AsmPrinter.cpp revision 715d98d657491b3fb8ea0e14643e9801b2f9628c
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CodeGen/GCMetadataPrinter.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineJumpTableInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/DebugInfo.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/MC/MCContext.h"
35#include "llvm/MC/MCExpr.h"
36#include "llvm/MC/MCInst.h"
37#include "llvm/MC/MCSection.h"
38#include "llvm/MC/MCStreamer.h"
39#include "llvm/MC/MCSymbol.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/Format.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Timer.h"
44#include "llvm/Target/Mangler.h"
45#include "llvm/Target/TargetFrameLowering.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetLoweringObjectFile.h"
49#include "llvm/Target/TargetOptions.h"
50#include "llvm/Target/TargetRegisterInfo.h"
51using namespace llvm;
52
53static const char *const DWARFGroupName = "DWARF Emission";
54static const char *const DbgTimerName = "DWARF Debug Writer";
55static const char *const EHTimerName = "DWARF Exception Writer";
56
57STATISTIC(EmittedInsts, "Number of machine instrs printed");
58
59char AsmPrinter::ID = 0;
60
61typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
62static gcp_map_type &getGCMap(void *&P) {
63  if (P == 0)
64    P = new gcp_map_type();
65  return *(gcp_map_type*)P;
66}
67
68
69/// getGVAlignmentLog2 - Return the alignment to use for the specified global
70/// value in log2 form.  This rounds up to the preferred alignment if possible
71/// and legal.
72static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
73                                   unsigned InBits = 0) {
74  unsigned NumBits = 0;
75  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
76    NumBits = TD.getPreferredAlignmentLog(GVar);
77
78  // If InBits is specified, round it to it.
79  if (InBits > NumBits)
80    NumBits = InBits;
81
82  // If the GV has a specified alignment, take it into account.
83  if (GV->getAlignment() == 0)
84    return NumBits;
85
86  unsigned GVAlign = Log2_32(GV->getAlignment());
87
88  // If the GVAlign is larger than NumBits, or if we are required to obey
89  // NumBits because the GV has an assigned section, obey it.
90  if (GVAlign > NumBits || GV->hasSection())
91    NumBits = GVAlign;
92  return NumBits;
93}
94
95AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
96  : MachineFunctionPass(ID),
97    TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()),
98    OutContext(Streamer.getContext()),
99    OutStreamer(Streamer),
100    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
101  DD = 0; DE = 0; MMI = 0; LI = 0; MF = 0;
102  CurrentFnSym = CurrentFnSymForSize = 0;
103  GCMetadataPrinters = 0;
104  VerboseAsm = Streamer.isVerboseAsm();
105}
106
107AsmPrinter::~AsmPrinter() {
108  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
109
110  if (GCMetadataPrinters != 0) {
111    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
112
113    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
114      delete I->second;
115    delete &GCMap;
116    GCMetadataPrinters = 0;
117  }
118
119  delete &OutStreamer;
120}
121
122/// getFunctionNumber - Return a unique ID for the current function.
123///
124unsigned AsmPrinter::getFunctionNumber() const {
125  return MF->getFunctionNumber();
126}
127
128const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
129  return TM.getTargetLowering()->getObjFileLowering();
130}
131
132/// getDataLayout - Return information about data layout.
133const DataLayout &AsmPrinter::getDataLayout() const {
134  return *TM.getDataLayout();
135}
136
137StringRef AsmPrinter::getTargetTriple() const {
138  return TM.getTargetTriple();
139}
140
141/// getCurrentSection() - Return the current section we are emitting to.
142const MCSection *AsmPrinter::getCurrentSection() const {
143  return OutStreamer.getCurrentSection().first;
144}
145
146
147
148void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
149  AU.setPreservesAll();
150  MachineFunctionPass::getAnalysisUsage(AU);
151  AU.addRequired<MachineModuleInfo>();
152  AU.addRequired<GCModuleInfo>();
153  if (isVerbose())
154    AU.addRequired<MachineLoopInfo>();
155}
156
157bool AsmPrinter::doInitialization(Module &M) {
158  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
159  MMI->AnalyzeModule(M);
160
161  // Initialize TargetLoweringObjectFile.
162  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
163    .Initialize(OutContext, TM);
164
165  OutStreamer.InitStreamer();
166
167  Mang = new Mangler(OutContext, &TM);
168
169  // Allow the target to emit any magic that it wants at the start of the file.
170  EmitStartOfAsmFile(M);
171
172  // Very minimal debug info. It is ignored if we emit actual debug info. If we
173  // don't, this at least helps the user find where a global came from.
174  if (MAI->hasSingleParameterDotFile()) {
175    // .file "foo.c"
176    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
177  }
178
179  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
180  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
181  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
182    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
183      MP->beginAssembly(*this);
184
185  // Emit module-level inline asm if it exists.
186  if (!M.getModuleInlineAsm().empty()) {
187    OutStreamer.AddComment("Start of file scope inline assembly");
188    OutStreamer.AddBlankLine();
189    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
190    OutStreamer.AddComment("End of file scope inline assembly");
191    OutStreamer.AddBlankLine();
192  }
193
194  if (MAI->doesSupportDebugInformation())
195    DD = new DwarfDebug(this, &M);
196
197  switch (MAI->getExceptionHandlingType()) {
198  case ExceptionHandling::None:
199    return false;
200  case ExceptionHandling::SjLj:
201  case ExceptionHandling::DwarfCFI:
202    DE = new DwarfCFIException(this);
203    return false;
204  case ExceptionHandling::ARM:
205    DE = new ARMException(this);
206    return false;
207  case ExceptionHandling::Win64:
208    DE = new Win64Exception(this);
209    return false;
210  }
211
212  llvm_unreachable("Unknown exception type.");
213}
214
215void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
216  switch ((GlobalValue::LinkageTypes)Linkage) {
217  case GlobalValue::CommonLinkage:
218  case GlobalValue::LinkOnceAnyLinkage:
219  case GlobalValue::LinkOnceODRLinkage:
220  case GlobalValue::LinkOnceODRAutoHideLinkage:
221  case GlobalValue::WeakAnyLinkage:
222  case GlobalValue::WeakODRLinkage:
223  case GlobalValue::LinkerPrivateWeakLinkage:
224    if (MAI->getWeakDefDirective() != 0) {
225      // .globl _foo
226      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
227
228      if ((GlobalValue::LinkageTypes)Linkage !=
229          GlobalValue::LinkOnceODRAutoHideLinkage)
230        // .weak_definition _foo
231        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
232      else
233        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
234    } else if (MAI->getLinkOnceDirective() != 0) {
235      // .globl _foo
236      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
237      //NOTE: linkonce is handled by the section the symbol was assigned to.
238    } else {
239      // .weak _foo
240      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
241    }
242    break;
243  case GlobalValue::DLLExportLinkage:
244  case GlobalValue::AppendingLinkage:
245    // FIXME: appending linkage variables should go into a section of
246    // their name or something.  For now, just emit them as external.
247  case GlobalValue::ExternalLinkage:
248    // If external or appending, declare as a global symbol.
249    // .globl _foo
250    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
251    break;
252  case GlobalValue::PrivateLinkage:
253  case GlobalValue::InternalLinkage:
254  case GlobalValue::LinkerPrivateLinkage:
255    break;
256  default:
257    llvm_unreachable("Unknown linkage type!");
258  }
259}
260
261
262/// EmitGlobalVariable - Emit the specified global variable to the .s file.
263void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
264  if (GV->hasInitializer()) {
265    // Check to see if this is a special global used by LLVM, if so, emit it.
266    if (EmitSpecialLLVMGlobal(GV))
267      return;
268
269    if (isVerbose()) {
270      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
271                     /*PrintType=*/false, GV->getParent());
272      OutStreamer.GetCommentOS() << '\n';
273    }
274  }
275
276  MCSymbol *GVSym = Mang->getSymbol(GV);
277  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
278
279  if (!GV->hasInitializer())   // External globals require no extra code.
280    return;
281
282  if (MAI->hasDotTypeDotSizeDirective())
283    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
284
285  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
286
287  const DataLayout *TD = TM.getDataLayout();
288  uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
289
290  // If the alignment is specified, we *must* obey it.  Overaligning a global
291  // with a specified alignment is a prompt way to break globals emitted to
292  // sections and expected to be contiguous (e.g. ObjC metadata).
