AsmPrinter.cpp revision b13bafe5c12dd908b55c559c93adaeb1627ed096
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/DwarfWriter.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Mangler.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetAsmInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/ADT/StringExtras.h"
36#include <cerrno>
37using namespace llvm;
38
39static cl::opt<cl::boolOrDefault>
40AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
41           cl::init(cl::BOU_UNSET));
42
43char AsmPrinter::ID = 0;
44AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
45                       const TargetAsmInfo *T, CodeGenOpt::Level OL, bool VDef)
46  : MachineFunctionPass(&ID), FunctionNumber(0), OptLevel(OL), O(o),
47    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
48    IsInTextSection(false)
49{
50  switch (AsmVerbose) {
51  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
52  case cl::BOU_TRUE:  VerboseAsm = true;  break;
53  case cl::BOU_FALSE: VerboseAsm = false; break;
54  }
55}
56
57AsmPrinter::~AsmPrinter() {
58  for (gcp_iterator I = GCMetadataPrinters.begin(),
59                    E = GCMetadataPrinters.end(); I != E; ++I)
60    delete I->second;
61}
62
63/// SwitchToTextSection - Switch to the specified text section of the executable
64/// if we are not already in it!
65///
66void AsmPrinter::SwitchToTextSection(const char *NewSection,
67                                     const GlobalValue *GV) {
68  std::string NS;
69  if (GV && GV->hasSection())
70    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
71  else
72    NS = NewSection;
73
74  // If we're already in this section, we're done.
75  if (CurrentSection == NS) return;
76
77  // Close the current section, if applicable.
78  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
79    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
80
81  CurrentSection = NS;
82
83  if (!CurrentSection.empty())
84    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
85
86  IsInTextSection = true;
87}
88
89/// SwitchToDataSection - Switch to the specified data section of the executable
90/// if we are not already in it!
91///
92void AsmPrinter::SwitchToDataSection(const char *NewSection,
93                                     const GlobalValue *GV) {
94  std::string NS;
95  if (GV && GV->hasSection())
96    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
97  else
98    NS = NewSection;
99
100  // If we're already in this section, we're done.
101  if (CurrentSection == NS) return;
102
103  // Close the current section, if applicable.
104  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
105    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
106
107  CurrentSection = NS;
108
109  if (!CurrentSection.empty())
110    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
111
112  IsInTextSection = false;
113}
114
115/// SwitchToSection - Switch to the specified section of the executable if we
116/// are not already in it!
117void AsmPrinter::SwitchToSection(const Section* NS) {
118  const std::string& NewSection = NS->getName();
119
120  // If we're already in this section, we're done.
121  if (CurrentSection == NewSection) return;
122
123  // Close the current section, if applicable.
124  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
125    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
126
127  // FIXME: Make CurrentSection a Section* in the future
128  CurrentSection = NewSection;
129  CurrentSection_ = NS;
130
131  if (!CurrentSection.empty()) {
132    // If section is named we need to switch into it via special '.section'
133    // directive and also append funky flags. Otherwise - section name is just
134    // some magic assembler directive.
135    if (NS->isNamed())
136      O << TAI->getSwitchToSectionDirective()
137        << CurrentSection
138        << TAI->getSectionFlags(NS->getFlags());
139    else
140      O << CurrentSection;
141    O << TAI->getDataSectionStartSuffix() << '\n';
142  }
143
144  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
145}
146
147void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
148  MachineFunctionPass::getAnalysisUsage(AU);
149  AU.addRequired<GCModuleInfo>();
150}
151
152bool AsmPrinter::doInitialization(Module &M) {
153  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix());
154
155  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
156  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
157
158  if (TAI->hasSingleParameterDotFile()) {
159    /* Very minimal debug info. It is ignored if we emit actual
160       debug info. If we don't, this at helps the user find where
161       a function came from. */
162    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
163  }
164
165  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
166    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
167      MP->beginAssembly(O, *this, *TAI);
168
169  if (!M.getModuleInlineAsm().empty())
170    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
171      << M.getModuleInlineAsm()
172      << '\n' << TAI->getCommentString()
173      << " End of file scope inline assembly\n";
174
175  SwitchToDataSection("");   // Reset back to no section.
176
177  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
178  if (MMI) MMI->AnalyzeModule(M);
179  DW = getAnalysisIfAvailable<DwarfWriter>();
180  return false;
181}
182
183bool AsmPrinter::doFinalization(Module &M) {
184  if (TAI->getWeakRefDirective()) {
185    if (!ExtWeakSymbols.empty())
186      SwitchToDataSection("");
187
188    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
189         e = ExtWeakSymbols.end(); i != e; ++i)
190      O << TAI->getWeakRefDirective() << Mang->getValueName(*i) << '\n';
191  }
192
193  if (TAI->getSetDirective()) {
194    if (!M.alias_empty())
195      SwitchToSection(TAI->getTextSection());
196
197    O << '\n';
198    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
199         I!=E; ++I) {
200      std::string Name = Mang->getValueName(I);
201      std::string Target;
202
203      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
204      Target = Mang->getValueName(GV);
205
206      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
207        O << "\t.globl\t" << Name << '\n';
208      else if (I->hasWeakLinkage())
209        O << TAI->getWeakRefDirective() << Name << '\n';
210      else if (!I->hasLocalLinkage())
211        assert(0 && "Invalid alias linkage");
212
213      printVisibility(Name, I->getVisibility());
214
215      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
216    }
217  }
218
219  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
220  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
221  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
222    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
223      MP->finishAssembly(O, *this, *TAI);
224
225  // If we don't have any trampolines, then we don't require stack memory
226  // to be executable. Some targets have a directive to declare this.
227  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
228  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
229    if (TAI->getNonexecutableStackDirective())
230      O << TAI->getNonexecutableStackDirective() << '\n';
231
232  delete Mang; Mang = 0;
233  return false;
234}
235
236const std::string &
237AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF,
238                                     std::string &Name) const {
239  assert(MF && "No machine function?");
240  Name = MF->getFunction()->getName();
241  if (Name.empty())
242    Name = Mang->getValueName(MF->getFunction());
243  Name = Mang->makeNameProper(TAI->getEHGlobalPrefix() +
244                              Name + ".eh", TAI->getGlobalPrefix());
245  return Name;
246}
247
248void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
249  // What's my mangled name?
250  CurrentFnName = Mang->getValueName(MF.getFunction());
251  IncrementFunctionNumber();
252}
253
254namespace {
255  // SectionCPs - Keep track the alignment, constpool entries per Section.
