AsmPrinter.cpp revision 7d16e85bfc2c6423c81ce87a177bf3b1b1012a04
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/DwarfWriter.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Mangler.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetAsmInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/ADT/StringExtras.h"
36#include <cerrno>
37using namespace llvm;
38
39static cl::opt<cl::boolOrDefault>
40AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
41           cl::init(cl::BOU_UNSET));
42
43char AsmPrinter::ID = 0;
44AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
45                       const TargetAsmInfo *T, bool F, bool VDef)
46  : MachineFunctionPass(&ID), FunctionNumber(0), Fast(F), O(o),
47    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
48    IsInTextSection(false)
49{
50  switch (AsmVerbose) {
51  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
52  case cl::BOU_TRUE:  VerboseAsm = true;  break;
53  case cl::BOU_FALSE: VerboseAsm = false; break;
54  }
55}
56
57AsmPrinter::~AsmPrinter() {
58  for (gcp_iterator I = GCMetadataPrinters.begin(),
59                    E = GCMetadataPrinters.end(); I != E; ++I)
60    delete I->second;
61}
62
63/// SwitchToTextSection - Switch to the specified text section of the executable
64/// if we are not already in it!
65///
66void AsmPrinter::SwitchToTextSection(const char *NewSection,
67                                     const GlobalValue *GV) {
68  std::string NS;
69  if (GV && GV->hasSection())
70    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
71  else
72    NS = NewSection;
73
74  // If we're already in this section, we're done.
75  if (CurrentSection == NS) return;
76
77  // Close the current section, if applicable.
78  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
79    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
80
81  CurrentSection = NS;
82
83  if (!CurrentSection.empty())
84    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
85
86  IsInTextSection = true;
87}
88
89/// SwitchToDataSection - Switch to the specified data section of the executable
90/// if we are not already in it!
91///
92void AsmPrinter::SwitchToDataSection(const char *NewSection,
93                                     const GlobalValue *GV) {
94  std::string NS;
95  if (GV && GV->hasSection())
96    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
97  else
98    NS = NewSection;
99
100  // If we're already in this section, we're done.
101  if (CurrentSection == NS) return;
102
103  // Close the current section, if applicable.
104  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
105    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
106
107  CurrentSection = NS;
108
109  if (!CurrentSection.empty())
110    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
111
112  IsInTextSection = false;
113}
114
115/// SwitchToSection - Switch to the specified section of the executable if we
116/// are not already in it!
117void AsmPrinter::SwitchToSection(const Section* NS) {
118  const std::string& NewSection = NS->getName();
119
120  // If we're already in this section, we're done.
121  if (CurrentSection == NewSection) return;
122
123  // Close the current section, if applicable.
124  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
125    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
126
127  // FIXME: Make CurrentSection a Section* in the future
128  CurrentSection = NewSection;
129  CurrentSection_ = NS;
130
131  if (!CurrentSection.empty()) {
132    // If section is named we need to switch into it via special '.section'
133    // directive and also append funky flags. Otherwise - section name is just
134    // some magic assembler directive.
135    if (NS->isNamed())
136      O << TAI->getSwitchToSectionDirective()
137        << CurrentSection
138        << TAI->getSectionFlags(NS->getFlags());
139    else
140      O << CurrentSection;
141    O << TAI->getDataSectionStartSuffix() << '\n';
142  }
143
144  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
145}
146
147void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
148  MachineFunctionPass::getAnalysisUsage(AU);
149  AU.addRequired<GCModuleInfo>();
150}
151
152bool AsmPrinter::doInitialization(Module &M) {
153  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix());
154
155  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
156  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
157
158  if (TAI->hasSingleParameterDotFile()) {
159    /* Very minimal debug info. It is ignored if we emit actual
160       debug info. If we don't, this at helps the user find where
161       a function came from. */
162    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
163  }
164
165  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
166    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
167      MP->beginAssembly(O, *this, *TAI);
168
169  if (!M.getModuleInlineAsm().empty())
170    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
171      << M.getModuleInlineAsm()
172      << '\n' << TAI->getCommentString()
173      << " End of file scope inline assembly\n";
174
175  SwitchToDataSection("");   // Reset back to no section.
176
177  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
178  if (MMI) MMI->AnalyzeModule(M);
179  DW = getAnalysisIfAvailable<DwarfWriter>();
180  return false;
181}
182
183bool AsmPrinter::doFinalization(Module &M) {
184  if (TAI->getWeakRefDirective()) {
185    if (!ExtWeakSymbols.empty())
186      SwitchToDataSection("");
187
188    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
189         e = ExtWeakSymbols.end(); i != e; ++i)
190      O << TAI->getWeakRefDirective() << Mang->getValueName(*i) << '\n';
191  }
192
193  if (TAI->getSetDirective()) {
194    if (!M.alias_empty())
195      SwitchToSection(TAI->getTextSection());
196
197    O << '\n';
198    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
199         I!=E; ++I) {
200      std::string Name = Mang->getValueName(I);
201      std::string Target;
202
203      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
204      Target = Mang->getValueName(GV);
205
206      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
207        O << "\t.globl\t" << Name << '\n';
208      else if (I->hasWeakLinkage())
209        O << TAI->getWeakRefDirective() << Name << '\n';
210      else if (!I->hasLocalLinkage())
211        assert(0 && "Invalid alias linkage");
212
213      printVisibility(Name, I->getVisibility());
214
215      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
216    }
217  }
218
219  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
220  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
221  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
222    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
223      MP->finishAssembly(O, *this, *TAI);
224
225  // If we don't have any trampolines, then we don't require stack memory
226  // to be executable. Some targets have a directive to declare this.
227  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
228  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
229    if (TAI->getNonexecutableStackDirective())
230      O << TAI->getNonexecutableStackDirective() << '\n';
231
232  delete Mang; Mang = 0;
233  return false;
234}
235
236const std::string &
237AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF,
238                                     std::string &Name) const {
239  assert(MF && "No machine function?");
240  Name = MF->getFunction()->getName();
241  if (Name.empty())
242    Name = Mang->getValueName(MF->getFunction());
243  Name = Mang->makeNameProper(TAI->getEHGlobalPrefix() +
244                              Name + ".eh", TAI->getGlobalPrefix());
245  return Name;
246}
247
248void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
249  // What's my mangled name?
250  CurrentFnName = Mang->getValueName(MF.getFunction());
251  IncrementFunctionNumber();
252}
253
254namespace {
255  // SectionCPs - Keep track the alignment, constpool entries per Section.