293  unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
294
295  // Handle common and BSS local symbols (.lcomm).
296  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
297    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
298    unsigned Align = 1 << AlignLog;
299
300    // Handle common symbols.
301    if (GVKind.isCommon()) {
302      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
303        Align = 0;
304
305      // .comm _foo, 42, 4
306      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
307      return;
308    }
309
310    // Handle local BSS symbols.
311    if (MAI->hasMachoZeroFillDirective()) {
312      const MCSection *TheSection =
313        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
314      // .zerofill __DATA, __bss, _foo, 400, 5
315      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
316      return;
317    }
318
319    // Use .lcomm only if it supports user-specified alignment.
320    // Otherwise, while it would still be correct to use .lcomm in some
321    // cases (e.g. when Align == 1), the external assembler might enfore
322    // some -unknown- default alignment behavior, which could cause
323    // spurious differences between external and integrated assembler.
324    // Prefer to simply fall back to .local / .comm in this case.
325    if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
326      // .lcomm _foo, 42
327      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
328      return;
329    }
330
331    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
332      Align = 0;
333
334    // .local _foo
335    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
336    // .comm _foo, 42, 4
337    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
338    return;
339  }
340
341  const MCSection *TheSection =
342    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
343
344  // Handle the zerofill directive on darwin, which is a special form of BSS
345  // emission.
346  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
347    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
348
349    // .globl _foo
350    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
351    // .zerofill __DATA, __common, _foo, 400, 5
352    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
353    return;
354  }
355
356  // Handle thread local data for mach-o which requires us to output an
357  // additional structure of data and mangle the original symbol so that we
358  // can reference it later.
359  //
360  // TODO: This should become an "emit thread local global" method on TLOF.
361  // All of this macho specific stuff should be sunk down into TLOFMachO and
362  // stuff like "TLSExtraDataSection" should no longer be part of the parent
363  // TLOF class.  This will also make it more obvious that stuff like
364  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
365  // specific code.
366  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
367    // Emit the .tbss symbol
368    MCSymbol *MangSym =
369      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
370
371    if (GVKind.isThreadBSS()) {
372      TheSection = getObjFileLowering().getTLSBSSSection();
373      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
374    } else if (GVKind.isThreadData()) {
375      OutStreamer.SwitchSection(TheSection);
376
377      EmitAlignment(AlignLog, GV);
378      OutStreamer.EmitLabel(MangSym);
379
380      EmitGlobalConstant(GV->getInitializer());
381    }
382
383    OutStreamer.AddBlankLine();
384
385    // Emit the variable struct for the runtime.
386    const MCSection *TLVSect
387      = getObjFileLowering().getTLSExtraDataSection();
388
389    OutStreamer.SwitchSection(TLVSect);
390    // Emit the linkage here.
391    EmitLinkage(GV->getLinkage(), GVSym);
392    OutStreamer.EmitLabel(GVSym);
393
394    // Three pointers in size:
395    //   - __tlv_bootstrap - used to make sure support exists
396    //   - spare pointer, used when mapped by the runtime
397    //   - pointer to mangled symbol above with initializer
398    unsigned PtrSize = TD->getPointerSizeInBits()/8;
399    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
400                                PtrSize);
401    OutStreamer.EmitIntValue(0, PtrSize);
402    OutStreamer.EmitSymbolValue(MangSym, PtrSize);
403
404    OutStreamer.AddBlankLine();
405    return;
406  }
407
408  OutStreamer.SwitchSection(TheSection);
409
410  EmitLinkage(GV->getLinkage(), GVSym);
411  EmitAlignment(AlignLog, GV);
412
413  OutStreamer.EmitLabel(GVSym);
414
415  EmitGlobalConstant(GV->getInitializer());
416
417  if (MAI->hasDotTypeDotSizeDirective())
418    // .size foo, 42
419    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
420
421  OutStreamer.AddBlankLine();
422}
423
424/// EmitFunctionHeader - This method emits the header for the current
425/// function.
426void AsmPrinter::EmitFunctionHeader() {
427  // Print out constants referenced by the function
428  EmitConstantPool();
429
430  // Print the 'header' of function.
431  const Function *F = MF->getFunction();
432
433  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
434  EmitVisibility(CurrentFnSym, F->getVisibility());
435
436  EmitLinkage(F->getLinkage(), CurrentFnSym);
437  EmitAlignment(MF->getAlignment(), F);
438
439  if (MAI->hasDotTypeDotSizeDirective())
440    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
441
442  if (isVerbose()) {
443    WriteAsOperand(OutStreamer.GetCommentOS(), F,
444                   /*PrintType=*/false, F->getParent());
445    OutStreamer.GetCommentOS() << '\n';
446  }
447
448  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
449  // do their wild and crazy things as required.
450  EmitFunctionEntryLabel();
451
452  // If the function had address-taken blocks that got deleted, then we have
453  // references to the dangling symbols.  Emit them at the start of the function
454  // so that we don't get references to undefined symbols.
455  std::vector<MCSymbol*> DeadBlockSyms;
456  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
457  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
458    OutStreamer.AddComment("Address taken block that was later removed");
459    OutStreamer.EmitLabel(DeadBlockSyms[i]);
460  }
461
462  // Emit pre-function debug and/or EH information.
463  if (DE) {
464    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
465    DE->BeginFunction(MF);
466  }
467  if (DD) {
468    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
469    DD->beginFunction(MF);
470  }
471}
472
473/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
474/// function.  This can be overridden by targets as required to do custom stuff.
475void AsmPrinter::EmitFunctionEntryLabel() {
476  // The function label could have already been emitted if two symbols end up
477  // conflicting due to asm renaming.  Detect this and emit an error.
478  if (CurrentFnSym->isUndefined())
479    return OutStreamer.EmitLabel(CurrentFnSym);
480
481  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
482                     "' label emitted multiple times to assembly file");
483}
484
485/// emitComments - Pretty-print comments for instructions.
486static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
487  const MachineFunction *MF = MI.getParent()->getParent();
488  const TargetMachine &TM = MF->getTarget();
489
490  // Check for spills and reloads
491  int FI;
492
493  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
494
495  // We assume a single instruction only has a spill or reload, not
496  // both.
497  const MachineMemOperand *MMO;
498  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
499    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
500      MMO = *MI.memoperands_begin();
501      CommentOS << MMO->getSize() << "-byte Reload\n";
502    }
503  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
504    if (FrameInfo->isSpillSlotObjectIndex(FI))
505      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
506  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
507    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
508      MMO = *MI.memoperands_begin();
509      CommentOS << MMO->getSize() << "-byte Spill\n";
510    }
511  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
512    if (FrameInfo->isSpillSlotObjectIndex(FI))
513      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
514  }
515
516  // Check for spill-induced copies
517  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
518    CommentOS << " Reload Reuse\n";
519}
520
521/// emitImplicitDef - This method emits the specified machine instruction
522/// that is an implicit def.
523static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
524  unsigned RegNo = MI->getOperand(0).getReg();
525  AP.OutStreamer.AddComment(Twine("implicit-def: ") +
526                            AP.TM.getRegisterInfo()->getName(RegNo));
527  AP.OutStreamer.AddBlankLine();
528}
529
530static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
531  std::string Str = "kill:";
532  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
533    const MachineOperand &Op = MI->getOperand(i);
534    assert(Op.isReg() && "KILL instruction must have only register operands");
535    Str += ' ';
536    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
537    Str += (Op.isDef() ? "<def>" : "<kill>");
538  }
539  AP.OutStreamer.AddComment(Str);
540  AP.OutStreamer.AddBlankLine();
541}
542
543/// emitDebugValueComment - This method handles the target-independent form
544/// of DBG_VALUE, returning true if it was able to do so.  A false return
545/// means the target will need to handle MI in EmitInstruction.
546static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
547  // This code handles only the 3-operand target-independent form.
548  if (MI->getNumOperands() != 3)
549    return false;
550
551  SmallString<128> Str;
552  raw_svector_ostream OS(Str);
553  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
554
555  // cast away const; DIetc do not take const operands for some reason.
556  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
557  if (V.getContext().isSubprogram()) {
558    StringRef Name = DISubprogram(V.getContext()).getDisplayName();
559    if (!Name.empty())
560      OS << Name << ":";
561  }
562  OS << V.getName() << " <- ";
563
564  // The second operand is only an offset if it's an immediate.
565  bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
566  int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
567
568  // Register or immediate value. Register 0 means undef.
