AsmPrinter.cpp revision 68c1868c4bdc04cd319ea92662aa5aaccf6ac378
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/DwarfWriter.h"
24#include "llvm/Support/Mangler.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Target/TargetAsmInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetMachine.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include <cerrno>
36using namespace llvm;
37
38char AsmPrinter::ID = 0;
39AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
40                       const TargetAsmInfo *T, bool F)
41  : MachineFunctionPass(&ID), FunctionNumber(0), Fast(F), O(o),
42    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
43    IsInTextSection(false)
44{}
45
46AsmPrinter::~AsmPrinter() {
47  for (gcp_iterator I = GCMetadataPrinters.begin(),
48                    E = GCMetadataPrinters.end(); I != E; ++I)
49    delete I->second;
50}
51
52/// SwitchToTextSection - Switch to the specified text section of the executable
53/// if we are not already in it!
54///
55void AsmPrinter::SwitchToTextSection(const char *NewSection,
56                                     const GlobalValue *GV) {
57  std::string NS;
58  if (GV && GV->hasSection())
59    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
60  else
61    NS = NewSection;
62
63  // If we're already in this section, we're done.
64  if (CurrentSection == NS) return;
65
66  // Close the current section, if applicable.
67  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
68    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
69
70  CurrentSection = NS;
71
72  if (!CurrentSection.empty())
73    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
74
75  IsInTextSection = true;
76}
77
78/// SwitchToDataSection - Switch to the specified data section of the executable
79/// if we are not already in it!
80///
81void AsmPrinter::SwitchToDataSection(const char *NewSection,
82                                     const GlobalValue *GV) {
83  std::string NS;
84  if (GV && GV->hasSection())
85    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
86  else
87    NS = NewSection;
88
89  // If we're already in this section, we're done.
90  if (CurrentSection == NS) return;
91
92  // Close the current section, if applicable.
93  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
94    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
95
96  CurrentSection = NS;
97
98  if (!CurrentSection.empty())
99    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
100
101  IsInTextSection = false;
102}
103
104/// SwitchToSection - Switch to the specified section of the executable if we
105/// are not already in it!
106void AsmPrinter::SwitchToSection(const Section* NS) {
107  const std::string& NewSection = NS->getName();
108
109  // If we're already in this section, we're done.
110  if (CurrentSection == NewSection) return;
111
112  // Close the current section, if applicable.
113  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
114    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
115
116  // FIXME: Make CurrentSection a Section* in the future
117  CurrentSection = NewSection;
118  CurrentSection_ = NS;
119
120  if (!CurrentSection.empty()) {
121    // If section is named we need to switch into it via special '.section'
122    // directive and also append funky flags. Otherwise - section name is just
123    // some magic assembler directive.
124    if (NS->isNamed())
125      O << TAI->getSwitchToSectionDirective()
126        << CurrentSection
127        << TAI->getSectionFlags(NS->getFlags());
128    else
129      O << CurrentSection;
130    O << TAI->getDataSectionStartSuffix() << '\n';
131  }
132
133  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
134}
135
136void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
137  MachineFunctionPass::getAnalysisUsage(AU);
138  AU.addRequired<GCModuleInfo>();
139}
140
141bool AsmPrinter::doInitialization(Module &M) {
142  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix());
143
144  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
145  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
146
147  if (TAI->hasSingleParameterDotFile()) {
148    /* Very minimal debug info. It is ignored if we emit actual
149       debug info. If we don't, this at helps the user find where
150       a function came from. */
151    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
152  }
153
154  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
155    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
156      MP->beginAssembly(O, *this, *TAI);
157
158  if (!M.getModuleInlineAsm().empty())
159    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
160      << M.getModuleInlineAsm()
161      << '\n' << TAI->getCommentString()
162      << " End of file scope inline assembly\n";
163
164  SwitchToDataSection("");   // Reset back to no section.
165
166  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
167  if (MMI) MMI->AnalyzeModule(M);
168  DW = getAnalysisIfAvailable<DwarfWriter>();
169  return false;
170}
171
172bool AsmPrinter::doFinalization(Module &M) {
173  if (TAI->getWeakRefDirective()) {
174    if (!ExtWeakSymbols.empty())
175      SwitchToDataSection("");
176
177    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
178         e = ExtWeakSymbols.end(); i != e; ++i) {
179      const GlobalValue *GV = *i;
180      std::string Name = Mang->getValueName(GV);
181      O << TAI->getWeakRefDirective() << Name << '\n';
182    }
183  }
184
185  if (TAI->getSetDirective()) {
186    if (!M.alias_empty())
187      SwitchToSection(TAI->getTextSection());
188
189    O << '\n';
190    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
191         I!=E; ++I) {
192      std::string Name = Mang->getValueName(I);
193      std::string Target;
194
195      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
196      Target = Mang->getValueName(GV);
197
198      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
199        O << "\t.globl\t" << Name << '\n';
200      else if (I->hasWeakLinkage())
201        O << TAI->getWeakRefDirective() << Name << '\n';
202      else if (!I->hasLocalLinkage())
203        assert(0 && "Invalid alias linkage");
204
205      printVisibility(Name, I->getVisibility());
206
207      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
208    }
209  }
210
211  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
212  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
213  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
214    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
215      MP->finishAssembly(O, *this, *TAI);
216
217  // If we don't have any trampolines, then we don't require stack memory
218  // to be executable. Some targets have a directive to declare this.
219  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
220  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
221    if (TAI->getNonexecutableStackDirective())
222      O << TAI->getNonexecutableStackDirective() << '\n';
223
224  delete Mang; Mang = 0;
225  return false;
226}
227
228std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
229  assert(MF && "No machine function?");
230  std::string Name = MF->getFunction()->getName();
231  if (Name.empty())
232    Name = Mang->getValueName(MF->getFunction());
233  return Mang->makeNameProper(TAI->getEHGlobalPrefix() +
234                              Name + ".eh", TAI->getGlobalPrefix());
235}
236
237void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
238  // What's my mangled name?
239  CurrentFnName = Mang->getValueName(MF.getFunction());
240  IncrementFunctionNumber();
241}
242
243namespace {
244  // SectionCPs - Keep track the alignment, constpool entries per Section.
245  struct SectionCPs {
246    const Section *S;
247    unsigned Alignment;
248    SmallVector<unsigned, 4> CPEs;
249    SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {};
250  };
251}
252
253/// EmitConstantPool - Print to the current output stream assembly
254/// representations of the constants in the constant pool MCP. This is
255/// used to print out constants which have been "spilled to memory" by
256/// the code generator.