256  struct SectionCPs {
257    const Section *S;
258    unsigned Alignment;
259    SmallVector<unsigned, 4> CPEs;
260    SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {};
261  };
262}
263
264/// EmitConstantPool - Print to the current output stream assembly
265/// representations of the constants in the constant pool MCP. This is
266/// used to print out constants which have been "spilled to memory" by
267/// the code generator.
268///
269void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
270  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
271  if (CP.empty()) return;
272
273  // Calculate sections for constant pool entries. We collect entries to go into
274  // the same section together to reduce amount of section switch statements.
275  SmallVector<SectionCPs, 4> CPSections;
276  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
277    MachineConstantPoolEntry CPE = CP[i];
278    unsigned Align = CPE.getAlignment();
279    const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
280    // The number of sections are small, just do a linear search from the
281    // last section to the first.
282    bool Found = false;
283    unsigned SecIdx = CPSections.size();
284    while (SecIdx != 0) {
285      if (CPSections[--SecIdx].S == S) {
286        Found = true;
287        break;
288      }
289    }
290    if (!Found) {
291      SecIdx = CPSections.size();
292      CPSections.push_back(SectionCPs(S, Align));
293    }
294
295    if (Align > CPSections[SecIdx].Alignment)
296      CPSections[SecIdx].Alignment = Align;
297    CPSections[SecIdx].CPEs.push_back(i);
298  }
299
300  // Now print stuff into the calculated sections.
301  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
302    SwitchToSection(CPSections[i].S);
303    EmitAlignment(Log2_32(CPSections[i].Alignment));
304
305    unsigned Offset = 0;
306    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
307      unsigned CPI = CPSections[i].CPEs[j];
308      MachineConstantPoolEntry CPE = CP[CPI];
309
310      // Emit inter-object padding for alignment.
311      unsigned AlignMask = CPE.getAlignment() - 1;
312      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
313      EmitZeros(NewOffset - Offset);
314
315      const Type *Ty = CPE.getType();
316      Offset = NewOffset + TM.getTargetData()->getTypePaddedSize(Ty);
317
318      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
319        << CPI << ":\t\t\t\t\t";
320      if (VerboseAsm) {
321        O << TAI->getCommentString() << ' ';
322        WriteTypeSymbolic(O, CPE.getType(), 0);
323      }
324      O << '\n';
325      if (CPE.isMachineConstantPoolEntry())
326        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
327      else
328        EmitGlobalConstant(CPE.Val.ConstVal);
329    }
330  }
331}
332
333/// EmitJumpTableInfo - Print assembly representations of the jump tables used
334/// by the current function to the current output stream.
335///
336void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
337                                   MachineFunction &MF) {
338  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
339  if (JT.empty()) return;
340
341  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
342
343  // Pick the directive to use to print the jump table entries, and switch to
344  // the appropriate section.
345  TargetLowering *LoweringInfo = TM.getTargetLowering();
346
347  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
348  const Function *F = MF.getFunction();
349  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
350  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
351     !JumpTableDataSection ||
352      SectionFlags & SectionFlags::Linkonce) {
353    // In PIC mode, we need to emit the jump table to the same section as the
354    // function body itself, otherwise the label differences won't make sense.
355    // We should also do if the section name is NULL or function is declared in
356    // discardable section.
357    SwitchToSection(TAI->SectionForGlobal(F));
358  } else {
359    SwitchToDataSection(JumpTableDataSection);
360  }
361
362  EmitAlignment(Log2_32(MJTI->getAlignment()));
363
364  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
365    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
366
367    // If this jump table was deleted, ignore it.
368    if (JTBBs.empty()) continue;
369
370    // For PIC codegen, if possible we want to use the SetDirective to reduce
371    // the number of relocations the assembler will generate for the jump table.
372    // Set directives are all printed before the jump table itself.
373    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
374    if (TAI->getSetDirective() && IsPic)
375      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
376        if (EmittedSets.insert(JTBBs[ii]))
377          printPICJumpTableSetLabel(i, JTBBs[ii]);
378
379    // On some targets (e.g. darwin) we want to emit two consequtive labels
380    // before each jump table.  The first label is never referenced, but tells
381    // the assembler and linker the extents of the jump table object.  The
382    // second label is actually referenced by the code.
383    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
384      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
385
386    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
387      << '_' << i << ":\n";
388
389    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
390      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
391      O << '\n';
392    }
393  }
394}
395
396void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
397                                        const MachineBasicBlock *MBB,
398                                        unsigned uid)  const {
399  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
400
401  // Use JumpTableDirective otherwise honor the entry size from the jump table
402  // info.
403  const char *JTEntryDirective = TAI->getJumpTableDirective();
404  bool HadJTEntryDirective = JTEntryDirective != NULL;
405  if (!HadJTEntryDirective) {
406    JTEntryDirective = MJTI->getEntrySize() == 4 ?
407      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
408  }
409
410  O << JTEntryDirective << ' ';
411
412  // If we have emitted set directives for the jump table entries, print
413  // them rather than the entries themselves.  If we're emitting PIC, then
414  // emit the table entries as differences between two text section labels.
415  // If we're emitting non-PIC code, then emit the entries as direct
416  // references to the target basic blocks.
417  if (IsPic) {
418    if (TAI->getSetDirective()) {
419      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
420        << '_' << uid << "_set_" << MBB->getNumber();
421    } else {
422      printBasicBlockLabel(MBB, false, false, false);
423      // If the arch uses custom Jump Table directives, don't calc relative to
424      // JT
425      if (!HadJTEntryDirective)
426        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
427          << getFunctionNumber() << '_' << uid;
428    }
429  } else {
430    printBasicBlockLabel(MBB, false, false, false);
431  }
432}
433
434
435/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
436/// special global used by LLVM.  If so, emit it and return true, otherwise
437/// do nothing and return false.
438bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
439  if (GV->getName() == "llvm.used") {
440    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
441      EmitLLVMUsedList(GV->getInitializer());
442    return true;
443  }
444
445  // Ignore debug and non-emitted data.
446  if (GV->getSection() == "llvm.metadata") return true;
447
448  if (!GV->hasAppendingLinkage()) return false;
449
450  assert(GV->hasInitializer() && "Not a special LLVM global!");
451
452  const TargetData *TD = TM.getTargetData();
453  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
454  if (GV->getName() == "llvm.global_ctors") {
455    SwitchToDataSection(TAI->getStaticCtorsSection());
456    EmitAlignment(Align, 0);
457    EmitXXStructorList(GV->getInitializer());
458    return true;
459  }
460
461  if (GV->getName() == "llvm.global_dtors") {
462    SwitchToDataSection(TAI->getStaticDtorsSection());
463    EmitAlignment(Align, 0);
464    EmitXXStructorList(GV->getInitializer());
465    return true;
466  }
467
468  return false;
469}
470
471/// findGlobalValue - if CV is an expression equivalent to a single
472/// global value, return that value.
