AsmPrinter.cpp revision abb247fc036d55d06b06853cae66ab055269d605
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCStrategy.h"
20#include "llvm/CodeGen/GCMetadata.h"
21#include "llvm/CodeGen/GCs.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/Support/Mangler.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/Streams.h"
28#include "llvm/Target/TargetAsmInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallString.h"
36#include <cerrno>
37using namespace llvm;
38
39char AsmPrinter::ID = 0;
40AsmPrinter::AsmPrinter(std::ostream &o, TargetMachine &tm,
41                       const TargetAsmInfo *T)
42  : MachineFunctionPass((intptr_t)&ID), FunctionNumber(0), O(o),
43    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
44    IsInTextSection(false)
45{}
46
47AsmPrinter::~AsmPrinter() {
48  for (gcp_iterator I = GCMetadataPrinters.begin(),
49                    E = GCMetadataPrinters.end(); I != E; ++I)
50    delete I->second;
51}
52
53std::string AsmPrinter::getSectionForFunction(const Function &F) const {
54  return TAI->getTextSection();
55}
56
57
58/// SwitchToTextSection - Switch to the specified text section of the executable
59/// if we are not already in it!
60///
61void AsmPrinter::SwitchToTextSection(const char *NewSection,
62                                     const GlobalValue *GV) {
63  std::string NS;
64  if (GV && GV->hasSection())
65    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
66  else
67    NS = NewSection;
68
69  // If we're already in this section, we're done.
70  if (CurrentSection == NS) return;
71
72  // Close the current section, if applicable.
73  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
74    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
75
76  CurrentSection = NS;
77
78  if (!CurrentSection.empty())
79    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
80
81  IsInTextSection = true;
82}
83
84/// SwitchToDataSection - Switch to the specified data section of the executable
85/// if we are not already in it!
86///
87void AsmPrinter::SwitchToDataSection(const char *NewSection,
88                                     const GlobalValue *GV) {
89  std::string NS;
90  if (GV && GV->hasSection())
91    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
92  else
93    NS = NewSection;
94
95  // If we're already in this section, we're done.
96  if (CurrentSection == NS) return;
97
98  // Close the current section, if applicable.
99  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
100    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
101
102  CurrentSection = NS;
103
104  if (!CurrentSection.empty())
105    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
106
107  IsInTextSection = false;
108}
109
110
111void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
112  MachineFunctionPass::getAnalysisUsage(AU);
113  AU.addRequired<CollectorModuleMetadata>();
114}
115
116bool AsmPrinter::doInitialization(Module &M) {
117  Mang = new Mangler(M, TAI->getGlobalPrefix());
118
119  CollectorModuleMetadata *CMM = getAnalysisToUpdate<CollectorModuleMetadata>();
120  assert(CMM && "AsmPrinter didn't require CollectorModuleMetadata?");
121  for (CollectorModuleMetadata::iterator I = CMM->begin(),
122                                         E = CMM->end(); I != E; ++I)
123    if (GCMetadataPrinter *GCP = GetOrCreateGCPrinter(*I))
124      GCP->beginAssembly(O, *this, *TAI);
125<<<<<<< HEAD:lib/CodeGen/AsmPrinter.cpp
126=======
127
128>>>>>>> Factor out asmprinters from collector interface.:lib/CodeGen/AsmPrinter.cpp
129
130  if (!M.getModuleInlineAsm().empty())
131    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
132      << M.getModuleInlineAsm()
133      << '\n' << TAI->getCommentString()
134      << " End of file scope inline assembly\n";
135
136  SwitchToDataSection("");   // Reset back to no section.
137
138  MMI = getAnalysisToUpdate<MachineModuleInfo>();
139  if (MMI) MMI->AnalyzeModule(M);
140
141  return false;
142}
143
144bool AsmPrinter::doFinalization(Module &M) {
145  if (TAI->getWeakRefDirective()) {
146    if (!ExtWeakSymbols.empty())
147      SwitchToDataSection("");
148
149    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
150         e = ExtWeakSymbols.end(); i != e; ++i) {
151      const GlobalValue *GV = *i;
152      std::string Name = Mang->getValueName(GV);
153      O << TAI->getWeakRefDirective() << Name << '\n';
154    }
155  }
156
157  if (TAI->getSetDirective()) {
158    if (!M.alias_empty())
159      SwitchToTextSection(TAI->getTextSection());
160
161    O << '\n';
162    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
163         I!=E; ++I) {
164      std::string Name = Mang->getValueName(I);
165      std::string Target;
166
167      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
168      Target = Mang->getValueName(GV);
169
170      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
171        O << "\t.globl\t" << Name << '\n';
172      else if (I->hasWeakLinkage())
173        O << TAI->getWeakRefDirective() << Name << '\n';
174      else if (!I->hasInternalLinkage())
175        assert(0 && "Invalid alias linkage");
176
177      if (I->hasHiddenVisibility()) {
178        if (const char *Directive = TAI->getHiddenDirective())
179          O << Directive << Name << '\n';
180      } else if (I->hasProtectedVisibility()) {
181        if (const char *Directive = TAI->getProtectedDirective())
182          O << Directive << Name << '\n';
183      }
184
185      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
186
187      // If the aliasee has external weak linkage it can be referenced only by
188      // alias itself. In this case it can be not in ExtWeakSymbols list. Emit
189      // weak reference in such case.
190      if (GV->hasExternalWeakLinkage()) {
191        if (TAI->getWeakRefDirective())
192          O << TAI->getWeakRefDirective() << Target << '\n';
193        else
194          O << "\t.globl\t" << Target << '\n';
195      }
196    }
197  }
198
199  CollectorModuleMetadata *CMM = getAnalysisToUpdate<CollectorModuleMetadata>();
200  assert(CMM && "AsmPrinter didn't require CollectorModuleMetadata?");
201  for (CollectorModuleMetadata::iterator I = CMM->end(),
202                                         E = CMM->begin(); I != E; )
203    if (GCMetadataPrinter *GCP = GetOrCreateGCPrinter(*--I))
204      GCP->finishAssembly(O, *this, *TAI);
205
206  // If we don't have any trampolines, then we don't require stack memory
207  // to be executable. Some targets have a directive to declare this.