569  if (MI->getOperand(0).isFPImm()) {
570    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
571    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
572      OS << (double)APF.convertToFloat();
573    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
574      OS << APF.convertToDouble();
575    } else {
576      // There is no good way to print long double.  Convert a copy to
577      // double.  Ah well, it's only a comment.
578      bool ignored;
579      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
580                  &ignored);
581      OS << "(long double) " << APF.convertToDouble();
582    }
583  } else if (MI->getOperand(0).isImm()) {
584    OS << MI->getOperand(0).getImm();
585  } else if (MI->getOperand(0).isCImm()) {
586    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
587  } else {
588    unsigned Reg;
589    if (MI->getOperand(0).isReg()) {
590      Reg = MI->getOperand(0).getReg();
591    } else {
592      assert(MI->getOperand(0).isFI() && "Unknown operand type");
593      const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
594      Offset += TFI->getFrameIndexReference(*AP.MF,
595                                            MI->getOperand(0).getIndex(), Reg);
596      Deref = true;
597    }
598    if (Reg == 0) {
599      // Suppress offset, it is not meaningful here.
600      OS << "undef";
601      // NOTE: Want this comment at start of line, don't emit with AddComment.
602      AP.OutStreamer.EmitRawText(OS.str());
603      return true;
604    }
605    if (Deref)
606      OS << '[';
607    OS << AP.TM.getRegisterInfo()->getName(Reg);
608  }
609
610  if (Deref)
611    OS << '+' << Offset << ']';
612
613  // NOTE: Want this comment at start of line, don't emit with AddComment.
614  AP.OutStreamer.EmitRawText(OS.str());
615  return true;
616}
617
618AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
619  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
620      MF->getFunction()->needsUnwindTableEntry())
621    return CFI_M_EH;
622
623  if (MMI->hasDebugInfo())
624    return CFI_M_Debug;
625
626  return CFI_M_None;
627}
628
629bool AsmPrinter::needsSEHMoves() {
630  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
631    MF->getFunction()->needsUnwindTableEntry();
632}
633
634bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
635  return MAI->doesDwarfUseRelocationsAcrossSections();
636}
637
638void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
639  const MCSymbol *Label = MI.getOperand(0).getMCSymbol();
640
641  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
642    return;
643
644  if (needsCFIMoves() == CFI_M_None)
645    return;
646
647  if (MMI->getCompactUnwindEncoding() != 0)
648    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
649
650  const MachineModuleInfo &MMI = MF->getMMI();
651  const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
652  bool FoundOne = false;
653  (void)FoundOne;
654  for (std::vector<MCCFIInstruction>::const_iterator I = Instrs.begin(),
655         E = Instrs.end(); I != E; ++I) {
656    if (I->getLabel() == Label) {
657      emitCFIInstruction(*I);
658      FoundOne = true;
659    }
660  }
661  assert(FoundOne);
662}
663
664/// EmitFunctionBody - This method emits the body and trailer for a
665/// function.
666void AsmPrinter::EmitFunctionBody() {
667  // Emit target-specific gunk before the function body.
668  EmitFunctionBodyStart();
669
670  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
671
672  // Print out code for the function.
673  bool HasAnyRealCode = false;
674  const MachineInstr *LastMI = 0;
675  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
676       I != E; ++I) {
677    // Print a label for the basic block.
678    EmitBasicBlockStart(I);
679    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
680         II != IE; ++II) {
681      LastMI = II;
682
683      // Print the assembly for the instruction.
684      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
685          !II->isDebugValue()) {
686        HasAnyRealCode = true;
687        ++EmittedInsts;
688      }
689
690      if (ShouldPrintDebugScopes) {
691        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
692        DD->beginInstruction(II);
693      }
694
695      if (isVerbose())
696        emitComments(*II, OutStreamer.GetCommentOS());
697
698      switch (II->getOpcode()) {
699      case TargetOpcode::PROLOG_LABEL:
700        emitPrologLabel(*II);
701        break;
702
703      case TargetOpcode::EH_LABEL:
704      case TargetOpcode::GC_LABEL:
705        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
706        break;
707      case TargetOpcode::INLINEASM:
708        EmitInlineAsm(II);
709        break;
710      case TargetOpcode::DBG_VALUE:
711        if (isVerbose()) {
712          if (!emitDebugValueComment(II, *this))
713            EmitInstruction(II);
714        }
715        break;
716      case TargetOpcode::IMPLICIT_DEF:
717        if (isVerbose()) emitImplicitDef(II, *this);
718        break;
719      case TargetOpcode::KILL:
720        if (isVerbose()) emitKill(II, *this);
721        break;
722      default:
723        if (!TM.hasMCUseLoc())
724          MCLineEntry::Make(&OutStreamer, getCurrentSection());
725
726        EmitInstruction(II);
727        break;
728      }
729
730      if (ShouldPrintDebugScopes) {
731        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
732        DD->endInstruction(II);
733      }
734    }
735  }
736
737  // If the last instruction was a prolog label, then we have a situation where
738  // we emitted a prolog but no function body. This results in the ending prolog
739  // label equaling the end of function label and an invalid "row" in the
740  // FDE. We need to emit a noop in this situation so that the FDE's rows are
741  // valid.
742  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
743
744  // If the function is empty and the object file uses .subsections_via_symbols,
745  // then we need to emit *something* to the function body to prevent the
746  // labels from collapsing together.  Just emit a noop.
747  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
748    MCInst Noop;
749    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
750    if (Noop.getOpcode()) {
751      OutStreamer.AddComment("avoids zero-length function");
752      OutStreamer.EmitInstruction(Noop);
753    } else  // Target not mc-ized yet.
754      OutStreamer.EmitRawText(StringRef("\tnop\n"));
755  }
756
757  const Function *F = MF->getFunction();
758  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
759    const BasicBlock *BB = i;
760    if (!BB->hasAddressTaken())
761      continue;
762    MCSymbol *Sym = GetBlockAddressSymbol(BB);
763    if (Sym->isDefined())
764      continue;
765    OutStreamer.AddComment("Address of block that was removed by CodeGen");
766    OutStreamer.EmitLabel(Sym);
767  }
768
769  // Emit target-specific gunk after the function body.
770  EmitFunctionBodyEnd();
771
772  // If the target wants a .size directive for the size of the function, emit
773  // it.
774  if (MAI->hasDotTypeDotSizeDirective()) {
775    // Create a symbol for the end of function, so we can get the size as
776    // difference between the function label and the temp label.
777    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
778    OutStreamer.EmitLabel(FnEndLabel);
779
780    const MCExpr *SizeExp =
781      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
782                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
783                                                      OutContext),
784                              OutContext);
785    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
786  }
787
788  // Emit post-function debug information.
789  if (DD) {
790    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
791    DD->endFunction(MF);
792  }
793  if (DE) {
794    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
795    DE->EndFunction();
796  }
797  MMI->EndFunction();
798
799  // Print out jump tables referenced by the function.
800  EmitJumpTableInfo();
801
802  OutStreamer.AddBlankLine();
803}
804
805/// EmitDwarfRegOp - Emit dwarf register operation.
806void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc,
807                                bool Indirect) const {
808  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
809  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
810
811  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
812       ++SR) {
813    Reg = TRI->getDwarfRegNum(*SR, false);
814    // FIXME: Get the bit range this register uses of the superregister
815    // so that we can produce a DW_OP_bit_piece
816  }
817
818  // FIXME: Handle cases like a super register being encoded as
819  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
820
821  // FIXME: We have no reasonable way of handling errors in here. The
822  // caller might be in the middle of an dwarf expression. We should
823  // probably assert that Reg >= 0 once debug info generation is more mature.
824
825  if (MLoc.isIndirect() || Indirect) {
826    if (Reg < 32) {
827      OutStreamer.AddComment(
828        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
829      EmitInt8(dwarf::DW_OP_breg0 + Reg);
830    } else {
831      OutStreamer.AddComment("DW_OP_bregx");
832      EmitInt8(dwarf::DW_OP_bregx);
833      OutStreamer.AddComment(Twine(Reg));
834      EmitULEB128(Reg);
835    }
836    EmitSLEB128(!MLoc.isIndirect() ? 0 : MLoc.getOffset());
837    if (MLoc.isIndirect() && Indirect)
838      EmitInt8(dwarf::DW_OP_deref);
839  } else {
840    if (Reg < 32) {
841      OutStreamer.AddComment(
842        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
843      EmitInt8(dwarf::DW_OP_reg0 + Reg);
844    } else {
845      OutStreamer.AddComment("DW_OP_regx");
846      EmitInt8(dwarf::DW_OP_regx);
847      OutStreamer.AddComment(Twine(Reg));
848      EmitULEB128(Reg);
849    }
850  }
851
852  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
853}
854
855bool AsmPrinter::doFinalization(Module &M) {
856  // Emit global variables.