256  struct SectionCPs {
257    const Section *S;
258    unsigned Alignment;
259    SmallVector<unsigned, 4> CPEs;
260    SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {};
261  };
262}
263
264/// EmitConstantPool - Print to the current output stream assembly
265/// representations of the constants in the constant pool MCP. This is
266/// used to print out constants which have been "spilled to memory" by
267/// the code generator.
268///
269void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
270  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
271  if (CP.empty()) return;
272
273  // Calculate sections for constant pool entries. We collect entries to go into
274  // the same section together to reduce amount of section switch statements.
275  SmallVector<SectionCPs, 4> CPSections;
276  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
277    MachineConstantPoolEntry CPE = CP[i];
278    unsigned Align = CPE.getAlignment();
279    const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
280    // The number of sections are small, just do a linear search from the
281    // last section to the first.
282    bool Found = false;
283    unsigned SecIdx = CPSections.size();
284    while (SecIdx != 0) {
285      if (CPSections[--SecIdx].S == S) {
286        Found = true;
287        break;
288      }
289    }
290    if (!Found) {
291      SecIdx = CPSections.size();
292      CPSections.push_back(SectionCPs(S, Align));
293    }
294
295    if (Align > CPSections[SecIdx].Alignment)
296      CPSections[SecIdx].Alignment = Align;
297    CPSections[SecIdx].CPEs.push_back(i);
298  }
299
300  // Now print stuff into the calculated sections.
301  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
302    SwitchToSection(CPSections[i].S);
303    EmitAlignment(Log2_32(CPSections[i].Alignment));
304
305    unsigned Offset = 0;
306    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
307      unsigned CPI = CPSections[i].CPEs[j];
308      MachineConstantPoolEntry CPE = CP[CPI];
309
310      // Emit inter-object padding for alignment.
311      unsigned AlignMask = CPE.getAlignment() - 1;
312      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
313      EmitZeros(NewOffset - Offset);
314
315      const Type *Ty = CPE.getType();
316      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
317
318      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
319        << CPI << ":\t\t\t\t\t";
320      if (VerboseAsm) {
321        O << TAI->getCommentString() << ' ';
322        WriteTypeSymbolic(O, CPE.getType(), 0);
323      }
324      O << '\n';
325      if (CPE.isMachineConstantPoolEntry())
326        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
327      else
328        EmitGlobalConstant(CPE.Val.ConstVal);
329    }
330  }
331}
332
333/// EmitJumpTableInfo - Print assembly representations of the jump tables used
334/// by the current function to the current output stream.
335///
336void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
337                                   MachineFunction &MF) {
338  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
339  if (JT.empty()) return;
340
341  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
342
343  // Pick the directive to use to print the jump table entries, and switch to
344  // the appropriate section.
345  TargetLowering *LoweringInfo = TM.getTargetLowering();
346
347  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
348  const Function *F = MF.getFunction();
349  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
350  bool JTInDiffSection = false;
351  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
352      !JumpTableDataSection ||
353      SectionFlags & SectionFlags::Linkonce) {
354    // In PIC mode, we need to emit the jump table to the same section as the
355    // function body itself, otherwise the label differences won't make sense.
356    // We should also do if the section name is NULL or function is declared in
357    // discardable section.
358    SwitchToSection(TAI->SectionForGlobal(F));
359  } else {
360    SwitchToDataSection(JumpTableDataSection);
361    JTInDiffSection = true;
362  }
363
364  EmitAlignment(Log2_32(MJTI->getAlignment()));
365
366  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
367    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
368
369    // If this jump table was deleted, ignore it.
370    if (JTBBs.empty()) continue;
371
372    // For PIC codegen, if possible we want to use the SetDirective to reduce
373    // the number of relocations the assembler will generate for the jump table.
374    // Set directives are all printed before the jump table itself.
375    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
376    if (TAI->getSetDirective() && IsPic)
377      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
378        if (EmittedSets.insert(JTBBs[ii]))
379          printPICJumpTableSetLabel(i, JTBBs[ii]);
380
381    // On some targets (e.g. darwin) we want to emit two consequtive labels
382    // before each jump table.  The first label is never referenced, but tells
383    // the assembler and linker the extents of the jump table object.  The
384    // second label is actually referenced by the code.
385    if (JTInDiffSection) {
386      if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
387        O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
388    }
389
390    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
391      << '_' << i << ":\n";
392
393    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
394      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
395      O << '\n';
396    }
397  }
398}
399
400void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
401                                        const MachineBasicBlock *MBB,
402                                        unsigned uid)  const {
403  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
404
405  // Use JumpTableDirective otherwise honor the entry size from the jump table
406  // info.
407  const char *JTEntryDirective = TAI->getJumpTableDirective();
408  bool HadJTEntryDirective = JTEntryDirective != NULL;
409  if (!HadJTEntryDirective) {
410    JTEntryDirective = MJTI->getEntrySize() == 4 ?
411      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
412  }
413
414  O << JTEntryDirective << ' ';
415
416  // If we have emitted set directives for the jump table entries, print
417  // them rather than the entries themselves.  If we're emitting PIC, then
418  // emit the table entries as differences between two text section labels.
419  // If we're emitting non-PIC code, then emit the entries as direct
420  // references to the target basic blocks.
421  if (IsPic) {
422    if (TAI->getSetDirective()) {
423      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
424        << '_' << uid << "_set_" << MBB->getNumber();
425    } else {
426      printBasicBlockLabel(MBB, false, false, false);
427      // If the arch uses custom Jump Table directives, don't calc relative to
428      // JT
429      if (!HadJTEntryDirective)
430        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
431          << getFunctionNumber() << '_' << uid;
432    }
433  } else {
434    printBasicBlockLabel(MBB, false, false, false);
435  }
436}
437
438
439/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
440/// special global used by LLVM.  If so, emit it and return true, otherwise
441/// do nothing and return false.
442bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
443  if (GV->getName() == "llvm.used") {
444    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
445      EmitLLVMUsedList(GV->getInitializer());
446    return true;
447  }
448
449  // Ignore debug and non-emitted data.
450  if (GV->getSection() == "llvm.metadata" ||
451      GV->hasAvailableExternallyLinkage())
452    return true;
453
454  if (!GV->hasAppendingLinkage()) return false;
455
456  assert(GV->hasInitializer() && "Not a special LLVM global!");
457
458  const TargetData *TD = TM.getTargetData();
459  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
460  if (GV->getName() == "llvm.global_ctors") {
461    SwitchToDataSection(TAI->getStaticCtorsSection());
462    EmitAlignment(Align, 0);
463    EmitXXStructorList(GV->getInitializer());
464    return true;
465  }
466
467  if (GV->getName() == "llvm.global_dtors") {
468    SwitchToDataSection(TAI->getStaticDtorsSection());
469    EmitAlignment(Align, 0);
470    EmitXXStructorList(GV->getInitializer());
471    return true;
472  }
473
474  return false;
475}
476
477/// findGlobalValue - if CV is an expression equivalent to a single
478/// global value, return that value.
