AsmPrinter.cpp revision c53ade2889c85207e064e4c3d049383ffffb3319
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/DebugInfo.h"
19#include "llvm/Module.h"
20#include "llvm/CodeGen/GCMetadataPrinter.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineLoopInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/MC/MCAsmInfo.h"
29#include "llvm/MC/MCContext.h"
30#include "llvm/MC/MCExpr.h"
31#include "llvm/MC/MCInst.h"
32#include "llvm/MC/MCSection.h"
33#include "llvm/MC/MCStreamer.h"
34#include "llvm/MC/MCSymbol.h"
35#include "llvm/Target/Mangler.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetLowering.h"
39#include "llvm/Target/TargetLoweringObjectFile.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Assembly/Writer.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/Format.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/Timer.h"
49using namespace llvm;
50
51static const char *DWARFGroupName = "DWARF Emission";
52static const char *DbgTimerName = "DWARF Debug Writer";
53static const char *EHTimerName = "DWARF Exception Writer";
54
55STATISTIC(EmittedInsts, "Number of machine instrs printed");
56
57char AsmPrinter::ID = 0;
58
59typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
60static gcp_map_type &getGCMap(void *&P) {
61  if (P == 0)
62    P = new gcp_map_type();
63  return *(gcp_map_type*)P;
64}
65
66
67/// getGVAlignmentLog2 - Return the alignment to use for the specified global
68/// value in log2 form.  This rounds up to the preferred alignment if possible
69/// and legal.
70static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
71                                   unsigned InBits = 0) {
72  unsigned NumBits = 0;
73  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
74    NumBits = TD.getPreferredAlignmentLog(GVar);
75
76  // If InBits is specified, round it to it.
77  if (InBits > NumBits)
78    NumBits = InBits;
79
80  // If the GV has a specified alignment, take it into account.
81  if (GV->getAlignment() == 0)
82    return NumBits;
83
84  unsigned GVAlign = Log2_32(GV->getAlignment());
85
86  // If the GVAlign is larger than NumBits, or if we are required to obey
87  // NumBits because the GV has an assigned section, obey it.
88  if (GVAlign > NumBits || GV->hasSection())
89    NumBits = GVAlign;
90  return NumBits;
91}
92
93
94
95
96AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
97  : MachineFunctionPass(ID),
98    TM(tm), MAI(tm.getMCAsmInfo()),
99    OutContext(Streamer.getContext()),
100    OutStreamer(Streamer),
101    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
102  DD = 0; DE = 0; MMI = 0; LI = 0;
103  CurrentFnSym = CurrentFnSymForSize = 0;
104  GCMetadataPrinters = 0;
105  VerboseAsm = Streamer.isVerboseAsm();
106}
107
108AsmPrinter::~AsmPrinter() {
109  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
110
111  if (GCMetadataPrinters != 0) {
112    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
113
114    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
115      delete I->second;
116    delete &GCMap;
117    GCMetadataPrinters = 0;
118  }
119
120  delete &OutStreamer;
121}
122
123/// getFunctionNumber - Return a unique ID for the current function.
124///
125unsigned AsmPrinter::getFunctionNumber() const {
126  return MF->getFunctionNumber();
127}
128
129const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
130  return TM.getTargetLowering()->getObjFileLowering();
131}
132
133
134/// getTargetData - Return information about data layout.
135const TargetData &AsmPrinter::getTargetData() const {
136  return *TM.getTargetData();
137}
138
139/// getCurrentSection() - Return the current section we are emitting to.
140const MCSection *AsmPrinter::getCurrentSection() const {
141  return OutStreamer.getCurrentSection();
142}
143
144
145
146void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
147  AU.setPreservesAll();
148  MachineFunctionPass::getAnalysisUsage(AU);
149  AU.addRequired<MachineModuleInfo>();
150  AU.addRequired<GCModuleInfo>();
151  if (isVerbose())
152    AU.addRequired<MachineLoopInfo>();
153}
154
155bool AsmPrinter::doInitialization(Module &M) {
156  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
157  MMI->AnalyzeModule(M);
158
159  // Initialize TargetLoweringObjectFile.
160  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
161    .Initialize(OutContext, TM);
162
163  Mang = new Mangler(OutContext, *TM.getTargetData());
164
165  // Allow the target to emit any magic that it wants at the start of the file.
166  EmitStartOfAsmFile(M);
167
168  // Very minimal debug info. It is ignored if we emit actual debug info. If we
169  // don't, this at least helps the user find where a global came from.
170  if (MAI->hasSingleParameterDotFile()) {
171    // .file "foo.c"
172    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
173  }
174
175  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
176  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
177  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
178    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
179      MP->beginAssembly(*this);
180
181  // Emit module-level inline asm if it exists.
182  if (!M.getModuleInlineAsm().empty()) {
183    OutStreamer.AddComment("Start of file scope inline assembly");
184    OutStreamer.AddBlankLine();
185    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
186    OutStreamer.AddComment("End of file scope inline assembly");
187    OutStreamer.AddBlankLine();
188  }
189
190  if (MAI->doesSupportDebugInformation())
191    DD = new DwarfDebug(this, &M);
192
193  switch (MAI->getExceptionHandlingType()) {
194  case ExceptionHandling::None:
195    return false;
196  case ExceptionHandling::SjLj:
197  case ExceptionHandling::DwarfCFI:
198    DE = new DwarfCFIException(this);
199    return false;
200  case ExceptionHandling::ARM:
201    DE = new ARMException(this);
202    return false;
203  case ExceptionHandling::Win64:
204    DE = new Win64Exception(this);
205    return false;
206  }
207
208  llvm_unreachable("Unknown exception type.");
209}
210
211void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
212  switch ((GlobalValue::LinkageTypes)Linkage) {
213  case GlobalValue::CommonLinkage:
214  case GlobalValue::LinkOnceAnyLinkage:
215  case GlobalValue::LinkOnceODRLinkage:
216  case GlobalValue::LinkOnceODRAutoHideLinkage:
217  case GlobalValue::WeakAnyLinkage:
218  case GlobalValue::WeakODRLinkage:
219  case GlobalValue::LinkerPrivateWeakLinkage:
220    if (MAI->getWeakDefDirective() != 0) {
221      // .globl _foo
222      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
223
224      if ((GlobalValue::LinkageTypes)Linkage !=
225          GlobalValue::LinkOnceODRAutoHideLinkage)
226        // .weak_definition _foo
227        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
228      else
229        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
230    } else if (MAI->getLinkOnceDirective() != 0) {
231      // .globl _foo
232      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
233      //NOTE: linkonce is handled by the section the symbol was assigned to.