257///
258void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
259  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
260  if (CP.empty()) return;
261
262  // Calculate sections for constant pool entries. We collect entries to go into
263  // the same section together to reduce amount of section switch statements.
264  SmallVector<SectionCPs, 4> CPSections;
265  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
266    MachineConstantPoolEntry CPE = CP[i];
267    unsigned Align = CPE.getAlignment();
268    const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
269    // The number of sections are small, just do a linear search from the
270    // last section to the first.
271    bool Found = false;
272    unsigned SecIdx = CPSections.size();
273    while (SecIdx != 0) {
274      if (CPSections[--SecIdx].S == S) {
275        Found = true;
276        break;
277      }
278    }
279    if (!Found) {
280      SecIdx = CPSections.size();
281      CPSections.push_back(SectionCPs(S, Align));
282    }
283
284    if (Align > CPSections[SecIdx].Alignment)
285      CPSections[SecIdx].Alignment = Align;
286    CPSections[SecIdx].CPEs.push_back(i);
287  }
288
289  // Now print stuff into the calculated sections.
290  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
291    SwitchToSection(CPSections[i].S);
292    EmitAlignment(Log2_32(CPSections[i].Alignment));
293
294    unsigned Offset = 0;
295    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
296      unsigned CPI = CPSections[i].CPEs[j];
297      MachineConstantPoolEntry CPE = CP[CPI];
298
299      // Emit inter-object padding for alignment.
300      unsigned AlignMask = CPE.getAlignment() - 1;
301      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
302      EmitZeros(NewOffset - Offset);
303
304      const Type *Ty = CPE.getType();
305      Offset = NewOffset + TM.getTargetData()->getTypePaddedSize(Ty);
306
307      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
308        << CPI << ":\t\t\t\t\t";
309      if (VerboseAsm) {
310        O << TAI->getCommentString() << ' ';
311        WriteTypeSymbolic(O, CPE.getType(), 0);
312      }
313      O << '\n';
314      if (CPE.isMachineConstantPoolEntry())
315        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
316      else
317        EmitGlobalConstant(CPE.Val.ConstVal);
318    }
319  }
320}
321
322/// EmitJumpTableInfo - Print assembly representations of the jump tables used
323/// by the current function to the current output stream.
324///
325void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
326                                   MachineFunction &MF) {
327  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
328  if (JT.empty()) return;
329
330  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
331
332  // Pick the directive to use to print the jump table entries, and switch to
333  // the appropriate section.
334  TargetLowering *LoweringInfo = TM.getTargetLowering();
335
336  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
337  const Function *F = MF.getFunction();
338  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
339  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
340     !JumpTableDataSection ||
341      SectionFlags & SectionFlags::Linkonce) {
342    // In PIC mode, we need to emit the jump table to the same section as the
343    // function body itself, otherwise the label differences won't make sense.
344    // We should also do if the section name is NULL or function is declared in
345    // discardable section.
346    SwitchToSection(TAI->SectionForGlobal(F));
347  } else {
348    SwitchToDataSection(JumpTableDataSection);
349  }
350
351  EmitAlignment(Log2_32(MJTI->getAlignment()));
352
353  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
354    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
355
356    // If this jump table was deleted, ignore it.
357    if (JTBBs.empty()) continue;
358
359    // For PIC codegen, if possible we want to use the SetDirective to reduce
360    // the number of relocations the assembler will generate for the jump table.
361    // Set directives are all printed before the jump table itself.
362    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
363    if (TAI->getSetDirective() && IsPic)
364      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
365        if (EmittedSets.insert(JTBBs[ii]))
366          printPICJumpTableSetLabel(i, JTBBs[ii]);
367
368    // On some targets (e.g. darwin) we want to emit two consequtive labels
369    // before each jump table.  The first label is never referenced, but tells
370    // the assembler and linker the extents of the jump table object.  The
371    // second label is actually referenced by the code.
372    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
373      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
374
375    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
376      << '_' << i << ":\n";
377
378    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
379      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
380      O << '\n';
381    }
382  }
383}
384
385void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
386                                        const MachineBasicBlock *MBB,
387                                        unsigned uid)  const {
388  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
389
390  // Use JumpTableDirective otherwise honor the entry size from the jump table
391  // info.
392  const char *JTEntryDirective = TAI->getJumpTableDirective();
393  bool HadJTEntryDirective = JTEntryDirective != NULL;
394  if (!HadJTEntryDirective) {
395    JTEntryDirective = MJTI->getEntrySize() == 4 ?
396      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
397  }
398
399  O << JTEntryDirective << ' ';
400
401  // If we have emitted set directives for the jump table entries, print
402  // them rather than the entries themselves.  If we're emitting PIC, then
403  // emit the table entries as differences between two text section labels.
404  // If we're emitting non-PIC code, then emit the entries as direct
405  // references to the target basic blocks.
406  if (IsPic) {
407    if (TAI->getSetDirective()) {
408      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
409        << '_' << uid << "_set_" << MBB->getNumber();
410    } else {
411      printBasicBlockLabel(MBB, false, false, false);
412      // If the arch uses custom Jump Table directives, don't calc relative to
413      // JT
414      if (!HadJTEntryDirective)
415        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
416          << getFunctionNumber() << '_' << uid;
417    }
418  } else {
419    printBasicBlockLabel(MBB, false, false, false);
420  }
421}
422
423
424/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
425/// special global used by LLVM.  If so, emit it and return true, otherwise
426/// do nothing and return false.
427bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
428  if (GV->getName() == "llvm.used") {
429    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
430      EmitLLVMUsedList(GV->getInitializer());
431    return true;
432  }
433
434  // Ignore debug and non-emitted data.
435  if (GV->getSection() == "llvm.metadata") return true;
436
437  if (!GV->hasAppendingLinkage()) return false;
438
439  assert(GV->hasInitializer() && "Not a special LLVM global!");
440
441  const TargetData *TD = TM.getTargetData();
442  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
443  if (GV->getName() == "llvm.global_ctors") {
444    SwitchToDataSection(TAI->getStaticCtorsSection());
445    EmitAlignment(Align, 0);
446    EmitXXStructorList(GV->getInitializer());
447    return true;
448  }
449
450  if (GV->getName() == "llvm.global_dtors") {
451    SwitchToDataSection(TAI->getStaticDtorsSection());
452    EmitAlignment(Align, 0);
453    EmitXXStructorList(GV->getInitializer());
454    return true;
455  }
456
457  return false;
458}
459
460/// findGlobalValue - if CV is an expression equivalent to a single
461/// global value, return that value.