473const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
474  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
475    return GV;
476  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
477    const TargetData *TD = TM.getTargetData();
478    unsigned Opcode = CE->getOpcode();
479    switch (Opcode) {
480    case Instruction::GetElementPtr: {
481      const Constant *ptrVal = CE->getOperand(0);
482      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
483      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
484        return 0;
485      return findGlobalValue(ptrVal);
486    }
487    case Instruction::BitCast:
488      return findGlobalValue(CE->getOperand(0));
489    default:
490      return 0;
491    }
492  }
493  return 0;
494}
495
496/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
497/// global in the specified llvm.used list for which emitUsedDirectiveFor
498/// is true, as being used with this directive.
499
500void AsmPrinter::EmitLLVMUsedList(Constant *List) {
501  const char *Directive = TAI->getUsedDirective();
502
503  // Should be an array of 'sbyte*'.
504  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
505  if (InitList == 0) return;
506
507  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
508    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
509    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
510      O << Directive;
511      EmitConstantValueOnly(InitList->getOperand(i));
512      O << '\n';
513    }
514  }
515}
516
517/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
518/// function pointers, ignoring the init priority.
519void AsmPrinter::EmitXXStructorList(Constant *List) {
520  // Should be an array of '{ int, void ()* }' structs.  The first value is the
521  // init priority, which we ignore.
522  if (!isa<ConstantArray>(List)) return;
523  ConstantArray *InitList = cast<ConstantArray>(List);
524  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
525    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
526      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
527
528      if (CS->getOperand(1)->isNullValue())
529        return;  // Found a null terminator, exit printing.
530      // Emit the function pointer.
531      EmitGlobalConstant(CS->getOperand(1));
532    }
533}
534
535/// getGlobalLinkName - Returns the asm/link name of of the specified
536/// global variable.  Should be overridden by each target asm printer to
537/// generate the appropriate value.
538const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
539                                                 std::string &LinkName) const {
540  if (isa<Function>(GV)) {
541    LinkName += TAI->getFunctionAddrPrefix();
542    LinkName += Mang->getValueName(GV);
543    LinkName += TAI->getFunctionAddrSuffix();
544  } else {
545    LinkName += TAI->getGlobalVarAddrPrefix();
546    LinkName += Mang->getValueName(GV);
547    LinkName += TAI->getGlobalVarAddrSuffix();
548  }
549
550  return LinkName;
551}
552
553/// EmitExternalGlobal - Emit the external reference to a global variable.
554/// Should be overridden if an indirect reference should be used.
555void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
556  std::string GLN;
557  O << getGlobalLinkName(GV, GLN);
558}
559
560
561
562//===----------------------------------------------------------------------===//
563/// LEB 128 number encoding.
564
565/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
566/// representing an unsigned leb128 value.
567void AsmPrinter::PrintULEB128(unsigned Value) const {
568  char Buffer[20];
569  do {
570    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
571    Value >>= 7;
572    if (Value) Byte |= 0x80;
573    O << "0x" << utohex_buffer(Byte, Buffer+20);
574    if (Value) O << ", ";
575  } while (Value);
576}
577
578/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
579/// representing a signed leb128 value.
580void AsmPrinter::PrintSLEB128(int Value) const {
581  int Sign = Value >> (8 * sizeof(Value) - 1);
582  bool IsMore;
583  char Buffer[20];
584
585  do {
586    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
587    Value >>= 7;
588    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
589    if (IsMore) Byte |= 0x80;
590    O << "0x" << utohex_buffer(Byte, Buffer+20);
591    if (IsMore) O << ", ";
592  } while (IsMore);
593}
594
595//===--------------------------------------------------------------------===//
596// Emission and print routines
597//
598
599/// PrintHex - Print a value as a hexidecimal value.
600///
601void AsmPrinter::PrintHex(int Value) const {
602  char Buffer[20];
603  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
604}
605
606/// EOL - Print a newline character to asm stream.  If a comment is present
607/// then it will be printed first.  Comments should not contain '\n'.
608void AsmPrinter::EOL() const {
609  O << '\n';
610}
611
612void AsmPrinter::EOL(const std::string &Comment) const {
613  if (VerboseAsm && !Comment.empty()) {
614    O << '\t'
615      << TAI->getCommentString()
616      << ' '
617      << Comment;
618  }
619  O << '\n';
620}
621
622void AsmPrinter::EOL(const char* Comment) const {
623  if (VerboseAsm && *Comment) {
624    O << '\t'
625      << TAI->getCommentString()
626      << ' '
627      << Comment;
628  }
629  O << '\n';
630}
631
632/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
633/// unsigned leb128 value.
634void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
635  if (TAI->hasLEB128()) {
636    O << "\t.uleb128\t"
637      << Value;
638  } else {
639    O << TAI->getData8bitsDirective();
640    PrintULEB128(Value);
641  }
642}
643
644/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
645/// signed leb128 value.
646void AsmPrinter::EmitSLEB128Bytes(int Value) const {
647  if (TAI->hasLEB128()) {
648    O << "\t.sleb128\t"
649      << Value;
650  } else {
651    O << TAI->getData8bitsDirective();
652    PrintSLEB128(Value);
653  }
654}
655
656/// EmitInt8 - Emit a byte directive and value.
657///
658void AsmPrinter::EmitInt8(int Value) const {
659  O << TAI->getData8bitsDirective();
660  PrintHex(Value & 0xFF);
661}
662
663/// EmitInt16 - Emit a short directive and value.
664///
665void AsmPrinter::EmitInt16(int Value) const {
666  O << TAI->getData16bitsDirective();
667  PrintHex(Value & 0xFFFF);
668}
669
670/// EmitInt32 - Emit a long directive and value.
671///
672void AsmPrinter::EmitInt32(int Value) const {
673  O << TAI->getData32bitsDirective();
674  PrintHex(Value);
675}
676
677/// EmitInt64 - Emit a long long directive and value.
678///
679void AsmPrinter::EmitInt64(uint64_t Value) const {
680  if (TAI->getData64bitsDirective()) {
681    O << TAI->getData64bitsDirective();
682    PrintHex(Value);
683  } else {
684    if (TM.getTargetData()->isBigEndian()) {
685      EmitInt32(unsigned(Value >> 32)); O << '\n';
686      EmitInt32(unsigned(Value));
687    } else {
688      EmitInt32(unsigned(Value)); O << '\n';
689      EmitInt32(unsigned(Value >> 32));
690    }
691  }
692}
693
694/// toOctal - Convert the low order bits of X into an octal digit.