208  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
209  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
210    if (TAI->getNonexecutableStackDirective())
211      O << TAI->getNonexecutableStackDirective() << '\n';
212
213  delete Mang; Mang = 0;
214  return false;
215}
216
217std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
218  assert(MF && "No machine function?");
219  std::string Name = MF->getFunction()->getName();
220  if (Name.empty())
221    Name = Mang->getValueName(MF->getFunction());
222  return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix());
223}
224
225void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
226  // What's my mangled name?
227  CurrentFnName = Mang->getValueName(MF.getFunction());
228  IncrementFunctionNumber();
229}
230
231/// EmitConstantPool - Print to the current output stream assembly
232/// representations of the constants in the constant pool MCP. This is
233/// used to print out constants which have been "spilled to memory" by
234/// the code generator.
235///
236void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
237  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
238  if (CP.empty()) return;
239
240  // Some targets require 4-, 8-, and 16- byte constant literals to be placed
241  // in special sections.
242  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > FourByteCPs;
243  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > EightByteCPs;
244  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > SixteenByteCPs;
245  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > OtherCPs;
246  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > TargetCPs;
247  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
248    MachineConstantPoolEntry CPE = CP[i];
249    const Type *Ty = CPE.getType();
250    if (TAI->getFourByteConstantSection() &&
251        TM.getTargetData()->getABITypeSize(Ty) == 4)
252      FourByteCPs.push_back(std::make_pair(CPE, i));
253    else if (TAI->getEightByteConstantSection() &&
254             TM.getTargetData()->getABITypeSize(Ty) == 8)
255      EightByteCPs.push_back(std::make_pair(CPE, i));
256    else if (TAI->getSixteenByteConstantSection() &&
257             TM.getTargetData()->getABITypeSize(Ty) == 16)
258      SixteenByteCPs.push_back(std::make_pair(CPE, i));
259    else
260      OtherCPs.push_back(std::make_pair(CPE, i));
261  }
262
263  unsigned Alignment = MCP->getConstantPoolAlignment();
264  EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs);
265  EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs);
266  EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(),
267                   SixteenByteCPs);
268  EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs);
269}
270
271void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section,
272               std::vector<std::pair<MachineConstantPoolEntry,unsigned> > &CP) {
273  if (CP.empty()) return;
274
275  SwitchToDataSection(Section);
276  EmitAlignment(Alignment);
277  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
278    O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
279      << CP[i].second << ":\t\t\t\t\t" << TAI->getCommentString() << ' ';
280    WriteTypeSymbolic(O, CP[i].first.getType(), 0) << '\n';
281    if (CP[i].first.isMachineConstantPoolEntry())
282      EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal);
283     else
284      EmitGlobalConstant(CP[i].first.Val.ConstVal);
285    if (i != e-1) {
286      const Type *Ty = CP[i].first.getType();
287      unsigned EntSize =
288        TM.getTargetData()->getABITypeSize(Ty);
289      unsigned ValEnd = CP[i].first.getOffset() + EntSize;
290      // Emit inter-object padding for alignment.
291      EmitZeros(CP[i+1].first.getOffset()-ValEnd);
292    }
293  }
294}
295
296/// EmitJumpTableInfo - Print assembly representations of the jump tables used
297/// by the current function to the current output stream.
298///
299void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
300                                   MachineFunction &MF) {
301  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
302  if (JT.empty()) return;
303
304  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
305
306  // Pick the directive to use to print the jump table entries, and switch to
307  // the appropriate section.
308  TargetLowering *LoweringInfo = TM.getTargetLowering();
309
310  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
311  const Function *F = MF.getFunction();
312  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
313  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
314     !JumpTableDataSection ||
315      SectionFlags & SectionFlags::Linkonce) {
316    // In PIC mode, we need to emit the jump table to the same section as the
317    // function body itself, otherwise the label differences won't make sense.
318    // We should also do if the section name is NULL or function is declared in
319    // discardable section.
320    SwitchToTextSection(getSectionForFunction(*F).c_str(), F);
321  } else {
322    SwitchToDataSection(JumpTableDataSection);
323  }
324
325  EmitAlignment(Log2_32(MJTI->getAlignment()));
326
327  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
328    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
329
330    // If this jump table was deleted, ignore it.
331    if (JTBBs.empty()) continue;
332
333    // For PIC codegen, if possible we want to use the SetDirective to reduce
334    // the number of relocations the assembler will generate for the jump table.
335    // Set directives are all printed before the jump table itself.
336    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
337    if (TAI->getSetDirective() && IsPic)
338      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
339        if (EmittedSets.insert(JTBBs[ii]))
340          printPICJumpTableSetLabel(i, JTBBs[ii]);
341
342    // On some targets (e.g. darwin) we want to emit two consequtive labels
343    // before each jump table.  The first label is never referenced, but tells
344    // the assembler and linker the extents of the jump table object.  The
345    // second label is actually referenced by the code.
346    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
347      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
348
349    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
350      << '_' << i << ":\n";
351
352    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
353      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
354      O << '\n';
355    }
356  }
357}
358
359void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
360                                        const MachineBasicBlock *MBB,
361                                        unsigned uid)  const {
362  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
363
364  // Use JumpTableDirective otherwise honor the entry size from the jump table
365  // info.
366  const char *JTEntryDirective = TAI->getJumpTableDirective();
367  bool HadJTEntryDirective = JTEntryDirective != NULL;
368  if (!HadJTEntryDirective) {
369    JTEntryDirective = MJTI->getEntrySize() == 4 ?
370      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
371  }
372
373  O << JTEntryDirective << ' ';
374
375  // If we have emitted set directives for the jump table entries, print
376  // them rather than the entries themselves.  If we're emitting PIC, then
377  // emit the table entries as differences between two text section labels.
378  // If we're emitting non-PIC code, then emit the entries as direct
379  // references to the target basic blocks.