462const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
463  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
464    return GV;
465  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
466    const TargetData *TD = TM.getTargetData();
467    unsigned Opcode = CE->getOpcode();
468    switch (Opcode) {
469    case Instruction::GetElementPtr: {
470      const Constant *ptrVal = CE->getOperand(0);
471      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
472      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
473        return 0;
474      return findGlobalValue(ptrVal);
475    }
476    case Instruction::BitCast:
477      return findGlobalValue(CE->getOperand(0));
478    default:
479      return 0;
480    }
481  }
482  return 0;
483}
484
485/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
486/// global in the specified llvm.used list for which emitUsedDirectiveFor
487/// is true, as being used with this directive.
488
489void AsmPrinter::EmitLLVMUsedList(Constant *List) {
490  const char *Directive = TAI->getUsedDirective();
491
492  // Should be an array of 'sbyte*'.
493  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
494  if (InitList == 0) return;
495
496  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
497    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
498    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
499      O << Directive;
500      EmitConstantValueOnly(InitList->getOperand(i));
501      O << '\n';
502    }
503  }
504}
505
506/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
507/// function pointers, ignoring the init priority.
508void AsmPrinter::EmitXXStructorList(Constant *List) {
509  // Should be an array of '{ int, void ()* }' structs.  The first value is the
510  // init priority, which we ignore.
511  if (!isa<ConstantArray>(List)) return;
512  ConstantArray *InitList = cast<ConstantArray>(List);
513  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
514    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
515      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
516
517      if (CS->getOperand(1)->isNullValue())
518        return;  // Found a null terminator, exit printing.
519      // Emit the function pointer.
520      EmitGlobalConstant(CS->getOperand(1));
521    }
522}
523
524/// getGlobalLinkName - Returns the asm/link name of of the specified
525/// global variable.  Should be overridden by each target asm printer to
526/// generate the appropriate value.
527const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
528  std::string LinkName;
529
530  if (isa<Function>(GV)) {
531    LinkName += TAI->getFunctionAddrPrefix();
532    LinkName += Mang->getValueName(GV);
533    LinkName += TAI->getFunctionAddrSuffix();
534  } else {
535    LinkName += TAI->getGlobalVarAddrPrefix();
536    LinkName += Mang->getValueName(GV);
537    LinkName += TAI->getGlobalVarAddrSuffix();
538  }
539
540  return LinkName;
541}
542
543/// EmitExternalGlobal - Emit the external reference to a global variable.
544/// Should be overridden if an indirect reference should be used.
545void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
546  O << getGlobalLinkName(GV);
547}
548
549
550
551//===----------------------------------------------------------------------===//
552/// LEB 128 number encoding.
553
554/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
555/// representing an unsigned leb128 value.
556void AsmPrinter::PrintULEB128(unsigned Value) const {
557  char Buffer[20];
558  do {
559    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
560    Value >>= 7;
561    if (Value) Byte |= 0x80;
562    O << "0x" << utohex_buffer(Byte, Buffer+20);
563    if (Value) O << ", ";
564  } while (Value);
565}
566
567/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
568/// representing a signed leb128 value.
569void AsmPrinter::PrintSLEB128(int Value) const {
570  int Sign = Value >> (8 * sizeof(Value) - 1);
571  bool IsMore;
572  char Buffer[20];
573
574  do {
575    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
576    Value >>= 7;
577    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
578    if (IsMore) Byte |= 0x80;
579    O << "0x" << utohex_buffer(Byte, Buffer+20);
580    if (IsMore) O << ", ";
581  } while (IsMore);
582}
583
584//===--------------------------------------------------------------------===//
585// Emission and print routines
586//
587
588/// PrintHex - Print a value as a hexidecimal value.
589///
590void AsmPrinter::PrintHex(int Value) const {
591  char Buffer[20];
592  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
593}
594
595/// EOL - Print a newline character to asm stream.  If a comment is present
596/// then it will be printed first.  Comments should not contain '\n'.
597void AsmPrinter::EOL() const {
598  O << '\n';
599}
600
601void AsmPrinter::EOL(const std::string &Comment) const {
602  if (VerboseAsm && !Comment.empty()) {
603    O << '\t'
604      << TAI->getCommentString()
605      << ' '
606      << Comment;
607  }
608  O << '\n';
609}
610
611void AsmPrinter::EOL(const char* Comment) const {
612  if (VerboseAsm && *Comment) {
613    O << '\t'
614      << TAI->getCommentString()
615      << ' '
616      << Comment;
617  }
618  O << '\n';
619}
620
621/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
622/// unsigned leb128 value.
623void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
624  if (TAI->hasLEB128()) {
625    O << "\t.uleb128\t"
626      << Value;
627  } else {
628    O << TAI->getData8bitsDirective();
629    PrintULEB128(Value);
630  }
631}
632
633/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
634/// signed leb128 value.
635void AsmPrinter::EmitSLEB128Bytes(int Value) const {
636  if (TAI->hasLEB128()) {
637    O << "\t.sleb128\t"
638      << Value;
639  } else {
640    O << TAI->getData8bitsDirective();
641    PrintSLEB128(Value);
642  }
643}
644
645/// EmitInt8 - Emit a byte directive and value.
646///
647void AsmPrinter::EmitInt8(int Value) const {
648  O << TAI->getData8bitsDirective();
649  PrintHex(Value & 0xFF);
650}
651
652/// EmitInt16 - Emit a short directive and value.
653///
654void AsmPrinter::EmitInt16(int Value) const {
655  O << TAI->getData16bitsDirective();
656  PrintHex(Value & 0xFFFF);
657}
658
659/// EmitInt32 - Emit a long directive and value.
660///
661void AsmPrinter::EmitInt32(int Value) const {
662  O << TAI->getData32bitsDirective();
663  PrintHex(Value);
664}
665
666/// EmitInt64 - Emit a long long directive and value.
