AsmPrinter.cpp revision 6e64c381daa30a63608bfa3443e67c39e6df2d64
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineLoopInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/DebugInfo.h"
28#include "llvm/MC/MCAsmInfo.h"
29#include "llvm/MC/MCContext.h"
30#include "llvm/MC/MCExpr.h"
31#include "llvm/MC/MCInst.h"
32#include "llvm/MC/MCSection.h"
33#include "llvm/MC/MCStreamer.h"
34#include "llvm/MC/MCSymbol.h"
35#include "llvm/Target/Mangler.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetLowering.h"
39#include "llvm/Target/TargetLoweringObjectFile.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Assembly/Writer.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/Format.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/Timer.h"
49using namespace llvm;
50
51static const char *DWARFGroupName = "DWARF Emission";
52static const char *DbgTimerName = "DWARF Debug Writer";
53static const char *EHTimerName = "DWARF Exception Writer";
54
55STATISTIC(EmittedInsts, "Number of machine instrs printed");
56
57char AsmPrinter::ID = 0;
58
59typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
60static gcp_map_type &getGCMap(void *&P) {
61  if (P == 0)
62    P = new gcp_map_type();
63  return *(gcp_map_type*)P;
64}
65
66
67/// getGVAlignmentLog2 - Return the alignment to use for the specified global
68/// value in log2 form.  This rounds up to the preferred alignment if possible
69/// and legal.
70static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
71                                   unsigned InBits = 0) {
72  unsigned NumBits = 0;
73  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
74    NumBits = TD.getPreferredAlignmentLog(GVar);
75
76  // If InBits is specified, round it to it.
77  if (InBits > NumBits)
78    NumBits = InBits;
79
80  // If the GV has a specified alignment, take it into account.
81  if (GV->getAlignment() == 0)
82    return NumBits;
83
84  unsigned GVAlign = Log2_32(GV->getAlignment());
85
86  // If the GVAlign is larger than NumBits, or if we are required to obey
87  // NumBits because the GV has an assigned section, obey it.
88  if (GVAlign > NumBits || GV->hasSection())
89    NumBits = GVAlign;
90  return NumBits;
91}
92
93
94
95
96AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
97  : MachineFunctionPass(ID),
98    TM(tm), MAI(tm.getMCAsmInfo()),
99    OutContext(Streamer.getContext()),
100    OutStreamer(Streamer),
101    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
102  DD = 0; DE = 0; MMI = 0; LI = 0;
103  GCMetadataPrinters = 0;
104  VerboseAsm = Streamer.isVerboseAsm();
105}
106
107AsmPrinter::~AsmPrinter() {
108  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
109
110  if (GCMetadataPrinters != 0) {
111    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
112
113    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
114      delete I->second;
115    delete &GCMap;
116    GCMetadataPrinters = 0;
117  }
118
119  delete &OutStreamer;
120}
121
122/// getFunctionNumber - Return a unique ID for the current function.
123///
124unsigned AsmPrinter::getFunctionNumber() const {
125  return MF->getFunctionNumber();
126}
127
128const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
129  return TM.getTargetLowering()->getObjFileLowering();
130}
131
132
133/// getTargetData - Return information about data layout.
134const TargetData &AsmPrinter::getTargetData() const {
135  return *TM.getTargetData();
136}
137
138/// getCurrentSection() - Return the current section we are emitting to.
139const MCSection *AsmPrinter::getCurrentSection() const {
140  return OutStreamer.getCurrentSection();
141}
142
143
144
145void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
146  AU.setPreservesAll();
147  MachineFunctionPass::getAnalysisUsage(AU);
148  AU.addRequired<MachineModuleInfo>();
149  AU.addRequired<GCModuleInfo>();
150  if (isVerbose())
151    AU.addRequired<MachineLoopInfo>();
152}
153
154bool AsmPrinter::doInitialization(Module &M) {
155  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
156  MMI->AnalyzeModule(M);
157
158  // Initialize TargetLoweringObjectFile.
159  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
160    .Initialize(OutContext, TM);
161
162  Mang = new Mangler(OutContext, *TM.getTargetData());
163
164  // Allow the target to emit any magic that it wants at the start of the file.
165  EmitStartOfAsmFile(M);
166
167  // Very minimal debug info. It is ignored if we emit actual debug info. If we
168  // don't, this at least helps the user find where a global came from.
169  if (MAI->hasSingleParameterDotFile()) {
170    // .file "foo.c"
171    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
172  }
173
174  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
175  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
176  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
177    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
178      MP->beginAssembly(*this);
179
180  // Emit module-level inline asm if it exists.
181  if (!M.getModuleInlineAsm().empty()) {
182    OutStreamer.AddComment("Start of file scope inline assembly");
183    OutStreamer.AddBlankLine();
184    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
185    OutStreamer.AddComment("End of file scope inline assembly");
186    OutStreamer.AddBlankLine();
187  }
188
189  if (MAI->doesSupportDebugInformation())
190    DD = new DwarfDebug(this, &M);
191
192  switch (MAI->getExceptionHandlingType()) {
193  case ExceptionHandling::None:
194    return false;
195  case ExceptionHandling::SjLj:
196  case ExceptionHandling::DwarfCFI:
197    DE = new DwarfCFIException(this);
198    return false;
199  case ExceptionHandling::ARM:
200    DE = new ARMException(this);
201    return false;
202  case ExceptionHandling::Win64:
203    DE = new Win64Exception(this);
204    return false;
205  }
206
207  llvm_unreachable("Unknown exception type.");
208}
209
210void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
211  switch ((GlobalValue::LinkageTypes)Linkage) {
212  case GlobalValue::CommonLinkage:
213  case GlobalValue::LinkOnceAnyLinkage:
214  case GlobalValue::LinkOnceODRLinkage:
215  case GlobalValue::WeakAnyLinkage:
216  case GlobalValue::WeakODRLinkage:
217  case GlobalValue::LinkerPrivateWeakLinkage:
218  case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
219    if (MAI->getWeakDefDirective() != 0) {
220      // .globl _foo
221      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
222
223      if ((GlobalValue::LinkageTypes)Linkage !=
224          GlobalValue::LinkerPrivateWeakDefAutoLinkage)
225        // .weak_definition _foo
226        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
227      else
228        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
229    } else if (MAI->getLinkOnceDirective() != 0) {
230      // .globl _foo
231      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
232      //NOTE: linkonce is handled by the section the symbol was assigned to.
233    } else {
234      // .weak _foo
235      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
236    }
237    break;
238  case GlobalValue::DLLExportLinkage:
239  case GlobalValue::AppendingLinkage:
240    // FIXME: appending linkage variables should go into a section of
241    // their name or something.  For now, just emit them as external.
242  case GlobalValue::ExternalLinkage:
243    // If external or appending, declare as a global symbol.
244    // .globl _foo
245    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
246    break;
247  case GlobalValue::PrivateLinkage:
248  case GlobalValue::InternalLinkage:
249  case GlobalValue::LinkerPrivateLinkage:
250    break;
251  default:
252    llvm_unreachable("Unknown linkage type!");
253  }
254}
255
256
257/// EmitGlobalVariable - Emit the specified global variable to the .s file.
258void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
259  if (GV->hasInitializer()) {
260    // Check to see if this is a special global used by LLVM, if so, emit it.
261    if (EmitSpecialLLVMGlobal(GV))
262      return;
263
264    if (isVerbose()) {
265      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
266                     /*PrintType=*/false, GV->getParent());
267      OutStreamer.GetCommentOS() << '\n';
268    }
269  }
270
271  MCSymbol *GVSym = Mang->getSymbol(GV);
272  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
273
274  if (!GV->hasInitializer())   // External globals require no extra code.
275    return;
276
277  if (MAI->hasDotTypeDotSizeDirective())
278    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
279
280  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
281
282  const TargetData *TD = TM.getTargetData();
283  uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
284
285  // If the alignment is specified, we *must* obey it.  Overaligning a global
286  // with a specified alignment is a prompt way to break globals emitted to
287  // sections and expected to be contiguous (e.g. ObjC metadata).
288  unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
289
290  // Handle common and BSS local symbols (.lcomm).
