AsmPrinter.cpp revision c4c40a9f14d66de770ba7c0922be07dca7e3b827
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/DwarfWriter.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/MC/MCContext.h"
26#include "llvm/MC/MCStreamer.h"
27#include "llvm/MC/MCInst.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/FormattedStream.h"
31#include "llvm/Support/Mangler.h"
32#include "llvm/Target/TargetAsmInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetLoweringObjectFile.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallString.h"
40#include "llvm/ADT/StringExtras.h"
41#include <cerrno>
42using namespace llvm;
43
44static cl::opt<cl::boolOrDefault>
45AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
46           cl::init(cl::BOU_UNSET));
47
48char AsmPrinter::ID = 0;
49AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
50                       const TargetAsmInfo *T, bool VDef)
51  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
52    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
53
54    OutContext(*new MCContext()),
55    OutStreamer(*createAsmStreamer(OutContext, O)),
56
57    IsInTextSection(false), LastMI(0), LastFn(0), Counter(~0U),
58    PrevDLT(0, ~0U, ~0U) {
59  DW = 0; MMI = 0;
60  switch (AsmVerbose) {
61  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
62  case cl::BOU_TRUE:  VerboseAsm = true;  break;
63  case cl::BOU_FALSE: VerboseAsm = false; break;
64  }
65}
66
67AsmPrinter::~AsmPrinter() {
68  for (gcp_iterator I = GCMetadataPrinters.begin(),
69                    E = GCMetadataPrinters.end(); I != E; ++I)
70    delete I->second;
71
72  delete &OutStreamer;
73  delete &OutContext;
74}
75
76const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
77  return TM.getTargetLowering()->getObjFileLowering();
78}
79
80
81/// SwitchToTextSection - Switch to the specified text section of the executable
82/// if we are not already in it!
83///
84void AsmPrinter::SwitchToTextSection(const char *NewSection,
85                                     const GlobalValue *GV) {
86  std::string NS;
87  if (GV && GV->hasSection())
88    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
89  else
90    NS = NewSection;
91
92  // If we're already in this section, we're done.
93  if (CurrentSection == NS) return;
94
95  // Close the current section, if applicable.
96  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
97    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
98
99  CurrentSection = NS;
100
101  if (!CurrentSection.empty())
102    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
103
104  IsInTextSection = true;
105}
106
107/// SwitchToDataSection - Switch to the specified data section of the executable
108/// if we are not already in it!
109///
110void AsmPrinter::SwitchToDataSection(const char *NewSection,
111                                     const GlobalValue *GV) {
112  std::string NS;
113  if (GV && GV->hasSection())
114    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
115  else
116    NS = NewSection;
117
118  // If we're already in this section, we're done.
119  if (CurrentSection == NS) return;
120
121  // Close the current section, if applicable.
122  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
123    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
124
125  CurrentSection = NS;
126
127  if (!CurrentSection.empty())
128    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
129
130  IsInTextSection = false;
131}
132
133/// SwitchToSection - Switch to the specified section of the executable if we
134/// are not already in it!
135void AsmPrinter::SwitchToSection(const Section *NS) {
136  const std::string &NewSection = NS->getName();
137
138  // If we're already in this section, we're done.
139  if (CurrentSection == NewSection) return;
140
141  // Close the current section, if applicable.
142  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
143    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
144
145  // FIXME: Make CurrentSection a Section* in the future
146  CurrentSection = NewSection;
147  CurrentSection_ = NS;
148
149  if (!CurrentSection.empty()) {
150    // If section is named we need to switch into it via special '.section'
151    // directive and also append funky flags. Otherwise - section name is just
152    // some magic assembler directive.
153    if (NS->getKind().hasExplicitSection()) {
154      SmallString<32> FlagsStr;
155
156      getObjFileLowering().getSectionFlagsAsString(NS->getKind(), FlagsStr);
157
158      O << TAI->getSwitchToSectionDirective()
159        << CurrentSection
160        << FlagsStr.c_str();
161    } else {
162      O << CurrentSection;
163    }
164    O << TAI->getDataSectionStartSuffix() << '\n';
165  }
166
167  IsInTextSection = NS->getKind().isText();
168}
169
170void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
171  MachineFunctionPass::getAnalysisUsage(AU);
172  AU.addRequired<GCModuleInfo>();
173}
174
175bool AsmPrinter::doInitialization(Module &M) {
176  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(),
177                     TAI->getLinkerPrivateGlobalPrefix());
178
179  if (TAI->doesAllowQuotesInName())
180    Mang->setUseQuotes(true);
181
182  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
183  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
184
185  if (TAI->hasSingleParameterDotFile()) {
186    /* Very minimal debug info. It is ignored if we emit actual
187       debug info. If we don't, this at helps the user find where
188       a function came from. */
189    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
190  }
191
192  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
193    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
194      MP->beginAssembly(O, *this, *TAI);
195
196  if (!M.getModuleInlineAsm().empty())
197    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
198      << M.getModuleInlineAsm()
199      << '\n' << TAI->getCommentString()
200      << " End of file scope inline assembly\n";
201
202  SwitchToDataSection("");   // Reset back to no section.
203
204  if (TAI->doesSupportDebugInformation() ||
205      TAI->doesSupportExceptionHandling()) {
206    MMI = getAnalysisIfAvailable<MachineModuleInfo>();
207    if (MMI)
208      MMI->AnalyzeModule(M);
209    DW = getAnalysisIfAvailable<DwarfWriter>();
210    if (DW)
211      DW->BeginModule(&M, MMI, O, this, TAI);
212  }
213
214  return false;
215}
216
217bool AsmPrinter::doFinalization(Module &M) {
218  // Emit global variables.
219  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
220       I != E; ++I)
221    PrintGlobalVariable(I);
222
223  // Emit final debug information.
224  if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
225    DW->EndModule();
226
227  // If the target wants to know about weak references, print them all.
228  if (TAI->getWeakRefDirective()) {
229    // FIXME: This is not lazy, it would be nice to only print weak references
230    // to stuff that is actually used.  Note that doing so would require targets
231    // to notice uses in operands (due to constant exprs etc).  This should
232    // happen with the MC stuff eventually.
233    SwitchToDataSection("");
234
235    // Print out module-level global variables here.
236    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
237         I != E; ++I) {
238      if (I->hasExternalWeakLinkage())
239        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
240    }
241
242    for (Module::const_iterator I = M.begin(), E = M.end();
243         I != E; ++I) {
244      if (I->hasExternalWeakLinkage())
245        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
246    }
247  }
248
249  if (TAI->getSetDirective()) {
250    O << '\n';
251    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
252         I != E; ++I) {
253      std::string Name = Mang->getMangledName(I);
254
255      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
256      std::string Target = Mang->getMangledName(GV);
257
258      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
259        O << "\t.globl\t" << Name << '\n';
260      else if (I->hasWeakLinkage())
261        O << TAI->getWeakRefDirective() << Name << '\n';
262      else if (!I->hasLocalLinkage())
263        llvm_unreachable("Invalid alias linkage");
264
265      printVisibility(Name, I->getVisibility());
266
267      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
268    }
269  }
270
271  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
272  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
273  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
274    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
275      MP->finishAssembly(O, *this, *TAI);
276
277  // If we don't have any trampolines, then we don't require stack memory
278  // to be executable. Some targets have a directive to declare this.