479const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
480  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
481    return GV;
482  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
483    const TargetData *TD = TM.getTargetData();
484    unsigned Opcode = CE->getOpcode();
485    switch (Opcode) {
486    case Instruction::GetElementPtr: {
487      const Constant *ptrVal = CE->getOperand(0);
488      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
489      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
490        return 0;
491      return findGlobalValue(ptrVal);
492    }
493    case Instruction::BitCast:
494      return findGlobalValue(CE->getOperand(0));
495    default:
496      return 0;
497    }
498  }
499  return 0;
500}
501
502/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
503/// global in the specified llvm.used list for which emitUsedDirectiveFor
504/// is true, as being used with this directive.
505
506void AsmPrinter::EmitLLVMUsedList(Constant *List) {
507  const char *Directive = TAI->getUsedDirective();
508
509  // Should be an array of 'i8*'.
510  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
511  if (InitList == 0) return;
512
513  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
514    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
515    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
516      O << Directive;
517      EmitConstantValueOnly(InitList->getOperand(i));
518      O << '\n';
519    }
520  }
521}
522
523/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
524/// function pointers, ignoring the init priority.
525void AsmPrinter::EmitXXStructorList(Constant *List) {
526  // Should be an array of '{ int, void ()* }' structs.  The first value is the
527  // init priority, which we ignore.
528  if (!isa<ConstantArray>(List)) return;
529  ConstantArray *InitList = cast<ConstantArray>(List);
530  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
531    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
532      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
533
534      if (CS->getOperand(1)->isNullValue())
535        return;  // Found a null terminator, exit printing.
536      // Emit the function pointer.
537      EmitGlobalConstant(CS->getOperand(1));
538    }
539}
540
541/// getGlobalLinkName - Returns the asm/link name of of the specified
542/// global variable.  Should be overridden by each target asm printer to
543/// generate the appropriate value.
544const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
545                                                 std::string &LinkName) const {
546  if (isa<Function>(GV)) {
547    LinkName += TAI->getFunctionAddrPrefix();
548    LinkName += Mang->getValueName(GV);
549    LinkName += TAI->getFunctionAddrSuffix();
550  } else {
551    LinkName += TAI->getGlobalVarAddrPrefix();
552    LinkName += Mang->getValueName(GV);
553    LinkName += TAI->getGlobalVarAddrSuffix();
554  }
555
556  return LinkName;
557}
558
559/// EmitExternalGlobal - Emit the external reference to a global variable.
560/// Should be overridden if an indirect reference should be used.
561void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
562  std::string GLN;
563  O << getGlobalLinkName(GV, GLN);
564}
565
566
567
568//===----------------------------------------------------------------------===//
569/// LEB 128 number encoding.
570
571/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
572/// representing an unsigned leb128 value.
573void AsmPrinter::PrintULEB128(unsigned Value) const {
574  char Buffer[20];
575  do {
576    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
577    Value >>= 7;
578    if (Value) Byte |= 0x80;
579    O << "0x" << utohex_buffer(Byte, Buffer+20);
580    if (Value) O << ", ";
581  } while (Value);
582}
583
584/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
585/// representing a signed leb128 value.
586void AsmPrinter::PrintSLEB128(int Value) const {
587  int Sign = Value >> (8 * sizeof(Value) - 1);
588  bool IsMore;
589  char Buffer[20];
590
591  do {
592    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
593    Value >>= 7;
594    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
595    if (IsMore) Byte |= 0x80;
596    O << "0x" << utohex_buffer(Byte, Buffer+20);
597    if (IsMore) O << ", ";
598  } while (IsMore);
599}
600
601//===--------------------------------------------------------------------===//
602// Emission and print routines
603//
604
605/// PrintHex - Print a value as a hexidecimal value.
606///
607void AsmPrinter::PrintHex(int Value) const {
608  char Buffer[20];
609  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
610}
611
612/// EOL - Print a newline character to asm stream.  If a comment is present
613/// then it will be printed first.  Comments should not contain '\n'.
614void AsmPrinter::EOL() const {
615  O << '\n';
616}
617
618void AsmPrinter::EOL(const std::string &Comment) const {
619  if (VerboseAsm && !Comment.empty()) {
620    O << '\t'
621      << TAI->getCommentString()
622      << ' '
623      << Comment;
624  }
625  O << '\n';
626}
627
628void AsmPrinter::EOL(const char* Comment) const {
629  if (VerboseAsm && *Comment) {
630    O << '\t'
631      << TAI->getCommentString()
632      << ' '
633      << Comment;
634  }
635  O << '\n';
636}
637
638/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
639/// unsigned leb128 value.
640void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
641  if (TAI->hasLEB128()) {
642    O << "\t.uleb128\t"
643      << Value;
644  } else {
645    O << TAI->getData8bitsDirective();
646    PrintULEB128(Value);
647  }
648}
649
650/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
651/// signed leb128 value.
652void AsmPrinter::EmitSLEB128Bytes(int Value) const {
653  if (TAI->hasLEB128()) {
654    O << "\t.sleb128\t"
655      << Value;
656  } else {
657    O << TAI->getData8bitsDirective();
658    PrintSLEB128(Value);
659  }
660}
661
662/// EmitInt8 - Emit a byte directive and value.
663///
664void AsmPrinter::EmitInt8(int Value) const {
665  O << TAI->getData8bitsDirective();
666  PrintHex(Value & 0xFF);
667}
668
669/// EmitInt16 - Emit a short directive and value.
670///
671void AsmPrinter::EmitInt16(int Value) const {
672  O << TAI->getData16bitsDirective();
673  PrintHex(Value & 0xFFFF);
674}
675
676/// EmitInt32 - Emit a long directive and value.
677///
678void AsmPrinter::EmitInt32(int Value) const {
679  O << TAI->getData32bitsDirective();
680  PrintHex(Value);
681}
682
683/// EmitInt64 - Emit a long long directive and value.
684///
685void AsmPrinter::EmitInt64(uint64_t Value) const {
686  if (TAI->getData64bitsDirective()) {
687    O << TAI->getData64bitsDirective();
688    PrintHex(Value);
689  } else {
690    if (TM.getTargetData()->isBigEndian()) {
691      EmitInt32(unsigned(Value >> 32)); O << '\n';
692      EmitInt32(unsigned(Value));
693    } else {
694      EmitInt32(unsigned(Value)); O << '\n';
695      EmitInt32(unsigned(Value >> 32));
696    }
697  }
698}
699
700/// toOctal - Convert the low order bits of X into an octal digit.
