0) {
1550            llvm_report_error("Bad ${:} expression in inline asm string: '"
1551                              + std::string(AsmStr) + "'");
1552          }
1553
1554          Modifier[0] = *LastEmitted;
1555          ++LastEmitted;    // Consume modifier character.
1556        }
1557
1558        if (*LastEmitted != '}') {
1559          llvm_report_error("Bad ${} expression in inline asm string: '"
1560                            + std::string(AsmStr) + "'");
1561        }
1562        ++LastEmitted;    // Consume '}' character.
1563      }
1564
1565      if ((unsigned)Val >= NumOperands-1) {
1566        llvm_report_error("Invalid $ operand number in inline asm string: '"
1567                          + std::string(AsmStr) + "'");
1568      }
1569
1570      // Okay, we finally have a value number.  Ask the target to print this
1571      // operand!
1572      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1573        unsigned OpNo = 1;
1574
1575        bool Error = false;
1576
1577        // Scan to find the machine operand number for the operand.
1578        for (; Val; --Val) {
1579          if (OpNo >= MI->getNumOperands()) break;
1580          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1581          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1582        }
1583
1584        if (OpNo >= MI->getNumOperands()) {
1585          Error = true;
1586        } else {
1587          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1588          ++OpNo;  // Skip over the ID number.
1589
1590          if (Modifier[0]=='l')  // labels are target independent
1591            GetMBBSymbol(MI->getOperand(OpNo).getMBB()
1592                           ->getNumber())->print(O, MAI);
1593          else {
1594            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1595            if ((OpFlags & 7) == 4) {
1596              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1597                                                Modifier[0] ? Modifier : 0);
1598            } else {
1599              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1600                                          Modifier[0] ? Modifier : 0);
1601            }
1602          }
1603        }
1604        if (Error) {
1605          std::string msg;
1606          raw_string_ostream Msg(msg);
1607          Msg << "Invalid operand found in inline asm: '"
1608               << AsmStr << "'\n";
1609          MI->print(Msg);
1610          llvm_report_error(Msg.str());
1611        }
1612      }
1613      break;
1614    }
1615    }
1616  }
1617  O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd();
1618}
1619
1620/// printImplicitDef - This method prints the specified machine instruction
1621/// that is an implicit def.
1622void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1623  if (!VerboseAsm) return;
1624  O.PadToColumn(MAI->getCommentColumn());
1625  O << MAI->getCommentString() << " implicit-def: "
1626    << TRI->getName(MI->getOperand(0).getReg());
1627}
1628
1629void AsmPrinter::printKill(const MachineInstr *MI) const {
1630  if (!VerboseAsm) return;
1631  O.PadToColumn(MAI->getCommentColumn());
1632  O << MAI->getCommentString() << " kill:";
1633  for (unsigned n = 0, e = MI->getNumOperands(); n != e; ++n) {
1634    const MachineOperand &op = MI->getOperand(n);
1635    assert(op.isReg() && "KILL instruction must have only register operands");
1636    O << ' ' << TRI->getName(op.getReg()) << (op.isDef() ? "<def>" : "<kill>");
1637  }
1638}
1639
1640/// printLabel - This method prints a local label used by debug and
1641/// exception handling tables.
1642void AsmPrinter::printLabel(const MachineInstr *MI) const {
1643  printLabel(MI->getOperand(0).getImm());
1644}
1645
1646void AsmPrinter::printLabel(unsigned Id) const {
1647  O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':';
1648}
1649
1650/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1651/// instruction, using the specified assembler variant.  Targets should
1652/// override this to format as appropriate.
1653bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1654                                 unsigned AsmVariant, const char *ExtraCode) {
1655  // Target doesn't support this yet!
1656  return true;
1657}
1658
1659bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1660                                       unsigned AsmVariant,
1661                                       const char *ExtraCode) {
1662  // Target doesn't support this yet!
1663  return true;
1664}
1665
1666MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA,
1667                                            const char *Suffix) const {
1668  return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock(), Suffix);
1669}
1670
1671MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F,
1672                                            const BasicBlock *BB,
1673                                            const char *Suffix) const {
1674  assert(BB->hasName() &&
1675         "Address of anonymous basic block not supported yet!");
1676
1677  // This code must use the function name itself, and not the function number,
1678  // since it must be possible to generate the label name from within other
1679  // functions.
1680  SmallString<60> FnName;
1681  Mang->getNameWithPrefix(FnName, F, false);
1682
1683  // FIXME: THIS IS BROKEN IF THE LLVM BASIC BLOCK DOESN'T HAVE A NAME!