279  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
280  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
281    if (TAI->getNonexecutableStackDirective())
282      O << TAI->getNonexecutableStackDirective() << '\n';
283
284  delete Mang; Mang = 0;
285  DW = 0; MMI = 0;
286
287  OutStreamer.Finish();
288  return false;
289}
290
291std::string
292AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const {
293  assert(MF && "No machine function?");
294  return Mang->getMangledName(MF->getFunction(), ".eh",
295                              TAI->is_EHSymbolPrivate());
296}
297
298void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
299  // What's my mangled name?
300  CurrentFnName = Mang->getMangledName(MF.getFunction());
301  IncrementFunctionNumber();
302}
303
304namespace {
305  // SectionCPs - Keep track the alignment, constpool entries per Section.
306  struct SectionCPs {
307    const Section *S;
308    unsigned Alignment;
309    SmallVector<unsigned, 4> CPEs;
310    SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {};
311  };
312}
313
314/// EmitConstantPool - Print to the current output stream assembly
315/// representations of the constants in the constant pool MCP. This is
316/// used to print out constants which have been "spilled to memory" by
317/// the code generator.
318///
319void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
320  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
321  if (CP.empty()) return;
322
323  // Calculate sections for constant pool entries. We collect entries to go into
324  // the same section together to reduce amount of section switch statements.
325  SmallVector<SectionCPs, 4> CPSections;
326  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
327    const MachineConstantPoolEntry &CPE = CP[i];
328    unsigned Align = CPE.getAlignment();
329
330    SectionKind Kind;
331    switch (CPE.getRelocationInfo()) {
332    default: llvm_unreachable("Unknown section kind");
333    case 2: Kind = SectionKind::get(SectionKind::ReadOnlyWithRel, false); break;
334    case 1:
335      Kind = SectionKind::get(SectionKind::ReadOnlyWithRelLocal,false);
336      break;
337    case 0:
338    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
339    case 4:  Kind = SectionKind::get(SectionKind::MergeableConst4,false); break;
340    case 8:  Kind = SectionKind::get(SectionKind::MergeableConst8,false); break;
341    case 16: Kind = SectionKind::get(SectionKind::MergeableConst16,false);break;
342    default: Kind = SectionKind::get(SectionKind::MergeableConst,false); break;
343    }
344    }
345
346    const Section *S =getObjFileLowering().getSectionForMergeableConstant(Kind);
347
348    // The number of sections are small, just do a linear search from the
349    // last section to the first.
350    bool Found = false;
351    unsigned SecIdx = CPSections.size();
352    while (SecIdx != 0) {
353      if (CPSections[--SecIdx].S == S) {
354        Found = true;
355        break;
356      }
357    }
358    if (!Found) {
359      SecIdx = CPSections.size();
360      CPSections.push_back(SectionCPs(S, Align));
361    }
362
363    if (Align > CPSections[SecIdx].Alignment)
364      CPSections[SecIdx].Alignment = Align;
365    CPSections[SecIdx].CPEs.push_back(i);
366  }
367
368  // Now print stuff into the calculated sections.
369  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
370    SwitchToSection(CPSections[i].S);
371    EmitAlignment(Log2_32(CPSections[i].Alignment));
372
373    unsigned Offset = 0;
374    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
375      unsigned CPI = CPSections[i].CPEs[j];
376      MachineConstantPoolEntry CPE = CP[CPI];
377
378      // Emit inter-object padding for alignment.
379      unsigned AlignMask = CPE.getAlignment() - 1;
380      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
381      EmitZeros(NewOffset - Offset);
382
383      const Type *Ty = CPE.getType();
384      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
385
386      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
387        << CPI << ":\t\t\t\t\t";
388      if (VerboseAsm) {
389        O << TAI->getCommentString() << ' ';
390        WriteTypeSymbolic(O, CPE.getType(), 0);
391      }
392      O << '\n';
393      if (CPE.isMachineConstantPoolEntry())
394        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
395      else
396        EmitGlobalConstant(CPE.Val.ConstVal);
397    }
398  }
399}
400
401/// EmitJumpTableInfo - Print assembly representations of the jump tables used
402/// by the current function to the current output stream.
403///
404void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
405                                   MachineFunction &MF) {
406  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
407  if (JT.empty()) return;
408
409  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
410
411  // Pick the directive to use to print the jump table entries, and switch to
412  // the appropriate section.
413  TargetLowering *LoweringInfo = TM.getTargetLowering();
414
415  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
416  const Function *F = MF.getFunction();
417
418  const Section *FuncSection = getObjFileLowering().SectionForGlobal(F, TM);
419
420  bool JTInDiffSection = false;
421  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
422      !JumpTableDataSection ||
423      FuncSection->getKind().isWeak()) {
424    // In PIC mode, we need to emit the jump table to the same section as the
425    // function body itself, otherwise the label differences won't make sense.
426    // We should also do if the section name is NULL or function is declared in
427    // discardable section.
428    SwitchToSection(FuncSection);
429  } else {
430    SwitchToDataSection(JumpTableDataSection);
431    JTInDiffSection = true;
432  }
433
434  EmitAlignment(Log2_32(MJTI->getAlignment()));
435
436  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
437    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
438
439    // If this jump table was deleted, ignore it.
440    if (JTBBs.empty()) continue;
441
442    // For PIC codegen, if possible we want to use the SetDirective to reduce
443    // the number of relocations the assembler will generate for the jump table.
444    // Set directives are all printed before the jump table itself.
445    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
446    if (TAI->getSetDirective() && IsPic)
447      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
448        if (EmittedSets.insert(JTBBs[ii]))
449          printPICJumpTableSetLabel(i, JTBBs[ii]);
450
451    // On some targets (e.g. darwin) we want to emit two consequtive labels
452    // before each jump table.  The first label is never referenced, but tells
453    // the assembler and linker the extents of the jump table object.  The
454    // second label is actually referenced by the code.
455    if (JTInDiffSection) {
456      if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
457        O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
458    }
459
460    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
461      << '_' << i << ":\n";
462
463    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
464      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
465      O << '\n';
466    }
467  }
468}
469
470void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
471                                        const MachineBasicBlock *MBB,
472                                        unsigned uid)  const {
473  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
474
475  // Use JumpTableDirective otherwise honor the entry size from the jump table
476  // info.
477  const char *JTEntryDirective = TAI->getJumpTableDirective();
478  bool HadJTEntryDirective = JTEntryDirective != NULL;
479  if (!HadJTEntryDirective) {
480    JTEntryDirective = MJTI->getEntrySize() == 4 ?
481      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
482  }
483
484  O << JTEntryDirective << ' ';
485
486  // If we have emitted set directives for the jump table entries, print
487  // them rather than the entries themselves.  If we're emitting PIC, then
488  // emit the table entries as differences between two text section labels.