291  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
292    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
293    unsigned Align = 1 << AlignLog;
294
295    // Handle common symbols.
296    if (GVKind.isCommon()) {
297      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
298        Align = 0;
299
300      // .comm _foo, 42, 4
301      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
302      return;
303    }
304
305    // Handle local BSS symbols.
306    if (MAI->hasMachoZeroFillDirective()) {
307      const MCSection *TheSection =
308        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
309      // .zerofill __DATA, __bss, _foo, 400, 5
310      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
311      return;
312    }
313
314    if (MAI->getLCOMMDirectiveType() != LCOMM::None &&
315        (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) {
316      // .lcomm _foo, 42
317      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
318      return;
319    }
320
321    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
322      Align = 0;
323
324    // .local _foo
325    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
326    // .comm _foo, 42, 4
327    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
328    return;
329  }
330
331  const MCSection *TheSection =
332    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
333
334  // Handle the zerofill directive on darwin, which is a special form of BSS
335  // emission.
336  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
337    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
338
339    // .globl _foo
340    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
341    // .zerofill __DATA, __common, _foo, 400, 5
342    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
343    return;
344  }
345
346  // Handle thread local data for mach-o which requires us to output an
347  // additional structure of data and mangle the original symbol so that we
348  // can reference it later.
349  //
350  // TODO: This should become an "emit thread local global" method on TLOF.
351  // All of this macho specific stuff should be sunk down into TLOFMachO and
352  // stuff like "TLSExtraDataSection" should no longer be part of the parent
353  // TLOF class.  This will also make it more obvious that stuff like
354  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
355  // specific code.
356  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
357    // Emit the .tbss symbol
358    MCSymbol *MangSym =
359      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
360
361    if (GVKind.isThreadBSS())
362      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
363    else if (GVKind.isThreadData()) {
364      OutStreamer.SwitchSection(TheSection);
365
366      EmitAlignment(AlignLog, GV);
367      OutStreamer.EmitLabel(MangSym);
368
369      EmitGlobalConstant(GV->getInitializer());
370    }
371
372    OutStreamer.AddBlankLine();
373
374    // Emit the variable struct for the runtime.
375    const MCSection *TLVSect
376      = getObjFileLowering().getTLSExtraDataSection();
377
378    OutStreamer.SwitchSection(TLVSect);
379    // Emit the linkage here.
380    EmitLinkage(GV->getLinkage(), GVSym);
381    OutStreamer.EmitLabel(GVSym);
382
383    // Three pointers in size:
384    //   - __tlv_bootstrap - used to make sure support exists
385    //   - spare pointer, used when mapped by the runtime
386    //   - pointer to mangled symbol above with initializer
387    unsigned PtrSize = TD->getPointerSizeInBits()/8;
388    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
389                          PtrSize, 0);
390    OutStreamer.EmitIntValue(0, PtrSize, 0);
391    OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
392
393    OutStreamer.AddBlankLine();
394    return;
395  }
396
397  OutStreamer.SwitchSection(TheSection);
398
399  EmitLinkage(GV->getLinkage(), GVSym);
400  EmitAlignment(AlignLog, GV);
401
402  OutStreamer.EmitLabel(GVSym);
403
404  EmitGlobalConstant(GV->getInitializer());
405
406  if (MAI->hasDotTypeDotSizeDirective())
407    // .size foo, 42
408    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
409
410  OutStreamer.AddBlankLine();
411}
412
413/// EmitFunctionHeader - This method emits the header for the current
414/// function.
415void AsmPrinter::EmitFunctionHeader() {
416  // Print out constants referenced by the function
417  EmitConstantPool();
418
419  // Print the 'header' of function.
420  const Function *F = MF->getFunction();
421
422  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
423  EmitVisibility(CurrentFnSym, F->getVisibility());
424
425  EmitLinkage(F->getLinkage(), CurrentFnSym);
426  EmitAlignment(MF->getAlignment(), F);
427
428  if (MAI->hasDotTypeDotSizeDirective())
429    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
430
431  if (isVerbose()) {
432    WriteAsOperand(OutStreamer.GetCommentOS(), F,
433                   /*PrintType=*/false, F->getParent());
434    OutStreamer.GetCommentOS() << '\n';
435  }
436
437  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
438  // do their wild and crazy things as required.
439  EmitFunctionEntryLabel();
440
441  // If the function had address-taken blocks that got deleted, then we have
442  // references to the dangling symbols.  Emit them at the start of the function
443  // so that we don't get references to undefined symbols.
444  std::vector<MCSymbol*> DeadBlockSyms;
445  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
446  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
447    OutStreamer.AddComment("Address taken block that was later removed");
448    OutStreamer.EmitLabel(DeadBlockSyms[i]);
449  }
450
451  // Add some workaround for linkonce linkage on Cygwin\MinGW.
452  if (MAI->getLinkOnceDirective() != 0 &&
453      (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
454    // FIXME: What is this?
455    MCSymbol *FakeStub =
456      OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
457                                   CurrentFnSym->getName());
458    OutStreamer.EmitLabel(FakeStub);
459  }
460
461  // Emit pre-function debug and/or EH information.
462  if (DE) {
463    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
464    DE->BeginFunction(MF);
465  }
466  if (DD) {
467    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
468    DD->beginFunction(MF);
469  }
470}
471
472/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
473/// function.  This can be overridden by targets as required to do custom stuff.
474void AsmPrinter::EmitFunctionEntryLabel() {
475  // The function label could have already been emitted if two symbols end up
476  // conflicting due to asm renaming.  Detect this and emit an error.
477  if (CurrentFnSym->isUndefined()) {
478    OutStreamer.ForceCodeRegion();
479    return OutStreamer.EmitLabel(CurrentFnSym);
480  }
481
482  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
483                     "' label emitted multiple times to assembly file");
484}
485
486
487/// EmitComments - Pretty-print comments for instructions.
488static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
489  const MachineFunction *MF = MI.getParent()->getParent();
490  const TargetMachine &TM = MF->getTarget();
491
492  // Check for spills and reloads
493  int FI;
494
495  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
496
497  // We assume a single instruction only has a spill or reload, not
498  // both.
499  const MachineMemOperand *MMO;
500  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
501    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
502      MMO = *MI.memoperands_begin();
503      CommentOS << MMO->getSize() << "-byte Reload\n";
504    }
505  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
506    if (FrameInfo->isSpillSlotObjectIndex(FI))
507      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
508  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
509    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
510      MMO = *MI.memoperands_begin();
511      CommentOS << MMO->getSize() << "-byte Spill\n";
512    }
513  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
514    if (FrameInfo->isSpillSlotObjectIndex(FI))
515      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
516  }
517
518  // Check for spill-induced copies
519  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
520    CommentOS << " Reload Reuse\n";
521}
522
523/// EmitImplicitDef - This method emits the specified machine instruction
524/// that is an implicit def.
525static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
526  unsigned RegNo = MI->getOperand(0).getReg();
527  AP.OutStreamer.AddComment(Twine("implicit-def: ") +
528                            AP.TM.getRegisterInfo()->getName(RegNo));
529  AP.OutStreamer.AddBlankLine();
530}
531
532static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) {
533  std::string Str = "kill:";
534  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
535    const MachineOperand &Op = MI->getOperand(i);
536    assert(Op.isReg() && "KILL instruction must have only register operands");
537    Str += ' ';
538    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
539    Str += (Op.isDef() ? "<def>" : "<kill>");
540  }
541  AP.OutStreamer.AddComment(Str);
542  AP.OutStreamer.AddBlankLine();
543}
544
545/// EmitDebugValueComment - This method handles the target-independent form
546/// of DBG_VALUE, returning true if it was able to do so.  A false return
547/// means the target will need to handle MI in EmitInstruction.
548static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
549  // This code handles only the 3-operand target-independent form.
550  if (MI->getNumOperands() != 3)
551    return false;
552
553  SmallString<128> Str;
554  raw_svector_ostream OS(Str);
555  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
556
557  // cast away const; DIetc do not take const operands for some reason.