1684  SmallString<60> NameResult;
1685  Mang->getNameWithPrefix(NameResult,
1686                          StringRef("BA") + Twine((unsigned)FnName.size()) +
1687                          "_" + FnName.str() + "_" + BB->getName() + Suffix,
1688                          Mangler::Private);
1689
1690  return OutContext.GetOrCreateSymbol(NameResult.str());
1691}
1692
1693MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const {
1694  SmallString<60> Name;
1695  raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB"
1696    << getFunctionNumber() << '_' << MBBID;
1697
1698  return OutContext.GetOrCreateSymbol(Name.str());
1699}
1700
1701/// GetGlobalValueSymbol - Return the MCSymbol for the specified global
1702/// value.
1703MCSymbol *AsmPrinter::GetGlobalValueSymbol(const GlobalValue *GV) const {
1704  SmallString<60> NameStr;
1705  Mang->getNameWithPrefix(NameStr, GV, false);
1706  return OutContext.GetOrCreateSymbol(NameStr.str());
1707}
1708
1709/// GetPrivateGlobalValueSymbolStub - Return the MCSymbol for a symbol with
1710/// global value name as its base, with the specified suffix, and where the
1711/// symbol is forced to have private linkage.
1712MCSymbol *AsmPrinter::GetPrivateGlobalValueSymbolStub(const GlobalValue *GV,
1713                                                      StringRef Suffix) const {
1714  SmallString<60> NameStr;
1715  Mang->getNameWithPrefix(NameStr, GV, true);
1716  NameStr.append(Suffix.begin(), Suffix.end());
1717  return OutContext.GetOrCreateSymbol(NameStr.str());
1718}
1719
1720/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1721/// ExternalSymbol.
1722MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1723  SmallString<60> NameStr;
1724  Mang->getNameWithPrefix(NameStr, Sym);
1725  return OutContext.GetOrCreateSymbol(NameStr.str());
1726}
1727
1728
1729/// EmitBasicBlockStart - This method prints the label for the specified
1730/// MachineBasicBlock, an alignment (if present) and a comment describing
1731/// it if appropriate.
1732void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
1733  // Emit an alignment directive for this block, if needed.
1734  if (unsigned Align = MBB->getAlignment())
1735    EmitAlignment(Log2_32(Align));
1736
1737  // If the block has its address taken, emit a special label to satisfy
1738  // references to the block. This is done so that we don't need to
1739  // remember the number of this label, and so that we can make
1740  // forward references to labels without knowing what their numbers
1741  // will be.
1742  if (MBB->hasAddressTaken()) {
1743    GetBlockAddressSymbol(MBB->getBasicBlock()->getParent(),
1744                          MBB->getBasicBlock())->print(O, MAI);
1745    O << ':';
1746    if (VerboseAsm) {
1747      O.PadToColumn(MAI->getCommentColumn());
1748      O << MAI->getCommentString() << " Address Taken";
1749    }
1750    O << '\n';
1751  }
1752
1753  // Print the main label for the block.
1754  if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) {
1755    if (VerboseAsm)
1756      O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':';
1757  } else {
1758    GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1759    O << ':';
1760    if (!VerboseAsm)
1761      O << '\n';
1762  }
1763
1764  // Print some comments to accompany the label.
1765  if (VerboseAsm) {
1766    if (const BasicBlock *BB = MBB->getBasicBlock())
1767      if (BB->hasName()) {
1768        O.PadToColumn(MAI->getCommentColumn());
1769        O << MAI->getCommentString() << ' ';
1770        WriteAsOperand(O, BB, /*PrintType=*/false);
1771      }
1772
1773    EmitComments(*MBB);
1774    O << '\n';
1775  }
1776}
1777
1778/// printPICJumpTableSetLabel - This method prints a set label for the
1779/// specified MachineBasicBlock for a jumptable entry.
1780void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1781                                           const MachineBasicBlock *MBB) const {
1782  if (!MAI->getSetDirective())
1783    return;
1784
1785  O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
1786    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1787  GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1788  O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1789    << '_' << uid << '\n';
1790}
1791
1792void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1793                                           const MachineBasicBlock *MBB) const {
1794  if (!MAI->getSetDirective())
1795    return;
1796
1797  O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
1798    << getFunctionNumber() << '_' << uid << '_' << uid2
1799    << "_set_" << MBB->getNumber() << ',';
1800  GetMBBSymbol(MBB->getNumber())->print(O, MAI);
1801  O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1802    << '_' << uid << '_' << uid2 << '\n';
1803}
1804
1805/// printDataDirective - This method prints the asm directive for the
1806/// specified type.