489  // If we're emitting non-PIC code, then emit the entries as direct
490  // references to the target basic blocks.
491  if (IsPic) {
492    if (TAI->getSetDirective()) {
493      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
494        << '_' << uid << "_set_" << MBB->getNumber();
495    } else {
496      printBasicBlockLabel(MBB, false, false, false);
497      // If the arch uses custom Jump Table directives, don't calc relative to
498      // JT
499      if (!HadJTEntryDirective)
500        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
501          << getFunctionNumber() << '_' << uid;
502    }
503  } else {
504    printBasicBlockLabel(MBB, false, false, false);
505  }
506}
507
508
509/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
510/// special global used by LLVM.  If so, emit it and return true, otherwise
511/// do nothing and return false.
512bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
513  if (GV->getName() == "llvm.used") {
514    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
515      EmitLLVMUsedList(GV->getInitializer());
516    return true;
517  }
518
519  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
520  if (GV->getSection() == "llvm.metadata" ||
521      GV->hasAvailableExternallyLinkage())
522    return true;
523
524  if (!GV->hasAppendingLinkage()) return false;
525
526  assert(GV->hasInitializer() && "Not a special LLVM global!");
527
528  const TargetData *TD = TM.getTargetData();
529  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
530  if (GV->getName() == "llvm.global_ctors") {
531    SwitchToDataSection(TAI->getStaticCtorsSection());
532    EmitAlignment(Align, 0);
533    EmitXXStructorList(GV->getInitializer());
534    return true;
535  }
536
537  if (GV->getName() == "llvm.global_dtors") {
538    SwitchToDataSection(TAI->getStaticDtorsSection());
539    EmitAlignment(Align, 0);
540    EmitXXStructorList(GV->getInitializer());
541    return true;
542  }
543
544  return false;
545}
546
547/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
548/// global in the specified llvm.used list for which emitUsedDirectiveFor
549/// is true, as being used with this directive.
550void AsmPrinter::EmitLLVMUsedList(Constant *List) {
551  const char *Directive = TAI->getUsedDirective();
552
553  // Should be an array of 'i8*'.
554  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
555  if (InitList == 0) return;
556
557  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
558    const GlobalValue *GV =
559      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
560    if (GV && TAI->emitUsedDirectiveFor(GV, Mang)) {
561      O << Directive;
562      EmitConstantValueOnly(InitList->getOperand(i));
563      O << '\n';
564    }
565  }
566}
567
568/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
569/// function pointers, ignoring the init priority.
570void AsmPrinter::EmitXXStructorList(Constant *List) {
571  // Should be an array of '{ int, void ()* }' structs.  The first value is the
572  // init priority, which we ignore.
573  if (!isa<ConstantArray>(List)) return;
574  ConstantArray *InitList = cast<ConstantArray>(List);
575  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
576    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
577      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
578
579      if (CS->getOperand(1)->isNullValue())
580        return;  // Found a null terminator, exit printing.
581      // Emit the function pointer.
582      EmitGlobalConstant(CS->getOperand(1));
583    }
584}
585
586/// getGlobalLinkName - Returns the asm/link name of of the specified
587/// global variable.  Should be overridden by each target asm printer to
588/// generate the appropriate value.
589const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
590                                                 std::string &LinkName) const {
591  if (isa<Function>(GV)) {
592    LinkName += TAI->getFunctionAddrPrefix();
593    LinkName += Mang->getMangledName(GV);
594    LinkName += TAI->getFunctionAddrSuffix();
595  } else {
596    LinkName += TAI->getGlobalVarAddrPrefix();
597    LinkName += Mang->getMangledName(GV);
598    LinkName += TAI->getGlobalVarAddrSuffix();
599  }
600
601  return LinkName;
602}
603
604/// EmitExternalGlobal - Emit the external reference to a global variable.
605/// Should be overridden if an indirect reference should be used.
606void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
607  std::string GLN;
608  O << getGlobalLinkName(GV, GLN);
609}
610
611
612
613//===----------------------------------------------------------------------===//
614/// LEB 128 number encoding.
615
616/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
617/// representing an unsigned leb128 value.
618void AsmPrinter::PrintULEB128(unsigned Value) const {
619  char Buffer[20];
620  do {
621    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
622    Value >>= 7;
623    if (Value) Byte |= 0x80;
624    O << "0x" << utohex_buffer(Byte, Buffer+20);
625    if (Value) O << ", ";
626  } while (Value);
627}
628
629/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
630/// representing a signed leb128 value.
631void AsmPrinter::PrintSLEB128(int Value) const {
632  int Sign = Value >> (8 * sizeof(Value) - 1);
633  bool IsMore;
634  char Buffer[20];
635
636  do {
637    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
638    Value >>= 7;
639    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
640    if (IsMore) Byte |= 0x80;
641    O << "0x" << utohex_buffer(Byte, Buffer+20);
642    if (IsMore) O << ", ";
643  } while (IsMore);
644}
645
646//===--------------------------------------------------------------------===//
647// Emission and print routines
648//
649
650/// PrintHex - Print a value as a hexidecimal value.
651///
652void AsmPrinter::PrintHex(int Value) const {
653  char Buffer[20];
654  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
655}
656
657/// EOL - Print a newline character to asm stream.  If a comment is present
658/// then it will be printed first.  Comments should not contain '\n'.
659void AsmPrinter::EOL() const {
660  O << '\n';
661}
662
663void AsmPrinter::EOL(const std::string &Comment) const {
664  if (VerboseAsm && !Comment.empty()) {
665    O << '\t'
666      << TAI->getCommentString()
667      << ' '
668      << Comment;
669  }
670  O << '\n';
671}
672
673void AsmPrinter::EOL(const char* Comment) const {
674  if (VerboseAsm && *Comment) {
675    O << '\t'
676      << TAI->getCommentString()
677      << ' '
678      << Comment;
679  }
680  O << '\n';
681}
682
683/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
684/// unsigned leb128 value.
685void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
686  if (TAI->hasLEB128()) {
687    O << "\t.uleb128\t"
688      << Value;
689  } else {
690    O << TAI->getData8bitsDirective();
691    PrintULEB128(Value);
692  }
693}
694
695/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
696/// signed leb128 value.
697void AsmPrinter::EmitSLEB128Bytes(int Value) const {
698  if (TAI->hasLEB128()) {
699    O << "\t.sleb128\t"
700      << Value;
701  } else {
702    O << TAI->getData8bitsDirective();
703    PrintSLEB128(Value);
704  }
705}
706
707/// EmitInt8 - Emit a byte directive and value.
708///
709void AsmPrinter::EmitInt8(int Value) const {
710  O << TAI->getData8bitsDirective();
711  PrintHex(Value & 0xFF);
712}
713
714/// EmitInt16 - Emit a short directive and value.
715///
716void AsmPrinter::EmitInt16(int Value) const {
717  O << TAI->getData16bitsDirective();
718  PrintHex(Value & 0xFFFF);
719}
720
721/// EmitInt32 - Emit a long directive and value.