380  if (IsPic) {
381    if (TAI->getSetDirective()) {
382      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
383        << '_' << uid << "_set_" << MBB->getNumber();
384    } else {
385      printBasicBlockLabel(MBB, false, false, false);
386      // If the arch uses custom Jump Table directives, don't calc relative to
387      // JT
388      if (!HadJTEntryDirective)
389        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
390          << getFunctionNumber() << '_' << uid;
391    }
392  } else {
393    printBasicBlockLabel(MBB, false, false, false);
394  }
395}
396
397
398/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
399/// special global used by LLVM.  If so, emit it and return true, otherwise
400/// do nothing and return false.
401bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
402  if (GV->getName() == "llvm.used") {
403    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
404      EmitLLVMUsedList(GV->getInitializer());
405    return true;
406  }
407
408  // Ignore debug and non-emitted data.
409  if (GV->getSection() == "llvm.metadata") return true;
410
411  if (!GV->hasAppendingLinkage()) return false;
412
413  assert(GV->hasInitializer() && "Not a special LLVM global!");
414
415  const TargetData *TD = TM.getTargetData();
416  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
417  if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
418    SwitchToDataSection(TAI->getStaticCtorsSection());
419    EmitAlignment(Align, 0);
420    EmitXXStructorList(GV->getInitializer());
421    return true;
422  }
423
424  if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
425    SwitchToDataSection(TAI->getStaticDtorsSection());
426    EmitAlignment(Align, 0);
427    EmitXXStructorList(GV->getInitializer());
428    return true;
429  }
430
431  return false;
432}
433
434/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
435/// global in the specified llvm.used list as being used with this directive.
436void AsmPrinter::EmitLLVMUsedList(Constant *List) {
437  const char *Directive = TAI->getUsedDirective();
438
439  // Should be an array of 'sbyte*'.
440  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
441  if (InitList == 0) return;
442
443  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
444    O << Directive;
445    EmitConstantValueOnly(InitList->getOperand(i));
446    O << '\n';
447  }
448}
449
450/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
451/// function pointers, ignoring the init priority.
452void AsmPrinter::EmitXXStructorList(Constant *List) {
453  // Should be an array of '{ int, void ()* }' structs.  The first value is the
454  // init priority, which we ignore.
455  if (!isa<ConstantArray>(List)) return;
456  ConstantArray *InitList = cast<ConstantArray>(List);
457  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
458    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
459      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
460
461      if (CS->getOperand(1)->isNullValue())
462        return;  // Found a null terminator, exit printing.
463      // Emit the function pointer.
464      EmitGlobalConstant(CS->getOperand(1));
465    }
466}
467
468/// getGlobalLinkName - Returns the asm/link name of of the specified
469/// global variable.  Should be overridden by each target asm printer to
470/// generate the appropriate value.
471const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
472  std::string LinkName;
473
474  if (isa<Function>(GV)) {
475    LinkName += TAI->getFunctionAddrPrefix();
476    LinkName += Mang->getValueName(GV);
477    LinkName += TAI->getFunctionAddrSuffix();
478  } else {
479    LinkName += TAI->getGlobalVarAddrPrefix();
480    LinkName += Mang->getValueName(GV);
481    LinkName += TAI->getGlobalVarAddrSuffix();
482  }
483
484  return LinkName;
485}
486
487/// EmitExternalGlobal - Emit the external reference to a global variable.
488/// Should be overridden if an indirect reference should be used.
489void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
490  O << getGlobalLinkName(GV);
491}
492
493
494
495//===----------------------------------------------------------------------===//
496/// LEB 128 number encoding.
497
498/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
499/// representing an unsigned leb128 value.
500void AsmPrinter::PrintULEB128(unsigned Value) const {
501  do {
502    unsigned Byte = Value & 0x7f;
503    Value >>= 7;
504    if (Value) Byte |= 0x80;
505    O << "0x" << std::hex << Byte << std::dec;
506    if (Value) O << ", ";
507  } while (Value);
508}
509
510/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
511/// representing a signed leb128 value.
512void AsmPrinter::PrintSLEB128(int Value) const {
513  int Sign = Value >> (8 * sizeof(Value) - 1);
514  bool IsMore;
515
516  do {
517    unsigned Byte = Value & 0x7f;
518    Value >>= 7;
519    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
520    if (IsMore) Byte |= 0x80;
521    O << "0x" << std::hex << Byte << std::dec;
522    if (IsMore) O << ", ";
523  } while (IsMore);
524}
525
526//===--------------------------------------------------------------------===//
527// Emission and print routines
528//
529
530/// PrintHex - Print a value as a hexidecimal value.
531///
532void AsmPrinter::PrintHex(int Value) const {
533  O << "0x" << std::hex << Value << std::dec;
534}
535
536/// EOL - Print a newline character to asm stream.  If a comment is present
537/// then it will be printed first.  Comments should not contain '\n'.
538void AsmPrinter::EOL() const {
539  O << '\n';
540}
541
542void AsmPrinter::EOL(const std::string &Comment) const {
543  if (VerboseAsm && !Comment.empty()) {
544    O << '\t'
545      << TAI->getCommentString()
546      << ' '
547      << Comment;
548  }
549  O << '\n';
550}
551
552void AsmPrinter::EOL(const char* Comment) const {
553  if (VerboseAsm && *Comment) {
554    O << '\t'
555      << TAI->getCommentString()
556      << ' '
557      << Comment;
558  }
559  O << '\n';
560}
561
562/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
563/// unsigned leb128 value.
564void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
565  if (TAI->hasLEB128()) {
566    O << "\t.uleb128\t"
567      << Value;
568  } else {
569    O << TAI->getData8bitsDirective();
570    PrintULEB128(Value);
571  }
572}
573
574/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
575/// signed leb128 value.
576void AsmPrinter::EmitSLEB128Bytes(int Value) const {
577  if (TAI->hasLEB128()) {
578    O << "\t.sleb128\t"
579      << Value;
580  } else {
581    O << TAI->getData8bitsDirective();
582    PrintSLEB128(Value);
583  }
584}
585
586/// EmitInt8 - Emit a byte directive and value.
587///
588void AsmPrinter::EmitInt8(int Value) const {
589  O << TAI->getData8bitsDirective();
590  PrintHex(Value & 0xFF);
591}
592
593/// EmitInt16 - Emit a short directive and value.
594///
595void AsmPrinter::EmitInt16(int Value) const {
596  O << TAI->getData16bitsDirective();
597  PrintHex(Value & 0xFFFF);
598}
599
600/// EmitInt32 - Emit a long directive and value.