701///
702static inline char toOctal(int X) {
703  return (X&7)+'0';
704}
705
706/// printStringChar - Print a char, escaped if necessary.
707///
708static void printStringChar(raw_ostream &O, unsigned char C) {
709  if (C == '"') {
710    O << "\\\"";
711  } else if (C == '\\') {
712    O << "\\\\";
713  } else if (isprint((unsigned char)C)) {
714    O << C;
715  } else {
716    switch(C) {
717    case '\b': O << "\\b"; break;
718    case '\f': O << "\\f"; break;
719    case '\n': O << "\\n"; break;
720    case '\r': O << "\\r"; break;
721    case '\t': O << "\\t"; break;
722    default:
723      O << '\\';
724      O << toOctal(C >> 6);
725      O << toOctal(C >> 3);
726      O << toOctal(C >> 0);
727      break;
728    }
729  }
730}
731
732/// EmitString - Emit a string with quotes and a null terminator.
733/// Special characters are emitted properly.
734/// \literal (Eg. '\t') \endliteral
735void AsmPrinter::EmitString(const std::string &String) const {
736  EmitString(String.c_str(), String.size());
737}
738
739void AsmPrinter::EmitString(const char *String, unsigned Size) const {
740  const char* AscizDirective = TAI->getAscizDirective();
741  if (AscizDirective)
742    O << AscizDirective;
743  else
744    O << TAI->getAsciiDirective();
745  O << '\"';
746  for (unsigned i = 0; i < Size; ++i)
747    printStringChar(O, String[i]);
748  if (AscizDirective)
749    O << '\"';
750  else
751    O << "\\0\"";
752}
753
754
755/// EmitFile - Emit a .file directive.
756void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
757  O << "\t.file\t" << Number << " \"";
758  for (unsigned i = 0, N = Name.size(); i < N; ++i)
759    printStringChar(O, Name[i]);
760  O << '\"';
761}
762
763
764//===----------------------------------------------------------------------===//
765
766// EmitAlignment - Emit an alignment directive to the specified power of
767// two boundary.  For example, if you pass in 3 here, you will get an 8
768// byte alignment.  If a global value is specified, and if that global has
769// an explicit alignment requested, it will unconditionally override the
770// alignment request.  However, if ForcedAlignBits is specified, this value
771// has final say: the ultimate alignment will be the max of ForcedAlignBits
772// and the alignment computed with NumBits and the global.
773//
774// The algorithm is:
775//     Align = NumBits;
776//     if (GV && GV->hasalignment) Align = GV->getalignment();
777//     Align = std::max(Align, ForcedAlignBits);
778//
779void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
780                               unsigned ForcedAlignBits,
781                               bool UseFillExpr) const {
782  if (GV && GV->getAlignment())
783    NumBits = Log2_32(GV->getAlignment());
784  NumBits = std::max(NumBits, ForcedAlignBits);
785
786  if (NumBits == 0) return;   // No need to emit alignment.
787  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
788  O << TAI->getAlignDirective() << NumBits;
789
790  unsigned FillValue = TAI->getTextAlignFillValue();
791  UseFillExpr &= IsInTextSection && FillValue;
792  if (UseFillExpr) {
793    O << ',';
794    PrintHex(FillValue);
795  }
796  O << '\n';
797}
798
799
800/// EmitZeros - Emit a block of zeros.
801///
802void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
803  if (NumZeros) {
804    if (TAI->getZeroDirective()) {
805      O << TAI->getZeroDirective() << NumZeros;
806      if (TAI->getZeroDirectiveSuffix())
807        O << TAI->getZeroDirectiveSuffix();
808      O << '\n';
809    } else {
810      for (; NumZeros; --NumZeros)
811        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
812    }
813  }
814}
815
816// Print out the specified constant, without a storage class.  Only the
817// constants valid in constant expressions can occur here.
818void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
819  if (CV->isNullValue() || isa<UndefValue>(CV))
820    O << '0';
821  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
822    O << CI->getZExtValue();
823  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
824    // This is a constant address for a global variable or function. Use the
825    // name of the variable or function as the address value, possibly
826    // decorating it with GlobalVarAddrPrefix/Suffix or
827    // FunctionAddrPrefix/Suffix (these all default to "" )
828    if (isa<Function>(GV)) {
829      O << TAI->getFunctionAddrPrefix()
830        << Mang->getValueName(GV)
831        << TAI->getFunctionAddrSuffix();
832    } else {
833      O << TAI->getGlobalVarAddrPrefix()
834        << Mang->getValueName(GV)
835        << TAI->getGlobalVarAddrSuffix();
836    }
837  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
838    const TargetData *TD = TM.getTargetData();
839    unsigned Opcode = CE->getOpcode();
840    switch (Opcode) {
841    case Instruction::GetElementPtr: {
842      // generate a symbolic expression for the byte address
843      const Constant *ptrVal = CE->getOperand(0);
844      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
845      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
846                                                idxVec.size())) {
847        // Truncate/sext the offset to the pointer size.
848        if (TD->getPointerSizeInBits() != 64) {
849          int SExtAmount = 64-TD->getPointerSizeInBits();
850          Offset = (Offset << SExtAmount) >> SExtAmount;
851        }
852
853        if (Offset)
854          O << '(';
855        EmitConstantValueOnly(ptrVal);
856        if (Offset > 0)
857          O << ") + " << Offset;
858        else if (Offset < 0)
859          O << ") - " << -Offset;
860      } else {
861        EmitConstantValueOnly(ptrVal);
862      }
863      break;
864    }
865    case Instruction::Trunc:
866    case Instruction::ZExt:
867    case Instruction::SExt:
868    case Instruction::FPTrunc:
869    case Instruction::FPExt:
870    case Instruction::UIToFP:
871    case Instruction::SIToFP:
872    case Instruction::FPToUI:
873    case Instruction::FPToSI:
874      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
875      break;
876    case Instruction::BitCast:
877      return EmitConstantValueOnly(CE->getOperand(0));
878
879    case Instruction::IntToPtr: {
880      // Handle casts to pointers by changing them into casts to the appropriate
881      // integer type.  This promotes constant folding and simplifies this code.
882      Constant *Op = CE->getOperand(0);
883      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
884      return EmitConstantValueOnly(Op);
885    }
886
887
888    case Instruction::PtrToInt: {
889      // Support only foldable casts to/from pointers that can be eliminated by
890      // changing the pointer to the appropriately sized integer type.
891      Constant *Op = CE->getOperand(0);
892      const Type *Ty = CE->getType();
893
894      // We can emit the pointer value into this slot if the slot is an
895      // integer slot greater or equal to the size of the pointer.