857  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
858       I != E; ++I)
859    EmitGlobalVariable(I);
860
861  // Emit visibility info for declarations
862  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
863    const Function &F = *I;
864    if (!F.isDeclaration())
865      continue;
866    GlobalValue::VisibilityTypes V = F.getVisibility();
867    if (V == GlobalValue::DefaultVisibility)
868      continue;
869
870    MCSymbol *Name = Mang->getSymbol(&F);
871    EmitVisibility(Name, V, false);
872  }
873
874  // Emit module flags.
875  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
876  M.getModuleFlagsMetadata(ModuleFlags);
877  if (!ModuleFlags.empty())
878    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
879
880  // Finalize debug and EH information.
881  if (DE) {
882    {
883      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
884      DE->EndModule();
885    }
886    delete DE; DE = 0;
887  }
888  if (DD) {
889    {
890      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
891      DD->endModule();
892    }
893    delete DD; DD = 0;
894  }
895
896  // If the target wants to know about weak references, print them all.
897  if (MAI->getWeakRefDirective()) {
898    // FIXME: This is not lazy, it would be nice to only print weak references
899    // to stuff that is actually used.  Note that doing so would require targets
900    // to notice uses in operands (due to constant exprs etc).  This should
901    // happen with the MC stuff eventually.
902
903    // Print out module-level global variables here.
904    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
905         I != E; ++I) {
906      if (!I->hasExternalWeakLinkage()) continue;
907      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
908    }
909
910    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
911      if (!I->hasExternalWeakLinkage()) continue;
912      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
913    }
914  }
915
916  if (MAI->hasSetDirective()) {
917    OutStreamer.AddBlankLine();
918    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
919         I != E; ++I) {
920      MCSymbol *Name = Mang->getSymbol(I);
921
922      const GlobalValue *GV = I->getAliasedGlobal();
923      MCSymbol *Target = Mang->getSymbol(GV);
924
925      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
926        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
927      else if (I->hasWeakLinkage())
928        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
929      else
930        assert(I->hasLocalLinkage() && "Invalid alias linkage");
931
932      EmitVisibility(Name, I->getVisibility());
933
934      // Emit the directives as assignments aka .set:
935      OutStreamer.EmitAssignment(Name,
936                                 MCSymbolRefExpr::Create(Target, OutContext));
937    }
938  }
939
940  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
941  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
942  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
943    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
944      MP->finishAssembly(*this);
945
946  // If we don't have any trampolines, then we don't require stack memory
947  // to be executable. Some targets have a directive to declare this.
948  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
949  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
950    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
951      OutStreamer.SwitchSection(S);
952
953  // Allow the target to emit any magic that it wants at the end of the file,
954  // after everything else has gone out.
955  EmitEndOfAsmFile(M);
956
957  delete Mang; Mang = 0;
958  MMI = 0;
959
960  OutStreamer.Finish();
961  OutStreamer.reset();
962
963  return false;
964}
965
966void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
967  this->MF = &MF;
968  // Get the function symbol.
969  CurrentFnSym = Mang->getSymbol(MF.getFunction());
970  CurrentFnSymForSize = CurrentFnSym;
971
972  if (isVerbose())
973    LI = &getAnalysis<MachineLoopInfo>();
974}
975
976namespace {
977  // SectionCPs - Keep track the alignment, constpool entries per Section.
978  struct SectionCPs {
979    const MCSection *S;
980    unsigned Alignment;
981    SmallVector<unsigned, 4> CPEs;
982    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
983  };
984}
985
986/// EmitConstantPool - Print to the current output stream assembly
987/// representations of the constants in the constant pool MCP. This is
988/// used to print out constants which have been "spilled to memory" by
989/// the code generator.
990///
991void AsmPrinter::EmitConstantPool() {
992  const MachineConstantPool *MCP = MF->getConstantPool();
993  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
994  if (CP.empty()) return;
995
996  // Calculate sections for constant pool entries. We collect entries to go into
997  // the same section together to reduce amount of section switch statements.
998  SmallVector<SectionCPs, 4> CPSections;
999  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1000    const MachineConstantPoolEntry &CPE = CP[i];
1001    unsigned Align = CPE.getAlignment();
1002
1003    SectionKind Kind;
1004    switch (CPE.getRelocationInfo()) {
1005    default: llvm_unreachable("Unknown section kind");
1006    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1007    case 1:
1008      Kind = SectionKind::getReadOnlyWithRelLocal();
1009      break;
1010    case 0:
1011    switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
1012    case 4:  Kind = SectionKind::getMergeableConst4(); break;
1013    case 8:  Kind = SectionKind::getMergeableConst8(); break;
1014    case 16: Kind = SectionKind::getMergeableConst16();break;
1015    default: Kind = SectionKind::getMergeableConst(); break;
1016    }
1017    }
1018
1019    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1020
1021    // The number of sections are small, just do a linear search from the
1022    // last section to the first.
1023    bool Found = false;
1024    unsigned SecIdx = CPSections.size();
1025    while (SecIdx != 0) {
1026      if (CPSections[--SecIdx].S == S) {
1027        Found = true;
1028        break;
1029      }
1030    }
1031    if (!Found) {
1032      SecIdx = CPSections.size();
1033      CPSections.push_back(SectionCPs(S, Align));
1034    }
1035
1036    if (Align > CPSections[SecIdx].Alignment)
1037      CPSections[SecIdx].Alignment = Align;
1038    CPSections[SecIdx].CPEs.push_back(i);
1039  }
1040
1041  // Now print stuff into the calculated sections.
1042  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1043    OutStreamer.SwitchSection(CPSections[i].S);
1044    EmitAlignment(Log2_32(CPSections[i].Alignment));
1045
1046    unsigned Offset = 0;
1047    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1048      unsigned CPI = CPSections[i].CPEs[j];
1049      MachineConstantPoolEntry CPE = CP[CPI];
1050
1051      // Emit inter-object padding for alignment.
1052      unsigned AlignMask = CPE.getAlignment() - 1;
1053      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1054      OutStreamer.EmitZeros(NewOffset - Offset);
1055
1056      Type *Ty = CPE.getType();
1057      Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1058      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1059
1060      if (CPE.isMachineConstantPoolEntry())
1061        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1062      else
1063        EmitGlobalConstant(CPE.Val.ConstVal);
1064    }
1065  }
1066}
1067
1068/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1069/// by the current function to the current output stream.
1070///
1071void AsmPrinter::EmitJumpTableInfo() {
1072  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1073  if (MJTI == 0) return;
1074  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1075  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1076  if (JT.empty()) return;
1077
1078  // Pick the directive to use to print the jump table entries, and switch to
1079  // the appropriate section.
1080  const Function *F = MF->getFunction();
1081  bool JTInDiffSection = false;
1082  if (// In PIC mode, we need to emit the jump table to the same section as the
1083      // function body itself, otherwise the label differences won't make sense.
1084      // FIXME: Need a better predicate for this: what about custom entries?
1085      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1086      // We should also do if the section name is NULL or function is declared
1087      // in discardable section
1088      // FIXME: this isn't the right predicate, should be based on the MCSection
1089      // for the function.
1090      F->isWeakForLinker()) {
1091    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1092  } else {
1093    // Otherwise, drop it in the readonly section.
1094    const MCSection *ReadOnlySection =
1095      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1096    OutStreamer.SwitchSection(ReadOnlySection);
1097    JTInDiffSection = true;
1098  }
1099
1100  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1101
1102  // Jump tables in code sections are marked with a data_region directive
1103  // where that's supported.
1104  if (!JTInDiffSection)
1105    OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1106
1107  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1108    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1109
1110    // If this jump table was deleted, ignore it.
1111    if (JTBBs.empty()) continue;
1112
1113    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1114    // .set directive for each unique entry.  This reduces the number of
1115    // relocations the assembler will generate for the jump table.