601///
602void AsmPrinter::EmitInt32(int Value) const {
603  O << TAI->getData32bitsDirective();
604  PrintHex(Value);
605}
606
607/// EmitInt64 - Emit a long long directive and value.
608///
609void AsmPrinter::EmitInt64(uint64_t Value) const {
610  if (TAI->getData64bitsDirective()) {
611    O << TAI->getData64bitsDirective();
612    PrintHex(Value);
613  } else {
614    if (TM.getTargetData()->isBigEndian()) {
615      EmitInt32(unsigned(Value >> 32)); O << '\n';
616      EmitInt32(unsigned(Value));
617    } else {
618      EmitInt32(unsigned(Value)); O << '\n';
619      EmitInt32(unsigned(Value >> 32));
620    }
621  }
622}
623
624/// toOctal - Convert the low order bits of X into an octal digit.
625///
626static inline char toOctal(int X) {
627  return (X&7)+'0';
628}
629
630/// printStringChar - Print a char, escaped if necessary.
631///
632static void printStringChar(std::ostream &O, unsigned char C) {
633  if (C == '"') {
634    O << "\\\"";
635  } else if (C == '\\') {
636    O << "\\\\";
637  } else if (isprint(C)) {
638    O << C;
639  } else {
640    switch(C) {
641    case '\b': O << "\\b"; break;
642    case '\f': O << "\\f"; break;
643    case '\n': O << "\\n"; break;
644    case '\r': O << "\\r"; break;
645    case '\t': O << "\\t"; break;
646    default:
647      O << '\\';
648      O << toOctal(C >> 6);
649      O << toOctal(C >> 3);
650      O << toOctal(C >> 0);
651      break;
652    }
653  }
654}
655
656/// EmitString - Emit a string with quotes and a null terminator.
657/// Special characters are emitted properly.
658/// \literal (Eg. '\t') \endliteral
659void AsmPrinter::EmitString(const std::string &String) const {
660  const char* AscizDirective = TAI->getAscizDirective();
661  if (AscizDirective)
662    O << AscizDirective;
663  else
664    O << TAI->getAsciiDirective();
665  O << '\"';
666  for (unsigned i = 0, N = String.size(); i < N; ++i) {
667    unsigned char C = String[i];
668    printStringChar(O, C);
669  }
670  if (AscizDirective)
671    O << '\"';
672  else
673    O << "\\0\"";
674}
675
676
677/// EmitFile - Emit a .file directive.
678void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
679  O << "\t.file\t" << Number << " \"";
680  for (unsigned i = 0, N = Name.size(); i < N; ++i) {
681    unsigned char C = Name[i];
682    printStringChar(O, C);
683  }
684  O << '\"';
685}
686
687
688//===----------------------------------------------------------------------===//
689
690// EmitAlignment - Emit an alignment directive to the specified power of
691// two boundary.  For example, if you pass in 3 here, you will get an 8
692// byte alignment.  If a global value is specified, and if that global has
693// an explicit alignment requested, it will unconditionally override the
694// alignment request.  However, if ForcedAlignBits is specified, this value
695// has final say: the ultimate alignment will be the max of ForcedAlignBits
696// and the alignment computed with NumBits and the global.
697//
698// The algorithm is:
699//     Align = NumBits;
700//     if (GV && GV->hasalignment) Align = GV->getalignment();
701//     Align = std::max(Align, ForcedAlignBits);
702//
703void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
704                               unsigned ForcedAlignBits,
705                               bool UseFillExpr) const {
706  if (GV && GV->getAlignment())
707    NumBits = Log2_32(GV->getAlignment());
708  NumBits = std::max(NumBits, ForcedAlignBits);
709
710  if (NumBits == 0) return;   // No need to emit alignment.
711  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
712  O << TAI->getAlignDirective() << NumBits;
713
714  unsigned FillValue = TAI->getTextAlignFillValue();
715  UseFillExpr &= IsInTextSection && FillValue;
716  if (UseFillExpr) O << ",0x" << std::hex << FillValue << std::dec;
717  O << '\n';
718}
719
720
721/// EmitZeros - Emit a block of zeros.
722///
723void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
724  if (NumZeros) {
725    if (TAI->getZeroDirective()) {
726      O << TAI->getZeroDirective() << NumZeros;
727      if (TAI->getZeroDirectiveSuffix())
728        O << TAI->getZeroDirectiveSuffix();
729      O << '\n';
730    } else {
731      for (; NumZeros; --NumZeros)
732        O << TAI->getData8bitsDirective() << "0\n";
733    }
734  }
735}
736
737// Print out the specified constant, without a storage class.  Only the
738// constants valid in constant expressions can occur here.
739void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
740  if (CV->isNullValue() || isa<UndefValue>(CV))
741    O << '0';
742  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
743    O << CI->getZExtValue();
744  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
745    // This is a constant address for a global variable or function. Use the
746    // name of the variable or function as the address value, possibly
747    // decorating it with GlobalVarAddrPrefix/Suffix or
748    // FunctionAddrPrefix/Suffix (these all default to "" )
749    if (isa<Function>(GV)) {
750      O << TAI->getFunctionAddrPrefix()
751        << Mang->getValueName(GV)
752        << TAI->getFunctionAddrSuffix();
753    } else {
754      O << TAI->getGlobalVarAddrPrefix()
755        << Mang->getValueName(GV)
756        << TAI->getGlobalVarAddrSuffix();
757    }
758  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
759    const TargetData *TD = TM.getTargetData();
760    unsigned Opcode = CE->getOpcode();
761    switch (Opcode) {
762    case Instruction::GetElementPtr: {
763      // generate a symbolic expression for the byte address
764      const Constant *ptrVal = CE->getOperand(0);
765      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
766      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
767                                                idxVec.size())) {
768        if (Offset)
769          O << '(';
770        EmitConstantValueOnly(ptrVal);
771        if (Offset > 0)
772          O << ") + " << Offset;
773        else if (Offset < 0)
774          O << ") - " << -Offset;
775      } else {
776        EmitConstantValueOnly(ptrVal);
777      }
778      break;
779    }
780    case Instruction::Trunc:
781    case Instruction::ZExt:
782    case Instruction::SExt:
783    case Instruction::FPTrunc:
784    case Instruction::FPExt:
785    case Instruction::UIToFP:
786    case Instruction::SIToFP:
787    case Instruction::FPToUI:
788    case Instruction::FPToSI:
789      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
790      break;
791    case Instruction::BitCast:
792      return EmitConstantValueOnly(CE->getOperand(0));
793
794    case Instruction::IntToPtr: {
795      // Handle casts to pointers by changing them into casts to the appropriate
796      // integer type.  This promotes constant folding and simplifies this code.