722///
723void AsmPrinter::EmitInt32(int Value) const {
724  O << TAI->getData32bitsDirective();
725  PrintHex(Value);
726}
727
728/// EmitInt64 - Emit a long long directive and value.
729///
730void AsmPrinter::EmitInt64(uint64_t Value) const {
731  if (TAI->getData64bitsDirective()) {
732    O << TAI->getData64bitsDirective();
733    PrintHex(Value);
734  } else {
735    if (TM.getTargetData()->isBigEndian()) {
736      EmitInt32(unsigned(Value >> 32)); O << '\n';
737      EmitInt32(unsigned(Value));
738    } else {
739      EmitInt32(unsigned(Value)); O << '\n';
740      EmitInt32(unsigned(Value >> 32));
741    }
742  }
743}
744
745/// toOctal - Convert the low order bits of X into an octal digit.
746///
747static inline char toOctal(int X) {
748  return (X&7)+'0';
749}
750
751/// printStringChar - Print a char, escaped if necessary.
752///
753static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
754  if (C == '"') {
755    O << "\\\"";
756  } else if (C == '\\') {
757    O << "\\\\";
758  } else if (isprint((unsigned char)C)) {
759    O << C;
760  } else {
761    switch(C) {
762    case '\b': O << "\\b"; break;
763    case '\f': O << "\\f"; break;
764    case '\n': O << "\\n"; break;
765    case '\r': O << "\\r"; break;
766    case '\t': O << "\\t"; break;
767    default:
768      O << '\\';
769      O << toOctal(C >> 6);
770      O << toOctal(C >> 3);
771      O << toOctal(C >> 0);
772      break;
773    }
774  }
775}
776
777/// EmitString - Emit a string with quotes and a null terminator.
778/// Special characters are emitted properly.
779/// \literal (Eg. '\t') \endliteral
780void AsmPrinter::EmitString(const std::string &String) const {
781  EmitString(String.c_str(), String.size());
782}
783
784void AsmPrinter::EmitString(const char *String, unsigned Size) const {
785  const char* AscizDirective = TAI->getAscizDirective();
786  if (AscizDirective)
787    O << AscizDirective;
788  else
789    O << TAI->getAsciiDirective();
790  O << '\"';
791  for (unsigned i = 0; i < Size; ++i)
792    printStringChar(O, String[i]);
793  if (AscizDirective)
794    O << '\"';
795  else
796    O << "\\0\"";
797}
798
799
800/// EmitFile - Emit a .file directive.
801void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
802  O << "\t.file\t" << Number << " \"";
803  for (unsigned i = 0, N = Name.size(); i < N; ++i)
804    printStringChar(O, Name[i]);
805  O << '\"';
806}
807
808
809//===----------------------------------------------------------------------===//
810
811// EmitAlignment - Emit an alignment directive to the specified power of
812// two boundary.  For example, if you pass in 3 here, you will get an 8
813// byte alignment.  If a global value is specified, and if that global has
814// an explicit alignment requested, it will unconditionally override the
815// alignment request.  However, if ForcedAlignBits is specified, this value
816// has final say: the ultimate alignment will be the max of ForcedAlignBits
817// and the alignment computed with NumBits and the global.
818//
819// The algorithm is:
820//     Align = NumBits;
821//     if (GV && GV->hasalignment) Align = GV->getalignment();
822//     Align = std::max(Align, ForcedAlignBits);
823//
824void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
825                               unsigned ForcedAlignBits,
826                               bool UseFillExpr) const {
827  if (GV && GV->getAlignment())
828    NumBits = Log2_32(GV->getAlignment());
829  NumBits = std::max(NumBits, ForcedAlignBits);
830
831  if (NumBits == 0) return;   // No need to emit alignment.
832  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
833  O << TAI->getAlignDirective() << NumBits;
834
835  unsigned FillValue = TAI->getTextAlignFillValue();
836  UseFillExpr &= IsInTextSection && FillValue;
837  if (UseFillExpr) {
838    O << ',';
839    PrintHex(FillValue);
840  }
841  O << '\n';
842}
843
844
845/// EmitZeros - Emit a block of zeros.
846///
847void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
848  if (NumZeros) {
849    if (TAI->getZeroDirective()) {
850      O << TAI->getZeroDirective() << NumZeros;
851      if (TAI->getZeroDirectiveSuffix())
852        O << TAI->getZeroDirectiveSuffix();
853      O << '\n';
854    } else {
855      for (; NumZeros; --NumZeros)
856        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
857    }
858  }
859}
860
861// Print out the specified constant, without a storage class.  Only the
862// constants valid in constant expressions can occur here.
863void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
864  if (CV->isNullValue() || isa<UndefValue>(CV))
865    O << '0';
866  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
867    O << CI->getZExtValue();
868  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
869    // This is a constant address for a global variable or function. Use the
870    // name of the variable or function as the address value, possibly
871    // decorating it with GlobalVarAddrPrefix/Suffix or
872    // FunctionAddrPrefix/Suffix (these all default to "" )
873    if (isa<Function>(GV)) {
874      O << TAI->getFunctionAddrPrefix()
875        << Mang->getMangledName(GV)
876        << TAI->getFunctionAddrSuffix();
877    } else {
878      O << TAI->getGlobalVarAddrPrefix()
879        << Mang->getMangledName(GV)
880        << TAI->getGlobalVarAddrSuffix();
881    }
882  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
883    const TargetData *TD = TM.getTargetData();
884    unsigned Opcode = CE->getOpcode();
885    switch (Opcode) {
886    case Instruction::GetElementPtr: {
887      // generate a symbolic expression for the byte address
888      const Constant *ptrVal = CE->getOperand(0);
889      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
890      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
891                                                idxVec.size())) {
892        // Truncate/sext the offset to the pointer size.
893        if (TD->getPointerSizeInBits() != 64) {
894          int SExtAmount = 64-TD->getPointerSizeInBits();
895          Offset = (Offset << SExtAmount) >> SExtAmount;
896        }
897
898        if (Offset)
899          O << '(';
900        EmitConstantValueOnly(ptrVal);
901        if (Offset > 0)
902          O << ") + " << Offset;
903        else if (Offset < 0)
904          O << ") - " << -Offset;
905      } else {
906        EmitConstantValueOnly(ptrVal);
907      }
908      break;
909    }
910    case Instruction::Trunc:
911    case Instruction::ZExt:
912    case Instruction::SExt:
913    case Instruction::FPTrunc:
914    case Instruction::FPExt:
915    case Instruction::UIToFP:
916    case Instruction::SIToFP:
917    case Instruction::FPToUI:
918    case Instruction::FPToSI:
919      llvm_unreachable("FIXME: Don't yet support this kind of constant cast expr");
920      break;
921    case Instruction::BitCast:
922      return EmitConstantValueOnly(CE->getOperand(0));
923
924    case Instruction::IntToPtr: {
925      // Handle casts to pointers by changing them into casts to the appropriate
926      // integer type.  This promotes constant folding and simplifies this code.