1116    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1117        MAI->hasSetDirective()) {
1118      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1119      const TargetLowering *TLI = TM.getTargetLowering();
1120      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1121      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1122        const MachineBasicBlock *MBB = JTBBs[ii];
1123        if (!EmittedSets.insert(MBB)) continue;
1124
1125        // .set LJTSet, LBB32-base
1126        const MCExpr *LHS =
1127          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1128        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1129                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1130      }
1131    }
1132
1133    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1134    // before each jump table.  The first label is never referenced, but tells
1135    // the assembler and linker the extents of the jump table object.  The
1136    // second label is actually referenced by the code.
1137    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1138      // FIXME: This doesn't have to have any specific name, just any randomly
1139      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1140      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1141
1142    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1143
1144    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1145      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1146  }
1147  if (!JTInDiffSection)
1148    OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1149}
1150
1151/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1152/// current stream.
1153void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1154                                    const MachineBasicBlock *MBB,
1155                                    unsigned UID) const {
1156  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1157  const MCExpr *Value = 0;
1158  switch (MJTI->getEntryKind()) {
1159  case MachineJumpTableInfo::EK_Inline:
1160    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1161  case MachineJumpTableInfo::EK_Custom32:
1162    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1163                                                              OutContext);
1164    break;
1165  case MachineJumpTableInfo::EK_BlockAddress:
1166    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1167    //     .word LBB123
1168    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1169    break;
1170  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1171    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1172    // with a relocation as gp-relative, e.g.:
1173    //     .gprel32 LBB123
1174    MCSymbol *MBBSym = MBB->getSymbol();
1175    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1176    return;
1177  }
1178
1179  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1180    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1181    // with a relocation as gp-relative, e.g.:
1182    //     .gpdword LBB123
1183    MCSymbol *MBBSym = MBB->getSymbol();
1184    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1185    return;
1186  }
1187
1188  case MachineJumpTableInfo::EK_LabelDifference32: {
1189    // EK_LabelDifference32 - Each entry is the address of the block minus
1190    // the address of the jump table.  This is used for PIC jump tables where
1191    // gprel32 is not supported.  e.g.:
1192    //      .word LBB123 - LJTI1_2
1193    // If the .set directive is supported, this is emitted as:
1194    //      .set L4_5_set_123, LBB123 - LJTI1_2
1195    //      .word L4_5_set_123
1196
1197    // If we have emitted set directives for the jump table entries, print
1198    // them rather than the entries themselves.  If we're emitting PIC, then
1199    // emit the table entries as differences between two text section labels.
1200    if (MAI->hasSetDirective()) {
1201      // If we used .set, reference the .set's symbol.
1202      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1203                                      OutContext);
1204      break;
1205    }
1206    // Otherwise, use the difference as the jump table entry.
1207    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1208    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1209    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1210    break;
1211  }
1212  }
1213
1214  assert(Value && "Unknown entry kind!");
1215
1216  unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1217  OutStreamer.EmitValue(Value, EntrySize);
1218}
1219
1220
1221/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1222/// special global used by LLVM.  If so, emit it and return true, otherwise
1223/// do nothing and return false.
1224bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1225  if (GV->getName() == "llvm.used") {
1226    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1227      EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1228    return true;
1229  }
1230
1231  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1232  if (GV->getSection() == "llvm.metadata" ||
1233      GV->hasAvailableExternallyLinkage())
1234    return true;
1235
1236  if (!GV->hasAppendingLinkage()) return false;
1237
1238  assert(GV->hasInitializer() && "Not a special LLVM global!");
1239
1240  if (GV->getName() == "llvm.global_ctors") {
1241    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1242
1243    if (TM.getRelocationModel() == Reloc::Static &&
1244        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1245      StringRef Sym(".constructors_used");
1246      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1247                                      MCSA_Reference);
1248    }
1249    return true;
1250  }
1251
1252  if (GV->getName() == "llvm.global_dtors") {
1253    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1254
1255    if (TM.getRelocationModel() == Reloc::Static &&
1256        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1257      StringRef Sym(".destructors_used");
1258      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1259                                      MCSA_Reference);
1260    }
1261    return true;
1262  }
1263
1264  return false;
1265}
1266
1267/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1268/// global in the specified llvm.used list for which emitUsedDirectiveFor
1269/// is true, as being used with this directive.
1270void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1271  // Should be an array of 'i8*'.
1272  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1273    const GlobalValue *GV =
1274      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1275    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1276      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1277  }
1278}
1279
1280/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1281/// priority.
1282void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1283  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1284  // init priority.
1285  if (!isa<ConstantArray>(List)) return;
1286
1287  // Sanity check the structors list.
1288  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1289  if (!InitList) return; // Not an array!
1290  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1291  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1292  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1293      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1294
1295  // Gather the structors in a form that's convenient for sorting by priority.
1296  typedef std::pair<unsigned, Constant *> Structor;
1297  SmallVector<Structor, 8> Structors;
1298  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1299    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1300    if (!CS) continue; // Malformed.
1301    if (CS->getOperand(1)->isNullValue())
1302      break;  // Found a null terminator, skip the rest.
1303    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1304    if (!Priority) continue; // Malformed.
1305    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1306                                       CS->getOperand(1)));
1307  }
1308
1309  // Emit the function pointers in the target-specific order
1310  const DataLayout *TD = TM.getDataLayout();
1311  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1312  std::stable_sort(Structors.begin(), Structors.end(), less_first());
1313  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1314    const MCSection *OutputSection =
1315      (isCtor ?
1316       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1317       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1318    OutStreamer.SwitchSection(OutputSection);
1319    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1320      EmitAlignment(Align);
1321    EmitXXStructor(Structors[i].second);
1322  }
1323}
1324
1325//===--------------------------------------------------------------------===//
1326// Emission and print routines
1327//
1328
1329/// EmitInt8 - Emit a byte directive and value.
1330///
1331void AsmPrinter::EmitInt8(int Value) const {
1332  OutStreamer.EmitIntValue(Value, 1);
1333}
1334
1335/// EmitInt16 - Emit a short directive and value.
1336///
1337void AsmPrinter::EmitInt16(int Value) const {
1338  OutStreamer.EmitIntValue(Value, 2);
1339}
1340
1341/// EmitInt32 - Emit a long directive and value.
1342///
1343void AsmPrinter::EmitInt32(int Value) const {
1344  OutStreamer.EmitIntValue(Value, 4);
1345}
1346
1347/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1348/// in bytes of the directive is specified by Size and Hi/Lo specify the
1349/// labels.  This implicitly uses .set if it is available.
1350void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1351                                     unsigned Size) const {
1352  // Get the Hi-Lo expression.
1353  const MCExpr *Diff =
1354    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1355                            MCSymbolRefExpr::Create(Lo, OutContext),
1356                            OutContext);
1357
1358  if (!MAI->hasSetDirective()) {
1359    OutStreamer.EmitValue(Diff, Size);
1360    return;
1361  }
1362
1363  // Otherwise, emit with .set (aka assignment).
1364  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1365  OutStreamer.EmitAssignment(SetLabel, Diff);
1366  OutStreamer.EmitSymbolValue(SetLabel, Size);
1367}
1368
1369/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1370/// where the size in bytes of the directive is specified by Size and Hi/Lo
1371/// specify the labels.  This implicitly uses .set if it is available.
1372void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1373                                           const MCSymbol *Lo, unsigned Size)
1374  const {
1375
1376  // Emit Hi+Offset - Lo
1377  // Get the Hi+Offset expression.
1378  const MCExpr *Plus =
1379    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1380                            MCConstantExpr::Create(Offset, OutContext),
1381                            OutContext);
1382
1383  // Get the Hi+Offset-Lo expression.
1384  const MCExpr *Diff =
1385    MCBinaryExpr::CreateSub(Plus,
1386                            MCSymbolRefExpr::Create(Lo, OutContext),
1387                            OutContext);
1388
1389  if (!MAI->hasSetDirective())
1390    OutStreamer.EmitValue(Diff, 4);
1391  else {
1392    // Otherwise, emit with .set (aka assignment).
1393    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1394    OutStreamer.EmitAssignment(SetLabel, Diff);
1395    OutStreamer.EmitSymbolValue(SetLabel, 4);
1396  }
1397}
1398
1399/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1400/// where the size in bytes of the directive is specified by Size and Label
1401/// specifies the label.  This implicitly uses .set if it is available.