797      Constant *Op = CE->getOperand(0);
798      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
799      return EmitConstantValueOnly(Op);
800    }
801
802
803    case Instruction::PtrToInt: {
804      // Support only foldable casts to/from pointers that can be eliminated by
805      // changing the pointer to the appropriately sized integer type.
806      Constant *Op = CE->getOperand(0);
807      const Type *Ty = CE->getType();
808
809      // We can emit the pointer value into this slot if the slot is an
810      // integer slot greater or equal to the size of the pointer.
811      if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType()))
812        return EmitConstantValueOnly(Op);
813
814      O << "((";
815      EmitConstantValueOnly(Op);
816      APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty));
817
818      SmallString<40> S;
819      ptrMask.toStringUnsigned(S);
820      O << ") & " << S.c_str() << ')';
821      break;
822    }
823    case Instruction::Add:
824    case Instruction::Sub:
825    case Instruction::And:
826    case Instruction::Or:
827    case Instruction::Xor:
828      O << '(';
829      EmitConstantValueOnly(CE->getOperand(0));
830      O << ')';
831      switch (Opcode) {
832      case Instruction::Add:
833       O << " + ";
834       break;
835      case Instruction::Sub:
836       O << " - ";
837       break;
838      case Instruction::And:
839       O << " & ";
840       break;
841      case Instruction::Or:
842       O << " | ";
843       break;
844      case Instruction::Xor:
845       O << " ^ ";
846       break;
847      default:
848       break;
849      }
850      O << '(';
851      EmitConstantValueOnly(CE->getOperand(1));
852      O << ')';
853      break;
854    default:
855      assert(0 && "Unsupported operator!");
856    }
857  } else {
858    assert(0 && "Unknown constant value!");
859  }
860}
861
862/// printAsCString - Print the specified array as a C compatible string, only if
863/// the predicate isString is true.
864///
865static void printAsCString(std::ostream &O, const ConstantArray *CVA,
866                           unsigned LastElt) {
867  assert(CVA->isString() && "Array is not string compatible!");
868
869  O << '\"';
870  for (unsigned i = 0; i != LastElt; ++i) {
871    unsigned char C =
872        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
873    printStringChar(O, C);
874  }
875  O << '\"';
876}
877
878/// EmitString - Emit a zero-byte-terminated string constant.
879///
880void AsmPrinter::EmitString(const ConstantArray *CVA) const {
881  unsigned NumElts = CVA->getNumOperands();
882  if (TAI->getAscizDirective() && NumElts &&
883      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
884    O << TAI->getAscizDirective();
885    printAsCString(O, CVA, NumElts-1);
886  } else {
887    O << TAI->getAsciiDirective();
888    printAsCString(O, CVA, NumElts);
889  }
890  O << '\n';
891}
892
893/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
894void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
895  const TargetData *TD = TM.getTargetData();
896  unsigned Size = TD->getABITypeSize(CV->getType());
897
898  if (CV->isNullValue() || isa<UndefValue>(CV)) {
899    EmitZeros(Size);
900    return;
901  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
902    if (CVA->isString()) {
903      EmitString(CVA);
904    } else { // Not a string.  Print the values in successive locations
905      for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
906        EmitGlobalConstant(CVA->getOperand(i));
907    }
908    return;
909  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
910    // Print the fields in successive locations. Pad to align if needed!
911    const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
912    uint64_t sizeSoFar = 0;
913    for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
914      const Constant* field = CVS->getOperand(i);
915
916      // Check if padding is needed and insert one or more 0s.
917      uint64_t fieldSize = TD->getABITypeSize(field->getType());
918      uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
919                          - cvsLayout->getElementOffset(i)) - fieldSize;
920      sizeSoFar += fieldSize + padSize;
921
922      // Now print the actual field value.
923      EmitGlobalConstant(field);
924
925      // Insert padding - this may include padding to increase the size of the
926      // current field up to the ABI size (if the struct is not packed) as well
927      // as padding to ensure that the next field starts at the right offset.
928      EmitZeros(padSize);
929    }
930    assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
931           "Layout of constant struct may be incorrect!");
932    return;
933  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
934    // FP Constants are printed as integer constants to avoid losing
935    // precision...