896      if (TD->getTypeAllocSize(Ty) >= TD->getTypeAllocSize(Op->getType()))
897        return EmitConstantValueOnly(Op);
898
899      O << "((";
900      EmitConstantValueOnly(Op);
901      APInt ptrMask = APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Ty));
902
903      SmallString<40> S;
904      ptrMask.toStringUnsigned(S);
905      O << ") & " << S.c_str() << ')';
906      break;
907    }
908    case Instruction::Add:
909    case Instruction::Sub:
910    case Instruction::And:
911    case Instruction::Or:
912    case Instruction::Xor:
913      O << '(';
914      EmitConstantValueOnly(CE->getOperand(0));
915      O << ')';
916      switch (Opcode) {
917      case Instruction::Add:
918       O << " + ";
919       break;
920      case Instruction::Sub:
921       O << " - ";
922       break;
923      case Instruction::And:
924       O << " & ";
925       break;
926      case Instruction::Or:
927       O << " | ";
928       break;
929      case Instruction::Xor:
930       O << " ^ ";
931       break;
932      default:
933       break;
934      }
935      O << '(';
936      EmitConstantValueOnly(CE->getOperand(1));
937      O << ')';
938      break;
939    default:
940      assert(0 && "Unsupported operator!");
941    }
942  } else {
943    assert(0 && "Unknown constant value!");
944  }
945}
946
947/// printAsCString - Print the specified array as a C compatible string, only if
948/// the predicate isString is true.
949///
950static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
951                           unsigned LastElt) {
952  assert(CVA->isString() && "Array is not string compatible!");
953
954  O << '\"';
955  for (unsigned i = 0; i != LastElt; ++i) {
956    unsigned char C =
957        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
958    printStringChar(O, C);
959  }
960  O << '\"';
961}
962
963/// EmitString - Emit a zero-byte-terminated string constant.
964///
965void AsmPrinter::EmitString(const ConstantArray *CVA) const {
966  unsigned NumElts = CVA->getNumOperands();
967  if (TAI->getAscizDirective() && NumElts &&
968      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
969    O << TAI->getAscizDirective();
970    printAsCString(O, CVA, NumElts-1);
971  } else {
972    O << TAI->getAsciiDirective();
973    printAsCString(O, CVA, NumElts);
974  }
975  O << '\n';
976}
977
978void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
979                                         unsigned AddrSpace) {
980  if (CVA->isString()) {
981    EmitString(CVA);
982  } else { // Not a string.  Print the values in successive locations
983    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
984      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
985  }
986}
987
988void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
989  const VectorType *PTy = CP->getType();
990
991  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
992    EmitGlobalConstant(CP->getOperand(I));
993}
994
995void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
996                                          unsigned AddrSpace) {
997  // Print the fields in successive locations. Pad to align if needed!
998  const TargetData *TD = TM.getTargetData();
999  unsigned Size = TD->getTypeAllocSize(CVS->getType());
1000  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
1001  uint64_t sizeSoFar = 0;
1002  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
1003    const Constant* field = CVS->getOperand(i);
1004
1005    // Check if padding is needed and insert one or more 0s.
1006    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
1007    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1008                        - cvsLayout->getElementOffset(i)) - fieldSize;
1009    sizeSoFar += fieldSize + padSize;
1010
1011    // Now print the actual field value.
1012    EmitGlobalConstant(field, AddrSpace);
1013
1014    // Insert padding - this may include padding to increase the size of the
1015    // current field up to the ABI size (if the struct is not packed) as well
1016    // as padding to ensure that the next field starts at the right offset.
1017    EmitZeros(padSize, AddrSpace);
1018  }
1019  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1020         "Layout of constant struct may be incorrect!");
1021}
1022
1023void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1024                                      unsigned AddrSpace) {
1025  // FP Constants are printed as integer constants to avoid losing
1026  // precision...
1027  const TargetData *TD = TM.getTargetData();
1028  if (CFP->getType() == Type::DoubleTy) {
1029    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1030    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1031    if (TAI->getData64bitsDirective(AddrSpace)) {
1032      O << TAI->getData64bitsDirective(AddrSpace) << i;
1033      if (VerboseAsm)
1034        O << '\t' << TAI->getCommentString() << " double value: " << Val;
1035      O << '\n';
1036    } else if (TD->isBigEndian()) {
1037      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1038      if (VerboseAsm)
1039        O << '\t' << TAI->getCommentString()
1040          << " double most significant word " << Val;
1041      O << '\n';
1042      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1043      if (VerboseAsm)
1044        O << '\t' << TAI->getCommentString()
1045          << " double least significant word " << Val;
1046      O << '\n';
1047    } else {
1048      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1049      if (VerboseAsm)
1050        O << '\t' << TAI->getCommentString()
1051          << " double least significant word " << Val;
1052      O << '\n';
1053      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1054      if (VerboseAsm)
1055        O << '\t' << TAI->getCommentString()
1056          << " double most significant word " << Val;
1057      O << '\n';
1058    }
1059    return;
1060  } else if (CFP->getType() == Type::FloatTy) {
1061    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1062    O << TAI->getData32bitsDirective(AddrSpace)
1063      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1064    if (VerboseAsm)
1065      O << '\t' << TAI->getCommentString() << " float " << Val;
1066    O << '\n';
1067    return;
1068  } else if (CFP->getType() == Type::X86_FP80Ty) {
1069    // all long double variants are printed as hex
1070    // api needed to prevent premature destruction
1071    APInt api = CFP->getValueAPF().bitcastToAPInt();
1072    const uint64_t *p = api.getRawData();
1073    // Convert to double so we can print the approximate val as a comment.