234    } else {
235      // .weak _foo
236      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
237    }
238    break;
239  case GlobalValue::DLLExportLinkage:
240  case GlobalValue::AppendingLinkage:
241    // FIXME: appending linkage variables should go into a section of
242    // their name or something.  For now, just emit them as external.
243  case GlobalValue::ExternalLinkage:
244    // If external or appending, declare as a global symbol.
245    // .globl _foo
246    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
247    break;
248  case GlobalValue::PrivateLinkage:
249  case GlobalValue::InternalLinkage:
250  case GlobalValue::LinkerPrivateLinkage:
251    break;
252  default:
253    llvm_unreachable("Unknown linkage type!");
254  }
255}
256
257
258/// EmitGlobalVariable - Emit the specified global variable to the .s file.
259void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
260  if (GV->hasInitializer()) {
261    // Check to see if this is a special global used by LLVM, if so, emit it.
262    if (EmitSpecialLLVMGlobal(GV))
263      return;
264
265    if (isVerbose()) {
266      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
267                     /*PrintType=*/false, GV->getParent());
268      OutStreamer.GetCommentOS() << '\n';
269    }
270  }
271
272  MCSymbol *GVSym = Mang->getSymbol(GV);
273  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
274
275  if (!GV->hasInitializer())   // External globals require no extra code.
276    return;
277
278  if (MAI->hasDotTypeDotSizeDirective())
279    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
280
281  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
282
283  const TargetData *TD = TM.getTargetData();
284  uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
285
286  // If the alignment is specified, we *must* obey it.  Overaligning a global
287  // with a specified alignment is a prompt way to break globals emitted to
288  // sections and expected to be contiguous (e.g. ObjC metadata).
289  unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
290
291  // Handle common and BSS local symbols (.lcomm).
292  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
293    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
294    unsigned Align = 1 << AlignLog;
295
296    // Handle common symbols.
297    if (GVKind.isCommon()) {
298      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
299        Align = 0;
300
301      // .comm _foo, 42, 4
302      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
303      return;
304    }
305
306    // Handle local BSS symbols.
307    if (MAI->hasMachoZeroFillDirective()) {
308      const MCSection *TheSection =
309        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
310      // .zerofill __DATA, __bss, _foo, 400, 5
311      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
312      return;
313    }
314
315    if (Align == 1 || MAI->getLCOMMDirectiveSupportsAlignment()) {
316      // .lcomm _foo, 42
317      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
318      return;
319    }
320
321    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
322      Align = 0;
323
324    // .local _foo
325    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
326    // .comm _foo, 42, 4
327    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
328    return;
329  }
330
331  const MCSection *TheSection =
332    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
333
334  // Handle the zerofill directive on darwin, which is a special form of BSS
335  // emission.
336  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
337    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
338
339    // .globl _foo
340    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
341    // .zerofill __DATA, __common, _foo, 400, 5
342    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
343    return;
344  }
345
346  // Handle thread local data for mach-o which requires us to output an
347  // additional structure of data and mangle the original symbol so that we
348  // can reference it later.
349  //
350  // TODO: This should become an "emit thread local global" method on TLOF.
351  // All of this macho specific stuff should be sunk down into TLOFMachO and
352  // stuff like "TLSExtraDataSection" should no longer be part of the parent
353  // TLOF class.  This will also make it more obvious that stuff like
354  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
355  // specific code.
356  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
357    // Emit the .tbss symbol
358    MCSymbol *MangSym =
359      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
360
361    if (GVKind.isThreadBSS())
362      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
363    else if (GVKind.isThreadData()) {
364      OutStreamer.SwitchSection(TheSection);
365
366      EmitAlignment(AlignLog, GV);
367      OutStreamer.EmitLabel(MangSym);
368
369      EmitGlobalConstant(GV->getInitializer());
370    }
371
372    OutStreamer.AddBlankLine();
373
374    // Emit the variable struct for the runtime.
375    const MCSection *TLVSect
376      = getObjFileLowering().getTLSExtraDataSection();
377
378    OutStreamer.SwitchSection(TLVSect);
379    // Emit the linkage here.
380    EmitLinkage(GV->getLinkage(), GVSym);
381    OutStreamer.EmitLabel(GVSym);
382
383    // Three pointers in size:
384    //   - __tlv_bootstrap - used to make sure support exists
385    //   - spare pointer, used when mapped by the runtime
386    //   - pointer to mangled symbol above with initializer
387    unsigned PtrSize = TD->getPointerSizeInBits()/8;
388    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
389                          PtrSize, 0);
390    OutStreamer.EmitIntValue(0, PtrSize, 0);
391    OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
392
393    OutStreamer.AddBlankLine();
394    return;
395  }
396
397  OutStreamer.SwitchSection(TheSection);
398
399  EmitLinkage(GV->getLinkage(), GVSym);
400  EmitAlignment(AlignLog, GV);
401
402  OutStreamer.EmitLabel(GVSym);
403
404  EmitGlobalConstant(GV->getInitializer());
405
406  if (MAI->hasDotTypeDotSizeDirective())
407    // .size foo, 42
408    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
409
410  OutStreamer.AddBlankLine();
411}
412
413/// EmitFunctionHeader - This method emits the header for the current
414/// function.