558  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
559  if (V.getContext().isSubprogram())
560    OS << DISubprogram(V.getContext()).getDisplayName() << ":";
561  OS << V.getName() << " <- ";
562
563  // Register or immediate value. Register 0 means undef.
564  if (MI->getOperand(0).isFPImm()) {
565    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
566    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
567      OS << (double)APF.convertToFloat();
568    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
569      OS << APF.convertToDouble();
570    } else {
571      // There is no good way to print long double.  Convert a copy to
572      // double.  Ah well, it's only a comment.
573      bool ignored;
574      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
575                  &ignored);
576      OS << "(long double) " << APF.convertToDouble();
577    }
578  } else if (MI->getOperand(0).isImm()) {
579    OS << MI->getOperand(0).getImm();
580  } else if (MI->getOperand(0).isCImm()) {
581    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
582  } else {
583    assert(MI->getOperand(0).isReg() && "Unknown operand type");
584    if (MI->getOperand(0).getReg() == 0) {
585      // Suppress offset, it is not meaningful here.
586      OS << "undef";
587      // NOTE: Want this comment at start of line, don't emit with AddComment.
588      AP.OutStreamer.EmitRawText(OS.str());
589      return true;
590    }
591    OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
592  }
593
594  OS << '+' << MI->getOperand(1).getImm();
595  // NOTE: Want this comment at start of line, don't emit with AddComment.
596  AP.OutStreamer.EmitRawText(OS.str());
597  return true;
598}
599
600AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
601  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
602      MF->getFunction()->needsUnwindTableEntry())
603    return CFI_M_EH;
604
605  if (MMI->hasDebugInfo())
606    return CFI_M_Debug;
607
608  return CFI_M_None;
609}
610
611bool AsmPrinter::needsSEHMoves() {
612  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
613    MF->getFunction()->needsUnwindTableEntry();
614}
615
616bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
617  return MAI->doesDwarfUseRelocationsForStringPool();
618}
619
620void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
621  MCSymbol *Label = MI.getOperand(0).getMCSymbol();
622
623  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
624    return;
625
626  if (needsCFIMoves() == CFI_M_None)
627    return;
628
629  if (MMI->getCompactUnwindEncoding() != 0)
630    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
631
632  MachineModuleInfo &MMI = MF->getMMI();
633  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
634  bool FoundOne = false;
635  (void)FoundOne;
636  for (std::vector<MachineMove>::iterator I = Moves.begin(),
637         E = Moves.end(); I != E; ++I) {
638    if (I->getLabel() == Label) {
639      EmitCFIFrameMove(*I);
640      FoundOne = true;
641    }
642  }
643  assert(FoundOne);
644}
645
646/// EmitFunctionBody - This method emits the body and trailer for a
647/// function.
648void AsmPrinter::EmitFunctionBody() {
649  // Emit target-specific gunk before the function body.
650  EmitFunctionBodyStart();
651
652  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
653
654  // Print out code for the function.
655  bool HasAnyRealCode = false;
656  const MachineInstr *LastMI = 0;
657  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
658       I != E; ++I) {
659    // Print a label for the basic block.
660    EmitBasicBlockStart(I);
661    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
662         II != IE; ++II) {
663      LastMI = II;
664
665      // Print the assembly for the instruction.
666      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
667          !II->isDebugValue()) {
668        HasAnyRealCode = true;
669        ++EmittedInsts;
670      }
671
672      if (ShouldPrintDebugScopes) {
673        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
674        DD->beginInstruction(II);
675      }
676
677      if (isVerbose())
678        EmitComments(*II, OutStreamer.GetCommentOS());
679
680      switch (II->getOpcode()) {
681      case TargetOpcode::PROLOG_LABEL:
682        emitPrologLabel(*II);
683        break;
684
685      case TargetOpcode::EH_LABEL:
686      case TargetOpcode::GC_LABEL:
687        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
688        break;
689      case TargetOpcode::INLINEASM:
690        EmitInlineAsm(II);
691        break;
692      case TargetOpcode::DBG_VALUE:
693        if (isVerbose()) {
694          if (!EmitDebugValueComment(II, *this))
695            EmitInstruction(II);
696        }
697        break;
698      case TargetOpcode::IMPLICIT_DEF:
699        if (isVerbose()) EmitImplicitDef(II, *this);
700        break;
701      case TargetOpcode::KILL:
702        if (isVerbose()) EmitKill(II, *this);
703        break;
704      default:
705        if (!TM.hasMCUseLoc())
706          MCLineEntry::Make(&OutStreamer, getCurrentSection());
707
708        EmitInstruction(II);
709        break;
710      }
711
712      if (ShouldPrintDebugScopes) {
713        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
714        DD->endInstruction(II);
715      }
716    }
717  }
718
719  // If the last instruction was a prolog label, then we have a situation where
720  // we emitted a prolog but no function body. This results in the ending prolog
721  // label equaling the end of function label and an invalid "row" in the
722  // FDE. We need to emit a noop in this situation so that the FDE's rows are
723  // valid.
724  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
725
726  // If the function is empty and the object file uses .subsections_via_symbols,
727  // then we need to emit *something* to the function body to prevent the
728  // labels from collapsing together.  Just emit a noop.
729  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
730    MCInst Noop;
731    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
732    if (Noop.getOpcode()) {
733      OutStreamer.AddComment("avoids zero-length function");
734      OutStreamer.EmitInstruction(Noop);
735    } else  // Target not mc-ized yet.
736      OutStreamer.EmitRawText(StringRef("\tnop\n"));
737  }
738
739  const Function *F = MF->getFunction();
740  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
741    const BasicBlock *BB = i;
742    if (!BB->hasAddressTaken())
743      continue;
744    MCSymbol *Sym = GetBlockAddressSymbol(BB);
745    if (Sym->isDefined())
746      continue;
747    OutStreamer.AddComment("Address of block that was removed by CodeGen");
748    OutStreamer.EmitLabel(Sym);
749  }
750
751  // Emit target-specific gunk after the function body.
752  EmitFunctionBodyEnd();
753
754  // If the target wants a .size directive for the size of the function, emit
755  // it.
756  if (MAI->hasDotTypeDotSizeDirective()) {
757    // Create a symbol for the end of function, so we can get the size as
758    // difference between the function label and the temp label.
759    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
760    OutStreamer.EmitLabel(FnEndLabel);
761
762    const MCExpr *SizeExp =
763      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
764                              MCSymbolRefExpr::Create(CurrentFnSym, OutContext),
765                              OutContext);
766    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
767  }
768
769  // Emit post-function debug information.
770  if (DD) {
771    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
772    DD->endFunction(MF);
773  }
774  if (DE) {
775    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
776    DE->EndFunction();
777  }
778  MMI->EndFunction();
779
780  // Print out jump tables referenced by the function.
781  EmitJumpTableInfo();
782
783  OutStreamer.AddBlankLine();
784}
785
786/// getDebugValueLocation - Get location information encoded by DBG_VALUE
787/// operands.
788MachineLocation AsmPrinter::
789getDebugValueLocation(const MachineInstr *MI) const {
790  // Target specific DBG_VALUE instructions are handled by each target.
791  return MachineLocation();
792}
793
794/// EmitDwarfRegOp - Emit dwarf register operation.
795void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
796  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
797  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
798
799  for (const unsigned *SR = TRI->getSuperRegisters(MLoc.getReg());
800       *SR && Reg < 0; ++SR) {
801    Reg = TRI->getDwarfRegNum(*SR, false);
802    // FIXME: Get the bit range this register uses of the superregister
803    // so that we can produce a DW_OP_bit_piece
804  }
805
806  // FIXME: Handle cases like a super register being encoded as
807  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
808
809  // FIXME: We have no reasonable way of handling errors in here. The
810  // caller might be in the middle of an dwarf expression. We should
811  // probably assert that Reg >= 0 once debug info generation is more mature.