1074    APFloat DoubleVal = CFP->getValueAPF();
1075    bool ignored;
1076    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1077                      &ignored);
1078    if (TD->isBigEndian()) {
1079      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1080      if (VerboseAsm)
1081        O << '\t' << TAI->getCommentString()
1082          << " long double most significant halfword of ~"
1083          << DoubleVal.convertToDouble();
1084      O << '\n';
1085      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1086      if (VerboseAsm)
1087        O << '\t' << TAI->getCommentString() << " long double next halfword";
1088      O << '\n';
1089      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1090      if (VerboseAsm)
1091        O << '\t' << TAI->getCommentString() << " long double next halfword";
1092      O << '\n';
1093      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1094      if (VerboseAsm)
1095        O << '\t' << TAI->getCommentString() << " long double next halfword";
1096      O << '\n';
1097      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1098      if (VerboseAsm)
1099        O << '\t' << TAI->getCommentString()
1100          << " long double least significant halfword";
1101      O << '\n';
1102     } else {
1103      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1104      if (VerboseAsm)
1105        O << '\t' << TAI->getCommentString()
1106          << " long double least significant halfword of ~"
1107          << DoubleVal.convertToDouble();
1108      O << '\n';
1109      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1110      if (VerboseAsm)
1111        O << '\t' << TAI->getCommentString()
1112          << " long double next halfword";
1113      O << '\n';
1114      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1115      if (VerboseAsm)
1116        O << '\t' << TAI->getCommentString()
1117          << " long double next halfword";
1118      O << '\n';
1119      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1120      if (VerboseAsm)
1121        O << '\t' << TAI->getCommentString()
1122          << " long double next halfword";
1123      O << '\n';
1124      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1125      if (VerboseAsm)
1126        O << '\t' << TAI->getCommentString()
1127          << " long double most significant halfword";
1128      O << '\n';
1129    }
1130    EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) -
1131              TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1132    return;
1133  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1134    // all long double variants are printed as hex
1135    // api needed to prevent premature destruction
1136    APInt api = CFP->getValueAPF().bitcastToAPInt();
1137    const uint64_t *p = api.getRawData();
1138    if (TD->isBigEndian()) {
1139      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1140      if (VerboseAsm)
1141        O << '\t' << TAI->getCommentString()
1142          << " long double most significant word";
1143      O << '\n';
1144      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1145      if (VerboseAsm)
1146        O << '\t' << TAI->getCommentString()
1147        << " long double next word";
1148      O << '\n';
1149      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1150      if (VerboseAsm)
1151        O << '\t' << TAI->getCommentString()
1152          << " long double next word";
1153      O << '\n';
1154      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1155      if (VerboseAsm)
1156        O << '\t' << TAI->getCommentString()
1157          << " long double least significant word";
1158      O << '\n';
1159     } else {
1160      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1161      if (VerboseAsm)
1162        O << '\t' << TAI->getCommentString()
1163          << " long double least significant word";
1164      O << '\n';
1165      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1166      if (VerboseAsm)
1167        O << '\t' << TAI->getCommentString()
1168          << " long double next word";
1169      O << '\n';
1170      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1171      if (VerboseAsm)
1172        O << '\t' << TAI->getCommentString()
1173          << " long double next word";
1174      O << '\n';
1175      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1176      if (VerboseAsm)
1177        O << '\t' << TAI->getCommentString()
1178          << " long double most significant word";
1179      O << '\n';
1180    }
1181    return;
1182  } else assert(0 && "Floating point constant type not handled");
1183}
1184
1185void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1186                                            unsigned AddrSpace) {
1187  const TargetData *TD = TM.getTargetData();
1188  unsigned BitWidth = CI->getBitWidth();
1189  assert(isPowerOf2_32(BitWidth) &&
1190         "Non-power-of-2-sized integers not handled!");
1191
1192  // We don't expect assemblers to support integer data directives
1193  // for more than 64 bits, so we emit the data in at most 64-bit
1194  // quantities at a time.
1195  const uint64_t *RawData = CI->getValue().getRawData();
1196  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1197    uint64_t Val;
1198    if (TD->isBigEndian())
1199      Val = RawData[e - i - 1];
1200    else
1201      Val = RawData[i];
1202
1203    if (TAI->getData64bitsDirective(AddrSpace))
1204      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1205    else if (TD->isBigEndian()) {
1206      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1207      if (VerboseAsm)
1208        O << '\t' << TAI->getCommentString()
1209          << " Double-word most significant word " << Val;
1210      O << '\n';
1211      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1212      if (VerboseAsm)
1213        O << '\t' << TAI->getCommentString()
1214          << " Double-word least significant word " << Val;
1215      O << '\n';
1216    } else {
1217      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1218      if (VerboseAsm)
1219        O << '\t' << TAI->getCommentString()
1220          << " Double-word least significant word " << Val;
1221      O << '\n';
1222      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1223      if (VerboseAsm)
1224        O << '\t' << TAI->getCommentString()
1225          << " Double-word most significant word " << Val;
1226      O << '\n';
1227    }
1228  }
1229}
1230
1231/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1232void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1233  const TargetData *TD = TM.getTargetData();
1234  const Type *type = CV->getType();
1235  unsigned Size = TD->getTypeAllocSize(type);
1236
1237  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1238    EmitZeros(Size, AddrSpace);
1239    return;
1240  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1241    EmitGlobalConstantArray(CVA , AddrSpace);
1242    return;
1243  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1244    EmitGlobalConstantStruct(CVS, AddrSpace);
1245    return;
1246  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1247    EmitGlobalConstantFP(CFP, AddrSpace);
1248    return;
1249  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1250    // Small integers are handled below; large integers are handled here.
1251    if (Size > 4) {
1252      EmitGlobalConstantLargeInt(CI, AddrSpace);
1253      return;
1254    }
1255  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1256    EmitGlobalConstantVector(CP);
1257    return;
1258  }
1259
1260  printDataDirective(type, AddrSpace);
1261  EmitConstantValueOnly(CV);
1262  if (VerboseAsm) {
1263    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1264      SmallString<40> S;
1265      CI->getValue().toStringUnsigned(S, 16);
1266      O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1267    }
1268  }
1269  O << '\n';
1270}
1271
1272void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1273  // Target doesn't support this yet!
1274  abort();
1275}
1276
1277/// PrintSpecial - Print information related to the specified machine instr
1278/// that is independent of the operand, and may be independent of the instr
1279/// itself.  This can be useful for portably encoding the comment character
1280/// or other bits of target-specific knowledge into the asmstrings.  The
1281/// syntax used is ${:comment}.  Targets can override this to add support
1282/// for their own strange codes.
1283void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1284  if (!strcmp(Code, "private")) {
1285    O << TAI->getPrivateGlobalPrefix();
1286  } else if (!strcmp(Code, "comment")) {
1287    if (VerboseAsm)
1288      O << TAI->getCommentString();
1289  } else if (!strcmp(Code, "uid")) {
1290    // Assign a unique ID to this machine instruction.
1291    static const MachineInstr *LastMI = 0;
1292    static const Function *F = 0;
1293    static unsigned Counter = 0U-1;
1294
1295    // Comparing the address of MI isn't sufficient, because machineinstrs may
1296    // be allocated to the same address across functions.
1297    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1298
1299    // If this is a new machine instruction, bump the counter.
1300    if (LastMI != MI || F != ThisF) {
1301      ++Counter;
1302      LastMI = MI;
1303      F = ThisF;
1304    }
1305    O << Counter;
1306  } else {
1307    cerr << "Unknown special formatter '" << Code
1308         << "' for machine instr: " << *MI;
1309    exit(1);
1310  }
1311}
1312
1313/// processDebugLoc - Processes the debug information of each machine
1314/// instruction's DebugLoc.