1807void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1808  const TargetData *TD = TM.getTargetData();
1809  switch (type->getTypeID()) {
1810  case Type::FloatTyID: case Type::DoubleTyID:
1811  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1812    assert(0 && "Should have already output floating point constant.");
1813  default:
1814    assert(0 && "Can't handle printing this type of thing");
1815  case Type::IntegerTyID: {
1816    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1817    if (BitWidth <= 8)
1818      O << MAI->getData8bitsDirective(AddrSpace);
1819    else if (BitWidth <= 16)
1820      O << MAI->getData16bitsDirective(AddrSpace);
1821    else if (BitWidth <= 32)
1822      O << MAI->getData32bitsDirective(AddrSpace);
1823    else if (BitWidth <= 64) {
1824      assert(MAI->getData64bitsDirective(AddrSpace) &&
1825             "Target cannot handle 64-bit constant exprs!");
1826      O << MAI->getData64bitsDirective(AddrSpace);
1827    } else {
1828      llvm_unreachable("Target cannot handle given data directive width!");
1829    }
1830    break;
1831  }
1832  case Type::PointerTyID:
1833    if (TD->getPointerSize() == 8) {
1834      assert(MAI->getData64bitsDirective(AddrSpace) &&
1835             "Target cannot handle 64-bit pointer exprs!");
1836      O << MAI->getData64bitsDirective(AddrSpace);
1837    } else if (TD->getPointerSize() == 2) {
1838      O << MAI->getData16bitsDirective(AddrSpace);
1839    } else if (TD->getPointerSize() == 1) {
1840      O << MAI->getData8bitsDirective(AddrSpace);
1841    } else {
1842      O << MAI->getData32bitsDirective(AddrSpace);
1843    }
1844    break;
1845  }
1846}
1847
1848void AsmPrinter::printVisibility(const std::string& Name,
1849                                 unsigned Visibility) const {
1850  if (Visibility == GlobalValue::HiddenVisibility) {
1851    if (const char *Directive = MAI->getHiddenDirective())
1852      O << Directive << Name << '\n';
1853  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1854    if (const char *Directive = MAI->getProtectedDirective())
1855      O << Directive << Name << '\n';
1856  }
1857}
1858
1859void AsmPrinter::printVisibility(const MCSymbol *Sym,
1860                                 unsigned Visibility) const {
1861  if (Visibility == GlobalValue::HiddenVisibility) {
1862    if (const char *Directive = MAI->getHiddenDirective()) {
1863      O << Directive;
1864      Sym->print(O, MAI);
1865      O << '\n';
1866    }
1867  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1868    if (const char *Directive = MAI->getProtectedDirective()) {
1869      O << Directive;
1870      Sym->print(O, MAI);
1871      O << '\n';
1872    }
1873  }
1874}
1875
1876void AsmPrinter::printOffset(int64_t Offset) const {
1877  if (Offset > 0)
1878    O << '+' << Offset;
1879  else if (Offset < 0)
1880    O << Offset;
1881}
1882
1883GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1884  if (!S->usesMetadata())
1885    return 0;
1886
1887  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1888  if (GCPI != GCMetadataPrinters.end())
1889    return GCPI->second;
1890
1891  const char *Name = S->getName().c_str();
1892
1893  for (GCMetadataPrinterRegistry::iterator
1894         I = GCMetadataPrinterRegistry::begin(),
1895         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1896    if (strcmp(Name, I->getName()) == 0) {
1897      GCMetadataPrinter *GMP = I->instantiate();
1898      GMP->S = S;
1899      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1900      return GMP;
1901    }
1902
1903  errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1904  llvm_unreachable(0);
1905}
1906
1907/// EmitComments - Pretty-print comments for instructions
1908void AsmPrinter::EmitComments(const MachineInstr &MI) const {
1909  if (!VerboseAsm)
1910    return;
1911
1912  bool Newline = false;
1913
1914  if (!MI.getDebugLoc().isUnknown()) {
1915    DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1916
1917    // Print source line info.
1918    O.PadToColumn(MAI->getCommentColumn());
1919    O << MAI->getCommentString() << ' ';
1920    DIScope Scope(DLT.Scope);
1921    // Omit the directory, because it's likely to be long and uninteresting.
1922    if (!Scope.isNull())
1923      O << Scope.getFilename();
1924    else
1925      O << "<unknown>";
1926    O << ':' << DLT.Line;
1927    if (DLT.Col != 0)
1928      O << ':' << DLT.Col;
1929    Newline = true;
1930  }
1931
1932  // Check for spills and reloads
1933  int FI;
1934
1935  const MachineFrameInfo *FrameInfo =
1936    MI.getParent()->getParent()->getFrameInfo();
1937
1938  // We assume a single instruction only has a spill or reload, not
1939  // both.