812
813  if (int Offset =  MLoc.getOffset()) {
814    if (Reg < 32) {
815      OutStreamer.AddComment(
816        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
817      EmitInt8(dwarf::DW_OP_breg0 + Reg);
818    } else {
819      OutStreamer.AddComment("DW_OP_bregx");
820      EmitInt8(dwarf::DW_OP_bregx);
821      OutStreamer.AddComment(Twine(Reg));
822      EmitULEB128(Reg);
823    }
824    EmitSLEB128(Offset);
825  } else {
826    if (Reg < 32) {
827      OutStreamer.AddComment(
828        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
829      EmitInt8(dwarf::DW_OP_reg0 + Reg);
830    } else {
831      OutStreamer.AddComment("DW_OP_regx");
832      EmitInt8(dwarf::DW_OP_regx);
833      OutStreamer.AddComment(Twine(Reg));
834      EmitULEB128(Reg);
835    }
836  }
837
838  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
839}
840
841bool AsmPrinter::doFinalization(Module &M) {
842  // Emit global variables.
843  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
844       I != E; ++I)
845    EmitGlobalVariable(I);
846
847  // Emit visibility info for declarations
848  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
849    const Function &F = *I;
850    if (!F.isDeclaration())
851      continue;
852    GlobalValue::VisibilityTypes V = F.getVisibility();
853    if (V == GlobalValue::DefaultVisibility)
854      continue;
855
856    MCSymbol *Name = Mang->getSymbol(&F);
857    EmitVisibility(Name, V, false);
858  }
859
860  // Finalize debug and EH information.
861  if (DE) {
862    {
863      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
864      DE->EndModule();
865    }
866    delete DE; DE = 0;
867  }
868  if (DD) {
869    {
870      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
871      DD->endModule();
872    }
873    delete DD; DD = 0;
874  }
875
876  // If the target wants to know about weak references, print them all.
877  if (MAI->getWeakRefDirective()) {
878    // FIXME: This is not lazy, it would be nice to only print weak references
879    // to stuff that is actually used.  Note that doing so would require targets
880    // to notice uses in operands (due to constant exprs etc).  This should
881    // happen with the MC stuff eventually.
882
883    // Print out module-level global variables here.
884    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
885         I != E; ++I) {
886      if (!I->hasExternalWeakLinkage()) continue;
887      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
888    }
889
890    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
891      if (!I->hasExternalWeakLinkage()) continue;
892      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
893    }
894  }
895
896  if (MAI->hasSetDirective()) {
897    OutStreamer.AddBlankLine();
898    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
899         I != E; ++I) {
900      MCSymbol *Name = Mang->getSymbol(I);
901
902      const GlobalValue *GV = I->getAliasedGlobal();
903      MCSymbol *Target = Mang->getSymbol(GV);
904
905      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
906        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
907      else if (I->hasWeakLinkage())
908        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
909      else
910        assert(I->hasLocalLinkage() && "Invalid alias linkage");
911
912      EmitVisibility(Name, I->getVisibility());
913
914      // Emit the directives as assignments aka .set:
915      OutStreamer.EmitAssignment(Name,
916                                 MCSymbolRefExpr::Create(Target, OutContext));
917    }
918  }
919
920  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
921  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
922  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
923    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
924      MP->finishAssembly(*this);
925
926  // If we don't have any trampolines, then we don't require stack memory
927  // to be executable. Some targets have a directive to declare this.
928  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
929  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
930    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
931      OutStreamer.SwitchSection(S);
932
933  // Allow the target to emit any magic that it wants at the end of the file,
934  // after everything else has gone out.
935  EmitEndOfAsmFile(M);
936
937  delete Mang; Mang = 0;
938  MMI = 0;
939
940  OutStreamer.Finish();
941  return false;
942}
943
944void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
945  this->MF = &MF;
946  // Get the function symbol.
947  CurrentFnSym = Mang->getSymbol(MF.getFunction());
948
949  if (isVerbose())
950    LI = &getAnalysis<MachineLoopInfo>();
951}
952
953namespace {
954  // SectionCPs - Keep track the alignment, constpool entries per Section.
955  struct SectionCPs {
956    const MCSection *S;
957    unsigned Alignment;
958    SmallVector<unsigned, 4> CPEs;
959    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
960  };
961}
962
963/// EmitConstantPool - Print to the current output stream assembly
964/// representations of the constants in the constant pool MCP. This is
965/// used to print out constants which have been "spilled to memory" by
966/// the code generator.
967///
968void AsmPrinter::EmitConstantPool() {
969  const MachineConstantPool *MCP = MF->getConstantPool();
970  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
971  if (CP.empty()) return;
972
973  // Calculate sections for constant pool entries. We collect entries to go into
974  // the same section together to reduce amount of section switch statements.
975  SmallVector<SectionCPs, 4> CPSections;
976  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
977    const MachineConstantPoolEntry &CPE = CP[i];
978    unsigned Align = CPE.getAlignment();
979
980    SectionKind Kind;
981    switch (CPE.getRelocationInfo()) {
982    default: llvm_unreachable("Unknown section kind");
983    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
984    case 1:
985      Kind = SectionKind::getReadOnlyWithRelLocal();
986      break;
987    case 0:
988    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
989    case 4:  Kind = SectionKind::getMergeableConst4(); break;
990    case 8:  Kind = SectionKind::getMergeableConst8(); break;
991    case 16: Kind = SectionKind::getMergeableConst16();break;
992    default: Kind = SectionKind::getMergeableConst(); break;
993    }
994    }
995
996    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
997
998    // The number of sections are small, just do a linear search from the
999    // last section to the first.
1000    bool Found = false;
1001    unsigned SecIdx = CPSections.size();
1002    while (SecIdx != 0) {
1003      if (CPSections[--SecIdx].S == S) {
1004        Found = true;
1005        break;
1006      }
1007    }
1008    if (!Found) {
1009      SecIdx = CPSections.size();
1010      CPSections.push_back(SectionCPs(S, Align));
1011    }
1012
1013    if (Align > CPSections[SecIdx].Alignment)
1014      CPSections[SecIdx].Alignment = Align;
1015    CPSections[SecIdx].CPEs.push_back(i);
1016  }
1017
1018  // Now print stuff into the calculated sections.
1019  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1020    OutStreamer.SwitchSection(CPSections[i].S);
1021    EmitAlignment(Log2_32(CPSections[i].Alignment));
1022
1023    unsigned Offset = 0;
1024    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1025      unsigned CPI = CPSections[i].CPEs[j];
1026      MachineConstantPoolEntry CPE = CP[CPI];
1027
1028      // Emit inter-object padding for alignment.
1029      unsigned AlignMask = CPE.getAlignment() - 1;
1030      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1031      OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1032
1033      Type *Ty = CPE.getType();
1034      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
1035      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1036
1037      if (CPE.isMachineConstantPoolEntry())
1038        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1039      else
1040        EmitGlobalConstant(CPE.Val.ConstVal);
1041    }
1042  }
1043}
1044
1045/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1046/// by the current function to the current output stream.
1047///
1048void AsmPrinter::EmitJumpTableInfo() {
1049  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1050  if (MJTI == 0) return;
1051  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1052  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1053  if (JT.empty()) return;
1054
1055  // Pick the directive to use to print the jump table entries, and switch to
1056  // the appropriate section.
1057  const Function *F = MF->getFunction();
1058  bool JTInDiffSection = false;
1059  if (// In PIC mode, we need to emit the jump table to the same section as the
1060      // function body itself, otherwise the label differences won't make sense.
1061      // FIXME: Need a better predicate for this: what about custom entries?
1062      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1063      // We should also do if the section name is NULL or function is declared
1064      // in discardable section
1065      // FIXME: this isn't the right predicate, should be based on the MCSection
1066      // for the function.
1067      F->isWeakForLinker()) {
1068    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1069  } else {
1070    // Otherwise, drop it in the readonly section.
1071    const MCSection *ReadOnlySection =
1072      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1073    OutStreamer.SwitchSection(ReadOnlySection);
1074    JTInDiffSection = true;
1075  }
1076
1077  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
1078
1079  // If we know the form of the jump table, go ahead and tag it as such.
1080  if (!JTInDiffSection) {
1081    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) {
1082      OutStreamer.EmitJumpTable32Region();
1083    } else {
1084      OutStreamer.EmitDataRegion();
1085    }
1086  }
1087
1088  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1089    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1090
1091    // If this jump table was deleted, ignore it.