927      Constant *Op = CE->getOperand(0);
928      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
929      return EmitConstantValueOnly(Op);
930    }
931
932
933    case Instruction::PtrToInt: {
934      // Support only foldable casts to/from pointers that can be eliminated by
935      // changing the pointer to the appropriately sized integer type.
936      Constant *Op = CE->getOperand(0);
937      const Type *Ty = CE->getType();
938
939      // We can emit the pointer value into this slot if the slot is an
940      // integer slot greater or equal to the size of the pointer.
941      if (TD->getTypeAllocSize(Ty) >= TD->getTypeAllocSize(Op->getType()))
942        return EmitConstantValueOnly(Op);
943
944      O << "((";
945      EmitConstantValueOnly(Op);
946      APInt ptrMask = APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Ty));
947
948      SmallString<40> S;
949      ptrMask.toStringUnsigned(S);
950      O << ") & " << S.c_str() << ')';
951      break;
952    }
953    case Instruction::Add:
954    case Instruction::Sub:
955    case Instruction::And:
956    case Instruction::Or:
957    case Instruction::Xor:
958      O << '(';
959      EmitConstantValueOnly(CE->getOperand(0));
960      O << ')';
961      switch (Opcode) {
962      case Instruction::Add:
963       O << " + ";
964       break;
965      case Instruction::Sub:
966       O << " - ";
967       break;
968      case Instruction::And:
969       O << " & ";
970       break;
971      case Instruction::Or:
972       O << " | ";
973       break;
974      case Instruction::Xor:
975       O << " ^ ";
976       break;
977      default:
978       break;
979      }
980      O << '(';
981      EmitConstantValueOnly(CE->getOperand(1));
982      O << ')';
983      break;
984    default:
985      llvm_unreachable("Unsupported operator!");
986    }
987  } else {
988    llvm_unreachable("Unknown constant value!");
989  }
990}
991
992/// printAsCString - Print the specified array as a C compatible string, only if
993/// the predicate isString is true.
994///
995static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
996                           unsigned LastElt) {
997  assert(CVA->isString() && "Array is not string compatible!");
998
999  O << '\"';
1000  for (unsigned i = 0; i != LastElt; ++i) {
1001    unsigned char C =
1002        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
1003    printStringChar(O, C);
1004  }
1005  O << '\"';
1006}
1007
1008/// EmitString - Emit a zero-byte-terminated string constant.
1009///
1010void AsmPrinter::EmitString(const ConstantArray *CVA) const {
1011  unsigned NumElts = CVA->getNumOperands();
1012  if (TAI->getAscizDirective() && NumElts &&
1013      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
1014    O << TAI->getAscizDirective();
1015    printAsCString(O, CVA, NumElts-1);
1016  } else {
1017    O << TAI->getAsciiDirective();
1018    printAsCString(O, CVA, NumElts);
1019  }
1020  O << '\n';
1021}
1022
1023void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
1024                                         unsigned AddrSpace) {
1025  if (CVA->isString()) {
1026    EmitString(CVA);
1027  } else { // Not a string.  Print the values in successive locations
1028    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
1029      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
1030  }
1031}
1032
1033void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
1034  const VectorType *PTy = CP->getType();
1035
1036  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1037    EmitGlobalConstant(CP->getOperand(I));
1038}
1039
1040void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
1041                                          unsigned AddrSpace) {
1042  // Print the fields in successive locations. Pad to align if needed!
1043  const TargetData *TD = TM.getTargetData();
1044  unsigned Size = TD->getTypeAllocSize(CVS->getType());
1045  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
1046  uint64_t sizeSoFar = 0;
1047  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
1048    const Constant* field = CVS->getOperand(i);
1049
1050    // Check if padding is needed and insert one or more 0s.
1051    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
1052    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1053                        - cvsLayout->getElementOffset(i)) - fieldSize;
1054    sizeSoFar += fieldSize + padSize;
1055
1056    // Now print the actual field value.
1057    EmitGlobalConstant(field, AddrSpace);
1058
1059    // Insert padding - this may include padding to increase the size of the
1060    // current field up to the ABI size (if the struct is not packed) as well
1061    // as padding to ensure that the next field starts at the right offset.
1062    EmitZeros(padSize, AddrSpace);
1063  }
1064  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1065         "Layout of constant struct may be incorrect!");
1066}
1067
1068void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1069                                      unsigned AddrSpace) {
1070  // FP Constants are printed as integer constants to avoid losing
1071  // precision...
1072  const TargetData *TD = TM.getTargetData();
1073  if (CFP->getType() == Type::DoubleTy) {
1074    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1075    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1076    if (TAI->getData64bitsDirective(AddrSpace)) {
1077      O << TAI->getData64bitsDirective(AddrSpace) << i;
1078      if (VerboseAsm)
1079        O << '\t' << TAI->getCommentString() << " double value: " << Val;
1080      O << '\n';
1081    } else if (TD->isBigEndian()) {
1082      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1083      if (VerboseAsm)
1084        O << '\t' << TAI->getCommentString()
1085          << " double most significant word " << Val;
1086      O << '\n';
1087      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1088      if (VerboseAsm)
1089        O << '\t' << TAI->getCommentString()
1090          << " double least significant word " << Val;
1091      O << '\n';
1092    } else {
1093      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1094      if (VerboseAsm)
1095        O << '\t' << TAI->getCommentString()
1096          << " double least significant word " << Val;
1097      O << '\n';
1098      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1099      if (VerboseAsm)
1100        O << '\t' << TAI->getCommentString()
1101          << " double most significant word " << Val;
1102      O << '\n';
1103    }
1104    return;
1105  } else if (CFP->getType() == Type::FloatTy) {
1106    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1107    O << TAI->getData32bitsDirective(AddrSpace)
1108      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1109    if (VerboseAsm)
1110      O << '\t' << TAI->getCommentString() << " float " << Val;
1111    O << '\n';
1112    return;
1113  } else if (CFP->getType() == Type::X86_FP80Ty) {
1114    // all long double variants are printed as hex
1115    // api needed to prevent premature destruction
1116    APInt api = CFP->getValueAPF().bitcastToAPInt();
1117    const uint64_t *p = api.getRawData();
1118    // Convert to double so we can print the approximate val as a comment.