1402void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1403                                      unsigned Size, bool IsSectionRelative)
1404  const {
1405  if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1406    OutStreamer.EmitCOFFSecRel32(Label);
1407    return;
1408  }
1409
1410  // Emit Label+Offset (or just Label if Offset is zero)
1411  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1412  if (Offset)
1413    Expr = MCBinaryExpr::CreateAdd(Expr,
1414                                   MCConstantExpr::Create(Offset, OutContext),
1415                                   OutContext);
1416
1417  OutStreamer.EmitValue(Expr, Size);
1418}
1419
1420
1421//===----------------------------------------------------------------------===//
1422
1423// EmitAlignment - Emit an alignment directive to the specified power of
1424// two boundary.  For example, if you pass in 3 here, you will get an 8
1425// byte alignment.  If a global value is specified, and if that global has
1426// an explicit alignment requested, it will override the alignment request
1427// if required for correctness.
1428//
1429void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1430  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1431
1432  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1433
1434  if (getCurrentSection()->getKind().isText())
1435    OutStreamer.EmitCodeAlignment(1 << NumBits);
1436  else
1437    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1438}
1439
1440//===----------------------------------------------------------------------===//
1441// Constant emission.
1442//===----------------------------------------------------------------------===//
1443
1444/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1445///
1446static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1447  MCContext &Ctx = AP.OutContext;
1448
1449  if (CV->isNullValue() || isa<UndefValue>(CV))
1450    return MCConstantExpr::Create(0, Ctx);
1451
1452  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1453    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1454
1455  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1456    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1457
1458  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1459    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1460
1461  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1462  if (CE == 0) {
1463    llvm_unreachable("Unknown constant value to lower!");
1464  }
1465
1466  switch (CE->getOpcode()) {
1467  default:
1468    // If the code isn't optimized, there may be outstanding folding
1469    // opportunities. Attempt to fold the expression using DataLayout as a
1470    // last resort before giving up.
1471    if (Constant *C =
1472          ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1473      if (C != CE)
1474        return lowerConstant(C, AP);
1475
1476    // Otherwise report the problem to the user.
1477    {
1478      std::string S;
1479      raw_string_ostream OS(S);
1480      OS << "Unsupported expression in static initializer: ";
1481      WriteAsOperand(OS, CE, /*PrintType=*/false,
1482                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1483      report_fatal_error(OS.str());
1484    }
1485  case Instruction::GetElementPtr: {
1486    const DataLayout &TD = *AP.TM.getDataLayout();
1487    // Generate a symbolic expression for the byte address
1488    APInt OffsetAI(TD.getPointerSizeInBits(), 0);
1489    cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
1490
1491    const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1492    if (!OffsetAI)
1493      return Base;
1494
1495    int64_t Offset = OffsetAI.getSExtValue();
1496    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1497                                   Ctx);
1498  }
1499
1500  case Instruction::Trunc:
1501    // We emit the value and depend on the assembler to truncate the generated
1502    // expression properly.  This is important for differences between
1503    // blockaddress labels.  Since the two labels are in the same function, it
1504    // is reasonable to treat their delta as a 32-bit value.
1505    // FALL THROUGH.
1506  case Instruction::BitCast:
1507    return lowerConstant(CE->getOperand(0), AP);
1508
1509  case Instruction::IntToPtr: {
1510    const DataLayout &TD = *AP.TM.getDataLayout();
1511    // Handle casts to pointers by changing them into casts to the appropriate
1512    // integer type.  This promotes constant folding and simplifies this code.
1513    Constant *Op = CE->getOperand(0);
1514    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1515                                      false/*ZExt*/);
1516    return lowerConstant(Op, AP);
1517  }
1518
1519  case Instruction::PtrToInt: {
1520    const DataLayout &TD = *AP.TM.getDataLayout();
1521    // Support only foldable casts to/from pointers that can be eliminated by
1522    // changing the pointer to the appropriately sized integer type.
1523    Constant *Op = CE->getOperand(0);
1524    Type *Ty = CE->getType();
1525
1526    const MCExpr *OpExpr = lowerConstant(Op, AP);
1527
1528    // We can emit the pointer value into this slot if the slot is an
1529    // integer slot equal to the size of the pointer.
1530    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1531      return OpExpr;
1532
1533    // Otherwise the pointer is smaller than the resultant integer, mask off
1534    // the high bits so we are sure to get a proper truncation if the input is
1535    // a constant expr.
1536    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1537    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1538    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1539  }
1540
1541  // The MC library also has a right-shift operator, but it isn't consistently
1542  // signed or unsigned between different targets.
1543  case Instruction::Add:
1544  case Instruction::Sub:
1545  case Instruction::Mul:
1546  case Instruction::SDiv:
1547  case Instruction::SRem:
1548  case Instruction::Shl:
1549  case Instruction::And:
1550  case Instruction::Or:
1551  case Instruction::Xor: {
1552    const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1553    const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1554    switch (CE->getOpcode()) {
1555    default: llvm_unreachable("Unknown binary operator constant cast expr");
1556    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1557    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1558    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1559    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1560    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1561    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1562    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1563    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1564    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1565    }
1566  }
1567  }
1568}
1569
1570static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP);
1571
1572/// isRepeatedByteSequence - Determine whether the given value is
1573/// composed of a repeated sequence of identical bytes and return the
1574/// byte value.  If it is not a repeated sequence, return -1.
1575static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1576  StringRef Data = V->getRawDataValues();
1577  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1578  char C = Data[0];
1579  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1580    if (Data[i] != C) return -1;
1581  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1582}
1583
1584
1585/// isRepeatedByteSequence - Determine whether the given value is
1586/// composed of a repeated sequence of identical bytes and return the
1587/// byte value.  If it is not a repeated sequence, return -1.
1588static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1589
1590  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1591    if (CI->getBitWidth() > 64) return -1;
1592
1593    uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1594    uint64_t Value = CI->getZExtValue();
1595
1596    // Make sure the constant is at least 8 bits long and has a power
1597    // of 2 bit width.  This guarantees the constant bit width is
1598    // always a multiple of 8 bits, avoiding issues with padding out
1599    // to Size and other such corner cases.
1600    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1601
1602    uint8_t Byte = static_cast<uint8_t>(Value);
1603
1604    for (unsigned i = 1; i < Size; ++i) {
1605      Value >>= 8;
1606      if (static_cast<uint8_t>(Value) != Byte) return -1;
1607    }
1608    return Byte;
1609  }
1610  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1611    // Make sure all array elements are sequences of the same repeated
1612    // byte.
1613    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1614    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1615    if (Byte == -1) return -1;
1616
1617    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1618      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1619      if (ThisByte == -1) return -1;
1620      if (Byte != ThisByte) return -1;
1621    }
1622    return Byte;
1623  }
1624
1625  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1626    return isRepeatedByteSequence(CDS);
1627
1628  return -1;
1629}
1630
1631static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1632                                             AsmPrinter &AP){
1633
1634  // See if we can aggregate this into a .fill, if so, emit it as such.
1635  int Value = isRepeatedByteSequence(CDS, AP.TM);
1636  if (Value != -1) {
1637    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1638    // Don't emit a 1-byte object as a .fill.
1639    if (Bytes > 1)
1640      return AP.OutStreamer.EmitFill(Bytes, Value);
1641  }
1642
1643  // If this can be emitted with .ascii/.asciz, emit it as such.
1644  if (CDS->isString())
1645    return AP.OutStreamer.EmitBytes(CDS->getAsString());
1646
1647  // Otherwise, emit the values in successive locations.
1648  unsigned ElementByteSize = CDS->getElementByteSize();
1649  if (isa<IntegerType>(CDS->getElementType())) {
1650    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1651      if (AP.isVerbose())
1652        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1653                                                CDS->getElementAsInteger(i));
1654      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1655                                  ElementByteSize);
1656    }
1657  } else if (ElementByteSize == 4) {
1658    // FP Constants are printed as integer constants to avoid losing
1659    // precision.