1092    if (JTBBs.empty()) continue;
1093
1094    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1095    // .set directive for each unique entry.  This reduces the number of
1096    // relocations the assembler will generate for the jump table.
1097    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1098        MAI->hasSetDirective()) {
1099      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1100      const TargetLowering *TLI = TM.getTargetLowering();
1101      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1102      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1103        const MachineBasicBlock *MBB = JTBBs[ii];
1104        if (!EmittedSets.insert(MBB)) continue;
1105
1106        // .set LJTSet, LBB32-base
1107        const MCExpr *LHS =
1108          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1109        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1110                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1111      }
1112    }
1113
1114    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1115    // before each jump table.  The first label is never referenced, but tells
1116    // the assembler and linker the extents of the jump table object.  The
1117    // second label is actually referenced by the code.
1118    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1119      // FIXME: This doesn't have to have any specific name, just any randomly
1120      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1121      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1122
1123    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1124
1125    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1126      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1127  }
1128}
1129
1130/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1131/// current stream.
1132void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1133                                    const MachineBasicBlock *MBB,
1134                                    unsigned UID) const {
1135  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1136  const MCExpr *Value = 0;
1137  switch (MJTI->getEntryKind()) {
1138  case MachineJumpTableInfo::EK_Inline:
1139    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1140  case MachineJumpTableInfo::EK_Custom32:
1141    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1142                                                              OutContext);
1143    break;
1144  case MachineJumpTableInfo::EK_BlockAddress:
1145    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1146    //     .word LBB123
1147    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1148    break;
1149  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1150    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1151    // with a relocation as gp-relative, e.g.:
1152    //     .gprel32 LBB123
1153    MCSymbol *MBBSym = MBB->getSymbol();
1154    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1155    return;
1156  }
1157
1158  case MachineJumpTableInfo::EK_LabelDifference32: {
1159    // EK_LabelDifference32 - Each entry is the address of the block minus
1160    // the address of the jump table.  This is used for PIC jump tables where
1161    // gprel32 is not supported.  e.g.:
1162    //      .word LBB123 - LJTI1_2
1163    // If the .set directive is supported, this is emitted as:
1164    //      .set L4_5_set_123, LBB123 - LJTI1_2
1165    //      .word L4_5_set_123
1166
1167    // If we have emitted set directives for the jump table entries, print
1168    // them rather than the entries themselves.  If we're emitting PIC, then
1169    // emit the table entries as differences between two text section labels.
1170    if (MAI->hasSetDirective()) {
1171      // If we used .set, reference the .set's symbol.
1172      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1173                                      OutContext);
1174      break;
1175    }
1176    // Otherwise, use the difference as the jump table entry.
1177    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1178    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1179    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1180    break;
1181  }
1182  }
1183
1184  assert(Value && "Unknown entry kind!");
1185
1186  unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
1187  OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1188}
1189
1190
1191/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1192/// special global used by LLVM.  If so, emit it and return true, otherwise
1193/// do nothing and return false.
1194bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1195  if (GV->getName() == "llvm.used") {
1196    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1197      EmitLLVMUsedList(GV->getInitializer());
1198    return true;
1199  }
1200
1201  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1202  if (GV->getSection() == "llvm.metadata" ||
1203      GV->hasAvailableExternallyLinkage())
1204    return true;
1205
1206  if (!GV->hasAppendingLinkage()) return false;
1207
1208  assert(GV->hasInitializer() && "Not a special LLVM global!");
1209
1210  if (GV->getName() == "llvm.global_ctors") {
1211    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1212
1213    if (TM.getRelocationModel() == Reloc::Static &&
1214        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1215      StringRef Sym(".constructors_used");
1216      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1217                                      MCSA_Reference);
1218    }
1219    return true;
1220  }
1221
1222  if (GV->getName() == "llvm.global_dtors") {
1223    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1224
1225    if (TM.getRelocationModel() == Reloc::Static &&
1226        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1227      StringRef Sym(".destructors_used");
1228      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1229                                      MCSA_Reference);
1230    }
1231    return true;
1232  }
1233
1234  return false;
1235}
1236
1237/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1238/// global in the specified llvm.used list for which emitUsedDirectiveFor
1239/// is true, as being used with this directive.
1240void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1241  // Should be an array of 'i8*'.
1242  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1243  if (InitList == 0) return;
1244
1245  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1246    const GlobalValue *GV =
1247      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1248    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1249      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1250  }
1251}
1252
1253typedef std::pair<unsigned, Constant*> Structor;
1254
1255static bool priority_order(const Structor& lhs, const Structor& rhs) {
1256  return lhs.first < rhs.first;
1257}
1258
1259/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1260/// priority.
1261void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1262  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1263  // init priority.
1264  if (!isa<ConstantArray>(List)) return;
1265
1266  // Sanity check the structors list.
1267  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1268  if (!InitList) return; // Not an array!
1269  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1270  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1271  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1272      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1273
1274  // Gather the structors in a form that's convenient for sorting by priority.
1275  SmallVector<Structor, 8> Structors;
1276  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1277    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1278    if (!CS) continue; // Malformed.
1279    if (CS->getOperand(1)->isNullValue())
1280      break;  // Found a null terminator, skip the rest.
1281    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1282    if (!Priority) continue; // Malformed.
1283    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1284                                       CS->getOperand(1)));
1285  }
1286
1287  // Emit the function pointers in the target-specific order
1288  const TargetData *TD = TM.getTargetData();
1289  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1290  std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1291  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1292    const MCSection *OutputSection =
1293      (isCtor ?
1294       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1295       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1296    OutStreamer.SwitchSection(OutputSection);
1297    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1298      EmitAlignment(Align);
1299    EmitXXStructor(Structors[i].second);
1300  }
1301}
1302
1303//===--------------------------------------------------------------------===//
1304// Emission and print routines
1305//
1306
1307/// EmitInt8 - Emit a byte directive and value.
1308///
1309void AsmPrinter::EmitInt8(int Value) const {
1310  OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1311}
1312
1313/// EmitInt16 - Emit a short directive and value.
1314///
1315void AsmPrinter::EmitInt16(int Value) const {
1316  OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1317}
1318
1319/// EmitInt32 - Emit a long directive and value.
1320///
1321void AsmPrinter::EmitInt32(int Value) const {
1322  OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1323}
1324
1325/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1326/// in bytes of the directive is specified by Size and Hi/Lo specify the
1327/// labels.  This implicitly uses .set if it is available.
1328void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1329                                     unsigned Size) const {
1330  // Get the Hi-Lo expression.
1331  const MCExpr *Diff =
1332    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1333                            MCSymbolRefExpr::Create(Lo, OutContext),
1334                            OutContext);
1335
1336  if (!MAI->hasSetDirective()) {
1337    OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1338    return;
1339  }
1340
1341  // Otherwise, emit with .set (aka assignment).
1342  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1343  OutStreamer.EmitAssignment(SetLabel, Diff);
1344  OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1345}
1346
1347/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1348/// where the size in bytes of the directive is specified by Size and Hi/Lo
1349/// specify the labels.  This implicitly uses .set if it is available.
1350void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1351                                           const MCSymbol *Lo, unsigned Size)
1352  const {
1353
1354  // Emit Hi+Offset - Lo
1355  // Get the Hi+Offset expression.
1356  const MCExpr *Plus =
1357    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1358                            MCConstantExpr::Create(Offset, OutContext),
1359                            OutContext);
1360
1361  // Get the Hi+Offset-Lo expression.
1362  const MCExpr *Diff =
1363    MCBinaryExpr::CreateSub(Plus,
1364                            MCSymbolRefExpr::Create(Lo, OutContext),
1365                            OutContext);
1366
1367  if (!MAI->hasSetDirective())
1368    OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1369  else {
1370    // Otherwise, emit with .set (aka assignment).
1371    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1372    OutStreamer.EmitAssignment(SetLabel, Diff);
1373    OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1374  }
1375}
1376
1377/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1378/// where the size in bytes of the directive is specified by Size and Label
1379/// specifies the label.  This implicitly uses .set if it is available.