415void AsmPrinter::EmitFunctionHeader() {
416  // Print out constants referenced by the function
417  EmitConstantPool();
418
419  // Print the 'header' of function.
420  const Function *F = MF->getFunction();
421
422  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
423  EmitVisibility(CurrentFnSym, F->getVisibility());
424
425  EmitLinkage(F->getLinkage(), CurrentFnSym);
426  EmitAlignment(MF->getAlignment(), F);
427
428  if (MAI->hasDotTypeDotSizeDirective())
429    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
430
431  if (isVerbose()) {
432    WriteAsOperand(OutStreamer.GetCommentOS(), F,
433                   /*PrintType=*/false, F->getParent());
434    OutStreamer.GetCommentOS() << '\n';
435  }
436
437  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
438  // do their wild and crazy things as required.
439  EmitFunctionEntryLabel();
440
441  // If the function had address-taken blocks that got deleted, then we have
442  // references to the dangling symbols.  Emit them at the start of the function
443  // so that we don't get references to undefined symbols.
444  std::vector<MCSymbol*> DeadBlockSyms;
445  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
446  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
447    OutStreamer.AddComment("Address taken block that was later removed");
448    OutStreamer.EmitLabel(DeadBlockSyms[i]);
449  }
450
451  // Add some workaround for linkonce linkage on Cygwin\MinGW.
452  if (MAI->getLinkOnceDirective() != 0 &&
453      (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
454    // FIXME: What is this?
455    MCSymbol *FakeStub =
456      OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
457                                   CurrentFnSym->getName());
458    OutStreamer.EmitLabel(FakeStub);
459  }
460
461  // Emit pre-function debug and/or EH information.
462  if (DE) {
463    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
464    DE->BeginFunction(MF);
465  }
466  if (DD) {
467    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
468    DD->beginFunction(MF);
469  }
470}
471
472/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
473/// function.  This can be overridden by targets as required to do custom stuff.
474void AsmPrinter::EmitFunctionEntryLabel() {
475  // The function label could have already been emitted if two symbols end up
476  // conflicting due to asm renaming.  Detect this and emit an error.
477  if (CurrentFnSym->isUndefined())
478    return OutStreamer.EmitLabel(CurrentFnSym);
479
480  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
481                     "' label emitted multiple times to assembly file");
482}
483
484/// emitComments - Pretty-print comments for instructions.
485static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
486  const MachineFunction *MF = MI.getParent()->getParent();
487  const TargetMachine &TM = MF->getTarget();
488
489  // Check for spills and reloads
490  int FI;
491
492  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
493
494  // We assume a single instruction only has a spill or reload, not
495  // both.
496  const MachineMemOperand *MMO;
497  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
498    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
499      MMO = *MI.memoperands_begin();
500      CommentOS << MMO->getSize() << "-byte Reload\n";
501    }
502  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
503    if (FrameInfo->isSpillSlotObjectIndex(FI))
504      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
505  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
506    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
507      MMO = *MI.memoperands_begin();
508      CommentOS << MMO->getSize() << "-byte Spill\n";
509    }
510  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
511    if (FrameInfo->isSpillSlotObjectIndex(FI))
512      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
513  }
514
515  // Check for spill-induced copies
516  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
517    CommentOS << " Reload Reuse\n";
518}
519
520/// emitImplicitDef - This method emits the specified machine instruction
521/// that is an implicit def.
522static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
523  unsigned RegNo = MI->getOperand(0).getReg();
524  AP.OutStreamer.AddComment(Twine("implicit-def: ") +
525                            AP.TM.getRegisterInfo()->getName(RegNo));
526  AP.OutStreamer.AddBlankLine();
527}
528
529static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
530  std::string Str = "kill:";
531  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
532    const MachineOperand &Op = MI->getOperand(i);
533    assert(Op.isReg() && "KILL instruction must have only register operands");
534    Str += ' ';
535    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
536    Str += (Op.isDef() ? "<def>" : "<kill>");
537  }
538  AP.OutStreamer.AddComment(Str);
539  AP.OutStreamer.AddBlankLine();
540}
541
542/// emitDebugValueComment - This method handles the target-independent form
543/// of DBG_VALUE, returning true if it was able to do so.  A false return
544/// means the target will need to handle MI in EmitInstruction.
545static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
546  // This code handles only the 3-operand target-independent form.
547  if (MI->getNumOperands() != 3)
548    return false;
549
550  SmallString<128> Str;
551  raw_svector_ostream OS(Str);
552  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
553
554  // cast away const; DIetc do not take const operands for some reason.
555  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
556  if (V.getContext().isSubprogram())
557    OS << DISubprogram(V.getContext()).getDisplayName() << ":";
558  OS << V.getName() << " <- ";
559
560  // Register or immediate value. Register 0 means undef.
561  if (MI->getOperand(0).isFPImm()) {
562    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
563    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
564      OS << (double)APF.convertToFloat();
565    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
566      OS << APF.convertToDouble();
567    } else {
568      // There is no good way to print long double.  Convert a copy to
569      // double.  Ah well, it's only a comment.
570      bool ignored;
571      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
572                  &ignored);
573      OS << "(long double) " << APF.convertToDouble();
574    }
575  } else if (MI->getOperand(0).isImm()) {
576    OS << MI->getOperand(0).getImm();
577  } else if (MI->getOperand(0).isCImm()) {
578    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
579  } else {
580    assert(MI->getOperand(0).isReg() && "Unknown operand type");
581    if (MI->getOperand(0).getReg() == 0) {
582      // Suppress offset, it is not meaningful here.