667///
668void AsmPrinter::EmitInt64(uint64_t Value) const {
669  if (TAI->getData64bitsDirective()) {
670    O << TAI->getData64bitsDirective();
671    PrintHex(Value);
672  } else {
673    if (TM.getTargetData()->isBigEndian()) {
674      EmitInt32(unsigned(Value >> 32)); O << '\n';
675      EmitInt32(unsigned(Value));
676    } else {
677      EmitInt32(unsigned(Value)); O << '\n';
678      EmitInt32(unsigned(Value >> 32));
679    }
680  }
681}
682
683/// toOctal - Convert the low order bits of X into an octal digit.
684///
685static inline char toOctal(int X) {
686  return (X&7)+'0';
687}
688
689/// printStringChar - Print a char, escaped if necessary.
690///
691static void printStringChar(raw_ostream &O, char C) {
692  if (C == '"') {
693    O << "\\\"";
694  } else if (C == '\\') {
695    O << "\\\\";
696  } else if (isprint((unsigned char)C)) {
697    O << C;
698  } else {
699    switch(C) {
700    case '\b': O << "\\b"; break;
701    case '\f': O << "\\f"; break;
702    case '\n': O << "\\n"; break;
703    case '\r': O << "\\r"; break;
704    case '\t': O << "\\t"; break;
705    default:
706      O << '\\';
707      O << toOctal(C >> 6);
708      O << toOctal(C >> 3);
709      O << toOctal(C >> 0);
710      break;
711    }
712  }
713}
714
715/// EmitString - Emit a string with quotes and a null terminator.
716/// Special characters are emitted properly.
717/// \literal (Eg. '\t') \endliteral
718void AsmPrinter::EmitString(const std::string &String) const {
719  const char* AscizDirective = TAI->getAscizDirective();
720  if (AscizDirective)
721    O << AscizDirective;
722  else
723    O << TAI->getAsciiDirective();
724  O << '\"';
725  for (unsigned i = 0, N = String.size(); i < N; ++i) {
726    unsigned char C = String[i];
727    printStringChar(O, C);
728  }
729  if (AscizDirective)
730    O << '\"';
731  else
732    O << "\\0\"";
733}
734
735
736/// EmitFile - Emit a .file directive.
737void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
738  O << "\t.file\t" << Number << " \"";
739  for (unsigned i = 0, N = Name.size(); i < N; ++i) {
740    unsigned char C = Name[i];
741    printStringChar(O, C);
742  }
743  O << '\"';
744}
745
746
747//===----------------------------------------------------------------------===//
748
749// EmitAlignment - Emit an alignment directive to the specified power of
750// two boundary.  For example, if you pass in 3 here, you will get an 8
751// byte alignment.  If a global value is specified, and if that global has
752// an explicit alignment requested, it will unconditionally override the
753// alignment request.  However, if ForcedAlignBits is specified, this value
754// has final say: the ultimate alignment will be the max of ForcedAlignBits
755// and the alignment computed with NumBits and the global.
756//
757// The algorithm is:
758//     Align = NumBits;
759//     if (GV && GV->hasalignment) Align = GV->getalignment();
760//     Align = std::max(Align, ForcedAlignBits);
761//
762void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
763                               unsigned ForcedAlignBits,
764                               bool UseFillExpr) const {
765  if (GV && GV->getAlignment())
766    NumBits = Log2_32(GV->getAlignment());
767  NumBits = std::max(NumBits, ForcedAlignBits);
768
769  if (NumBits == 0) return;   // No need to emit alignment.
770  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
771  O << TAI->getAlignDirective() << NumBits;
772
773  unsigned FillValue = TAI->getTextAlignFillValue();
774  UseFillExpr &= IsInTextSection && FillValue;
775  if (UseFillExpr) {
776    O << ',';
777    PrintHex(FillValue);
778  }
779  O << '\n';
780}
781
782
783/// EmitZeros - Emit a block of zeros.
784///
785void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
786  if (NumZeros) {
787    if (TAI->getZeroDirective()) {
788      O << TAI->getZeroDirective() << NumZeros;
789      if (TAI->getZeroDirectiveSuffix())
790        O << TAI->getZeroDirectiveSuffix();
791      O << '\n';
792    } else {
793      for (; NumZeros; --NumZeros)
794        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
795    }
796  }
797}
798
799// Print out the specified constant, without a storage class.  Only the
800// constants valid in constant expressions can occur here.
801void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
802  if (CV->isNullValue() || isa<UndefValue>(CV))
803    O << '0';
804  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
805    O << CI->getZExtValue();
806  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
807    // This is a constant address for a global variable or function. Use the
808    // name of the variable or function as the address value, possibly
809    // decorating it with GlobalVarAddrPrefix/Suffix or
810    // FunctionAddrPrefix/Suffix (these all default to "" )
811    if (isa<Function>(GV)) {
812      O << TAI->getFunctionAddrPrefix()
813        << Mang->getValueName(GV)
814        << TAI->getFunctionAddrSuffix();
815    } else {
816      O << TAI->getGlobalVarAddrPrefix()
817        << Mang->getValueName(GV)
818        << TAI->getGlobalVarAddrSuffix();
819    }
820  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
821    const TargetData *TD = TM.getTargetData();
822    unsigned Opcode = CE->getOpcode();
823    switch (Opcode) {
824    case Instruction::GetElementPtr: {
825      // generate a symbolic expression for the byte address
826      const Constant *ptrVal = CE->getOperand(0);
827      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
828      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
829                                                idxVec.size())) {
830        // Truncate/sext the offset to the pointer size.
831        if (TD->getPointerSizeInBits() != 64) {
832          int SExtAmount = 64-TD->getPointerSizeInBits();
833          Offset = (Offset << SExtAmount) >> SExtAmount;
834        }
835
836        if (Offset)
837          O << '(';
838        EmitConstantValueOnly(ptrVal);
839        if (Offset > 0)
840          O << ") + " << Offset;
841        else if (Offset < 0)
842          O << ") - " << -Offset;
843      } else {
844        EmitConstantValueOnly(ptrVal);
845      }
846      break;
847    }
848    case Instruction::Trunc:
849    case Instruction::ZExt:
850    case Instruction::SExt:
851    case Instruction::FPTrunc:
852    case Instruction::FPExt:
853    case Instruction::UIToFP:
854    case Instruction::SIToFP:
855    case Instruction::FPToUI:
856    case Instruction::FPToSI:
857      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
858      break;
859    case Instruction::BitCast:
860      return EmitConstantValueOnly(CE->getOperand(0));
861
862    case Instruction::IntToPtr: {
863      // Handle casts to pointers by changing them into casts to the appropriate
864      // integer type.  This promotes constant folding and simplifies this code.