1119    APFloat DoubleVal = CFP->getValueAPF();
1120    bool ignored;
1121    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1122                      &ignored);
1123    if (TD->isBigEndian()) {
1124      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1125      if (VerboseAsm)
1126        O << '\t' << TAI->getCommentString()
1127          << " long double most significant halfword of ~"
1128          << DoubleVal.convertToDouble();
1129      O << '\n';
1130      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1131      if (VerboseAsm)
1132        O << '\t' << TAI->getCommentString() << " long double next halfword";
1133      O << '\n';
1134      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1135      if (VerboseAsm)
1136        O << '\t' << TAI->getCommentString() << " long double next halfword";
1137      O << '\n';
1138      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1139      if (VerboseAsm)
1140        O << '\t' << TAI->getCommentString() << " long double next halfword";
1141      O << '\n';
1142      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1143      if (VerboseAsm)
1144        O << '\t' << TAI->getCommentString()
1145          << " long double least significant halfword";
1146      O << '\n';
1147     } else {
1148      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1149      if (VerboseAsm)
1150        O << '\t' << TAI->getCommentString()
1151          << " long double least significant halfword of ~"
1152          << DoubleVal.convertToDouble();
1153      O << '\n';
1154      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1155      if (VerboseAsm)
1156        O << '\t' << TAI->getCommentString()
1157          << " long double next halfword";
1158      O << '\n';
1159      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1160      if (VerboseAsm)
1161        O << '\t' << TAI->getCommentString()
1162          << " long double next halfword";
1163      O << '\n';
1164      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1165      if (VerboseAsm)
1166        O << '\t' << TAI->getCommentString()
1167          << " long double next halfword";
1168      O << '\n';
1169      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1170      if (VerboseAsm)
1171        O << '\t' << TAI->getCommentString()
1172          << " long double most significant halfword";
1173      O << '\n';
1174    }
1175    EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) -
1176              TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1177    return;
1178  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1179    // all long double variants are printed as hex
1180    // api needed to prevent premature destruction
1181    APInt api = CFP->getValueAPF().bitcastToAPInt();
1182    const uint64_t *p = api.getRawData();
1183    if (TD->isBigEndian()) {
1184      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1185      if (VerboseAsm)
1186        O << '\t' << TAI->getCommentString()
1187          << " long double most significant word";
1188      O << '\n';
1189      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1190      if (VerboseAsm)
1191        O << '\t' << TAI->getCommentString()
1192        << " long double next word";
1193      O << '\n';
1194      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1195      if (VerboseAsm)
1196        O << '\t' << TAI->getCommentString()
1197          << " long double next word";
1198      O << '\n';
1199      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1200      if (VerboseAsm)
1201        O << '\t' << TAI->getCommentString()
1202          << " long double least significant word";
1203      O << '\n';
1204     } else {
1205      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1206      if (VerboseAsm)
1207        O << '\t' << TAI->getCommentString()
1208          << " long double least significant word";
1209      O << '\n';
1210      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1211      if (VerboseAsm)
1212        O << '\t' << TAI->getCommentString()
1213          << " long double next word";
1214      O << '\n';
1215      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1216      if (VerboseAsm)
1217        O << '\t' << TAI->getCommentString()
1218          << " long double next word";
1219      O << '\n';
1220      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1221      if (VerboseAsm)
1222        O << '\t' << TAI->getCommentString()
1223          << " long double most significant word";
1224      O << '\n';
1225    }
1226    return;
1227  } else llvm_unreachable("Floating point constant type not handled");
1228}
1229
1230void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1231                                            unsigned AddrSpace) {
1232  const TargetData *TD = TM.getTargetData();
1233  unsigned BitWidth = CI->getBitWidth();
1234  assert(isPowerOf2_32(BitWidth) &&
1235         "Non-power-of-2-sized integers not handled!");
1236
1237  // We don't expect assemblers to support integer data directives
1238  // for more than 64 bits, so we emit the data in at most 64-bit
1239  // quantities at a time.
1240  const uint64_t *RawData = CI->getValue().getRawData();
1241  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1242    uint64_t Val;
1243    if (TD->isBigEndian())
1244      Val = RawData[e - i - 1];
1245    else
1246      Val = RawData[i];
1247
1248    if (TAI->getData64bitsDirective(AddrSpace))
1249      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1250    else if (TD->isBigEndian()) {
1251      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1252      if (VerboseAsm)
1253        O << '\t' << TAI->getCommentString()
1254          << " Double-word most significant word " << Val;
1255      O << '\n';
1256      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1257      if (VerboseAsm)
1258        O << '\t' << TAI->getCommentString()
1259          << " Double-word least significant word " << Val;
1260      O << '\n';
1261    } else {
1262      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1263      if (VerboseAsm)
1264        O << '\t' << TAI->getCommentString()
1265          << " Double-word least significant word " << Val;
1266      O << '\n';
1267      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1268      if (VerboseAsm)
1269        O << '\t' << TAI->getCommentString()
1270          << " Double-word most significant word " << Val;
1271      O << '\n';
1272    }
1273  }
1274}
1275
1276/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1277void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1278  const TargetData *TD = TM.getTargetData();
1279  const Type *type = CV->getType();
1280  unsigned Size = TD->getTypeAllocSize(type);
1281
1282  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1283    EmitZeros(Size, AddrSpace);
1284    return;
1285  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1286    EmitGlobalConstantArray(CVA , AddrSpace);
1287    return;
1288  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1289    EmitGlobalConstantStruct(CVS, AddrSpace);
1290    return;
1291  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1292    EmitGlobalConstantFP(CFP, AddrSpace);
1293    return;
1294  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1295    // Small integers are handled below; large integers are handled here.
1296    if (Size > 4) {
1297      EmitGlobalConstantLargeInt(CI, AddrSpace);
1298      return;
1299    }
1300  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1301    EmitGlobalConstantVector(CP);
1302    return;
1303  }
1304
1305  printDataDirective(type, AddrSpace);
1306  EmitConstantValueOnly(CV);
1307  if (VerboseAsm) {
1308    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1309      SmallString<40> S;
1310      CI->getValue().toStringUnsigned(S, 16);
1311      O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1312    }
1313  }
1314  O << '\n';
1315}
1316
1317void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1318  // Target doesn't support this yet!
1319  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1320}
1321
1322/// PrintSpecial - Print information related to the specified machine instr
1323/// that is independent of the operand, and may be independent of the instr
1324/// itself.  This can be useful for portably encoding the comment character
1325/// or other bits of target-specific knowledge into the asmstrings.  The
1326/// syntax used is ${:comment}.  Targets can override this to add support
1327/// for their own strange codes.
1328void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1329  if (!strcmp(Code, "private")) {
1330    O << TAI->getPrivateGlobalPrefix();
1331  } else if (!strcmp(Code, "comment")) {
1332    if (VerboseAsm)
1333      O << TAI->getCommentString();
1334  } else if (!strcmp(Code, "uid")) {
1335    // Comparing the address of MI isn't sufficient, because machineinstrs may
1336    // be allocated to the same address across functions.
1337    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1338
1339    // If this is a new LastFn instruction, bump the counter.
1340    if (LastMI != MI || LastFn != ThisF) {
1341      ++Counter;
1342      LastMI = MI;
1343      LastFn = ThisF;
1344    }
1345    O << Counter;
1346  } else {
1347    std::string msg;
1348    raw_string_ostream Msg(msg);
1349    Msg << "Unknown special formatter '" << Code
1350         << "' for machine instr: " << *MI;
1351    llvm_report_error(Msg.str());
1352  }
1353}
1354
1355/// processDebugLoc - Processes the debug information of each machine
1356/// instruction's DebugLoc.