583      OS << "undef";
584      // NOTE: Want this comment at start of line, don't emit with AddComment.
585      AP.OutStreamer.EmitRawText(OS.str());
586      return true;
587    }
588    OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
589  }
590
591  OS << '+' << MI->getOperand(1).getImm();
592  // NOTE: Want this comment at start of line, don't emit with AddComment.
593  AP.OutStreamer.EmitRawText(OS.str());
594  return true;
595}
596
597AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
598  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
599      MF->getFunction()->needsUnwindTableEntry())
600    return CFI_M_EH;
601
602  if (MMI->hasDebugInfo())
603    return CFI_M_Debug;
604
605  return CFI_M_None;
606}
607
608bool AsmPrinter::needsSEHMoves() {
609  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
610    MF->getFunction()->needsUnwindTableEntry();
611}
612
613bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
614  return MAI->doesDwarfUseRelocationsAcrossSections();
615}
616
617void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
618  MCSymbol *Label = MI.getOperand(0).getMCSymbol();
619
620  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
621    return;
622
623  if (needsCFIMoves() == CFI_M_None)
624    return;
625
626  if (MMI->getCompactUnwindEncoding() != 0)
627    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
628
629  MachineModuleInfo &MMI = MF->getMMI();
630  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
631  bool FoundOne = false;
632  (void)FoundOne;
633  for (std::vector<MachineMove>::iterator I = Moves.begin(),
634         E = Moves.end(); I != E; ++I) {
635    if (I->getLabel() == Label) {
636      EmitCFIFrameMove(*I);
637      FoundOne = true;
638    }
639  }
640  assert(FoundOne);
641}
642
643/// EmitFunctionBody - This method emits the body and trailer for a
644/// function.
645void AsmPrinter::EmitFunctionBody() {
646  // Emit target-specific gunk before the function body.
647  EmitFunctionBodyStart();
648
649  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
650
651  // Print out code for the function.
652  bool HasAnyRealCode = false;
653  const MachineInstr *LastMI = 0;
654  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
655       I != E; ++I) {
656    // Print a label for the basic block.
657    EmitBasicBlockStart(I);
658    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
659         II != IE; ++II) {
660      LastMI = II;
661
662      // Print the assembly for the instruction.
663      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
664          !II->isDebugValue()) {
665        HasAnyRealCode = true;
666        ++EmittedInsts;
667      }
668
669      if (ShouldPrintDebugScopes) {
670        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
671        DD->beginInstruction(II);
672      }
673
674      if (isVerbose())
675        emitComments(*II, OutStreamer.GetCommentOS());
676
677      switch (II->getOpcode()) {
678      case TargetOpcode::PROLOG_LABEL:
679        emitPrologLabel(*II);
680        break;
681
682      case TargetOpcode::EH_LABEL:
683      case TargetOpcode::GC_LABEL:
684        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
685        break;
686      case TargetOpcode::INLINEASM:
687        EmitInlineAsm(II);
688        break;
689      case TargetOpcode::DBG_VALUE:
690        if (isVerbose()) {
691          if (!emitDebugValueComment(II, *this))
692            EmitInstruction(II);
693        }
694        break;
695      case TargetOpcode::IMPLICIT_DEF:
696        if (isVerbose()) emitImplicitDef(II, *this);
697        break;
698      case TargetOpcode::KILL:
699        if (isVerbose()) emitKill(II, *this);
700        break;
701      default:
702        if (!TM.hasMCUseLoc())
703          MCLineEntry::Make(&OutStreamer, getCurrentSection());
704
705        EmitInstruction(II);
706        break;
707      }
708
709      if (ShouldPrintDebugScopes) {
710        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
711        DD->endInstruction(II);
712      }
713    }
714  }
715
716  // If the last instruction was a prolog label, then we have a situation where
717  // we emitted a prolog but no function body. This results in the ending prolog
718  // label equaling the end of function label and an invalid "row" in the
719  // FDE. We need to emit a noop in this situation so that the FDE's rows are
720  // valid.
721  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
722
723  // If the function is empty and the object file uses .subsections_via_symbols,
724  // then we need to emit *something* to the function body to prevent the
725  // labels from collapsing together.  Just emit a noop.
726  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
727    MCInst Noop;
728    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
729    if (Noop.getOpcode()) {
730      OutStreamer.AddComment("avoids zero-length function");
731      OutStreamer.EmitInstruction(Noop);
732    } else  // Target not mc-ized yet.
733      OutStreamer.EmitRawText(StringRef("\tnop\n"));
734  }
735
736  const Function *F = MF->getFunction();
737  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
738    const BasicBlock *BB = i;
739    if (!BB->hasAddressTaken())
740      continue;
741    MCSymbol *Sym = GetBlockAddressSymbol(BB);
742    if (Sym->isDefined())
743      continue;
744    OutStreamer.AddComment("Address of block that was removed by CodeGen");
745    OutStreamer.EmitLabel(Sym);
746  }
747
748  // Emit target-specific gunk after the function body.
749  EmitFunctionBodyEnd();
750
751  // If the target wants a .size directive for the size of the function, emit
752  // it.
753  if (MAI->hasDotTypeDotSizeDirective()) {
754    // Create a symbol for the end of function, so we can get the size as
755    // difference between the function label and the temp label.
756    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
757    OutStreamer.EmitLabel(FnEndLabel);
758
759    const MCExpr *SizeExp =
760      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
761                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
762                                                      OutContext),
763                              OutContext);
764    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
765  }
766
767  // Emit post-function debug information.
768  if (DD) {
769    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
770    DD->endFunction(MF);
771  }
772  if (DE) {
773    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
774    DE->EndFunction();
775  }
776  MMI->EndFunction();
777
778  // Print out jump tables referenced by the function.