1660    assert(CDS->getElementType()->isFloatTy());
1661    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1662      union {
1663        float F;
1664        uint32_t I;
1665      };
1666
1667      F = CDS->getElementAsFloat(i);
1668      if (AP.isVerbose())
1669        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1670      AP.OutStreamer.EmitIntValue(I, 4);
1671    }
1672  } else {
1673    assert(CDS->getElementType()->isDoubleTy());
1674    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1675      union {
1676        double F;
1677        uint64_t I;
1678      };
1679
1680      F = CDS->getElementAsDouble(i);
1681      if (AP.isVerbose())
1682        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1683      AP.OutStreamer.EmitIntValue(I, 8);
1684    }
1685  }
1686
1687  const DataLayout &TD = *AP.TM.getDataLayout();
1688  unsigned Size = TD.getTypeAllocSize(CDS->getType());
1689  unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1690                        CDS->getNumElements();
1691  if (unsigned Padding = Size - EmittedSize)
1692    AP.OutStreamer.EmitZeros(Padding);
1693
1694}
1695
1696static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
1697  // See if we can aggregate some values.  Make sure it can be
1698  // represented as a series of bytes of the constant value.
1699  int Value = isRepeatedByteSequence(CA, AP.TM);
1700
1701  if (Value != -1) {
1702    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1703    AP.OutStreamer.EmitFill(Bytes, Value);
1704  }
1705  else {
1706    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1707      emitGlobalConstantImpl(CA->getOperand(i), AP);
1708  }
1709}
1710
1711static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
1712  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1713    emitGlobalConstantImpl(CV->getOperand(i), AP);
1714
1715  const DataLayout &TD = *AP.TM.getDataLayout();
1716  unsigned Size = TD.getTypeAllocSize(CV->getType());
1717  unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1718                         CV->getType()->getNumElements();
1719  if (unsigned Padding = Size - EmittedSize)
1720    AP.OutStreamer.EmitZeros(Padding);
1721}
1722
1723static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
1724  // Print the fields in successive locations. Pad to align if needed!
1725  const DataLayout *TD = AP.TM.getDataLayout();
1726  unsigned Size = TD->getTypeAllocSize(CS->getType());
1727  const StructLayout *Layout = TD->getStructLayout(CS->getType());
1728  uint64_t SizeSoFar = 0;
1729  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1730    const Constant *Field = CS->getOperand(i);
1731
1732    // Check if padding is needed and insert one or more 0s.
1733    uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1734    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1735                        - Layout->getElementOffset(i)) - FieldSize;
1736    SizeSoFar += FieldSize + PadSize;
1737
1738    // Now print the actual field value.
1739    emitGlobalConstantImpl(Field, AP);
1740
1741    // Insert padding - this may include padding to increase the size of the
1742    // current field up to the ABI size (if the struct is not packed) as well
1743    // as padding to ensure that the next field starts at the right offset.
1744    AP.OutStreamer.EmitZeros(PadSize);
1745  }
1746  assert(SizeSoFar == Layout->getSizeInBytes() &&
1747         "Layout of constant struct may be incorrect!");
1748}
1749
1750static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
1751  APInt API = CFP->getValueAPF().bitcastToAPInt();
1752
1753  // First print a comment with what we think the original floating-point value
1754  // should have been.
1755  if (AP.isVerbose()) {
1756    SmallString<8> StrVal;
1757    CFP->getValueAPF().toString(StrVal);
1758
1759    CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1760    AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1761  }
1762
1763  // Now iterate through the APInt chunks, emitting them in endian-correct
1764  // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1765  // floats).
1766  unsigned NumBytes = API.getBitWidth() / 8;
1767  unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1768  const uint64_t *p = API.getRawData();
1769
1770  // PPC's long double has odd notions of endianness compared to how LLVM
1771  // handles it: p[0] goes first for *big* endian on PPC.
1772  if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
1773    int Chunk = API.getNumWords() - 1;
1774
1775    if (TrailingBytes)
1776      AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
1777
1778    for (; Chunk >= 0; --Chunk)
1779      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1780  } else {
1781    unsigned Chunk;
1782    for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
1783      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1784
1785    if (TrailingBytes)
1786      AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
1787  }
1788
1789  // Emit the tail padding for the long double.
1790  const DataLayout &TD = *AP.TM.getDataLayout();
1791  AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1792                           TD.getTypeStoreSize(CFP->getType()));
1793}
1794
1795static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
1796  const DataLayout *TD = AP.TM.getDataLayout();
1797  unsigned BitWidth = CI->getBitWidth();
1798
1799  // Copy the value as we may massage the layout for constants whose bit width
1800  // is not a multiple of 64-bits.
1801  APInt Realigned(CI->getValue());
1802  uint64_t ExtraBits = 0;
1803  unsigned ExtraBitsSize = BitWidth & 63;
1804
1805  if (ExtraBitsSize) {
1806    // The bit width of the data is not a multiple of 64-bits.
1807    // The extra bits are expected to be at the end of the chunk of the memory.
1808    // Little endian:
1809    // * Nothing to be done, just record the extra bits to emit.
1810    // Big endian:
1811    // * Record the extra bits to emit.
1812    // * Realign the raw data to emit the chunks of 64-bits.
1813    if (TD->isBigEndian()) {
1814      // Basically the structure of the raw data is a chunk of 64-bits cells:
1815      //    0        1         BitWidth / 64
1816      // [chunk1][chunk2] ... [chunkN].
1817      // The most significant chunk is chunkN and it should be emitted first.
1818      // However, due to the alignment issue chunkN contains useless bits.
1819      // Realign the chunks so that they contain only useless information:
1820      // ExtraBits     0       1       (BitWidth / 64) - 1
1821      //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
1822      ExtraBits = Realigned.getRawData()[0] &
1823        (((uint64_t)-1) >> (64 - ExtraBitsSize));
1824      Realigned = Realigned.lshr(ExtraBitsSize);
1825    } else
1826      ExtraBits = Realigned.getRawData()[BitWidth / 64];
1827  }
1828
1829  // We don't expect assemblers to support integer data directives
1830  // for more than 64 bits, so we emit the data in at most 64-bit
1831  // quantities at a time.
1832  const uint64_t *RawData = Realigned.getRawData();
1833  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1834    uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1835    AP.OutStreamer.EmitIntValue(Val, 8);
1836  }
1837
1838  if (ExtraBitsSize) {
1839    // Emit the extra bits after the 64-bits chunks.
1840
1841    // Emit a directive that fills the expected size.
1842    uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
1843    Size -= (BitWidth / 64) * 8;
1844    assert(Size && Size * 8 >= ExtraBitsSize &&
1845           (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
1846           == ExtraBits && "Directive too small for extra bits.");
1847    AP.OutStreamer.EmitIntValue(ExtraBits, Size);
1848  }
1849}
1850
1851static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
1852  const DataLayout *TD = AP.TM.getDataLayout();
1853  uint64_t Size = TD->getTypeAllocSize(CV->getType());
1854  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1855    return AP.OutStreamer.EmitZeros(Size);
1856
1857  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1858    switch (Size) {
1859    case 1:
1860    case 2:
1861    case 4:
1862    case 8:
1863      if (AP.isVerbose())
1864        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1865                                                CI->getZExtValue());
1866      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
1867      return;
1868    default:
1869      emitGlobalConstantLargeInt(CI, AP);
1870      return;
1871    }
1872  }
1873
1874  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1875    return emitGlobalConstantFP(CFP, AP);
1876
1877  if (isa<ConstantPointerNull>(CV)) {
1878    AP.OutStreamer.EmitIntValue(0, Size);
1879    return;
1880  }
1881
1882  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1883    return emitGlobalConstantDataSequential(CDS, AP);
1884
1885  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1886    return emitGlobalConstantArray(CVA, AP);
1887
1888  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1889    return emitGlobalConstantStruct(CVS, AP);
1890
1891  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1892    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1893    // vectors).
1894    if (CE->getOpcode() == Instruction::BitCast)
1895      return emitGlobalConstantImpl(CE->getOperand(0), AP);
1896
1897    if (Size > 8) {
1898      // If the constant expression's size is greater than 64-bits, then we have
1899      // to emit the value in chunks. Try to constant fold the value and emit it
1900      // that way.
1901      Constant *New = ConstantFoldConstantExpression(CE, TD);
1902      if (New && New != CE)
1903        return emitGlobalConstantImpl(New, AP);
1904    }
1905  }
1906
1907  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1908    return emitGlobalConstantVector(V, AP);
1909
1910  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1911  // thread the streamer with EmitValue.
1912  AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size);
1913}
1914
1915/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1916void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
1917  uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
1918  if (Size)
1919    emitGlobalConstantImpl(CV, *this);
1920  else if (MAI->hasSubsectionsViaSymbols()) {
1921    // If the global has zero size, emit a single byte so that two labels don't
1922    // look like they are at the same location.