1357void AsmPrinter::processDebugLoc(DebugLoc DL) {
1358  if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
1359    if (!DL.isUnknown()) {
1360      DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1361
1362      if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
1363        printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1364                                        DICompileUnit(CurDLT.CompileUnit)));
1365
1366      PrevDLT = CurDLT;
1367    }
1368  }
1369}
1370
1371/// printInlineAsm - This method formats and prints the specified machine
1372/// instruction that is an inline asm.
1373void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1374  unsigned NumOperands = MI->getNumOperands();
1375
1376  // Count the number of register definitions.
1377  unsigned NumDefs = 0;
1378  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1379       ++NumDefs)
1380    assert(NumDefs != NumOperands-1 && "No asm string?");
1381
1382  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1383
1384  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1385  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1386
1387  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1388  // These are useful to see where empty asm's wound up.
1389  if (AsmStr[0] == 0) {
1390    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1391    return;
1392  }
1393
1394  O << TAI->getInlineAsmStart() << "\n\t";
1395
1396  // The variant of the current asmprinter.
1397  int AsmPrinterVariant = TAI->getAssemblerDialect();
1398
1399  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1400  const char *LastEmitted = AsmStr; // One past the last character emitted.
1401
1402  while (*LastEmitted) {
1403    switch (*LastEmitted) {
1404    default: {
1405      // Not a special case, emit the string section literally.
1406      const char *LiteralEnd = LastEmitted+1;
1407      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1408             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1409        ++LiteralEnd;
1410      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1411        O.write(LastEmitted, LiteralEnd-LastEmitted);
1412      LastEmitted = LiteralEnd;
1413      break;
1414    }
1415    case '\n':
1416      ++LastEmitted;   // Consume newline character.
1417      O << '\n';       // Indent code with newline.
1418      break;
1419    case '$': {
1420      ++LastEmitted;   // Consume '$' character.
1421      bool Done = true;
1422
1423      // Handle escapes.
1424      switch (*LastEmitted) {
1425      default: Done = false; break;
1426      case '$':     // $$ -> $
1427        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1428          O << '$';
1429        ++LastEmitted;  // Consume second '$' character.
1430        break;
1431      case '(':             // $( -> same as GCC's { character.
1432        ++LastEmitted;      // Consume '(' character.
1433        if (CurVariant != -1) {
1434          llvm_report_error("Nested variants found in inline asm string: '"
1435                            + std::string(AsmStr) + "'");
1436        }
1437        CurVariant = 0;     // We're in the first variant now.
1438        break;
1439      case '|':
1440        ++LastEmitted;  // consume '|' character.
1441        if (CurVariant == -1)
1442          O << '|';       // this is gcc's behavior for | outside a variant
1443        else
1444          ++CurVariant;   // We're in the next variant.
1445        break;
1446      case ')':         // $) -> same as GCC's } char.
1447        ++LastEmitted;  // consume ')' character.
1448        if (CurVariant == -1)
1449          O << '}';     // this is gcc's behavior for } outside a variant
1450        else
1451          CurVariant = -1;
1452        break;
1453      }
1454      if (Done) break;
1455
1456      bool HasCurlyBraces = false;
1457      if (*LastEmitted == '{') {     // ${variable}
1458        ++LastEmitted;               // Consume '{' character.
1459        HasCurlyBraces = true;
1460      }
1461
1462      // If we have ${:foo}, then this is not a real operand reference, it is a
1463      // "magic" string reference, just like in .td files.  Arrange to call
1464      // PrintSpecial.
1465      if (HasCurlyBraces && *LastEmitted == ':') {
1466        ++LastEmitted;
1467        const char *StrStart = LastEmitted;
1468        const char *StrEnd = strchr(StrStart, '}');
1469        if (StrEnd == 0) {
1470          llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1471                            + std::string(AsmStr) + "'");
1472        }
1473
1474        std::string Val(StrStart, StrEnd);
1475        PrintSpecial(MI, Val.c_str());
1476        LastEmitted = StrEnd+1;
1477        break;
1478      }
1479
1480      const char *IDStart = LastEmitted;
1481      char *IDEnd;
1482      errno = 0;
1483      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1484      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1485        llvm_report_error("Bad $ operand number in inline asm string: '"
1486                          + std::string(AsmStr) + "'");
1487      }
1488      LastEmitted = IDEnd;
1489
1490      char Modifier[2] = { 0, 0 };
1491
1492      if (HasCurlyBraces) {
1493        // If we have curly braces, check for a modifier character.  This
1494        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1495        if (*LastEmitted == ':') {
1496          ++LastEmitted;    // Consume ':' character.
1497          if (*LastEmitted == 0) {
1498            llvm_report_error("Bad ${:} expression in inline asm string: '"
1499                              + std::string(AsmStr) + "'");
1500          }
1501
1502          Modifier[0] = *LastEmitted;
1503          ++LastEmitted;    // Consume modifier character.
1504        }
1505
1506        if (*LastEmitted != '}') {
1507          llvm_report_error("Bad ${} expression in inline asm string: '"
1508                            + std::string(AsmStr) + "'");
1509        }
1510        ++LastEmitted;    // Consume '}' character.
1511      }
1512
1513      if ((unsigned)Val >= NumOperands-1) {
1514        llvm_report_error("Invalid $ operand number in inline asm string: '"
1515                          + std::string(AsmStr) + "'");
1516      }
1517
1518      // Okay, we finally have a value number.  Ask the target to print this
1519      // operand!
1520      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1521        unsigned OpNo = 1;
1522
1523        bool Error = false;
1524
1525        // Scan to find the machine operand number for the operand.
1526        for (; Val; --Val) {
1527          if (OpNo >= MI->getNumOperands()) break;
1528          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1529          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1530        }
1531
1532        if (OpNo >= MI->getNumOperands()) {
1533          Error = true;
1534        } else {
1535          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1536          ++OpNo;  // Skip over the ID number.
1537
1538          if (Modifier[0]=='l')  // labels are target independent
1539            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1540                                 false, false, false);
1541          else {
1542            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1543            if ((OpFlags & 7) == 4) {
1544              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1545                                                Modifier[0] ? Modifier : 0);
1546            } else {
1547              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1548                                          Modifier[0] ? Modifier : 0);
1549            }
1550          }
1551        }
1552        if (Error) {
1553          std::string msg;
1554          raw_string_ostream Msg(msg);
1555          Msg << "Invalid operand found in inline asm: '"
1556               << AsmStr << "'\n";
1557          MI->print(Msg);
1558          llvm_report_error(Msg.str());
1559        }
1560      }
1561      break;
1562    }
1563    }
1564  }
1565  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1566}
1567
1568/// printImplicitDef - This method prints the specified machine instruction
1569/// that is an implicit def.
1570void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1571  if (VerboseAsm)
1572    O << '\t' << TAI->getCommentString() << " implicit-def: "
1573      << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1574}
1575
1576/// printLabel - This method prints a local label used by debug and
1577/// exception handling tables.
1578void AsmPrinter::printLabel(const MachineInstr *MI) const {
1579  printLabel(MI->getOperand(0).getImm());
1580}
1581
1582void AsmPrinter::printLabel(unsigned Id) const {
1583  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1584}
1585
1586/// printDeclare - This method prints a local variable declaration used by
1587/// debug tables.