1380void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1381                                      unsigned Size)
1382  const {
1383
1384  // Emit Label+Offset
1385  const MCExpr *Plus =
1386    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext),
1387                            MCConstantExpr::Create(Offset, OutContext),
1388                            OutContext);
1389
1390  OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/);
1391}
1392
1393
1394//===----------------------------------------------------------------------===//
1395
1396// EmitAlignment - Emit an alignment directive to the specified power of
1397// two boundary.  For example, if you pass in 3 here, you will get an 8
1398// byte alignment.  If a global value is specified, and if that global has
1399// an explicit alignment requested, it will override the alignment request
1400// if required for correctness.
1401//
1402void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1403  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
1404
1405  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1406
1407  if (getCurrentSection()->getKind().isText())
1408    OutStreamer.EmitCodeAlignment(1 << NumBits);
1409  else
1410    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1411}
1412
1413//===----------------------------------------------------------------------===//
1414// Constant emission.
1415//===----------------------------------------------------------------------===//
1416
1417/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
1418///
1419static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) {
1420  MCContext &Ctx = AP.OutContext;
1421
1422  if (CV->isNullValue() || isa<UndefValue>(CV))
1423    return MCConstantExpr::Create(0, Ctx);
1424
1425  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1426    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1427
1428  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1429    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1430
1431  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1432    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1433
1434  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1435  if (CE == 0) {
1436    llvm_unreachable("Unknown constant value to lower!");
1437  }
1438
1439  switch (CE->getOpcode()) {
1440  default:
1441    // If the code isn't optimized, there may be outstanding folding
1442    // opportunities. Attempt to fold the expression using TargetData as a
1443    // last resort before giving up.
1444    if (Constant *C =
1445          ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
1446      if (C != CE)
1447        return LowerConstant(C, AP);
1448
1449    // Otherwise report the problem to the user.
1450    {
1451      std::string S;
1452      raw_string_ostream OS(S);
1453      OS << "Unsupported expression in static initializer: ";
1454      WriteAsOperand(OS, CE, /*PrintType=*/false,
1455                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1456      report_fatal_error(OS.str());
1457    }
1458  case Instruction::GetElementPtr: {
1459    const TargetData &TD = *AP.TM.getTargetData();
1460    // Generate a symbolic expression for the byte address
1461    const Constant *PtrVal = CE->getOperand(0);
1462    SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1463    int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
1464
1465    const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
1466    if (Offset == 0)
1467      return Base;
1468
1469    // Truncate/sext the offset to the pointer size.
1470    if (TD.getPointerSizeInBits() != 64) {
1471      int SExtAmount = 64-TD.getPointerSizeInBits();
1472      Offset = (Offset << SExtAmount) >> SExtAmount;
1473    }
1474
1475    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1476                                   Ctx);
1477  }
1478
1479  case Instruction::Trunc:
1480    // We emit the value and depend on the assembler to truncate the generated
1481    // expression properly.  This is important for differences between
1482    // blockaddress labels.  Since the two labels are in the same function, it
1483    // is reasonable to treat their delta as a 32-bit value.
1484    // FALL THROUGH.
1485  case Instruction::BitCast:
1486    return LowerConstant(CE->getOperand(0), AP);
1487
1488  case Instruction::IntToPtr: {
1489    const TargetData &TD = *AP.TM.getTargetData();
1490    // Handle casts to pointers by changing them into casts to the appropriate
1491    // integer type.  This promotes constant folding and simplifies this code.
1492    Constant *Op = CE->getOperand(0);
1493    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1494                                      false/*ZExt*/);
1495    return LowerConstant(Op, AP);
1496  }
1497
1498  case Instruction::PtrToInt: {
1499    const TargetData &TD = *AP.TM.getTargetData();
1500    // Support only foldable casts to/from pointers that can be eliminated by
1501    // changing the pointer to the appropriately sized integer type.
1502    Constant *Op = CE->getOperand(0);
1503    Type *Ty = CE->getType();
1504
1505    const MCExpr *OpExpr = LowerConstant(Op, AP);
1506
1507    // We can emit the pointer value into this slot if the slot is an
1508    // integer slot equal to the size of the pointer.
1509    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1510      return OpExpr;
1511
1512    // Otherwise the pointer is smaller than the resultant integer, mask off
1513    // the high bits so we are sure to get a proper truncation if the input is
1514    // a constant expr.
1515    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1516    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1517    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1518  }
1519
1520  // The MC library also has a right-shift operator, but it isn't consistently
1521  // signed or unsigned between different targets.
1522  case Instruction::Add:
1523  case Instruction::Sub:
1524  case Instruction::Mul:
1525  case Instruction::SDiv:
1526  case Instruction::SRem:
1527  case Instruction::Shl:
1528  case Instruction::And:
1529  case Instruction::Or:
1530  case Instruction::Xor: {
1531    const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
1532    const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
1533    switch (CE->getOpcode()) {
1534    default: llvm_unreachable("Unknown binary operator constant cast expr");
1535    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1536    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1537    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1538    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1539    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1540    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1541    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1542    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1543    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1544    }
1545  }
1546  }
1547}
1548
1549static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1550                                   AsmPrinter &AP);
1551
1552/// isRepeatedByteSequence - Determine whether the given value is
1553/// composed of a repeated sequence of identical bytes and return the
1554/// byte value.  If it is not a repeated sequence, return -1.
1555static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1556  StringRef Data = V->getRawDataValues();
1557  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1558  char C = Data[0];
1559  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1560    if (Data[i] != C) return -1;
1561  return C;
1562}
1563
1564
1565/// isRepeatedByteSequence - Determine whether the given value is
1566/// composed of a repeated sequence of identical bytes and return the
1567/// byte value.  If it is not a repeated sequence, return -1.
1568static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1569
1570  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1571    if (CI->getBitWidth() > 64) return -1;
1572
1573    uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
1574    uint64_t Value = CI->getZExtValue();
1575
1576    // Make sure the constant is at least 8 bits long and has a power
1577    // of 2 bit width.  This guarantees the constant bit width is
1578    // always a multiple of 8 bits, avoiding issues with padding out
1579    // to Size and other such corner cases.
1580    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1581
1582    uint8_t Byte = static_cast<uint8_t>(Value);
1583
1584    for (unsigned i = 1; i < Size; ++i) {
1585      Value >>= 8;
1586      if (static_cast<uint8_t>(Value) != Byte) return -1;
1587    }
1588    return Byte;
1589  }
1590  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1591    // Make sure all array elements are sequences of the same repeated
1592    // byte.
1593    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1594    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1595    if (Byte == -1) return -1;
1596
1597    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1598      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1599      if (ThisByte == -1) return -1;
1600      if (Byte != ThisByte) return -1;
1601    }
1602    return Byte;
1603  }
1604
1605  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1606    return isRepeatedByteSequence(CDS);
1607
1608  return -1;
1609}
1610
1611static void EmitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1612                                             unsigned AddrSpace,AsmPrinter &AP){
1613
1614  // See if we can aggregate this into a .fill, if so, emit it as such.
1615  int Value = isRepeatedByteSequence(CDS, AP.TM);
1616  if (Value != -1) {
1617    uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
1618    return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1619  }
1620
1621  // If this can be emitted with .ascii/.asciz, emit it as such.
1622  if (CDS->isString())
1623    return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1624
1625  // Otherwise, emit the values in successive locations.
1626  unsigned ElementByteSize = CDS->getElementByteSize();
1627  if (isa<IntegerType>(CDS->getElementType())) {
1628    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1629      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1630                                  ElementByteSize, AddrSpace);
1631    }
1632  } else if (ElementByteSize == 4) {
1633    // FP Constants are printed as integer constants to avoid losing
1634    // precision.
1635    assert(CDS->getElementType()->isFloatTy());
1636    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1637      union {
1638        float F;
1639        uint32_t I;
1640      };
1641
1642      F = CDS->getElementAsFloat(i);
1643      if (AP.isVerbose())
1644        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1645      AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1646    }
1647  } else {
1648    assert(CDS->getElementType()->isDoubleTy());
1649    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1650      union {
1651        double F;
1652        uint64_t I;
1653      };
1654
1655      F = CDS->getElementAsDouble(i);
1656      if (AP.isVerbose())
1657        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1658      AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1659    }
1660  }
1661
1662  const TargetData &TD = *AP.TM.getTargetData();
1663  unsigned Size = TD.getTypeAllocSize(CDS->getType());
1664  unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1665                        CDS->getNumElements();
1666  if (unsigned Padding = Size - EmittedSize)
1667    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1668
1669}
1670
1671static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1672                                    AsmPrinter &AP) {
1673  if (AddrSpace != 0 || !CA->isString()) {
1674    // Not a string.  Print the values in successive locations.