865      Constant *Op = CE->getOperand(0);
866      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
867      return EmitConstantValueOnly(Op);
868    }
869
870
871    case Instruction::PtrToInt: {
872      // Support only foldable casts to/from pointers that can be eliminated by
873      // changing the pointer to the appropriately sized integer type.
874      Constant *Op = CE->getOperand(0);
875      const Type *Ty = CE->getType();
876
877      // We can emit the pointer value into this slot if the slot is an
878      // integer slot greater or equal to the size of the pointer.
879      if (TD->getTypePaddedSize(Ty) >= TD->getTypePaddedSize(Op->getType()))
880        return EmitConstantValueOnly(Op);
881
882      O << "((";
883      EmitConstantValueOnly(Op);
884      APInt ptrMask = APInt::getAllOnesValue(TD->getTypePaddedSizeInBits(Ty));
885
886      SmallString<40> S;
887      ptrMask.toStringUnsigned(S);
888      O << ") & " << S.c_str() << ')';
889      break;
890    }
891    case Instruction::Add:
892    case Instruction::Sub:
893    case Instruction::And:
894    case Instruction::Or:
895    case Instruction::Xor:
896      O << '(';
897      EmitConstantValueOnly(CE->getOperand(0));
898      O << ')';
899      switch (Opcode) {
900      case Instruction::Add:
901       O << " + ";
902       break;
903      case Instruction::Sub:
904       O << " - ";
905       break;
906      case Instruction::And:
907       O << " & ";
908       break;
909      case Instruction::Or:
910       O << " | ";
911       break;
912      case Instruction::Xor:
913       O << " ^ ";
914       break;
915      default:
916       break;
917      }
918      O << '(';
919      EmitConstantValueOnly(CE->getOperand(1));
920      O << ')';
921      break;
922    default:
923      assert(0 && "Unsupported operator!");
924    }
925  } else {
926    assert(0 && "Unknown constant value!");
927  }
928}
929
930/// printAsCString - Print the specified array as a C compatible string, only if
931/// the predicate isString is true.
932///
933static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
934                           unsigned LastElt) {
935  assert(CVA->isString() && "Array is not string compatible!");
936
937  O << '\"';
938  for (unsigned i = 0; i != LastElt; ++i) {
939    unsigned char C =
940        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
941    printStringChar(O, C);
942  }
943  O << '\"';
944}
945
946/// EmitString - Emit a zero-byte-terminated string constant.
947///
948void AsmPrinter::EmitString(const ConstantArray *CVA) const {
949  unsigned NumElts = CVA->getNumOperands();
950  if (TAI->getAscizDirective() && NumElts &&
951      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
952    O << TAI->getAscizDirective();
953    printAsCString(O, CVA, NumElts-1);
954  } else {
955    O << TAI->getAsciiDirective();
956    printAsCString(O, CVA, NumElts);
957  }
958  O << '\n';
959}
960
961void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA) {
962  if (CVA->isString()) {
963    EmitString(CVA);
964  } else { // Not a string.  Print the values in successive locations
965    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
966      EmitGlobalConstant(CVA->getOperand(i));
967  }
968}
969
970void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
971  const VectorType *PTy = CP->getType();
972
973  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
974    EmitGlobalConstant(CP->getOperand(I));
975}
976
977void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
978                                          unsigned AddrSpace) {
979  // Print the fields in successive locations. Pad to align if needed!
980  const TargetData *TD = TM.getTargetData();
981  unsigned Size = TD->getTypePaddedSize(CVS->getType());
982  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
983  uint64_t sizeSoFar = 0;
984  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
985    const Constant* field = CVS->getOperand(i);
986
987    // Check if padding is needed and insert one or more 0s.
988    uint64_t fieldSize = TD->getTypePaddedSize(field->getType());
989    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
990                        - cvsLayout->getElementOffset(i)) - fieldSize;
991    sizeSoFar += fieldSize + padSize;
992
993    // Now print the actual field value.
994    EmitGlobalConstant(field, AddrSpace);
995
996    // Insert padding - this may include padding to increase the size of the
997    // current field up to the ABI size (if the struct is not packed) as well
998    // as padding to ensure that the next field starts at the right offset.
999    EmitZeros(padSize, AddrSpace);
1000  }
1001  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1002         "Layout of constant struct may be incorrect!");
1003}
1004
1005void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1006                                      unsigned AddrSpace) {
1007  // FP Constants are printed as integer constants to avoid losing
1008  // precision...
1009  const TargetData *TD = TM.getTargetData();
1010  if (CFP->getType() == Type::DoubleTy) {
1011    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1012    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1013    if (TAI->getData64bitsDirective(AddrSpace))
1014      O << TAI->getData64bitsDirective(AddrSpace) << i << '\t'
1015        << TAI->getCommentString() << " double value: " << Val << '\n';
1016    else if (TD->isBigEndian()) {
1017      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32)
1018        << '\t' << TAI->getCommentString()
1019        << " double most significant word " << Val << '\n';
1020      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i)
1021        << '\t' << TAI->getCommentString()
1022        << " double least significant word " << Val << '\n';
1023    } else {
1024      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i)
1025        << '\t' << TAI->getCommentString()
1026        << " double least significant word " << Val << '\n';
1027      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32)
1028        << '\t' << TAI->getCommentString()
1029        << " double most significant word " << Val << '\n';
1030    }
1031    return;
1032  } else if (CFP->getType() == Type::FloatTy) {
1033    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1034    O << TAI->getData32bitsDirective(AddrSpace)
1035      << CFP->getValueAPF().bitcastToAPInt().getZExtValue()
1036      << '\t' << TAI->getCommentString() << " float " << Val << '\n';
1037    return;
1038  } else if (CFP->getType() == Type::X86_FP80Ty) {
1039    // all long double variants are printed as hex
1040    // api needed to prevent premature destruction
1041    APInt api = CFP->getValueAPF().bitcastToAPInt();
1042    const uint64_t *p = api.getRawData();
1043    // Convert to double so we can print the approximate val as a comment.