779  EmitJumpTableInfo();
780
781  OutStreamer.AddBlankLine();
782}
783
784/// getDebugValueLocation - Get location information encoded by DBG_VALUE
785/// operands.
786MachineLocation AsmPrinter::
787getDebugValueLocation(const MachineInstr *MI) const {
788  // Target specific DBG_VALUE instructions are handled by each target.
789  return MachineLocation();
790}
791
792/// EmitDwarfRegOp - Emit dwarf register operation.
793void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
794  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
795  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
796
797  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
798       ++SR) {
799    Reg = TRI->getDwarfRegNum(*SR, false);
800    // FIXME: Get the bit range this register uses of the superregister
801    // so that we can produce a DW_OP_bit_piece
802  }
803
804  // FIXME: Handle cases like a super register being encoded as
805  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
806
807  // FIXME: We have no reasonable way of handling errors in here. The
808  // caller might be in the middle of an dwarf expression. We should
809  // probably assert that Reg >= 0 once debug info generation is more mature.
810
811  if (int Offset =  MLoc.getOffset()) {
812    if (Reg < 32) {
813      OutStreamer.AddComment(
814        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
815      EmitInt8(dwarf::DW_OP_breg0 + Reg);
816    } else {
817      OutStreamer.AddComment("DW_OP_bregx");
818      EmitInt8(dwarf::DW_OP_bregx);
819      OutStreamer.AddComment(Twine(Reg));
820      EmitULEB128(Reg);
821    }
822    EmitSLEB128(Offset);
823  } else {
824    if (Reg < 32) {
825      OutStreamer.AddComment(
826        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
827      EmitInt8(dwarf::DW_OP_reg0 + Reg);
828    } else {
829      OutStreamer.AddComment("DW_OP_regx");
830      EmitInt8(dwarf::DW_OP_regx);
831      OutStreamer.AddComment(Twine(Reg));
832      EmitULEB128(Reg);
833    }
834  }
835
836  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
837}
838
839bool AsmPrinter::doFinalization(Module &M) {
840  // Emit global variables.
841  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
842       I != E; ++I)
843    EmitGlobalVariable(I);
844
845  // Emit visibility info for declarations
846  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
847    const Function &F = *I;
848    if (!F.isDeclaration())
849      continue;
850    GlobalValue::VisibilityTypes V = F.getVisibility();
851    if (V == GlobalValue::DefaultVisibility)
852      continue;
853
854    MCSymbol *Name = Mang->getSymbol(&F);
855    EmitVisibility(Name, V, false);
856  }
857
858  // Emit module flags.
859  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
860  M.getModuleFlagsMetadata(ModuleFlags);
861  if (!ModuleFlags.empty())
862    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
863
864  // Finalize debug and EH information.
865  if (DE) {
866    {
867      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
868      DE->EndModule();
869    }
870    delete DE; DE = 0;
871  }
872  if (DD) {
873    {
874      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
875      DD->endModule();
876    }
877    delete DD; DD = 0;
878  }
879
880  // If the target wants to know about weak references, print them all.
881  if (MAI->getWeakRefDirective()) {
882    // FIXME: This is not lazy, it would be nice to only print weak references
883    // to stuff that is actually used.  Note that doing so would require targets
884    // to notice uses in operands (due to constant exprs etc).  This should
885    // happen with the MC stuff eventually.
886
887    // Print out module-level global variables here.
888    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
889         I != E; ++I) {
890      if (!I->hasExternalWeakLinkage()) continue;
891      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
892    }
893
894    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
895      if (!I->hasExternalWeakLinkage()) continue;
896      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
897    }
898  }
899
900  if (MAI->hasSetDirective()) {
901    OutStreamer.AddBlankLine();
902    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
903         I != E; ++I) {
904      MCSymbol *Name = Mang->getSymbol(I);
905
906      const GlobalValue *GV = I->getAliasedGlobal();
907      MCSymbol *Target = Mang->getSymbol(GV);
908
909      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
910        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
911      else if (I->hasWeakLinkage())
912        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
913      else
914        assert(I->hasLocalLinkage() && "Invalid alias linkage");
915
916      EmitVisibility(Name, I->getVisibility());
917
918      // Emit the directives as assignments aka .set:
919      OutStreamer.EmitAssignment(Name,
920                                 MCSymbolRefExpr::Create(Target, OutContext));
921    }
922  }
923
924  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
925  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
926  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
927    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
928      MP->finishAssembly(*this);
929
930  // If we don't have any trampolines, then we don't require stack memory
931  // to be executable. Some targets have a directive to declare this.
932  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
933  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
934    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
935      OutStreamer.SwitchSection(S);
936
937  // Allow the target to emit any magic that it wants at the end of the file,
938  // after everything else has gone out.
939  EmitEndOfAsmFile(M);
940
941  delete Mang; Mang = 0;
942  MMI = 0;
943
944  OutStreamer.Finish();
945  return false;
946}
947
948void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
949  this->MF = &MF;
950  // Get the function symbol.
951  CurrentFnSym = Mang->getSymbol(MF.getFunction());
952  CurrentFnSymForSize = CurrentFnSym;
953
954  if (isVerbose())
955    LI = &getAnalysis<MachineLoopInfo>();
956}
957
958namespace {
959  // SectionCPs - Keep track the alignment, constpool entries per Section.
960  struct SectionCPs {
961    const MCSection *S;
962    unsigned Alignment;
963    SmallVector<unsigned, 4> CPEs;
964    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
965  };
966}
967
968/// EmitConstantPool - Print to the current output stream assembly
969/// representations of the constants in the constant pool MCP. This is
970/// used to print out constants which have been "spilled to memory" by
971/// the code generator.
972///
973void AsmPrinter::EmitConstantPool() {
974  const MachineConstantPool *MCP = MF->getConstantPool();
975  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
976  if (CP.empty()) return;
977
978  // Calculate sections for constant pool entries. We collect entries to go into
979  // the same section together to reduce amount of section switch statements.