1315void AsmPrinter::processDebugLoc(DebugLoc DL) {
1316  if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
1317    if (!DL.isUnknown()) {
1318      static DebugLocTuple PrevDLT(0, ~0U, ~0U);
1319      DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1320
1321      if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
1322        printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1323                                        DICompileUnit(CurDLT.CompileUnit)));
1324
1325      PrevDLT = CurDLT;
1326    }
1327  }
1328}
1329
1330/// printInlineAsm - This method formats and prints the specified machine
1331/// instruction that is an inline asm.
1332void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1333  unsigned NumOperands = MI->getNumOperands();
1334
1335  // Count the number of register definitions.
1336  unsigned NumDefs = 0;
1337  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1338       ++NumDefs)
1339    assert(NumDefs != NumOperands-1 && "No asm string?");
1340
1341  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1342
1343  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1344  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1345
1346  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1347  // These are useful to see where empty asm's wound up.
1348  if (AsmStr[0] == 0) {
1349    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1350    return;
1351  }
1352
1353  O << TAI->getInlineAsmStart() << "\n\t";
1354
1355  // The variant of the current asmprinter.
1356  int AsmPrinterVariant = TAI->getAssemblerDialect();
1357
1358  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1359  const char *LastEmitted = AsmStr; // One past the last character emitted.
1360
1361  while (*LastEmitted) {
1362    switch (*LastEmitted) {
1363    default: {
1364      // Not a special case, emit the string section literally.
1365      const char *LiteralEnd = LastEmitted+1;
1366      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1367             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1368        ++LiteralEnd;
1369      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1370        O.write(LastEmitted, LiteralEnd-LastEmitted);
1371      LastEmitted = LiteralEnd;
1372      break;
1373    }
1374    case '\n':
1375      ++LastEmitted;   // Consume newline character.
1376      O << '\n';       // Indent code with newline.
1377      break;
1378    case '$': {
1379      ++LastEmitted;   // Consume '$' character.
1380      bool Done = true;
1381
1382      // Handle escapes.
1383      switch (*LastEmitted) {
1384      default: Done = false; break;
1385      case '$':     // $$ -> $
1386        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1387          O << '$';
1388        ++LastEmitted;  // Consume second '$' character.
1389        break;
1390      case '(':             // $( -> same as GCC's { character.
1391        ++LastEmitted;      // Consume '(' character.
1392        if (CurVariant != -1) {
1393          cerr << "Nested variants found in inline asm string: '"
1394               << AsmStr << "'\n";
1395          exit(1);
1396        }
1397        CurVariant = 0;     // We're in the first variant now.
1398        break;
1399      case '|':
1400        ++LastEmitted;  // consume '|' character.
1401        if (CurVariant == -1)
1402          O << '|';       // this is gcc's behavior for | outside a variant
1403        else
1404          ++CurVariant;   // We're in the next variant.
1405        break;
1406      case ')':         // $) -> same as GCC's } char.
1407        ++LastEmitted;  // consume ')' character.
1408        if (CurVariant == -1)
1409          O << '}';     // this is gcc's behavior for } outside a variant
1410        else
1411          CurVariant = -1;
1412        break;
1413      }
1414      if (Done) break;
1415
1416      bool HasCurlyBraces = false;
1417      if (*LastEmitted == '{') {     // ${variable}
1418        ++LastEmitted;               // Consume '{' character.
1419        HasCurlyBraces = true;
1420      }
1421
1422      // If we have ${:foo}, then this is not a real operand reference, it is a
1423      // "magic" string reference, just like in .td files.  Arrange to call
1424      // PrintSpecial.
1425      if (HasCurlyBraces && *LastEmitted == ':') {
1426        ++LastEmitted;
1427        const char *StrStart = LastEmitted;
1428        const char *StrEnd = strchr(StrStart, '}');
1429        if (StrEnd == 0) {
1430          cerr << "Unterminated ${:foo} operand in inline asm string: '"
1431               << AsmStr << "'\n";
1432          exit(1);
1433        }
1434
1435        std::string Val(StrStart, StrEnd);
1436        PrintSpecial(MI, Val.c_str());
1437        LastEmitted = StrEnd+1;
1438        break;
1439      }
1440
1441      const char *IDStart = LastEmitted;
1442      char *IDEnd;
1443      errno = 0;
1444      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1445      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1446        cerr << "Bad $ operand number in inline asm string: '"
1447             << AsmStr << "'\n";
1448        exit(1);
1449      }
1450      LastEmitted = IDEnd;
1451
1452      char Modifier[2] = { 0, 0 };
1453
1454      if (HasCurlyBraces) {
1455        // If we have curly braces, check for a modifier character.  This
1456        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1457        if (*LastEmitted == ':') {
1458          ++LastEmitted;    // Consume ':' character.
1459          if (*LastEmitted == 0) {
1460            cerr << "Bad ${:} expression in inline asm string: '"
1461                 << AsmStr << "'\n";
1462            exit(1);
1463          }
1464
1465          Modifier[0] = *LastEmitted;
1466          ++LastEmitted;    // Consume modifier character.
1467        }
1468
1469        if (*LastEmitted != '}') {
1470          cerr << "Bad ${} expression in inline asm string: '"
1471               << AsmStr << "'\n";
1472          exit(1);
1473        }
1474        ++LastEmitted;    // Consume '}' character.
1475      }
1476
1477      if ((unsigned)Val >= NumOperands-1) {
1478        cerr << "Invalid $ operand number in inline asm string: '"
1479             << AsmStr << "'\n";
1480        exit(1);
1481      }
1482
1483      // Okay, we finally have a value number.  Ask the target to print this
1484      // operand!
1485      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1486        unsigned OpNo = 1;
1487
1488        bool Error = false;
1489
1490        // Scan to find the machine operand number for the operand.
1491        for (; Val; --Val) {
1492          if (OpNo >= MI->getNumOperands()) break;
1493          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1494          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1495        }
1496
1497        if (OpNo >= MI->getNumOperands()) {
1498          Error = true;
1499        } else {
1500          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1501          ++OpNo;  // Skip over the ID number.
1502
1503          if (Modifier[0]=='l')  // labels are target independent
1504            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1505                                 false, false, false);
1506          else {
1507            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1508            if ((OpFlags & 7) == 4) {
1509              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1510                                                Modifier[0] ? Modifier : 0);
1511            } else {
1512              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1513                                          Modifier[0] ? Modifier : 0);
1514            }
1515          }
1516        }
1517        if (Error) {
1518          cerr << "Invalid operand found in inline asm: '"
1519               << AsmStr << "'\n";
1520          MI->dump();
1521          exit(1);
1522        }
1523      }
1524      break;
1525    }
1526    }
1527  }
1528  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1529}
1530
1531/// printImplicitDef - This method prints the specified machine instruction
1532/// that is an implicit def.