695///
696static inline char toOctal(int X) {
697  return (X&7)+'0';
698}
699
700/// printStringChar - Print a char, escaped if necessary.
701///
702static void printStringChar(raw_ostream &O, unsigned char C) {
703  if (C == '"') {
704    O << "\\\"";
705  } else if (C == '\\') {
706    O << "\\\\";
707  } else if (isprint((unsigned char)C)) {
708    O << C;
709  } else {
710    switch(C) {
711    case '\b': O << "\\b"; break;
712    case '\f': O << "\\f"; break;
713    case '\n': O << "\\n"; break;
714    case '\r': O << "\\r"; break;
715    case '\t': O << "\\t"; break;
716    default:
717      O << '\\';
718      O << toOctal(C >> 6);
719      O << toOctal(C >> 3);
720      O << toOctal(C >> 0);
721      break;
722    }
723  }
724}
725
726/// EmitString - Emit a string with quotes and a null terminator.
727/// Special characters are emitted properly.
728/// \literal (Eg. '\t') \endliteral
729void AsmPrinter::EmitString(const std::string &String) const {
730  EmitString(String.c_str(), String.size());
731}
732
733void AsmPrinter::EmitString(const char *String, unsigned Size) const {
734  const char* AscizDirective = TAI->getAscizDirective();
735  if (AscizDirective)
736    O << AscizDirective;
737  else
738    O << TAI->getAsciiDirective();
739  O << '\"';
740  for (unsigned i = 0; i < Size; ++i)
741    printStringChar(O, String[i]);
742  if (AscizDirective)
743    O << '\"';
744  else
745    O << "\\0\"";
746}
747
748
749/// EmitFile - Emit a .file directive.
750void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
751  O << "\t.file\t" << Number << " \"";
752  for (unsigned i = 0, N = Name.size(); i < N; ++i)
753    printStringChar(O, Name[i]);
754  O << '\"';
755}
756
757
758//===----------------------------------------------------------------------===//
759
760// EmitAlignment - Emit an alignment directive to the specified power of
761// two boundary.  For example, if you pass in 3 here, you will get an 8
762// byte alignment.  If a global value is specified, and if that global has
763// an explicit alignment requested, it will unconditionally override the
764// alignment request.  However, if ForcedAlignBits is specified, this value
765// has final say: the ultimate alignment will be the max of ForcedAlignBits
766// and the alignment computed with NumBits and the global.
767//
768// The algorithm is:
769//     Align = NumBits;
770//     if (GV && GV->hasalignment) Align = GV->getalignment();
771//     Align = std::max(Align, ForcedAlignBits);
772//
773void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
774                               unsigned ForcedAlignBits,
775                               bool UseFillExpr) const {
776  if (GV && GV->getAlignment())
777    NumBits = Log2_32(GV->getAlignment());
778  NumBits = std::max(NumBits, ForcedAlignBits);
779
780  if (NumBits == 0) return;   // No need to emit alignment.
781  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
782  O << TAI->getAlignDirective() << NumBits;
783
784  unsigned FillValue = TAI->getTextAlignFillValue();
785  UseFillExpr &= IsInTextSection && FillValue;
786  if (UseFillExpr) {
787    O << ',';
788    PrintHex(FillValue);
789  }
790  O << '\n';
791}
792
793
794/// EmitZeros - Emit a block of zeros.
795///
796void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
797  if (NumZeros) {
798    if (TAI->getZeroDirective()) {
799      O << TAI->getZeroDirective() << NumZeros;
800      if (TAI->getZeroDirectiveSuffix())
801        O << TAI->getZeroDirectiveSuffix();
802      O << '\n';
803    } else {
804      for (; NumZeros; --NumZeros)
805        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
806    }
807  }
808}
809
810// Print out the specified constant, without a storage class.  Only the
811// constants valid in constant expressions can occur here.
812void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
813  if (CV->isNullValue() || isa<UndefValue>(CV))
814    O << '0';
815  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
816    O << CI->getZExtValue();
817  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
818    // This is a constant address for a global variable or function. Use the
819    // name of the variable or function as the address value, possibly
820    // decorating it with GlobalVarAddrPrefix/Suffix or
821    // FunctionAddrPrefix/Suffix (these all default to "" )
822    if (isa<Function>(GV)) {
823      O << TAI->getFunctionAddrPrefix()
824        << Mang->getValueName(GV)
825        << TAI->getFunctionAddrSuffix();
826    } else {
827      O << TAI->getGlobalVarAddrPrefix()
828        << Mang->getValueName(GV)
829        << TAI->getGlobalVarAddrSuffix();
830    }
831  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
832    const TargetData *TD = TM.getTargetData();
833    unsigned Opcode = CE->getOpcode();
834    switch (Opcode) {
835    case Instruction::GetElementPtr: {
836      // generate a symbolic expression for the byte address
837      const Constant *ptrVal = CE->getOperand(0);
838      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
839      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
840                                                idxVec.size())) {
841        // Truncate/sext the offset to the pointer size.
842        if (TD->getPointerSizeInBits() != 64) {
843          int SExtAmount = 64-TD->getPointerSizeInBits();
844          Offset = (Offset << SExtAmount) >> SExtAmount;
845        }
846
847        if (Offset)
848          O << '(';
849        EmitConstantValueOnly(ptrVal);
850        if (Offset > 0)
851          O << ") + " << Offset;
852        else if (Offset < 0)
853          O << ") - " << -Offset;
854      } else {
855        EmitConstantValueOnly(ptrVal);
856      }
857      break;
858    }
859    case Instruction::Trunc:
860    case Instruction::ZExt:
861    case Instruction::SExt:
862    case Instruction::FPTrunc:
863    case Instruction::FPExt:
864    case Instruction::UIToFP:
865    case Instruction::SIToFP:
866    case Instruction::FPToUI:
867    case Instruction::FPToSI:
868      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
869      break;
870    case Instruction::BitCast:
871      return EmitConstantValueOnly(CE->getOperand(0));
872
873    case Instruction::IntToPtr: {
874      // Handle casts to pointers by changing them into casts to the appropriate
875      // integer type.  This promotes constant folding and simplifies this code.
876      Constant *Op = CE->getOperand(0);
877      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
878      return EmitConstantValueOnly(Op);
879    }
880
881
882    case Instruction::PtrToInt: {
883      // Support only foldable casts to/from pointers that can be eliminated by
884      // changing the pointer to the appropriately sized integer type.
885      Constant *Op = CE->getOperand(0);
886      const Type *Ty = CE->getType();
887
888      // We can emit the pointer value into this slot if the slot is an
889      // integer slot greater or equal to the size of the pointer.