980  SmallVector<SectionCPs, 4> CPSections;
981  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
982    const MachineConstantPoolEntry &CPE = CP[i];
983    unsigned Align = CPE.getAlignment();
984
985    SectionKind Kind;
986    switch (CPE.getRelocationInfo()) {
987    default: llvm_unreachable("Unknown section kind");
988    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
989    case 1:
990      Kind = SectionKind::getReadOnlyWithRelLocal();
991      break;
992    case 0:
993    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
994    case 4:  Kind = SectionKind::getMergeableConst4(); break;
995    case 8:  Kind = SectionKind::getMergeableConst8(); break;
996    case 16: Kind = SectionKind::getMergeableConst16();break;
997    default: Kind = SectionKind::getMergeableConst(); break;
998    }
999    }
1000
1001    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1002
1003    // The number of sections are small, just do a linear search from the
1004    // last section to the first.
1005    bool Found = false;
1006    unsigned SecIdx = CPSections.size();
1007    while (SecIdx != 0) {
1008      if (CPSections[--SecIdx].S == S) {
1009        Found = true;
1010        break;
1011      }
1012    }
1013    if (!Found) {
1014      SecIdx = CPSections.size();
1015      CPSections.push_back(SectionCPs(S, Align));
1016    }
1017
1018    if (Align > CPSections[SecIdx].Alignment)
1019      CPSections[SecIdx].Alignment = Align;
1020    CPSections[SecIdx].CPEs.push_back(i);
1021  }
1022
1023  // Now print stuff into the calculated sections.
1024  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1025    OutStreamer.SwitchSection(CPSections[i].S);
1026    EmitAlignment(Log2_32(CPSections[i].Alignment));
1027
1028    unsigned Offset = 0;
1029    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1030      unsigned CPI = CPSections[i].CPEs[j];
1031      MachineConstantPoolEntry CPE = CP[CPI];
1032
1033      // Emit inter-object padding for alignment.
1034      unsigned AlignMask = CPE.getAlignment() - 1;
1035      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1036      OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1037
1038      Type *Ty = CPE.getType();
1039      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
1040      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1041
1042      if (CPE.isMachineConstantPoolEntry())
1043        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1044      else
1045        EmitGlobalConstant(CPE.Val.ConstVal);
1046    }
1047  }
1048}
1049
1050/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1051/// by the current function to the current output stream.
1052///
1053void AsmPrinter::EmitJumpTableInfo() {
1054  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1055  if (MJTI == 0) return;
1056  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1057  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1058  if (JT.empty()) return;
1059
1060  // Pick the directive to use to print the jump table entries, and switch to
1061  // the appropriate section.
1062  const Function *F = MF->getFunction();
1063  bool JTInDiffSection = false;
1064  if (// In PIC mode, we need to emit the jump table to the same section as the
1065      // function body itself, otherwise the label differences won't make sense.
1066      // FIXME: Need a better predicate for this: what about custom entries?
1067      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1068      // We should also do if the section name is NULL or function is declared
1069      // in discardable section
1070      // FIXME: this isn't the right predicate, should be based on the MCSection
1071      // for the function.
1072      F->isWeakForLinker()) {
1073    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1074  } else {
1075    // Otherwise, drop it in the readonly section.
1076    const MCSection *ReadOnlySection =
1077      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1078    OutStreamer.SwitchSection(ReadOnlySection);
1079    JTInDiffSection = true;
1080  }
1081
1082  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
1083
1084  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1085    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1086
1087    // If this jump table was deleted, ignore it.
1088    if (JTBBs.empty()) continue;
1089
1090    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1091    // .set directive for each unique entry.  This reduces the number of
1092    // relocations the assembler will generate for the jump table.
1093    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1094        MAI->hasSetDirective()) {
1095      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1096      const TargetLowering *TLI = TM.getTargetLowering();
1097      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1098      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1099        const MachineBasicBlock *MBB = JTBBs[ii];
1100        if (!EmittedSets.insert(MBB)) continue;
1101
1102        // .set LJTSet, LBB32-base
1103        const MCExpr *LHS =
1104          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1105        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1106                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1107      }
1108    }
1109
1110    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1111    // before each jump table.  The first label is never referenced, but tells
1112    // the assembler and linker the extents of the jump table object.  The
1113    // second label is actually referenced by the code.
1114    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1115      // FIXME: This doesn't have to have any specific name, just any randomly
1116      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1117      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1118
1119    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1120
1121    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1122      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1123  }
1124}
1125
1126/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1127/// current stream.
1128void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1129                                    const MachineBasicBlock *MBB,
1130                                    unsigned UID) const {
1131  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1132  const MCExpr *Value = 0;
1133  switch (MJTI->getEntryKind()) {
1134  case MachineJumpTableInfo::EK_Inline:
1135    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1136  case MachineJumpTableInfo::EK_Custom32:
1137    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1138                                                              OutContext);
1139    break;
1140  case MachineJumpTableInfo::EK_BlockAddress:
1141    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1142    //     .word LBB123
1143    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1144    break;
1145  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1146    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1147    // with a relocation as gp-relative, e.g.:
1148    //     .gprel32 LBB123
1149    MCSymbol *MBBSym = MBB->getSymbol();
1150    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1151    return;
1152  }
1153
1154  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1155    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1156    // with a relocation as gp-relative, e.g.:
1157    //     .gpdword LBB123
1158    MCSymbol *MBBSym = MBB->getSymbol();
1159    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1160    return;
1161  }
1162
1163  case MachineJumpTableInfo::EK_LabelDifference32: {
1164    // EK_LabelDifference32 - Each entry is the address of the block minus
1165    // the address of the jump table.  This is used for PIC jump tables where
1166    // gprel32 is not supported.  e.g.:
1167    //      .word LBB123 - LJTI1_2
1168    // If the .set directive is supported, this is emitted as:
1169    //      .set L4_5_set_123, LBB123 - LJTI1_2
1170    //      .word L4_5_set_123
1171
1172    // If we have emitted set directives for the jump table entries, print
1173    // them rather than the entries themselves.  If we're emitting PIC, then
1174    // emit the table entries as differences between two text section labels.