1588/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1589/// entry into dwarf table.
1590void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1591  unsigned FI = MI->getOperand(0).getIndex();
1592  GlobalValue *GV = MI->getOperand(1).getGlobal();
1593  DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1594}
1595
1596/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1597/// instruction, using the specified assembler variant.  Targets should
1598/// overried this to format as appropriate.
1599bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1600                                 unsigned AsmVariant, const char *ExtraCode) {
1601  // Target doesn't support this yet!
1602  return true;
1603}
1604
1605bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1606                                       unsigned AsmVariant,
1607                                       const char *ExtraCode) {
1608  // Target doesn't support this yet!
1609  return true;
1610}
1611
1612/// printBasicBlockLabel - This method prints the label for the specified
1613/// MachineBasicBlock
1614void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1615                                      bool printAlign,
1616                                      bool printColon,
1617                                      bool printComment) const {
1618  if (printAlign) {
1619    unsigned Align = MBB->getAlignment();
1620    if (Align)
1621      EmitAlignment(Log2_32(Align));
1622  }
1623
1624  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1625    << MBB->getNumber();
1626  if (printColon)
1627    O << ':';
1628  if (printComment && MBB->getBasicBlock())
1629    O << '\t' << TAI->getCommentString() << ' '
1630      << MBB->getBasicBlock()->getNameStr();
1631}
1632
1633/// printPICJumpTableSetLabel - This method prints a set label for the
1634/// specified MachineBasicBlock for a jumptable entry.
1635void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1636                                           const MachineBasicBlock *MBB) const {
1637  if (!TAI->getSetDirective())
1638    return;
1639
1640  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1641    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1642  printBasicBlockLabel(MBB, false, false, false);
1643  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1644    << '_' << uid << '\n';
1645}
1646
1647void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1648                                           const MachineBasicBlock *MBB) const {
1649  if (!TAI->getSetDirective())
1650    return;
1651
1652  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1653    << getFunctionNumber() << '_' << uid << '_' << uid2
1654    << "_set_" << MBB->getNumber() << ',';
1655  printBasicBlockLabel(MBB, false, false, false);
1656  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1657    << '_' << uid << '_' << uid2 << '\n';
1658}
1659
1660/// printDataDirective - This method prints the asm directive for the
1661/// specified type.
1662void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1663  const TargetData *TD = TM.getTargetData();
1664  switch (type->getTypeID()) {
1665  case Type::FloatTyID: case Type::DoubleTyID:
1666  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1667    assert(0 && "Should have already output floating point constant.");
1668  default:
1669    assert(0 && "Can't handle printing this type of thing");
1670  case Type::IntegerTyID: {
1671    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1672    if (BitWidth <= 8)
1673      O << TAI->getData8bitsDirective(AddrSpace);
1674    else if (BitWidth <= 16)
1675      O << TAI->getData16bitsDirective(AddrSpace);
1676    else if (BitWidth <= 32)
1677      O << TAI->getData32bitsDirective(AddrSpace);
1678    else if (BitWidth <= 64) {
1679      assert(TAI->getData64bitsDirective(AddrSpace) &&
1680             "Target cannot handle 64-bit constant exprs!");
1681      O << TAI->getData64bitsDirective(AddrSpace);
1682    } else {
1683      llvm_unreachable("Target cannot handle given data directive width!");
1684    }
1685    break;
1686  }
1687  case Type::PointerTyID:
1688    if (TD->getPointerSize() == 8) {
1689      assert(TAI->getData64bitsDirective(AddrSpace) &&
1690             "Target cannot handle 64-bit pointer exprs!");
1691      O << TAI->getData64bitsDirective(AddrSpace);
1692    } else if (TD->getPointerSize() == 2) {
1693      O << TAI->getData16bitsDirective(AddrSpace);
1694    } else if (TD->getPointerSize() == 1) {
1695      O << TAI->getData8bitsDirective(AddrSpace);
1696    } else {
1697      O << TAI->getData32bitsDirective(AddrSpace);
1698    }
1699    break;
1700  }
1701}
1702
1703void AsmPrinter::printVisibility(const std::string& Name,
1704                                 unsigned Visibility) const {
1705  if (Visibility == GlobalValue::HiddenVisibility) {
1706    if (const char *Directive = TAI->getHiddenDirective())
1707      O << Directive << Name << '\n';
1708  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1709    if (const char *Directive = TAI->getProtectedDirective())
1710      O << Directive << Name << '\n';
1711  }
1712}
1713
1714void AsmPrinter::printOffset(int64_t Offset) const {
1715  if (Offset > 0)
1716    O << '+' << Offset;
1717  else if (Offset < 0)
1718    O << Offset;
1719}
1720
1721GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1722  if (!S->usesMetadata())
1723    return 0;
1724
1725  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1726  if (GCPI != GCMetadataPrinters.end())
1727    return GCPI->second;
1728
1729  const char *Name = S->getName().c_str();
1730
1731  for (GCMetadataPrinterRegistry::iterator
1732         I = GCMetadataPrinterRegistry::begin(),
1733         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1734    if (strcmp(Name, I->getName()) == 0) {
1735      GCMetadataPrinter *GMP = I->instantiate();
1736      GMP->S = S;
1737      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1738      return GMP;
1739    }
1740
1741  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1742  llvm_unreachable(0);
1743}
1744
1745/// EmitComments - Pretty-print comments for instructions
1746void AsmPrinter::EmitComments(const MachineInstr &MI) const
1747{
1748  if (VerboseAsm) {
1749    if (!MI.getDebugLoc().isUnknown()) {
1750      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1751
1752      // Print source line info
1753      O.PadToColumn(TAI->getCommentColumn(), 1);
1754      O << TAI->getCommentString() << " SrcLine ";
1755      if (DLT.CompileUnit->hasInitializer()) {
1756        Constant *Name = DLT.CompileUnit->getInitializer();
1757        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1758          if (NameString->isString()) {
1759            O << NameString->getAsString() << " ";
1760          }
1761      }
1762      O << DLT.Line;
1763      if (DLT.Col != 0)
1764        O << ":" << DLT.Col;
1765    }
1766  }
1767}
1768
1769/// EmitComments - Pretty-print comments for instructions
1770void AsmPrinter::EmitComments(const MCInst &MI) const
1771{
1772  if (VerboseAsm) {
1773    if (!MI.getDebugLoc().isUnknown()) {
1774      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1775
1776      // Print source line info
1777      O.PadToColumn(TAI->getCommentColumn(), 1);
1778      O << TAI->getCommentString() << " SrcLine ";
1779      if (DLT.CompileUnit->hasInitializer()) {
1780        Constant *Name = DLT.CompileUnit->getInitializer();
1781        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1782          if (NameString->isString()) {
1783            O << NameString->getAsString() << " ";
1784          }
1785      }
1786      O << DLT.Line;
1787      if (DLT.Col != 0)
1788        O << ":" << DLT.Col;
1789    }
1790  }
1791}
1792