1533void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1534  if (VerboseAsm)
1535    O << '\t' << TAI->getCommentString() << " implicit-def: "
1536      << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1537}
1538
1539/// printLabel - This method prints a local label used by debug and
1540/// exception handling tables.
1541void AsmPrinter::printLabel(const MachineInstr *MI) const {
1542  printLabel(MI->getOperand(0).getImm());
1543}
1544
1545void AsmPrinter::printLabel(unsigned Id) const {
1546  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1547}
1548
1549/// printDeclare - This method prints a local variable declaration used by
1550/// debug tables.
1551/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1552/// entry into dwarf table.
1553void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1554  unsigned FI = MI->getOperand(0).getIndex();
1555  GlobalValue *GV = MI->getOperand(1).getGlobal();
1556  DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1557}
1558
1559/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1560/// instruction, using the specified assembler variant.  Targets should
1561/// overried this to format as appropriate.
1562bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1563                                 unsigned AsmVariant, const char *ExtraCode) {
1564  // Target doesn't support this yet!
1565  return true;
1566}
1567
1568bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1569                                       unsigned AsmVariant,
1570                                       const char *ExtraCode) {
1571  // Target doesn't support this yet!
1572  return true;
1573}
1574
1575/// printBasicBlockLabel - This method prints the label for the specified
1576/// MachineBasicBlock
1577void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1578                                      bool printAlign,
1579                                      bool printColon,
1580                                      bool printComment) const {
1581  if (printAlign) {
1582    unsigned Align = MBB->getAlignment();
1583    if (Align)
1584      EmitAlignment(Log2_32(Align));
1585  }
1586
1587  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1588    << MBB->getNumber();
1589  if (printColon)
1590    O << ':';
1591  if (printComment && MBB->getBasicBlock())
1592    O << '\t' << TAI->getCommentString() << ' '
1593      << MBB->getBasicBlock()->getNameStart();
1594}
1595
1596/// printPICJumpTableSetLabel - This method prints a set label for the
1597/// specified MachineBasicBlock for a jumptable entry.
1598void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1599                                           const MachineBasicBlock *MBB) const {
1600  if (!TAI->getSetDirective())
1601    return;
1602
1603  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1604    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1605  printBasicBlockLabel(MBB, false, false, false);
1606  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1607    << '_' << uid << '\n';
1608}
1609
1610void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1611                                           const MachineBasicBlock *MBB) const {
1612  if (!TAI->getSetDirective())
1613    return;
1614
1615  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1616    << getFunctionNumber() << '_' << uid << '_' << uid2
1617    << "_set_" << MBB->getNumber() << ',';
1618  printBasicBlockLabel(MBB, false, false, false);
1619  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1620    << '_' << uid << '_' << uid2 << '\n';
1621}
1622
1623/// printDataDirective - This method prints the asm directive for the
1624/// specified type.
1625void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1626  const TargetData *TD = TM.getTargetData();
1627  switch (type->getTypeID()) {
1628  case Type::IntegerTyID: {
1629    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1630    if (BitWidth <= 8)
1631      O << TAI->getData8bitsDirective(AddrSpace);
1632    else if (BitWidth <= 16)
1633      O << TAI->getData16bitsDirective(AddrSpace);
1634    else if (BitWidth <= 32)
1635      O << TAI->getData32bitsDirective(AddrSpace);
1636    else if (BitWidth <= 64) {
1637      assert(TAI->getData64bitsDirective(AddrSpace) &&
1638             "Target cannot handle 64-bit constant exprs!");
1639      O << TAI->getData64bitsDirective(AddrSpace);
1640    } else {
1641      assert(0 && "Target cannot handle given data directive width!");
1642    }
1643    break;
1644  }
1645  case Type::PointerTyID:
1646    if (TD->getPointerSize() == 8) {
1647      assert(TAI->getData64bitsDirective(AddrSpace) &&
1648             "Target cannot handle 64-bit pointer exprs!");
1649      O << TAI->getData64bitsDirective(AddrSpace);
1650    } else if (TD->getPointerSize() == 2) {
1651      O << TAI->getData16bitsDirective(AddrSpace);
1652    } else if (TD->getPointerSize() == 1) {
1653      O << TAI->getData8bitsDirective(AddrSpace);
1654    } else {
1655      O << TAI->getData32bitsDirective(AddrSpace);
1656    }
1657    break;
1658  case Type::FloatTyID: case Type::DoubleTyID:
1659  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1660    assert (0 && "Should have already output floating point constant.");
1661  default:
1662    assert (0 && "Can't handle printing this type of thing");
1663    break;
1664  }
1665}
1666
1667void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1668                                   const char *Prefix) {
1669  if (Name[0]=='\"')
1670    O << '\"';
1671  O << TAI->getPrivateGlobalPrefix();
1672  if (Prefix) O << Prefix;
1673  if (Name[0]=='\"')
1674    O << '\"';
1675  if (Name[0]=='\"')
1676    O << Name[1];
1677  else
1678    O << Name;
1679  O << Suffix;
1680  if (Name[0]=='\"')
1681    O << '\"';
1682}
1683
1684void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1685  printSuffixedName(Name.c_str(), Suffix);
1686}
1687
1688void AsmPrinter::printVisibility(const std::string& Name,
1689                                 unsigned Visibility) const {
1690  if (Visibility == GlobalValue::HiddenVisibility) {
1691    if (const char *Directive = TAI->getHiddenDirective())
1692      O << Directive << Name << '\n';
1693  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1694    if (const char *Directive = TAI->getProtectedDirective())
1695      O << Directive << Name << '\n';
1696  }
1697}
1698
1699void AsmPrinter::printOffset(int64_t Offset) const {
1700  if (Offset > 0)
1701    O << '+' << Offset;
1702  else if (Offset < 0)
1703    O << Offset;
1704}
1705
1706GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1707  if (!S->usesMetadata())
1708    return 0;
1709
1710  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1711  if (GCPI != GCMetadataPrinters.end())
1712    return GCPI->second;
1713
1714  const char *Name = S->getName().c_str();
1715
1716  for (GCMetadataPrinterRegistry::iterator
1717         I = GCMetadataPrinterRegistry::begin(),
1718         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1719    if (strcmp(Name, I->getName()) == 0) {
1720      GCMetadataPrinter *GMP = I->instantiate();
1721      GMP->S = S;
1722      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1723      return GMP;
1724    }
1725
1726  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1727  abort();
1728}
1729