936    if (CFP->getType() == Type::DoubleTy) {
937      double Val = CFP->getValueAPF().convertToDouble();  // for comment only
938      uint64_t i = CFP->getValueAPF().convertToAPInt().getZExtValue();
939      if (TAI->getData64bitsDirective())
940        O << TAI->getData64bitsDirective() << i << '\t'
941          << TAI->getCommentString() << " double value: " << Val << '\n';
942      else if (TD->isBigEndian()) {
943        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
944          << '\t' << TAI->getCommentString()
945          << " double most significant word " << Val << '\n';
946        O << TAI->getData32bitsDirective() << unsigned(i)
947          << '\t' << TAI->getCommentString()
948          << " double least significant word " << Val << '\n';
949      } else {
950        O << TAI->getData32bitsDirective() << unsigned(i)
951          << '\t' << TAI->getCommentString()
952          << " double least significant word " << Val << '\n';
953        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
954          << '\t' << TAI->getCommentString()
955          << " double most significant word " << Val << '\n';
956      }
957      return;
958    } else if (CFP->getType() == Type::FloatTy) {
959      float Val = CFP->getValueAPF().convertToFloat();  // for comment only
960      O << TAI->getData32bitsDirective()
961        << CFP->getValueAPF().convertToAPInt().getZExtValue()
962        << '\t' << TAI->getCommentString() << " float " << Val << '\n';
963      return;
964    } else if (CFP->getType() == Type::X86_FP80Ty) {
965      // all long double variants are printed as hex
966      // api needed to prevent premature destruction
967      APInt api = CFP->getValueAPF().convertToAPInt();
968      const uint64_t *p = api.getRawData();
969      APFloat DoubleVal = CFP->getValueAPF();
970      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
971      if (TD->isBigEndian()) {
972        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
973          << '\t' << TAI->getCommentString()
974          << " long double most significant halfword of ~"
975          << DoubleVal.convertToDouble() << '\n';
976        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
977          << '\t' << TAI->getCommentString()
978          << " long double next halfword\n";
979        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
980          << '\t' << TAI->getCommentString()
981          << " long double next halfword\n";
982        O << TAI->getData16bitsDirective() << uint16_t(p[0])
983          << '\t' << TAI->getCommentString()
984          << " long double next halfword\n";
985        O << TAI->getData16bitsDirective() << uint16_t(p[1])
986          << '\t' << TAI->getCommentString()
987          << " long double least significant halfword\n";
988       } else {
989        O << TAI->getData16bitsDirective() << uint16_t(p[1])
990          << '\t' << TAI->getCommentString()
991          << " long double least significant halfword of ~"
992          << DoubleVal.convertToDouble() << '\n';
993        O << TAI->getData16bitsDirective() << uint16_t(p[0])
994          << '\t' << TAI->getCommentString()
995          << " long double next halfword\n";
996        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
997          << '\t' << TAI->getCommentString()
998          << " long double next halfword\n";
999        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1000          << '\t' << TAI->getCommentString()
1001          << " long double next halfword\n";
1002        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1003          << '\t' << TAI->getCommentString()
1004          << " long double most significant halfword\n";
1005      }
1006      EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty));
1007      return;
1008    } else if (CFP->getType() == Type::PPC_FP128Ty) {
1009      // all long double variants are printed as hex
1010      // api needed to prevent premature destruction
1011      APInt api = CFP->getValueAPF().convertToAPInt();
1012      const uint64_t *p = api.getRawData();
1013      if (TD->isBigEndian()) {
1014        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1015          << '\t' << TAI->getCommentString()
1016          << " long double most significant word\n";
1017        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1018          << '\t' << TAI->getCommentString()
1019          << " long double next word\n";
1020        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1021          << '\t' << TAI->getCommentString()
1022          << " long double next word\n";
1023        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1024          << '\t' << TAI->getCommentString()
1025          << " long double least significant word\n";
1026       } else {
1027        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1028          << '\t' << TAI->getCommentString()
1029          << " long double least significant word\n";
1030        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1031          << '\t' << TAI->getCommentString()
1032          << " long double next word\n";
1033        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1034          << '\t' << TAI->getCommentString()
1035          << " long double next word\n";
1036        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1037          << '\t' << TAI->getCommentString()
1038          << " long double most significant word\n";
1039      }
1040      return;
1041    } else assert(0 && "Floating point constant type not handled");
1042  } else if (CV->getType() == Type::Int64Ty) {
1043    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1044      uint64_t Val = CI->getZExtValue();
1045
1046      if (TAI->getData64bitsDirective())
1047        O << TAI->getData64bitsDirective() << Val << '\n';
1048      else if (TD->isBigEndian()) {
1049        O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1050          << '\t' << TAI->getCommentString()
1051          << " Double-word most significant word " << Val << '\n';
1052        O << TAI->getData32bitsDirective() << unsigned(Val)
1053          << '\t' << TAI->getCommentString()
1054          << " Double-word least significant word " << Val << '\n';
1055      } else {
1056        O << TAI->getData32bitsDirective() << unsigned(Val)
1057          << '\t' << TAI->getCommentString()
1058          << " Double-word least significant word " << Val << '\n';
1059        O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1060          << '\t' << TAI->getCommentString()
1061          << " Double-word most significant word " << Val << '\n';
1062      }
1063      return;
1064    }
1065  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1066    const VectorType *PTy = CP->getType();
1067
1068    for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1069      EmitGlobalConstant(CP->getOperand(I));
1070
1071    return;
1072  }
1073
1074  const Type *type = CV->getType();
1075  printDataDirective(type);
1076  EmitConstantValueOnly(CV);
1077  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1078    SmallString<40> S;
1079    CI->getValue().toStringUnsigned(S, 16);
1080    O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1081  }
1082  O << '\n';
1083}
1084
1085void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1086  // Target doesn't support this yet!
1087  abort();
1088}
1089
1090/// PrintSpecial - Print information related to the specified machine instr
1091/// that is independent of the operand, and may be independent of the instr
1092/// itself.  This can be useful for portably encoding the comment character
1093/// or other bits of target-specific knowledge into the asmstrings.  The
1094/// syntax used is ${:comment}.  Targets can override this to add support
1095/// for their own strange codes.
1096void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
1097  if (!strcmp(Code, "private")) {
1098    O << TAI->getPrivateGlobalPrefix();
1099  } else if (!strcmp(Code, "comment")) {
1100    O << TAI->getCommentString();
1101  } else if (!strcmp(Code, "uid")) {
1102    // Assign a unique ID to this machine instruction.
1103    static const MachineInstr *LastMI = 0;
1104    static const Function *F = 0;
1105    static unsigned Counter = 0U-1;
1106
1107    // Comparing the address of MI isn't sufficient, because machineinstrs may
1108    // be allocated to the same address across functions.
1109    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1110
1111    // If this is a new machine instruction, bump the counter.
1112    if (LastMI != MI || F != ThisF) {
1113      ++Counter;
1114      LastMI = MI;
1115      F = ThisF;
1116    }
1117    O << Counter;
1118  } else {
1119    cerr << "Unknown special formatter '" << Code
1120         << "' for machine instr: " << *MI;
1121    exit(1);
1122  }
1123}
1124
1125
1126/// printInlineAsm - This method formats and prints the specified machine
1127/// instruction that is an inline asm.
1128void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1129  unsigned NumOperands = MI->getNumOperands();
1130
1131  // Count the number of register definitions.