890      if (TD->getTypePaddedSize(Ty) >= TD->getTypePaddedSize(Op->getType()))
891        return EmitConstantValueOnly(Op);
892
893      O << "((";
894      EmitConstantValueOnly(Op);
895      APInt ptrMask = APInt::getAllOnesValue(TD->getTypePaddedSizeInBits(Ty));
896
897      SmallString<40> S;
898      ptrMask.toStringUnsigned(S);
899      O << ") & " << S.c_str() << ')';
900      break;
901    }
902    case Instruction::Add:
903    case Instruction::Sub:
904    case Instruction::And:
905    case Instruction::Or:
906    case Instruction::Xor:
907      O << '(';
908      EmitConstantValueOnly(CE->getOperand(0));
909      O << ')';
910      switch (Opcode) {
911      case Instruction::Add:
912       O << " + ";
913       break;
914      case Instruction::Sub:
915       O << " - ";
916       break;
917      case Instruction::And:
918       O << " & ";
919       break;
920      case Instruction::Or:
921       O << " | ";
922       break;
923      case Instruction::Xor:
924       O << " ^ ";
925       break;
926      default:
927       break;
928      }
929      O << '(';
930      EmitConstantValueOnly(CE->getOperand(1));
931      O << ')';
932      break;
933    default:
934      assert(0 && "Unsupported operator!");
935    }
936  } else {
937    assert(0 && "Unknown constant value!");
938  }
939}
940
941/// printAsCString - Print the specified array as a C compatible string, only if
942/// the predicate isString is true.
943///
944static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
945                           unsigned LastElt) {
946  assert(CVA->isString() && "Array is not string compatible!");
947
948  O << '\"';
949  for (unsigned i = 0; i != LastElt; ++i) {
950    unsigned char C =
951        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
952    printStringChar(O, C);
953  }
954  O << '\"';
955}
956
957/// EmitString - Emit a zero-byte-terminated string constant.
958///
959void AsmPrinter::EmitString(const ConstantArray *CVA) const {
960  unsigned NumElts = CVA->getNumOperands();
961  if (TAI->getAscizDirective() && NumElts &&
962      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
963    O << TAI->getAscizDirective();
964    printAsCString(O, CVA, NumElts-1);
965  } else {
966    O << TAI->getAsciiDirective();
967    printAsCString(O, CVA, NumElts);
968  }
969  O << '\n';
970}
971
972void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA) {
973  if (CVA->isString()) {
974    EmitString(CVA);
975  } else { // Not a string.  Print the values in successive locations
976    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
977      EmitGlobalConstant(CVA->getOperand(i));
978  }
979}
980
981void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
982  const VectorType *PTy = CP->getType();
983
984  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
985    EmitGlobalConstant(CP->getOperand(I));
986}
987
988void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
989                                          unsigned AddrSpace) {
990  // Print the fields in successive locations. Pad to align if needed!
991  const TargetData *TD = TM.getTargetData();
992  unsigned Size = TD->getTypePaddedSize(CVS->getType());
993  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
994  uint64_t sizeSoFar = 0;
995  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
996    const Constant* field = CVS->getOperand(i);
997
998    // Check if padding is needed and insert one or more 0s.
999    uint64_t fieldSize = TD->getTypePaddedSize(field->getType());
1000    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1001                        - cvsLayout->getElementOffset(i)) - fieldSize;
1002    sizeSoFar += fieldSize + padSize;
1003
1004    // Now print the actual field value.
1005    EmitGlobalConstant(field, AddrSpace);
1006
1007    // Insert padding - this may include padding to increase the size of the
1008    // current field up to the ABI size (if the struct is not packed) as well
1009    // as padding to ensure that the next field starts at the right offset.
1010    EmitZeros(padSize, AddrSpace);
1011  }
1012  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1013         "Layout of constant struct may be incorrect!");
1014}
1015
1016void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1017                                      unsigned AddrSpace) {
1018  // FP Constants are printed as integer constants to avoid losing
1019  // precision...
1020  const TargetData *TD = TM.getTargetData();
1021  if (CFP->getType() == Type::DoubleTy) {
1022    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1023    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1024    if (TAI->getData64bitsDirective(AddrSpace)) {
1025      O << TAI->getData64bitsDirective(AddrSpace) << i;
1026      if (VerboseAsm)
1027        O << '\t' << TAI->getCommentString() << " double value: " << Val;
1028      O << '\n';
1029    } else if (TD->isBigEndian()) {
1030      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1031      if (VerboseAsm)
1032        O << '\t' << TAI->getCommentString()
1033          << " double most significant word " << Val;
1034      O << '\n';
1035      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1036      if (VerboseAsm)
1037        O << '\t' << TAI->getCommentString()
1038          << " double least significant word " << Val;
1039      O << '\n';
1040    } else {
1041      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1042      if (VerboseAsm)
1043        O << '\t' << TAI->getCommentString()
1044          << " double least significant word " << Val;
1045      O << '\n';
1046      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1047      if (VerboseAsm)
1048        O << '\t' << TAI->getCommentString()
1049          << " double most significant word " << Val;
1050      O << '\n';
1051    }
1052    return;
1053  } else if (CFP->getType() == Type::FloatTy) {
1054    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1055    O << TAI->getData32bitsDirective(AddrSpace)
1056      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1057    if (VerboseAsm)
1058      O << '\t' << TAI->getCommentString() << " float " << Val;
1059    O << '\n';
1060    return;
1061  } else if (CFP->getType() == Type::X86_FP80Ty) {
1062    // all long double variants are printed as hex
1063    // api needed to prevent premature destruction
1064    APInt api = CFP->getValueAPF().bitcastToAPInt();
1065    const uint64_t *p = api.getRawData();
1066    // Convert to double so we can print the approximate val as a comment.