1175    if (MAI->hasSetDirective()) {
1176      // If we used .set, reference the .set's symbol.
1177      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1178                                      OutContext);
1179      break;
1180    }
1181    // Otherwise, use the difference as the jump table entry.
1182    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1183    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1184    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1185    break;
1186  }
1187  }
1188
1189  assert(Value && "Unknown entry kind!");
1190
1191  unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
1192  OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1193}
1194
1195
1196/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1197/// special global used by LLVM.  If so, emit it and return true, otherwise
1198/// do nothing and return false.
1199bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1200  if (GV->getName() == "llvm.used") {
1201    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1202      EmitLLVMUsedList(GV->getInitializer());
1203    return true;
1204  }
1205
1206  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1207  if (GV->getSection() == "llvm.metadata" ||
1208      GV->hasAvailableExternallyLinkage())
1209    return true;
1210
1211  if (!GV->hasAppendingLinkage()) return false;
1212
1213  assert(GV->hasInitializer() && "Not a special LLVM global!");
1214
1215  if (GV->getName() == "llvm.global_ctors") {
1216    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1217
1218    if (TM.getRelocationModel() == Reloc::Static &&
1219        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1220      StringRef Sym(".constructors_used");
1221      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1222                                      MCSA_Reference);
1223    }
1224    return true;
1225  }
1226
1227  if (GV->getName() == "llvm.global_dtors") {
1228    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1229
1230    if (TM.getRelocationModel() == Reloc::Static &&
1231        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1232      StringRef Sym(".destructors_used");
1233      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1234                                      MCSA_Reference);
1235    }
1236    return true;
1237  }
1238
1239  return false;
1240}
1241
1242/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1243/// global in the specified llvm.used list for which emitUsedDirectiveFor
1244/// is true, as being used with this directive.
1245void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1246  // Should be an array of 'i8*'.
1247  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1248  if (InitList == 0) return;
1249
1250  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1251    const GlobalValue *GV =
1252      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1253    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1254      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1255  }
1256}
1257
1258typedef std::pair<unsigned, Constant*> Structor;
1259
1260static bool priority_order(const Structor& lhs, const Structor& rhs) {
1261  return lhs.first < rhs.first;
1262}
1263
1264/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1265/// priority.
1266void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1267  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1268  // init priority.
1269  if (!isa<ConstantArray>(List)) return;
1270
1271  // Sanity check the structors list.
1272  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1273  if (!InitList) return; // Not an array!
1274  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1275  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1276  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1277      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1278
1279  // Gather the structors in a form that's convenient for sorting by priority.
1280  SmallVector<Structor, 8> Structors;
1281  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1282    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1283    if (!CS) continue; // Malformed.
1284    if (CS->getOperand(1)->isNullValue())
1285      break;  // Found a null terminator, skip the rest.
1286    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1287    if (!Priority) continue; // Malformed.
1288    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1289                                       CS->getOperand(1)));
1290  }
1291
1292  // Emit the function pointers in the target-specific order
1293  const TargetData *TD = TM.getTargetData();
1294  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1295  std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1296  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1297    const MCSection *OutputSection =
1298      (isCtor ?
1299       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1300       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1301    OutStreamer.SwitchSection(OutputSection);
1302    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1303      EmitAlignment(Align);
1304    EmitXXStructor(Structors[i].second);
1305  }
1306}
1307
1308//===--------------------------------------------------------------------===//
1309// Emission and print routines
1310//
1311
1312/// EmitInt8 - Emit a byte directive and value.
1313///
1314void AsmPrinter::EmitInt8(int Value) const {
1315  OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1316}
1317
1318/// EmitInt16 - Emit a short directive and value.
1319///
1320void AsmPrinter::EmitInt16(int Value) const {
1321  OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1322}
1323
1324/// EmitInt32 - Emit a long directive and value.
1325///
1326void AsmPrinter::EmitInt32(int Value) const {
1327  OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1328}
1329
1330/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1331/// in bytes of the directive is specified by Size and Hi/Lo specify the
1332/// labels.  This implicitly uses .set if it is available.
1333void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1334                                     unsigned Size) const {
1335  // Get the Hi-Lo expression.
1336  const MCExpr *Diff =
1337    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1338                            MCSymbolRefExpr::Create(Lo, OutContext),
1339                            OutContext);
1340
1341  if (!MAI->hasSetDirective()) {
1342    OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1343    return;
1344  }
1345
1346  // Otherwise, emit with .set (aka assignment).
1347  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1348  OutStreamer.EmitAssignment(SetLabel, Diff);
1349  OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1350}
1351
1352/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1353/// where the size in bytes of the directive is specified by Size and Hi/Lo
1354/// specify the labels.  This implicitly uses .set if it is available.
1355void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1356                                           const MCSymbol *Lo, unsigned Size)
1357  const {
1358
1359  // Emit Hi+Offset - Lo
1360  // Get the Hi+Offset expression.
1361  const MCExpr *Plus =
1362    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1363                            MCConstantExpr::Create(Offset, OutContext),
1364                            OutContext);
1365
1366  // Get the Hi+Offset-Lo expression.
1367  const MCExpr *Diff =
1368    MCBinaryExpr::CreateSub(Plus,
1369                            MCSymbolRefExpr::Create(Lo, OutContext),
1370                            OutContext);
1371
1372  if (!MAI->hasSetDirective())
1373    OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1374  else {
1375    // Otherwise, emit with .set (aka assignment).