1675
1676    // See if we can aggregate some values.  Make sure it can be
1677    // represented as a series of bytes of the constant value.
1678    int Value = isRepeatedByteSequence(CA, AP.TM);
1679
1680    if (Value != -1) {
1681      uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
1682      AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1683    }
1684    else {
1685      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1686        EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1687    }
1688    return;
1689  }
1690
1691  // Otherwise, it can be emitted as .ascii.
1692  SmallVector<char, 128> TmpVec;
1693  TmpVec.reserve(CA->getNumOperands());
1694  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1695    TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue());
1696
1697  AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace);
1698}
1699
1700static void EmitGlobalConstantVector(const ConstantVector *CV,
1701                                     unsigned AddrSpace, AsmPrinter &AP) {
1702  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1703    EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1704
1705  const TargetData &TD = *AP.TM.getTargetData();
1706  unsigned Size = TD.getTypeAllocSize(CV->getType());
1707  unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1708                         CV->getType()->getNumElements();
1709  if (unsigned Padding = Size - EmittedSize)
1710    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1711}
1712
1713static void EmitGlobalConstantStruct(const ConstantStruct *CS,
1714                                     unsigned AddrSpace, AsmPrinter &AP) {
1715  // Print the fields in successive locations. Pad to align if needed!
1716  const TargetData *TD = AP.TM.getTargetData();
1717  unsigned Size = TD->getTypeAllocSize(CS->getType());
1718  const StructLayout *Layout = TD->getStructLayout(CS->getType());
1719  uint64_t SizeSoFar = 0;
1720  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1721    const Constant *Field = CS->getOperand(i);
1722
1723    // Check if padding is needed and insert one or more 0s.
1724    uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1725    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1726                        - Layout->getElementOffset(i)) - FieldSize;
1727    SizeSoFar += FieldSize + PadSize;
1728
1729    // Now print the actual field value.
1730    EmitGlobalConstantImpl(Field, AddrSpace, AP);
1731
1732    // Insert padding - this may include padding to increase the size of the
1733    // current field up to the ABI size (if the struct is not packed) as well
1734    // as padding to ensure that the next field starts at the right offset.
1735    AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1736  }
1737  assert(SizeSoFar == Layout->getSizeInBytes() &&
1738         "Layout of constant struct may be incorrect!");
1739}
1740
1741static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1742                                 AsmPrinter &AP) {
1743  if (CFP->getType()->isHalfTy()) {
1744    if (AP.isVerbose()) {
1745      SmallString<10> Str;
1746      CFP->getValueAPF().toString(Str);
1747      AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
1748    }
1749    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1750    AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
1751    return;
1752  }
1753
1754  if (CFP->getType()->isFloatTy()) {
1755    if (AP.isVerbose()) {
1756      float Val = CFP->getValueAPF().convertToFloat();
1757      AP.OutStreamer.GetCommentOS() << "float " << Val << '\n';
1758    }
1759    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1760    AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1761    return;
1762  }
1763
1764  // FP Constants are printed as integer constants to avoid losing
1765  // precision.
1766  if (CFP->getType()->isDoubleTy()) {
1767    if (AP.isVerbose()) {
1768      double Val = CFP->getValueAPF().convertToDouble();
1769      AP.OutStreamer.GetCommentOS() << "double " << Val << '\n';
1770    }
1771
1772    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1773    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1774    return;
1775  }
1776
1777  if (CFP->getType()->isX86_FP80Ty()) {
1778    // all long double variants are printed as hex
1779    // API needed to prevent premature destruction
1780    APInt API = CFP->getValueAPF().bitcastToAPInt();
1781    const uint64_t *p = API.getRawData();
1782    if (AP.isVerbose()) {
1783      // Convert to double so we can print the approximate val as a comment.
1784      APFloat DoubleVal = CFP->getValueAPF();
1785      bool ignored;
1786      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1787                        &ignored);
1788      AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1789        << DoubleVal.convertToDouble() << '\n';
1790    }
1791
1792    if (AP.TM.getTargetData()->isBigEndian()) {
1793      AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1794      AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1795    } else {
1796      AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1797      AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1798    }
1799
1800    // Emit the tail padding for the long double.
1801    const TargetData &TD = *AP.TM.getTargetData();
1802    AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1803                             TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1804    return;
1805  }
1806
1807  assert(CFP->getType()->isPPC_FP128Ty() &&
1808         "Floating point constant type not handled");
1809  // All long double variants are printed as hex
1810  // API needed to prevent premature destruction.
1811  APInt API = CFP->getValueAPF().bitcastToAPInt();
1812  const uint64_t *p = API.getRawData();
1813  if (AP.TM.getTargetData()->isBigEndian()) {
1814    AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1815    AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1816  } else {
1817    AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1818    AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1819  }
1820}
1821
1822static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
1823                                       unsigned AddrSpace, AsmPrinter &AP) {
1824  const TargetData *TD = AP.TM.getTargetData();
1825  unsigned BitWidth = CI->getBitWidth();
1826  assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1827
1828  // We don't expect assemblers to support integer data directives
1829  // for more than 64 bits, so we emit the data in at most 64-bit
1830  // quantities at a time.
1831  const uint64_t *RawData = CI->getValue().getRawData();
1832  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1833    uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1834    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1835  }
1836}
1837
1838static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1839                                   AsmPrinter &AP) {
1840  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) {
1841    uint64_t Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
1842    return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1843  }
1844
1845  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1846    unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
1847    switch (Size) {
1848    case 1:
1849    case 2:
1850    case 4:
1851    case 8:
1852      if (AP.isVerbose())
1853        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1854                                                CI->getZExtValue());
1855      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1856      return;
1857    default:
1858      EmitGlobalConstantLargeInt(CI, AddrSpace, AP);
1859      return;
1860    }
1861  }
1862
1863  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1864    return EmitGlobalConstantFP(CFP, AddrSpace, AP);
1865
1866  if (isa<ConstantPointerNull>(CV)) {
1867    unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
1868    AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1869    return;
1870  }
1871
1872  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1873    return EmitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1874
1875  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1876    return EmitGlobalConstantArray(CVA, AddrSpace, AP);
1877
1878  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1879    return EmitGlobalConstantStruct(CVS, AddrSpace, AP);
1880
1881  // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1882  // vectors).
1883  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV))
1884    if (CE->getOpcode() == Instruction::BitCast)
1885      return EmitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1886
1887  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1888    return EmitGlobalConstantVector(V, AddrSpace, AP);
1889
1890  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1891  // thread the streamer with EmitValue.
1892  AP.OutStreamer.EmitValue(LowerConstant(CV, AP),
1893                         AP.TM.getTargetData()->getTypeAllocSize(CV->getType()),
1894                           AddrSpace);
1895}
1896
1897/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1898void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1899  uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
1900  if (Size)
1901    EmitGlobalConstantImpl(CV, AddrSpace, *this);
1902  else if (MAI->hasSubsectionsViaSymbols()) {
1903    // If the global has zero size, emit a single byte so that two labels don't
1904    // look like they are at the same location.
1905    OutStreamer.EmitIntValue(0, 1, AddrSpace);
1906  }
1907}
1908
1909void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1910  // Target doesn't support this yet!
1911  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1912}
1913
1914void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1915  if (Offset > 0)
1916    OS << '+' << Offset;
1917  else if (Offset < 0)
1918    OS << Offset;
1919}
1920
1921//===----------------------------------------------------------------------===//
1922// Symbol Lowering Routines.
1923//===----------------------------------------------------------------------===//
1924
1925/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1926/// temporary label with the specified stem and unique ID.