1132  unsigned NumDefs = 0;
1133  for (; MI->getOperand(NumDefs).isRegister() && MI->getOperand(NumDefs).isDef();
1134       ++NumDefs)
1135    assert(NumDefs != NumOperands-1 && "No asm string?");
1136
1137  assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?");
1138
1139  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1140  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1141
1142  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1143  // These are useful to see where empty asm's wound up.
1144  if (AsmStr[0] == 0) {
1145    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1146    return;
1147  }
1148
1149  O << TAI->getInlineAsmStart() << "\n\t";
1150
1151  // The variant of the current asmprinter.
1152  int AsmPrinterVariant = TAI->getAssemblerDialect();
1153
1154  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1155  const char *LastEmitted = AsmStr; // One past the last character emitted.
1156
1157  while (*LastEmitted) {
1158    switch (*LastEmitted) {
1159    default: {
1160      // Not a special case, emit the string section literally.
1161      const char *LiteralEnd = LastEmitted+1;
1162      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1163             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1164        ++LiteralEnd;
1165      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1166        O.write(LastEmitted, LiteralEnd-LastEmitted);
1167      LastEmitted = LiteralEnd;
1168      break;
1169    }
1170    case '\n':
1171      ++LastEmitted;   // Consume newline character.
1172      O << '\n';       // Indent code with newline.
1173      break;
1174    case '$': {
1175      ++LastEmitted;   // Consume '$' character.
1176      bool Done = true;
1177
1178      // Handle escapes.
1179      switch (*LastEmitted) {
1180      default: Done = false; break;
1181      case '$':     // $$ -> $
1182        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1183          O << '$';
1184        ++LastEmitted;  // Consume second '$' character.
1185        break;
1186      case '(':             // $( -> same as GCC's { character.
1187        ++LastEmitted;      // Consume '(' character.
1188        if (CurVariant != -1) {
1189          cerr << "Nested variants found in inline asm string: '"
1190               << AsmStr << "'\n";
1191          exit(1);
1192        }
1193        CurVariant = 0;     // We're in the first variant now.
1194        break;
1195      case '|':
1196        ++LastEmitted;  // consume '|' character.
1197        if (CurVariant == -1) {
1198          cerr << "Found '|' character outside of variant in inline asm "
1199               << "string: '" << AsmStr << "'\n";
1200          exit(1);
1201        }
1202        ++CurVariant;   // We're in the next variant.
1203        break;
1204      case ')':         // $) -> same as GCC's } char.
1205        ++LastEmitted;  // consume ')' character.
1206        if (CurVariant == -1) {
1207          cerr << "Found '}' character outside of variant in inline asm "
1208               << "string: '" << AsmStr << "'\n";
1209          exit(1);
1210        }
1211        CurVariant = -1;
1212        break;
1213      }
1214      if (Done) break;
1215
1216      bool HasCurlyBraces = false;
1217      if (*LastEmitted == '{') {     // ${variable}
1218        ++LastEmitted;               // Consume '{' character.
1219        HasCurlyBraces = true;
1220      }
1221
1222      const char *IDStart = LastEmitted;
1223      char *IDEnd;
1224      errno = 0;
1225      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1226      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1227        cerr << "Bad $ operand number in inline asm string: '"
1228             << AsmStr << "'\n";
1229        exit(1);
1230      }
1231      LastEmitted = IDEnd;
1232
1233      char Modifier[2] = { 0, 0 };
1234
1235      if (HasCurlyBraces) {
1236        // If we have curly braces, check for a modifier character.  This
1237        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1238        if (*LastEmitted == ':') {
1239          ++LastEmitted;    // Consume ':' character.
1240          if (*LastEmitted == 0) {
1241            cerr << "Bad ${:} expression in inline asm string: '"
1242                 << AsmStr << "'\n";
1243            exit(1);
1244          }
1245
1246          Modifier[0] = *LastEmitted;
1247          ++LastEmitted;    // Consume modifier character.
1248        }
1249
1250        if (*LastEmitted != '}') {
1251          cerr << "Bad ${} expression in inline asm string: '"
1252               << AsmStr << "'\n";
1253          exit(1);
1254        }
1255        ++LastEmitted;    // Consume '}' character.
1256      }
1257
1258      if ((unsigned)Val >= NumOperands-1) {
1259        cerr << "Invalid $ operand number in inline asm string: '"
1260             << AsmStr << "'\n";
1261        exit(1);
1262      }
1263
1264      // Okay, we finally have a value number.  Ask the target to print this
1265      // operand!
1266      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1267        unsigned OpNo = 1;
1268
1269        bool Error = false;
1270
1271        // Scan to find the machine operand number for the operand.
1272        for (; Val; --Val) {
1273          if (OpNo >= MI->getNumOperands()) break;
1274          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1275          OpNo += (OpFlags >> 3) + 1;
1276        }
1277
1278        if (OpNo >= MI->getNumOperands()) {
1279          Error = true;
1280        } else {
1281          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1282          ++OpNo;  // Skip over the ID number.
1283
1284          if (Modifier[0]=='l')  // labels are target independent
1285            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1286                                 false, false, false);
1287          else {
1288            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1289            if ((OpFlags & 7) == 4 /*ADDR MODE*/) {
1290              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1291                                                Modifier[0] ? Modifier : 0);
1292            } else {
1293              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1294                                          Modifier[0] ? Modifier : 0);
1295            }
1296          }
1297        }
1298        if (Error) {
1299          cerr << "Invalid operand found in inline asm: '"
1300               << AsmStr << "'\n";
1301          MI->dump();
1302          exit(1);
1303        }
1304      }
1305      break;
1306    }
1307    }
1308  }
1309  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1310}
1311
1312/// printImplicitDef - This method prints the specified machine instruction
1313/// that is an implicit def.
1314void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1315  O << '\t' << TAI->getCommentString() << " implicit-def: "
1316    << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1317}
1318
1319/// printLabel - This method prints a local label used by debug and
1320/// exception handling tables.
1321void AsmPrinter::printLabel(const MachineInstr *MI) const {
1322  printLabel(MI->getOperand(0).getImm());
1323}
1324
1325void AsmPrinter::printLabel(unsigned Id) const {
1326  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1327}
1328
1329/// printDeclare - This method prints a local variable declaration used by
1330/// debug tables.