1923    OutStreamer.EmitIntValue(0, 1);
1924  }
1925}
1926
1927void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1928  // Target doesn't support this yet!
1929  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1930}
1931
1932void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1933  if (Offset > 0)
1934    OS << '+' << Offset;
1935  else if (Offset < 0)
1936    OS << Offset;
1937}
1938
1939//===----------------------------------------------------------------------===//
1940// Symbol Lowering Routines.
1941//===----------------------------------------------------------------------===//
1942
1943/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1944/// temporary label with the specified stem and unique ID.
1945MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1946  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1947                                      Name + Twine(ID));
1948}
1949
1950/// GetTempSymbol - Return an assembler temporary label with the specified
1951/// stem.
1952MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1953  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1954                                      Name);
1955}
1956
1957
1958MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1959  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1960}
1961
1962MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1963  return MMI->getAddrLabelSymbol(BB);
1964}
1965
1966/// GetCPISymbol - Return the symbol for the specified constant pool entry.
1967MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1968  return OutContext.GetOrCreateSymbol
1969    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1970     + "_" + Twine(CPID));
1971}
1972
1973/// GetJTISymbol - Return the symbol for the specified jump table entry.
1974MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1975  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1976}
1977
1978/// GetJTSetSymbol - Return the symbol for the specified jump table .set
1979/// FIXME: privatize to AsmPrinter.
1980MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1981  return OutContext.GetOrCreateSymbol
1982  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1983   Twine(UID) + "_set_" + Twine(MBBID));
1984}
1985
1986/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1987/// global value name as its base, with the specified suffix, and where the
1988/// symbol is forced to have private linkage if ForcePrivate is true.
1989MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1990                                                   StringRef Suffix,
1991                                                   bool ForcePrivate) const {
1992  SmallString<60> NameStr;
1993  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1994  NameStr.append(Suffix.begin(), Suffix.end());
1995  return OutContext.GetOrCreateSymbol(NameStr.str());
1996}
1997
1998/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1999/// ExternalSymbol.
2000MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2001  SmallString<60> NameStr;
2002  Mang->getNameWithPrefix(NameStr, Sym);
2003  return OutContext.GetOrCreateSymbol(NameStr.str());
2004}
2005
2006
2007
2008/// PrintParentLoopComment - Print comments about parent loops of this one.
2009static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2010                                   unsigned FunctionNumber) {
2011  if (Loop == 0) return;
2012  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2013  OS.indent(Loop->getLoopDepth()*2)
2014    << "Parent Loop BB" << FunctionNumber << "_"
2015    << Loop->getHeader()->getNumber()
2016    << " Depth=" << Loop->getLoopDepth() << '\n';
2017}
2018
2019
2020/// PrintChildLoopComment - Print comments about child loops within
2021/// the loop for this basic block, with nesting.
2022static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2023                                  unsigned FunctionNumber) {
2024  // Add child loop information
2025  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2026    OS.indent((*CL)->getLoopDepth()*2)
2027      << "Child Loop BB" << FunctionNumber << "_"
2028      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2029      << '\n';
2030    PrintChildLoopComment(OS, *CL, FunctionNumber);
2031  }
2032}
2033
2034/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2035static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2036                                       const MachineLoopInfo *LI,
2037                                       const AsmPrinter &AP) {
2038  // Add loop depth information
2039  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2040  if (Loop == 0) return;
2041
2042  MachineBasicBlock *Header = Loop->getHeader();
2043  assert(Header && "No header for loop");
2044
2045  // If this block is not a loop header, just print out what is the loop header
2046  // and return.
2047  if (Header != &MBB) {
2048    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2049                              Twine(AP.getFunctionNumber())+"_" +
2050                              Twine(Loop->getHeader()->getNumber())+
2051                              " Depth="+Twine(Loop->getLoopDepth()));
2052    return;
2053  }
2054
2055  // Otherwise, it is a loop header.  Print out information about child and
2056  // parent loops.
2057  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2058
2059  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2060
2061  OS << "=>";
2062  OS.indent(Loop->getLoopDepth()*2-2);
2063
2064  OS << "This ";
2065  if (Loop->empty())
2066    OS << "Inner ";
2067  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2068
2069  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2070}
2071
2072
2073/// EmitBasicBlockStart - This method prints the label for the specified
2074/// MachineBasicBlock, an alignment (if present) and a comment describing
2075/// it if appropriate.
2076void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2077  // Emit an alignment directive for this block, if needed.
2078  if (unsigned Align = MBB->getAlignment())
2079    EmitAlignment(Align);
2080
2081  // If the block has its address taken, emit any labels that were used to
2082  // reference the block.  It is possible that there is more than one label
2083  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2084  // the references were generated.
2085  if (MBB->hasAddressTaken()) {
2086    const BasicBlock *BB = MBB->getBasicBlock();
2087    if (isVerbose())
2088      OutStreamer.AddComment("Block address taken");
2089
2090    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2091
2092    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2093      OutStreamer.EmitLabel(Syms[i]);
2094  }
2095
2096  // Print some verbose block comments.
2097  if (isVerbose()) {
2098    if (const BasicBlock *BB = MBB->getBasicBlock())
2099      if (BB->hasName())
2100        OutStreamer.AddComment("%" + BB->getName());
2101    emitBasicBlockLoopComments(*MBB, LI, *this);
2102  }
2103
2104  // Print the main label for the block.
2105  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2106    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2107      // NOTE: Want this comment at start of line, don't emit with AddComment.
2108      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2109                              Twine(MBB->getNumber()) + ":");
2110    }
2111  } else {
2112    OutStreamer.EmitLabel(MBB->getSymbol());
2113  }
2114}
2115
2116void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2117                                bool IsDefinition) const {
2118  MCSymbolAttr Attr = MCSA_Invalid;
2119
2120  switch (Visibility) {
2121  default: break;
2122  case GlobalValue::HiddenVisibility:
2123    if (IsDefinition)
2124      Attr = MAI->getHiddenVisibilityAttr();
2125    else
2126      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2127    break;
2128  case GlobalValue::ProtectedVisibility:
2129    Attr = MAI->getProtectedVisibilityAttr();
2130    break;
2131  }
2132
2133  if (Attr != MCSA_Invalid)
2134    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2135}
2136
2137/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2138/// exactly one predecessor and the control transfer mechanism between
2139/// the predecessor and this block is a fall-through.
2140bool AsmPrinter::
2141isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2142  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2143  // then nothing falls through to it.
2144  if (MBB->isLandingPad() || MBB->pred_empty())
2145    return false;
2146
2147  // If there isn't exactly one predecessor, it can't be a fall through.
2148  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2149  ++PI2;
2150  if (PI2 != MBB->pred_end())
2151    return false;
2152
2153  // The predecessor has to be immediately before this block.
2154  MachineBasicBlock *Pred = *PI;
2155
2156  if (!Pred->isLayoutSuccessor(MBB))
2157    return false;
2158
2159  // If the block is completely empty, then it definitely does fall through.
2160  if (Pred->empty())
2161    return true;
2162
2163  // Check the terminators in the previous blocks
2164  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2165         IE = Pred->end(); II != IE; ++II) {
2166    MachineInstr &MI = *II;
2167
2168    // If it is not a simple branch, we are in a table somewhere.
2169    if (!MI.isBranch() || MI.isIndirectBranch())
2170      return false;
2171
2172    // If we are the operands of one of the branches, this is not
2173    // a fall through.
2174    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2175           OE = MI.operands_end(); OI != OE; ++OI) {
2176      const MachineOperand& OP = *OI;
2177      if (OP.isJTI())
2178        return false;
2179      if (OP.isMBB() && OP.getMBB() == MBB)
2180        return false;
2181    }
2182  }
2183
2184  return true;
2185}
2186
2187
2188
2189GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2190  if (!S->usesMetadata())
2191    return 0;
2192
2193  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2194  gcp_map_type::iterator GCPI = GCMap.find(S);
2195  if (GCPI != GCMap.end())
2196    return GCPI->second;
2197
2198  const char *Name = S->getName().c_str();
2199
2200  for (GCMetadataPrinterRegistry::iterator
2201         I = GCMetadataPrinterRegistry::begin(),
2202         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2203    if (strcmp(Name, I->getName()) == 0) {
2204      GCMetadataPrinter *GMP = I->instantiate();
2205      GMP->S = S;
2206      GCMap.insert(std::make_pair(S, GMP));
2207      return GMP;
2208    }
2209
2210  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2211}
2212