1927MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1928  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1929                                      Name + Twine(ID));
1930}
1931
1932/// GetTempSymbol - Return an assembler temporary label with the specified
1933/// stem.
1934MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1935  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1936                                      Name);
1937}
1938
1939
1940MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1941  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1942}
1943
1944MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1945  return MMI->getAddrLabelSymbol(BB);
1946}
1947
1948/// GetCPISymbol - Return the symbol for the specified constant pool entry.
1949MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1950  return OutContext.GetOrCreateSymbol
1951    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1952     + "_" + Twine(CPID));
1953}
1954
1955/// GetJTISymbol - Return the symbol for the specified jump table entry.
1956MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1957  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1958}
1959
1960/// GetJTSetSymbol - Return the symbol for the specified jump table .set
1961/// FIXME: privatize to AsmPrinter.
1962MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1963  return OutContext.GetOrCreateSymbol
1964  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1965   Twine(UID) + "_set_" + Twine(MBBID));
1966}
1967
1968/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1969/// global value name as its base, with the specified suffix, and where the
1970/// symbol is forced to have private linkage if ForcePrivate is true.
1971MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1972                                                   StringRef Suffix,
1973                                                   bool ForcePrivate) const {
1974  SmallString<60> NameStr;
1975  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1976  NameStr.append(Suffix.begin(), Suffix.end());
1977  return OutContext.GetOrCreateSymbol(NameStr.str());
1978}
1979
1980/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1981/// ExternalSymbol.
1982MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1983  SmallString<60> NameStr;
1984  Mang->getNameWithPrefix(NameStr, Sym);
1985  return OutContext.GetOrCreateSymbol(NameStr.str());
1986}
1987
1988
1989
1990/// PrintParentLoopComment - Print comments about parent loops of this one.
1991static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
1992                                   unsigned FunctionNumber) {
1993  if (Loop == 0) return;
1994  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
1995  OS.indent(Loop->getLoopDepth()*2)
1996    << "Parent Loop BB" << FunctionNumber << "_"
1997    << Loop->getHeader()->getNumber()
1998    << " Depth=" << Loop->getLoopDepth() << '\n';
1999}
2000
2001
2002/// PrintChildLoopComment - Print comments about child loops within
2003/// the loop for this basic block, with nesting.
2004static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2005                                  unsigned FunctionNumber) {
2006  // Add child loop information
2007  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2008    OS.indent((*CL)->getLoopDepth()*2)
2009      << "Child Loop BB" << FunctionNumber << "_"
2010      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2011      << '\n';
2012    PrintChildLoopComment(OS, *CL, FunctionNumber);
2013  }
2014}
2015
2016/// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2017static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2018                                       const MachineLoopInfo *LI,
2019                                       const AsmPrinter &AP) {
2020  // Add loop depth information
2021  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2022  if (Loop == 0) return;
2023
2024  MachineBasicBlock *Header = Loop->getHeader();
2025  assert(Header && "No header for loop");
2026
2027  // If this block is not a loop header, just print out what is the loop header
2028  // and return.
2029  if (Header != &MBB) {
2030    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2031                              Twine(AP.getFunctionNumber())+"_" +
2032                              Twine(Loop->getHeader()->getNumber())+
2033                              " Depth="+Twine(Loop->getLoopDepth()));
2034    return;
2035  }
2036
2037  // Otherwise, it is a loop header.  Print out information about child and
2038  // parent loops.
2039  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2040
2041  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2042
2043  OS << "=>";
2044  OS.indent(Loop->getLoopDepth()*2-2);
2045
2046  OS << "This ";
2047  if (Loop->empty())
2048    OS << "Inner ";
2049  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2050
2051  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2052}
2053
2054
2055/// EmitBasicBlockStart - This method prints the label for the specified
2056/// MachineBasicBlock, an alignment (if present) and a comment describing
2057/// it if appropriate.
2058void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2059  // Emit an alignment directive for this block, if needed.
2060  if (unsigned Align = MBB->getAlignment())
2061    EmitAlignment(Align);
2062
2063  // If the block has its address taken, emit any labels that were used to
2064  // reference the block.  It is possible that there is more than one label
2065  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2066  // the references were generated.
2067  if (MBB->hasAddressTaken()) {
2068    const BasicBlock *BB = MBB->getBasicBlock();
2069    if (isVerbose())
2070      OutStreamer.AddComment("Block address taken");
2071
2072    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2073
2074    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2075      OutStreamer.EmitLabel(Syms[i]);
2076  }
2077
2078  // Print the main label for the block.
2079  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2080    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2081      if (const BasicBlock *BB = MBB->getBasicBlock())
2082        if (BB->hasName())
2083          OutStreamer.AddComment("%" + BB->getName());
2084
2085      EmitBasicBlockLoopComments(*MBB, LI, *this);
2086
2087      // NOTE: Want this comment at start of line, don't emit with AddComment.
2088      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2089                              Twine(MBB->getNumber()) + ":");
2090    }
2091  } else {
2092    if (isVerbose()) {
2093      if (const BasicBlock *BB = MBB->getBasicBlock())
2094        if (BB->hasName())
2095          OutStreamer.AddComment("%" + BB->getName());
2096      EmitBasicBlockLoopComments(*MBB, LI, *this);
2097    }
2098
2099    OutStreamer.EmitLabel(MBB->getSymbol());
2100  }
2101}
2102
2103void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2104                                bool IsDefinition) const {
2105  MCSymbolAttr Attr = MCSA_Invalid;
2106
2107  switch (Visibility) {
2108  default: break;
2109  case GlobalValue::HiddenVisibility:
2110    if (IsDefinition)
2111      Attr = MAI->getHiddenVisibilityAttr();
2112    else
2113      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2114    break;
2115  case GlobalValue::ProtectedVisibility:
2116    Attr = MAI->getProtectedVisibilityAttr();
2117    break;
2118  }
2119
2120  if (Attr != MCSA_Invalid)
2121    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2122}
2123
2124/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2125/// exactly one predecessor and the control transfer mechanism between
2126/// the predecessor and this block is a fall-through.
2127bool AsmPrinter::
2128isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2129  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2130  // then nothing falls through to it.
2131  if (MBB->isLandingPad() || MBB->pred_empty())
2132    return false;
2133
2134  // If there isn't exactly one predecessor, it can't be a fall through.
2135  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2136  ++PI2;
2137  if (PI2 != MBB->pred_end())
2138    return false;
2139
2140  // The predecessor has to be immediately before this block.
2141  MachineBasicBlock *Pred = *PI;
2142
2143  if (!Pred->isLayoutSuccessor(MBB))
2144    return false;
2145
2146  // If the block is completely empty, then it definitely does fall through.
2147  if (Pred->empty())
2148    return true;
2149
2150  // Check the terminators in the previous blocks
2151  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2152         IE = Pred->end(); II != IE; ++II) {
2153    MachineInstr &MI = *II;
2154
2155    // If it is not a simple branch, we are in a table somewhere.
2156    if (!MI.isBranch() || MI.isIndirectBranch())
2157      return false;
2158
2159    // If we are the operands of one of the branches, this is not
2160    // a fall through.
2161    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2162           OE = MI.operands_end(); OI != OE; ++OI) {
2163      const MachineOperand& OP = *OI;
2164      if (OP.isJTI())
2165        return false;
2166      if (OP.isMBB() && OP.getMBB() == MBB)
2167        return false;
2168    }
2169  }
2170
2171  return true;
2172}
2173
2174
2175
2176GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2177  if (!S->usesMetadata())
2178    return 0;
2179
2180  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2181  gcp_map_type::iterator GCPI = GCMap.find(S);
2182  if (GCPI != GCMap.end())
2183    return GCPI->second;
2184
2185  const char *Name = S->getName().c_str();
2186
2187  for (GCMetadataPrinterRegistry::iterator
2188         I = GCMetadataPrinterRegistry::begin(),
2189         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2190    if (strcmp(Name, I->getName()) == 0) {
2191      GCMetadataPrinter *GMP = I->instantiate();
2192      GMP->S = S;
2193      GCMap.insert(std::make_pair(S, GMP));
2194      return GMP;
2195    }
2196
2197  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2198}
2199