1044    APFloat DoubleVal = CFP->getValueAPF();
1045    bool ignored;
1046    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1047                      &ignored);
1048    if (TD->isBigEndian()) {
1049      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48)
1050        << '\t' << TAI->getCommentString()
1051        << " long double most significant halfword of ~"
1052        << DoubleVal.convertToDouble() << '\n';
1053      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32)
1054        << '\t' << TAI->getCommentString()
1055        << " long double next halfword\n";
1056      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16)
1057        << '\t' << TAI->getCommentString()
1058        << " long double next halfword\n";
1059      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0])
1060        << '\t' << TAI->getCommentString()
1061        << " long double next halfword\n";
1062      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1])
1063        << '\t' << TAI->getCommentString()
1064        << " long double least significant halfword\n";
1065     } else {
1066      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1])
1067        << '\t' << TAI->getCommentString()
1068        << " long double least significant halfword of ~"
1069        << DoubleVal.convertToDouble() << '\n';
1070      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0])
1071        << '\t' << TAI->getCommentString()
1072        << " long double next halfword\n";
1073      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16)
1074        << '\t' << TAI->getCommentString()
1075        << " long double next halfword\n";
1076      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32)
1077        << '\t' << TAI->getCommentString()
1078        << " long double next halfword\n";
1079      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48)
1080        << '\t' << TAI->getCommentString()
1081        << " long double most significant halfword\n";
1082    }
1083    EmitZeros(TD->getTypePaddedSize(Type::X86_FP80Ty) -
1084              TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1085    return;
1086  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1087    // all long double variants are printed as hex
1088    // api needed to prevent premature destruction
1089    APInt api = CFP->getValueAPF().bitcastToAPInt();
1090    const uint64_t *p = api.getRawData();
1091    if (TD->isBigEndian()) {
1092      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32)
1093        << '\t' << TAI->getCommentString()
1094        << " long double most significant word\n";
1095      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0])
1096        << '\t' << TAI->getCommentString()
1097        << " long double next word\n";
1098      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32)
1099        << '\t' << TAI->getCommentString()
1100        << " long double next word\n";
1101      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1])
1102        << '\t' << TAI->getCommentString()
1103        << " long double least significant word\n";
1104     } else {
1105      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1])
1106        << '\t' << TAI->getCommentString()
1107        << " long double least significant word\n";
1108      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32)
1109        << '\t' << TAI->getCommentString()
1110        << " long double next word\n";
1111      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0])
1112        << '\t' << TAI->getCommentString()
1113        << " long double next word\n";
1114      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32)
1115        << '\t' << TAI->getCommentString()
1116        << " long double most significant word\n";
1117    }
1118    return;
1119  } else assert(0 && "Floating point constant type not handled");
1120}
1121
1122void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1123                                            unsigned AddrSpace) {
1124  const TargetData *TD = TM.getTargetData();
1125  unsigned BitWidth = CI->getBitWidth();
1126  assert(isPowerOf2_32(BitWidth) &&
1127         "Non-power-of-2-sized integers not handled!");
1128
1129  // We don't expect assemblers to support integer data directives
1130  // for more than 64 bits, so we emit the data in at most 64-bit
1131  // quantities at a time.
1132  const uint64_t *RawData = CI->getValue().getRawData();
1133  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1134    uint64_t Val;
1135    if (TD->isBigEndian())
1136      Val = RawData[e - i - 1];
1137    else
1138      Val = RawData[i];
1139
1140    if (TAI->getData64bitsDirective(AddrSpace))
1141      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1142    else if (TD->isBigEndian()) {
1143      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32)
1144        << '\t' << TAI->getCommentString()
1145        << " Double-word most significant word " << Val << '\n';
1146      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val)
1147        << '\t' << TAI->getCommentString()
1148        << " Double-word least significant word " << Val << '\n';
1149    } else {
1150      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val)
1151        << '\t' << TAI->getCommentString()
1152        << " Double-word least significant word " << Val << '\n';
1153      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32)
1154        << '\t' << TAI->getCommentString()
1155        << " Double-word most significant word " << Val << '\n';
1156    }
1157  }
1158}
1159
1160/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1161void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1162  const TargetData *TD = TM.getTargetData();
1163  const Type *type = CV->getType();
1164  unsigned Size = TD->getTypePaddedSize(type);
1165
1166  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1167    EmitZeros(Size, AddrSpace);
1168    return;
1169  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1170    EmitGlobalConstantArray(CVA);
1171    return;
1172  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1173    EmitGlobalConstantStruct(CVS, AddrSpace);
1174    return;
1175  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1176    EmitGlobalConstantFP(CFP, AddrSpace);
1177    return;
1178  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1179    // Small integers are handled below; large integers are handled here.
1180    if (Size > 4) {
1181      EmitGlobalConstantLargeInt(CI, AddrSpace);
1182      return;
1183    }
1184  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1185    EmitGlobalConstantVector(CP);
1186    return;
1187  }
1188
1189  printDataDirective(type, AddrSpace);
1190  EmitConstantValueOnly(CV);
1191  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1192    SmallString<40> S;
1193    CI->getValue().toStringUnsigned(S, 16);
1194    O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1195  }
1196  O << '\n';
1197}
1198
1199void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1200  // Target doesn't support this yet!
1201  abort();
1202}
1203
1204/// PrintSpecial - Print information related to the specified machine instr
1205/// that is independent of the operand, and may be independent of the instr
1206/// itself.  This can be useful for portably encoding the comment character
1207/// or other bits of target-specific knowledge into the asmstrings.  The
1208/// syntax used is ${:comment}.  Targets can override this to add support
1209/// for their own strange codes.
1210void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1211  if (!strcmp(Code, "private")) {
1212    O << TAI->getPrivateGlobalPrefix();
1213  } else if (!strcmp(Code, "comment")) {
1214    O << TAI->getCommentString();
1215  } else if (!strcmp(Code, "uid")) {
1216    // Assign a unique ID to this machine instruction.
1217    static const MachineInstr *LastMI = 0;
1218    static const Function *F = 0;
1219    static unsigned Counter = 0U-1;
1220
1221    // Comparing the address of MI isn't sufficient, because machineinstrs may
1222    // be allocated to the same address across functions.
1223    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1224
1225    // If this is a new machine instruction, bump the counter.
1226    if (LastMI != MI || F != ThisF) {
1227      ++Counter;
1228      LastMI = MI;
1229      F = ThisF;
1230    }
1231    O << Counter;
1232  } else {
1233    cerr << "Unknown special formatter '" << Code
1234         << "' for machine instr: " << *MI;
1235    exit(1);
1236  }
1237}
1238
1239
1240/// printInlineAsm - This method formats and prints the specified machine
1241/// instruction that is an inline asm.