1940  const MachineMemOperand *MMO;
1941  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
1942    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1943      MMO = *MI.memoperands_begin();
1944      if (Newline) O << '\n';
1945      O.PadToColumn(MAI->getCommentColumn());
1946      O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Reload";
1947      Newline = true;
1948    }
1949  }
1950  else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
1951    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1952      if (Newline) O << '\n';
1953      O.PadToColumn(MAI->getCommentColumn());
1954      O << MAI->getCommentString() << ' '
1955        << MMO->getSize() << "-byte Folded Reload";
1956      Newline = true;
1957    }
1958  }
1959  else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
1960    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1961      MMO = *MI.memoperands_begin();
1962      if (Newline) O << '\n';
1963      O.PadToColumn(MAI->getCommentColumn());
1964      O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Spill";
1965      Newline = true;
1966    }
1967  }
1968  else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
1969    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1970      if (Newline) O << '\n';
1971      O.PadToColumn(MAI->getCommentColumn());
1972      O << MAI->getCommentString() << ' '
1973        << MMO->getSize() << "-byte Folded Spill";
1974      Newline = true;
1975    }
1976  }
1977
1978  // Check for spill-induced copies
1979  unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1980  if (TM.getInstrInfo()->isMoveInstr(MI, SrcReg, DstReg,
1981                                      SrcSubIdx, DstSubIdx)) {
1982    if (MI.getAsmPrinterFlag(ReloadReuse)) {
1983      if (Newline) O << '\n';
1984      O.PadToColumn(MAI->getCommentColumn());
1985      O << MAI->getCommentString() << " Reload Reuse";
1986    }
1987  }
1988}
1989
1990/// PrintChildLoopComment - Print comments about child loops within
1991/// the loop for this basic block, with nesting.
1992///
1993static void PrintChildLoopComment(formatted_raw_ostream &O,
1994                                  const MachineLoop *loop,
1995                                  const MCAsmInfo *MAI,
1996                                  int FunctionNumber) {
1997  // Add child loop information
1998  for(MachineLoop::iterator cl = loop->begin(),
1999        clend = loop->end();
2000      cl != clend;
2001      ++cl) {
2002    MachineBasicBlock *Header = (*cl)->getHeader();
2003    assert(Header && "No header for loop");
2004
2005    O << '\n';
2006    O.PadToColumn(MAI->getCommentColumn());
2007
2008    O << MAI->getCommentString();
2009    O.indent(((*cl)->getLoopDepth()-1)*2)
2010      << " Child Loop BB" << FunctionNumber << "_"
2011      << Header->getNumber() << " Depth " << (*cl)->getLoopDepth();
2012
2013    PrintChildLoopComment(O, *cl, MAI, FunctionNumber);
2014  }
2015}
2016
2017/// EmitComments - Pretty-print comments for basic blocks
2018void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const {
2019  if (VerboseAsm) {
2020    // Add loop depth information
2021    const MachineLoop *loop = LI->getLoopFor(&MBB);
2022
2023    if (loop) {
2024      // Print a newline after bb# annotation.
2025      O << "\n";
2026      O.PadToColumn(MAI->getCommentColumn());
2027      O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth()
2028        << '\n';
2029
2030      O.PadToColumn(MAI->getCommentColumn());
2031
2032      MachineBasicBlock *Header = loop->getHeader();
2033      assert(Header && "No header for loop");
2034
2035      if (Header == &MBB) {
2036        O << MAI->getCommentString() << " Loop Header";
2037        PrintChildLoopComment(O, loop, MAI, getFunctionNumber());
2038      }
2039      else {
2040        O << MAI->getCommentString() << " Loop Header is BB"
2041          << getFunctionNumber() << "_" << loop->getHeader()->getNumber();
2042      }
2043
2044      if (loop->empty()) {
2045        O << '\n';
2046        O.PadToColumn(MAI->getCommentColumn());
2047        O << MAI->getCommentString() << " Inner Loop";
2048      }
2049
2050      // Add parent loop information
2051      for (const MachineLoop *CurLoop = loop->getParentLoop();
2052           CurLoop;
2053           CurLoop = CurLoop->getParentLoop()) {
2054        MachineBasicBlock *Header = CurLoop->getHeader();
2055        assert(Header && "No header for loop");
2056
2057        O << '\n';
2058        O.PadToColumn(MAI->getCommentColumn());
2059        O << MAI->getCommentString();
2060        O.indent((CurLoop->getLoopDepth()-1)*2)
2061          << " Inside Loop BB" << getFunctionNumber() << "_"
2062          << Header->getNumber() << " Depth " << CurLoop->getLoopDepth();
2063      }
2064    }
2065  }
2066}
2067