1067    APFloat DoubleVal = CFP->getValueAPF();
1068    bool ignored;
1069    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1070                      &ignored);
1071    if (TD->isBigEndian()) {
1072      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1073      if (VerboseAsm)
1074        O << '\t' << TAI->getCommentString()
1075          << " long double most significant halfword of ~"
1076          << DoubleVal.convertToDouble();
1077      O << '\n';
1078      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1079      if (VerboseAsm)
1080        O << '\t' << TAI->getCommentString() << " long double next halfword";
1081      O << '\n';
1082      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1083      if (VerboseAsm)
1084        O << '\t' << TAI->getCommentString() << " long double next halfword";
1085      O << '\n';
1086      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1087      if (VerboseAsm)
1088        O << '\t' << TAI->getCommentString() << " long double next halfword";
1089      O << '\n';
1090      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1091      if (VerboseAsm)
1092        O << '\t' << TAI->getCommentString()
1093          << " long double least significant halfword";
1094      O << '\n';
1095     } else {
1096      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1097      if (VerboseAsm)
1098        O << '\t' << TAI->getCommentString()
1099          << " long double least significant halfword of ~"
1100          << DoubleVal.convertToDouble();
1101      O << '\n';
1102      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1103      if (VerboseAsm)
1104        O << '\t' << TAI->getCommentString()
1105          << " long double next halfword";
1106      O << '\n';
1107      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1108      if (VerboseAsm)
1109        O << '\t' << TAI->getCommentString()
1110          << " long double next halfword";
1111      O << '\n';
1112      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1113      if (VerboseAsm)
1114        O << '\t' << TAI->getCommentString()
1115          << " long double next halfword";
1116      O << '\n';
1117      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1118      if (VerboseAsm)
1119        O << '\t' << TAI->getCommentString()
1120          << " long double most significant halfword";
1121      O << '\n';
1122    }
1123    EmitZeros(TD->getTypePaddedSize(Type::X86_FP80Ty) -
1124              TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1125    return;
1126  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1127    // all long double variants are printed as hex
1128    // api needed to prevent premature destruction
1129    APInt api = CFP->getValueAPF().bitcastToAPInt();
1130    const uint64_t *p = api.getRawData();
1131    if (TD->isBigEndian()) {
1132      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1133      if (VerboseAsm)
1134        O << '\t' << TAI->getCommentString()
1135          << " long double most significant word";
1136      O << '\n';
1137      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1138      if (VerboseAsm)
1139        O << '\t' << TAI->getCommentString()
1140        << " long double next word";
1141      O << '\n';
1142      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1143      if (VerboseAsm)
1144        O << '\t' << TAI->getCommentString()
1145          << " long double next word";
1146      O << '\n';
1147      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1148      if (VerboseAsm)
1149        O << '\t' << TAI->getCommentString()
1150          << " long double least significant word";
1151      O << '\n';
1152     } else {
1153      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1154      if (VerboseAsm)
1155        O << '\t' << TAI->getCommentString()
1156          << " long double least significant word";
1157      O << '\n';
1158      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1159      if (VerboseAsm)
1160        O << '\t' << TAI->getCommentString()
1161          << " long double next word";
1162      O << '\n';
1163      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1164      if (VerboseAsm)
1165        O << '\t' << TAI->getCommentString()
1166          << " long double next word";
1167      O << '\n';
1168      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1169      if (VerboseAsm)
1170        O << '\t' << TAI->getCommentString()
1171          << " long double most significant word";
1172      O << '\n';
1173    }
1174    return;
1175  } else assert(0 && "Floating point constant type not handled");
1176}
1177
1178void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1179                                            unsigned AddrSpace) {
1180  const TargetData *TD = TM.getTargetData();
1181  unsigned BitWidth = CI->getBitWidth();
1182  assert(isPowerOf2_32(BitWidth) &&
1183         "Non-power-of-2-sized integers not handled!");
1184
1185  // We don't expect assemblers to support integer data directives
1186  // for more than 64 bits, so we emit the data in at most 64-bit
1187  // quantities at a time.
1188  const uint64_t *RawData = CI->getValue().getRawData();
1189  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1190    uint64_t Val;
1191    if (TD->isBigEndian())
1192      Val = RawData[e - i - 1];
1193    else
1194      Val = RawData[i];
1195
1196    if (TAI->getData64bitsDirective(AddrSpace))
1197      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1198    else if (TD->isBigEndian()) {
1199      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1200      if (VerboseAsm)
1201        O << '\t' << TAI->getCommentString()
1202          << " Double-word most significant word " << Val;
1203      O << '\n';
1204      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1205      if (VerboseAsm)
1206        O << '\t' << TAI->getCommentString()
1207          << " Double-word least significant word " << Val;
1208      O << '\n';
1209    } else {
1210      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1211      if (VerboseAsm)
1212        O << '\t' << TAI->getCommentString()
1213          << " Double-word least significant word " << Val;
1214      O << '\n';
1215      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1216      if (VerboseAsm)
1217        O << '\t' << TAI->getCommentString()
1218          << " Double-word most significant word " << Val;
1219      O << '\n';
1220    }
1221  }
1222}
1223
1224/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1225void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1226  const TargetData *TD = TM.getTargetData();
1227  const Type *type = CV->getType();
1228  unsigned Size = TD->getTypePaddedSize(type);
1229
1230  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1231    EmitZeros(Size, AddrSpace);
1232    return;
1233  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1234    EmitGlobalConstantArray(CVA);
1235    return;
1236  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1237    EmitGlobalConstantStruct(CVS, AddrSpace);
1238    return;
1239  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1240    EmitGlobalConstantFP(CFP, AddrSpace);
1241    return;
1242  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1243    // Small integers are handled below; large integers are handled here.
1244    if (Size > 4) {
1245      EmitGlobalConstantLargeInt(CI, AddrSpace);
1246      return;
1247    }
1248  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1249    EmitGlobalConstantVector(CP);
1250    return;
1251  }
1252
1253  printDataDirective(type, AddrSpace);
1254  EmitConstantValueOnly(CV);
1255  if (VerboseAsm) {
1256    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1257      SmallString<40> S;
1258      CI->getValue().toStringUnsigned(S, 16);
1259      O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1260    }
1261  }
1262  O << '\n';
1263}
1264
1265void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1266  // Target doesn't support this yet!
1267  abort();
1268}
1269
1270/// PrintSpecial - Print information related to the specified machine instr
1271/// that is independent of the operand, and may be independent of the instr
1272/// itself.  This can be useful for portably encoding the comment character
1273/// or other bits of target-specific knowledge into the asmstrings.  The
1274/// syntax used is ${:comment}.  Targets can override this to add support
1275/// for their own strange codes.
1276void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1277  if (!strcmp(Code, "private")) {
1278    O << TAI->getPrivateGlobalPrefix();
1279  } else if (!strcmp(Code, "comment")) {
1280    if (VerboseAsm)
1281      O << TAI->getCommentString();
1282  } else if (!strcmp(Code, "uid")) {
1283    // Assign a unique ID to this machine instruction.
1284    static const MachineInstr *LastMI = 0;
1285    static const Function *F = 0;
1286    static unsigned Counter = 0U-1;
1287
1288    // Comparing the address of MI isn't sufficient, because machineinstrs may
1289    // be allocated to the same address across functions.
1290    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1291
1292    // If this is a new machine instruction, bump the counter.