1331/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1332/// entry into dwarf table.
1333void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1334  int FI = MI->getOperand(0).getIndex();
1335  GlobalValue *GV = MI->getOperand(1).getGlobal();
1336  MMI->RecordVariable(GV, FI);
1337}
1338
1339/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1340/// instruction, using the specified assembler variant.  Targets should
1341/// overried this to format as appropriate.
1342bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1343                                 unsigned AsmVariant, const char *ExtraCode) {
1344  // Target doesn't support this yet!
1345  return true;
1346}
1347
1348bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1349                                       unsigned AsmVariant,
1350                                       const char *ExtraCode) {
1351  // Target doesn't support this yet!
1352  return true;
1353}
1354
1355/// printBasicBlockLabel - This method prints the label for the specified
1356/// MachineBasicBlock
1357void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1358                                      bool printAlign,
1359                                      bool printColon,
1360                                      bool printComment) const {
1361  if (printAlign) {
1362    unsigned Align = MBB->getAlignment();
1363    if (Align)
1364      EmitAlignment(Log2_32(Align));
1365  }
1366
1367  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1368    << MBB->getNumber();
1369  if (printColon)
1370    O << ':';
1371  if (printComment && MBB->getBasicBlock())
1372    O << '\t' << TAI->getCommentString() << ' '
1373      << MBB->getBasicBlock()->getNameStart();
1374}
1375
1376/// printPICJumpTableSetLabel - This method prints a set label for the
1377/// specified MachineBasicBlock for a jumptable entry.
1378void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1379                                           const MachineBasicBlock *MBB) const {
1380  if (!TAI->getSetDirective())
1381    return;
1382
1383  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1384    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1385  printBasicBlockLabel(MBB, false, false, false);
1386  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1387    << '_' << uid << '\n';
1388}
1389
1390void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1391                                           const MachineBasicBlock *MBB) const {
1392  if (!TAI->getSetDirective())
1393    return;
1394
1395  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1396    << getFunctionNumber() << '_' << uid << '_' << uid2
1397    << "_set_" << MBB->getNumber() << ',';
1398  printBasicBlockLabel(MBB, false, false, false);
1399  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1400    << '_' << uid << '_' << uid2 << '\n';
1401}
1402
1403/// printDataDirective - This method prints the asm directive for the
1404/// specified type.
1405void AsmPrinter::printDataDirective(const Type *type) {
1406  const TargetData *TD = TM.getTargetData();
1407  switch (type->getTypeID()) {
1408  case Type::IntegerTyID: {
1409    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1410    if (BitWidth <= 8)
1411      O << TAI->getData8bitsDirective();
1412    else if (BitWidth <= 16)
1413      O << TAI->getData16bitsDirective();
1414    else if (BitWidth <= 32)
1415      O << TAI->getData32bitsDirective();
1416    else if (BitWidth <= 64) {
1417      assert(TAI->getData64bitsDirective() &&
1418             "Target cannot handle 64-bit constant exprs!");
1419      O << TAI->getData64bitsDirective();
1420    }
1421    break;
1422  }
1423  case Type::PointerTyID:
1424    if (TD->getPointerSize() == 8) {
1425      assert(TAI->getData64bitsDirective() &&
1426             "Target cannot handle 64-bit pointer exprs!");
1427      O << TAI->getData64bitsDirective();
1428    } else {
1429      O << TAI->getData32bitsDirective();
1430    }
1431    break;
1432  case Type::FloatTyID: case Type::DoubleTyID:
1433  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1434    assert (0 && "Should have already output floating point constant.");
1435  default:
1436    assert (0 && "Can't handle printing this type of thing");
1437    break;
1438  }
1439}
1440
1441void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1442                                   const char *Prefix) {
1443  if (Name[0]=='\"')
1444    O << '\"';
1445  O << TAI->getPrivateGlobalPrefix();
1446  if (Prefix) O << Prefix;
1447  if (Name[0]=='\"')
1448    O << '\"';
1449  if (Name[0]=='\"')
1450    O << Name[1];
1451  else
1452    O << Name;
1453  O << Suffix;
1454  if (Name[0]=='\"')
1455    O << '\"';
1456}
1457
1458void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1459  printSuffixedName(Name.c_str(), Suffix);
1460}
1461
1462void AsmPrinter::printVisibility(const std::string& Name,
1463                                 unsigned Visibility) const {
1464  if (Visibility == GlobalValue::HiddenVisibility) {
1465    if (const char *Directive = TAI->getHiddenDirective())
1466      O << Directive << Name << '\n';
1467  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1468    if (const char *Directive = TAI->getProtectedDirective())
1469      O << Directive << Name << '\n';
1470  }
1471}
1472
1473GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(Collector *C) {
1474  if (!C->usesMetadata())
1475    return 0;
1476<<<<<<< HEAD:lib/CodeGen/AsmPrinter.cpp
1477
1478  gcp_iterator GCPI = GCMetadataPrinters.find(C);
1479  if (GCPI != GCMetadataPrinters.end())
1480    return GCPI->second;
1481
1482  const char *Name = C->getName().c_str();
1483
1484=======
1485
1486  gcp_iterator GCPI = GCMetadataPrinters.find(C);
1487  if (GCPI != GCMetadataPrinters.end())
1488    return GCPI->second;
1489
1490  const char *Name = C->getName().c_str();
1491
1492>>>>>>> Factor out asmprinters from collector interface.:lib/CodeGen/AsmPrinter.cpp
1493  for (GCMetadataPrinterRegistry::iterator
1494         I = GCMetadataPrinterRegistry::begin(),
1495         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1496    if (strcmp(Name, I->getName()) == 0) {
1497      GCMetadataPrinter *GCP = I->instantiate();
1498      GCP->Coll = C;
1499      GCMetadataPrinters.insert(std::make_pair(C, GCP));
1500      return GCP;
1501    }
1502<<<<<<< HEAD:lib/CodeGen/AsmPrinter.cpp
1503
1504=======
1505
1506>>>>>>> Factor out asmprinters from collector interface.:lib/CodeGen/AsmPrinter.cpp
1507  cerr << "no GCMetadataPrinter registered for collector: " << Name << "\n";
1508  abort();
1509}
1510