1242void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1243  unsigned NumOperands = MI->getNumOperands();
1244
1245  // Count the number of register definitions.
1246  unsigned NumDefs = 0;
1247  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1248       ++NumDefs)
1249    assert(NumDefs != NumOperands-1 && "No asm string?");
1250
1251  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1252
1253  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1254  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1255
1256  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1257  // These are useful to see where empty asm's wound up.
1258  if (AsmStr[0] == 0) {
1259    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1260    return;
1261  }
1262
1263  O << TAI->getInlineAsmStart() << "\n\t";
1264
1265  // The variant of the current asmprinter.
1266  int AsmPrinterVariant = TAI->getAssemblerDialect();
1267
1268  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1269  const char *LastEmitted = AsmStr; // One past the last character emitted.
1270
1271  while (*LastEmitted) {
1272    switch (*LastEmitted) {
1273    default: {
1274      // Not a special case, emit the string section literally.
1275      const char *LiteralEnd = LastEmitted+1;
1276      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1277             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1278        ++LiteralEnd;
1279      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1280        O.write(LastEmitted, LiteralEnd-LastEmitted);
1281      LastEmitted = LiteralEnd;
1282      break;
1283    }
1284    case '\n':
1285      ++LastEmitted;   // Consume newline character.
1286      O << '\n';       // Indent code with newline.
1287      break;
1288    case '$': {
1289      ++LastEmitted;   // Consume '$' character.
1290      bool Done = true;
1291
1292      // Handle escapes.
1293      switch (*LastEmitted) {
1294      default: Done = false; break;
1295      case '$':     // $$ -> $
1296        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1297          O << '$';
1298        ++LastEmitted;  // Consume second '$' character.
1299        break;
1300      case '(':             // $( -> same as GCC's { character.
1301        ++LastEmitted;      // Consume '(' character.
1302        if (CurVariant != -1) {
1303          cerr << "Nested variants found in inline asm string: '"
1304               << AsmStr << "'\n";
1305          exit(1);
1306        }
1307        CurVariant = 0;     // We're in the first variant now.
1308        break;
1309      case '|':
1310        ++LastEmitted;  // consume '|' character.
1311        if (CurVariant == -1)
1312          O << '|';       // this is gcc's behavior for | outside a variant
1313        else
1314          ++CurVariant;   // We're in the next variant.
1315        break;
1316      case ')':         // $) -> same as GCC's } char.
1317        ++LastEmitted;  // consume ')' character.
1318        if (CurVariant == -1)
1319          O << '}';     // this is gcc's behavior for } outside a variant
1320        else
1321          CurVariant = -1;
1322        break;
1323      }
1324      if (Done) break;
1325
1326      bool HasCurlyBraces = false;
1327      if (*LastEmitted == '{') {     // ${variable}
1328        ++LastEmitted;               // Consume '{' character.
1329        HasCurlyBraces = true;
1330      }
1331
1332      // If we have ${:foo}, then this is not a real operand reference, it is a
1333      // "magic" string reference, just like in .td files.  Arrange to call
1334      // PrintSpecial.
1335      if (HasCurlyBraces && *LastEmitted == ':') {
1336        ++LastEmitted;
1337        const char *StrStart = LastEmitted;
1338        const char *StrEnd = strchr(StrStart, '}');
1339        if (StrEnd == 0) {
1340          cerr << "Unterminated ${:foo} operand in inline asm string: '"
1341               << AsmStr << "'\n";
1342          exit(1);
1343        }
1344
1345        std::string Val(StrStart, StrEnd);
1346        PrintSpecial(MI, Val.c_str());
1347        LastEmitted = StrEnd+1;
1348        break;
1349      }
1350
1351      const char *IDStart = LastEmitted;
1352      char *IDEnd;
1353      errno = 0;
1354      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1355      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1356        cerr << "Bad $ operand number in inline asm string: '"
1357             << AsmStr << "'\n";
1358        exit(1);
1359      }
1360      LastEmitted = IDEnd;
1361
1362      char Modifier[2] = { 0, 0 };
1363
1364      if (HasCurlyBraces) {
1365        // If we have curly braces, check for a modifier character.  This
1366        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1367        if (*LastEmitted == ':') {
1368          ++LastEmitted;    // Consume ':' character.
1369          if (*LastEmitted == 0) {
1370            cerr << "Bad ${:} expression in inline asm string: '"
1371                 << AsmStr << "'\n";
1372            exit(1);
1373          }
1374
1375          Modifier[0] = *LastEmitted;
1376          ++LastEmitted;    // Consume modifier character.
1377        }
1378
1379        if (*LastEmitted != '}') {
1380          cerr << "Bad ${} expression in inline asm string: '"
1381               << AsmStr << "'\n";
1382          exit(1);
1383        }
1384        ++LastEmitted;    // Consume '}' character.
1385      }
1386
1387      if ((unsigned)Val >= NumOperands-1) {
1388        cerr << "Invalid $ operand number in inline asm string: '"
1389             << AsmStr << "'\n";
1390        exit(1);
1391      }
1392
1393      // Okay, we finally have a value number.  Ask the target to print this
1394      // operand!
1395      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1396        unsigned OpNo = 1;
1397
1398        bool Error = false;
1399
1400        // Scan to find the machine operand number for the operand.
1401        for (; Val; --Val) {
1402          if (OpNo >= MI->getNumOperands()) break;
1403          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1404          OpNo += (OpFlags >> 3) + 1;
1405        }
1406
1407        if (OpNo >= MI->getNumOperands()) {
1408          Error = true;
1409        } else {
1410          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1411          ++OpNo;  // Skip over the ID number.
1412
1413          if (Modifier[0]=='l')  // labels are target independent
1414            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1415                                 false, false, false);
1416          else {
1417            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1418            if ((OpFlags & 7) == 4) {
1419              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1420                                                Modifier[0] ? Modifier : 0);
1421            } else {
1422              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1423                                          Modifier[0] ? Modifier : 0);
1424            }
1425          }
1426        }
1427        if (Error) {
1428          cerr << "Invalid operand found in inline asm: '"
1429               << AsmStr << "'\n";
1430          MI->dump();
1431          exit(1);
1432        }
1433      }
1434      break;
1435    }
1436    }
1437  }
1438  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1439}
1440
1441/// printImplicitDef - This method prints the specified machine instruction
1442/// that is an implicit def.