1293    if (LastMI != MI || F != ThisF) {
1294      ++Counter;
1295      LastMI = MI;
1296      F = ThisF;
1297    }
1298    O << Counter;
1299  } else {
1300    cerr << "Unknown special formatter '" << Code
1301         << "' for machine instr: " << *MI;
1302    exit(1);
1303  }
1304}
1305
1306
1307/// printInlineAsm - This method formats and prints the specified machine
1308/// instruction that is an inline asm.
1309void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1310  unsigned NumOperands = MI->getNumOperands();
1311
1312  // Count the number of register definitions.
1313  unsigned NumDefs = 0;
1314  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1315       ++NumDefs)
1316    assert(NumDefs != NumOperands-1 && "No asm string?");
1317
1318  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1319
1320  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1321  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1322
1323  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1324  // These are useful to see where empty asm's wound up.
1325  if (AsmStr[0] == 0) {
1326    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1327    return;
1328  }
1329
1330  O << TAI->getInlineAsmStart() << "\n\t";
1331
1332  // The variant of the current asmprinter.
1333  int AsmPrinterVariant = TAI->getAssemblerDialect();
1334
1335  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1336  const char *LastEmitted = AsmStr; // One past the last character emitted.
1337
1338  while (*LastEmitted) {
1339    switch (*LastEmitted) {
1340    default: {
1341      // Not a special case, emit the string section literally.
1342      const char *LiteralEnd = LastEmitted+1;
1343      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1344             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1345        ++LiteralEnd;
1346      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1347        O.write(LastEmitted, LiteralEnd-LastEmitted);
1348      LastEmitted = LiteralEnd;
1349      break;
1350    }
1351    case '\n':
1352      ++LastEmitted;   // Consume newline character.
1353      O << '\n';       // Indent code with newline.
1354      break;
1355    case '$': {
1356      ++LastEmitted;   // Consume '$' character.
1357      bool Done = true;
1358
1359      // Handle escapes.
1360      switch (*LastEmitted) {
1361      default: Done = false; break;
1362      case '$':     // $$ -> $
1363        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1364          O << '$';
1365        ++LastEmitted;  // Consume second '$' character.
1366        break;
1367      case '(':             // $( -> same as GCC's { character.
1368        ++LastEmitted;      // Consume '(' character.
1369        if (CurVariant != -1) {
1370          cerr << "Nested variants found in inline asm string: '"
1371               << AsmStr << "'\n";
1372          exit(1);
1373        }
1374        CurVariant = 0;     // We're in the first variant now.
1375        break;
1376      case '|':
1377        ++LastEmitted;  // consume '|' character.
1378        if (CurVariant == -1)
1379          O << '|';       // this is gcc's behavior for | outside a variant
1380        else
1381          ++CurVariant;   // We're in the next variant.
1382        break;
1383      case ')':         // $) -> same as GCC's } char.
1384        ++LastEmitted;  // consume ')' character.
1385        if (CurVariant == -1)
1386          O << '}';     // this is gcc's behavior for } outside a variant
1387        else
1388          CurVariant = -1;
1389        break;
1390      }
1391      if (Done) break;
1392
1393      bool HasCurlyBraces = false;
1394      if (*LastEmitted == '{') {     // ${variable}
1395        ++LastEmitted;               // Consume '{' character.
1396        HasCurlyBraces = true;
1397      }
1398
1399      // If we have ${:foo}, then this is not a real operand reference, it is a
1400      // "magic" string reference, just like in .td files.  Arrange to call
1401      // PrintSpecial.
1402      if (HasCurlyBraces && *LastEmitted == ':') {
1403        ++LastEmitted;
1404        const char *StrStart = LastEmitted;
1405        const char *StrEnd = strchr(StrStart, '}');
1406        if (StrEnd == 0) {
1407          cerr << "Unterminated ${:foo} operand in inline asm string: '"
1408               << AsmStr << "'\n";
1409          exit(1);
1410        }
1411
1412        std::string Val(StrStart, StrEnd);
1413        PrintSpecial(MI, Val.c_str());
1414        LastEmitted = StrEnd+1;
1415        break;
1416      }
1417
1418      const char *IDStart = LastEmitted;
1419      char *IDEnd;
1420      errno = 0;
1421      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1422      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1423        cerr << "Bad $ operand number in inline asm string: '"
1424             << AsmStr << "'\n";
1425        exit(1);
1426      }
1427      LastEmitted = IDEnd;
1428
1429      char Modifier[2] = { 0, 0 };
1430
1431      if (HasCurlyBraces) {
1432        // If we have curly braces, check for a modifier character.  This
1433        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1434        if (*LastEmitted == ':') {
1435          ++LastEmitted;    // Consume ':' character.
1436          if (*LastEmitted == 0) {
1437            cerr << "Bad ${:} expression in inline asm string: '"
1438                 << AsmStr << "'\n";
1439            exit(1);
1440          }
1441
1442          Modifier[0] = *LastEmitted;
1443          ++LastEmitted;    // Consume modifier character.
1444        }
1445
1446        if (*LastEmitted != '}') {
1447          cerr << "Bad ${} expression in inline asm string: '"
1448               << AsmStr << "'\n";
1449          exit(1);
1450        }
1451        ++LastEmitted;    // Consume '}' character.
1452      }
1453
1454      if ((unsigned)Val >= NumOperands-1) {
1455        cerr << "Invalid $ operand number in inline asm string: '"
1456             << AsmStr << "'\n";
1457        exit(1);
1458      }
1459
1460      // Okay, we finally have a value number.  Ask the target to print this
1461      // operand!
1462      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1463        unsigned OpNo = 1;
1464
1465        bool Error = false;
1466
1467        // Scan to find the machine operand number for the operand.
1468        for (; Val; --Val) {
1469          if (OpNo >= MI->getNumOperands()) break;
1470          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1471          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1472        }
1473
1474        if (OpNo >= MI->getNumOperands()) {
1475          Error = true;
1476        } else {
1477          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1478          ++OpNo;  // Skip over the ID number.
1479
1480          if (Modifier[0]=='l')  // labels are target independent
1481            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1482                                 false, false, false);
1483          else {
1484            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1485            if ((OpFlags & 7) == 4) {
1486              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1487                                                Modifier[0] ? Modifier : 0);
1488            } else {
1489              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1490                                          Modifier[0] ? Modifier : 0);
1491            }
1492          }
1493        }
1494        if (Error) {
1495          cerr << "Invalid operand found in inline asm: '"
1496               << AsmStr << "'\n";
1497          MI->dump();
1498          exit(1);
1499        }
1500      }
1501      break;
1502    }
1503    }
1504  }
1505  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1506}
1507
1508/// printImplicitDef - This method prints the specified machine instruction
1509/// that is an implicit def.
1510void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1511  if (VerboseAsm)
1512    O << '\t' << TAI->getCommentString() << " implicit-def: "
1513      << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1514}
1515
1516/// printLabel - This method prints a local label used by debug and
1517/// exception handling tables.
1518void AsmPrinter::printLabel(const MachineInstr *MI) const {
1519  printLabel(MI->getOperand(0).getImm());
1520}
1521
1522void AsmPrinter::printLabel(unsigned Id) const {
1523  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1524}
1525
1526/// printDeclare - This method prints a local variable declaration used by
1527/// debug tables.
1528/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1529/// entry into dwarf table.
1530void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1531  unsigned FI = MI->getOperand(0).getIndex();
1532  GlobalValue *GV = MI->getOperand(1).getGlobal();
1533  DW->RecordVariable(cast<GlobalVariable>(GV), FI);
1534}
1535
1536/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1537/// instruction, using the specified assembler variant.  Targets should
1538/// overried this to format as appropriate.
1539bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1540                                 unsigned AsmVariant, const char *ExtraCode) {
1541  // Target doesn't support this yet!
1542  return true;
1543}
1544
1545bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1546                                       unsigned AsmVariant,
1547                                       const char *ExtraCode) {
1548  // Target doesn't support this yet!
1549  return true;
1550}
1551
1552/// printBasicBlockLabel - This method prints the label for the specified
1553/// MachineBasicBlock
1554void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1555                                      bool printAlign,
1556                                      bool printColon,
1557                                      bool printComment) const {
1558  if (printAlign) {
1559    unsigned Align = MBB->getAlignment();
1560    if (Align)
1561      EmitAlignment(Log2_32(Align));
1562  }
1563
1564  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1565    << MBB->getNumber();
1566  if (printColon)
1567    O << ':';
1568  if (printComment && MBB->getBasicBlock())
1569    O << '\t' << TAI->getCommentString() << ' '
1570      << MBB->getBasicBlock()->getNameStart();
1571}
1572
1573/// printPICJumpTableSetLabel - This method prints a set label for the
1574/// specified MachineBasicBlock for a jumptable entry.
1575void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1576                                           const MachineBasicBlock *MBB) const {
1577  if (!TAI->getSetDirective())
1578    return;
1579
1580  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1581    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1582  printBasicBlockLabel(MBB, false, false, false);
1583  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1584    << '_' << uid << '\n';
1585}
1586
1587void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1588                                           const MachineBasicBlock *MBB) const {
1589  if (!TAI->getSetDirective())
1590    return;
1591
1592  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1593    << getFunctionNumber() << '_' << uid << '_' << uid2
1594    << "_set_" << MBB->getNumber() << ',';
1595  printBasicBlockLabel(MBB, false, false, false);
1596  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1597    << '_' << uid << '_' << uid2 << '\n';
1598}
1599
1600/// printDataDirective - This method prints the asm directive for the
1601/// specified type.
1602void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1603  const TargetData *TD = TM.getTargetData();
1604  switch (type->getTypeID()) {
1605  case Type::IntegerTyID: {
1606    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1607    if (BitWidth <= 8)
1608      O << TAI->getData8bitsDirective(AddrSpace);
1609    else if (BitWidth <= 16)
1610      O << TAI->getData16bitsDirective(AddrSpace);
1611    else if (BitWidth <= 32)
1612      O << TAI->getData32bitsDirective(AddrSpace);
1613    else if (BitWidth <= 64) {
1614      assert(TAI->getData64bitsDirective(AddrSpace) &&
1615             "Target cannot handle 64-bit constant exprs!");
1616      O << TAI->getData64bitsDirective(AddrSpace);
1617    } else {
1618      assert(0 && "Target cannot handle given data directive width!");
1619    }
1620    break;
1621  }
1622  case Type::PointerTyID:
1623    if (TD->getPointerSize() == 8) {
1624      assert(TAI->getData64bitsDirective(AddrSpace) &&
1625             "Target cannot handle 64-bit pointer exprs!");
1626      O << TAI->getData64bitsDirective(AddrSpace);
1627    } else if (TD->getPointerSize() == 2) {
1628      O << TAI->getData16bitsDirective(AddrSpace);
1629    } else if (TD->getPointerSize() == 1) {
1630      O << TAI->getData8bitsDirective(AddrSpace);
1631    } else {
1632      O << TAI->getData32bitsDirective(AddrSpace);
1633    }
1634    break;
1635  case Type::FloatTyID: case Type::DoubleTyID:
1636  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1637    assert (0 && "Should have already output floating point constant.");
1638  default:
1639    assert (0 && "Can't handle printing this type of thing");
1640    break;
1641  }
1642}
1643
1644void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1645                                   const char *Prefix) {
1646  if (Name[0]=='\"')
1647    O << '\"';
1648  O << TAI->getPrivateGlobalPrefix();
1649  if (Prefix) O << Prefix;
1650  if (Name[0]=='\"')
1651    O << '\"';
1652  if (Name[0]=='\"')
1653    O << Name[1];
1654  else
1655    O << Name;
1656  O << Suffix;
1657  if (Name[0]=='\"')
1658    O << '\"';
1659}
1660
1661void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1662  printSuffixedName(Name.c_str(), Suffix);
1663}
1664
1665void AsmPrinter::printVisibility(const std::string& Name,
1666                                 unsigned Visibility) const {
1667  if (Visibility == GlobalValue::HiddenVisibility) {
1668    if (const char *Directive = TAI->getHiddenDirective())
1669      O << Directive << Name << '\n';
1670  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1671    if (const char *Directive = TAI->getProtectedDirective())
1672      O << Directive << Name << '\n';
1673  }
1674}
1675
1676void AsmPrinter::printOffset(int64_t Offset) const {
1677  if (Offset > 0)
1678    O << '+' << Offset;
1679  else if (Offset < 0)
1680    O << Offset;
1681}
1682
1683GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1684  if (!S->usesMetadata())
1685    return 0;
1686
1687  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1688  if (GCPI != GCMetadataPrinters.end())
1689    return GCPI->second;
1690
1691  const char *Name = S->getName().c_str();
1692
1693  for (GCMetadataPrinterRegistry::iterator
1694         I = GCMetadataPrinterRegistry::begin(),
1695         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1696    if (strcmp(Name, I->getName()) == 0) {
1697      GCMetadataPrinter *GMP = I->instantiate();
1698      GMP->S = S;
1699      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1700      return GMP;
1701    }
1702
1703  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1704  abort();
1705}
1706