1443void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1444  O << '\t' << TAI->getCommentString() << " implicit-def: "
1445    << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1446}
1447
1448/// printLabel - This method prints a local label used by debug and
1449/// exception handling tables.
1450void AsmPrinter::printLabel(const MachineInstr *MI) const {
1451  printLabel(MI->getOperand(0).getImm());
1452}
1453
1454void AsmPrinter::printLabel(unsigned Id) const {
1455  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1456}
1457
1458/// printDeclare - This method prints a local variable declaration used by
1459/// debug tables.
1460/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1461/// entry into dwarf table.
1462void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1463  unsigned FI = MI->getOperand(0).getIndex();
1464  GlobalValue *GV = MI->getOperand(1).getGlobal();
1465  DW->RecordVariable(cast<GlobalVariable>(GV), FI);
1466}
1467
1468/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1469/// instruction, using the specified assembler variant.  Targets should
1470/// overried this to format as appropriate.
1471bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1472                                 unsigned AsmVariant, const char *ExtraCode) {
1473  // Target doesn't support this yet!
1474  return true;
1475}
1476
1477bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1478                                       unsigned AsmVariant,
1479                                       const char *ExtraCode) {
1480  // Target doesn't support this yet!
1481  return true;
1482}
1483
1484/// printBasicBlockLabel - This method prints the label for the specified
1485/// MachineBasicBlock
1486void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1487                                      bool printAlign,
1488                                      bool printColon,
1489                                      bool printComment) const {
1490  if (printAlign) {
1491    unsigned Align = MBB->getAlignment();
1492    if (Align)
1493      EmitAlignment(Log2_32(Align));
1494  }
1495
1496  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1497    << MBB->getNumber();
1498  if (printColon)
1499    O << ':';
1500  if (printComment && MBB->getBasicBlock())
1501    O << '\t' << TAI->getCommentString() << ' '
1502      << MBB->getBasicBlock()->getNameStart();
1503}
1504
1505/// printPICJumpTableSetLabel - This method prints a set label for the
1506/// specified MachineBasicBlock for a jumptable entry.
1507void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1508                                           const MachineBasicBlock *MBB) const {
1509  if (!TAI->getSetDirective())
1510    return;
1511
1512  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1513    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1514  printBasicBlockLabel(MBB, false, false, false);
1515  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1516    << '_' << uid << '\n';
1517}
1518
1519void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1520                                           const MachineBasicBlock *MBB) const {
1521  if (!TAI->getSetDirective())
1522    return;
1523
1524  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1525    << getFunctionNumber() << '_' << uid << '_' << uid2
1526    << "_set_" << MBB->getNumber() << ',';
1527  printBasicBlockLabel(MBB, false, false, false);
1528  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1529    << '_' << uid << '_' << uid2 << '\n';
1530}
1531
1532/// printDataDirective - This method prints the asm directive for the
1533/// specified type.
1534void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1535  const TargetData *TD = TM.getTargetData();
1536  switch (type->getTypeID()) {
1537  case Type::IntegerTyID: {
1538    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1539    if (BitWidth <= 8)
1540      O << TAI->getData8bitsDirective(AddrSpace);
1541    else if (BitWidth <= 16)
1542      O << TAI->getData16bitsDirective(AddrSpace);
1543    else if (BitWidth <= 32)
1544      O << TAI->getData32bitsDirective(AddrSpace);
1545    else if (BitWidth <= 64) {
1546      assert(TAI->getData64bitsDirective(AddrSpace) &&
1547             "Target cannot handle 64-bit constant exprs!");
1548      O << TAI->getData64bitsDirective(AddrSpace);
1549    } else {
1550      assert(0 && "Target cannot handle given data directive width!");
1551    }
1552    break;
1553  }
1554  case Type::PointerTyID:
1555    if (TD->getPointerSize() == 8) {
1556      assert(TAI->getData64bitsDirective(AddrSpace) &&
1557             "Target cannot handle 64-bit pointer exprs!");
1558      O << TAI->getData64bitsDirective(AddrSpace);
1559    } else if (TD->getPointerSize() == 2) {
1560      O << TAI->getData16bitsDirective(AddrSpace);
1561    } else if (TD->getPointerSize() == 1) {
1562      O << TAI->getData8bitsDirective(AddrSpace);
1563    } else {
1564      O << TAI->getData32bitsDirective(AddrSpace);
1565    }
1566    break;
1567  case Type::FloatTyID: case Type::DoubleTyID:
1568  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1569    assert (0 && "Should have already output floating point constant.");
1570  default:
1571    assert (0 && "Can't handle printing this type of thing");
1572    break;
1573  }
1574}
1575
1576void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1577                                   const char *Prefix) {
1578  if (Name[0]=='\"')
1579    O << '\"';
1580  O << TAI->getPrivateGlobalPrefix();
1581  if (Prefix) O << Prefix;
1582  if (Name[0]=='\"')
1583    O << '\"';
1584  if (Name[0]=='\"')
1585    O << Name[1];
1586  else
1587    O << Name;
1588  O << Suffix;
1589  if (Name[0]=='\"')
1590    O << '\"';
1591}
1592
1593void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1594  printSuffixedName(Name.c_str(), Suffix);
1595}
1596
1597void AsmPrinter::printVisibility(const std::string& Name,
1598                                 unsigned Visibility) const {
1599  if (Visibility == GlobalValue::HiddenVisibility) {
1600    if (const char *Directive = TAI->getHiddenDirective())
1601      O << Directive << Name << '\n';
1602  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1603    if (const char *Directive = TAI->getProtectedDirective())
1604      O << Directive << Name << '\n';
1605  }
1606}
1607
1608void AsmPrinter::printOffset(int64_t Offset) const {
1609  if (Offset > 0)
1610    O << '+' << Offset;
1611  else if (Offset < 0)
1612    O << Offset;
1613}
1614
1615GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1616  if (!S->usesMetadata())
1617    return 0;
1618
1619  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1620  if (GCPI != GCMetadataPrinters.end())
1621    return GCPI->second;
1622
1623  const char *Name = S->getName().c_str();
1624
1625  for (GCMetadataPrinterRegistry::iterator
1626         I = GCMetadataPrinterRegistry::begin(),
1627         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1628    if (strcmp(Name, I->getName()) == 0) {
1629      GCMetadataPrinter *GMP = I->instantiate();
1630      GMP->S = S;
1631      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1632      return GMP;
1633    }
1634
1635  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1636  abort();
1637}
1638