1376    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1377    OutStreamer.EmitAssignment(SetLabel, Diff);
1378    OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1379  }
1380}
1381
1382/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1383/// where the size in bytes of the directive is specified by Size and Label
1384/// specifies the label.  This implicitly uses .set if it is available.
1385void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1386                                      unsigned Size)
1387  const {
1388
1389  // Emit Label+Offset (or just Label if Offset is zero)
1390  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1391  if (Offset)
1392    Expr = MCBinaryExpr::CreateAdd(Expr,
1393                                   MCConstantExpr::Create(Offset, OutContext),
1394                                   OutContext);
1395
1396  OutStreamer.EmitValue(Expr, Size, 0/*AddrSpace*/);
1397}
1398
1399
1400//===----------------------------------------------------------------------===//
1401
1402// EmitAlignment - Emit an alignment directive to the specified power of
1403// two boundary.  For example, if you pass in 3 here, you will get an 8
1404// byte alignment.  If a global value is specified, and if that global has
1405// an explicit alignment requested, it will override the alignment request
1406// if required for correctness.
1407//
1408void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1409  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
1410
1411  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1412
1413  if (getCurrentSection()->getKind().isText())
1414    OutStreamer.EmitCodeAlignment(1 << NumBits);
1415  else
1416    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1417}
1418
1419//===----------------------------------------------------------------------===//
1420// Constant emission.
1421//===----------------------------------------------------------------------===//
1422
1423/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1424///
1425static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1426  MCContext &Ctx = AP.OutContext;
1427
1428  if (CV->isNullValue() || isa<UndefValue>(CV))
1429    return MCConstantExpr::Create(0, Ctx);
1430
1431  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1432    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1433
1434  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1435    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1436
1437  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1438    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1439
1440  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1441  if (CE == 0) {
1442    llvm_unreachable("Unknown constant value to lower!");
1443  }
1444
1445  switch (CE->getOpcode()) {
1446  default:
1447    // If the code isn't optimized, there may be outstanding folding
1448    // opportunities. Attempt to fold the expression using TargetData as a
1449    // last resort before giving up.
1450    if (Constant *C =
1451          ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
1452      if (C != CE)
1453        return lowerConstant(C, AP);
1454
1455    // Otherwise report the problem to the user.
1456    {
1457      std::string S;
1458      raw_string_ostream OS(S);
1459      OS << "Unsupported expression in static initializer: ";
1460      WriteAsOperand(OS, CE, /*PrintType=*/false,
1461                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1462      report_fatal_error(OS.str());
1463    }
1464  case Instruction::GetElementPtr: {
1465    const TargetData &TD = *AP.TM.getTargetData();
1466    // Generate a symbolic expression for the byte address
1467    const Constant *PtrVal = CE->getOperand(0);
1468    SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1469    int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
1470
1471    const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1472    if (Offset == 0)
1473      return Base;
1474
1475    // Truncate/sext the offset to the pointer size.
1476    unsigned Width = TD.getPointerSizeInBits();
1477    if (Width < 64)
1478      Offset = SignExtend64(Offset, Width);
1479
1480    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1481                                   Ctx);
1482  }
1483
1484  case Instruction::Trunc:
1485    // We emit the value and depend on the assembler to truncate the generated
1486    // expression properly.  This is important for differences between
1487    // blockaddress labels.  Since the two labels are in the same function, it
1488    // is reasonable to treat their delta as a 32-bit value.
1489    // FALL THROUGH.
1490  case Instruction::BitCast:
1491    return lowerConstant(CE->getOperand(0), AP);
1492
1493  case Instruction::IntToPtr: {
1494    const TargetData &TD = *AP.TM.getTargetData();
1495    // Handle casts to pointers by changing them into casts to the appropriate
1496    // integer type.  This promotes constant folding and simplifies this code.
1497    Constant *Op = CE->getOperand(0);
1498    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1499                                      false/*ZExt*/);
1500    return lowerConstant(Op, AP);
1501  }
1502
1503  case Instruction::PtrToInt: {
1504    const TargetData &TD = *AP.TM.getTargetData();
1505    // Support only foldable casts to/from pointers that can be eliminated by
1506    // changing the pointer to the appropriately sized integer type.
1507    Constant *Op = CE->getOperand(0);
1508    Type *Ty = CE->getType();
1509
1510    const MCExpr *OpExpr = lowerConstant(Op, AP);
1511
1512    // We can emit the pointer value into this slot if the slot is an
1513    // integer slot equal to the size of the pointer.
1514    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1515      return OpExpr;
1516
1517    // Otherwise the pointer is smaller than the resultant integer, mask off
1518    // the high bits so we are sure to get a proper truncation if the input is
1519    // a constant expr.
1520    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1521    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1522    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1523  }
1524
1525  // The MC library also has a right-shift operator, but it isn't consistently
1526  // signed or unsigned between different targets.
1527  case Instruction::Add:
1528  case Instruction::Sub:
1529  case Instruction::Mul:
1530  case Instruction::SDiv:
1531  case Instruction::SRem:
1532  case Instruction::Shl:
1533  case Instruction::And:
1534  case Instruction::Or:
1535  case Instruction::Xor: {
1536    const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1537    const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1538    switch (CE->getOpcode()) {
1539    default: llvm_unreachable("Unknown binary operator constant cast expr");
1540    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1541    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1542    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1543    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1544    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1545    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1546    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1547    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1548    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1549    }
1550  }
1551  }
1552}
1553
1554static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1555                                   AsmPrinter &AP);
1556
1557/// isRepeatedByteSequence - Determine whether the given value is
1558/// composed of a repeated sequence of identical bytes and return the
1559/// byte value.  If it is not a repeated sequence, return -1.
1560static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1561  StringRef Data = V->getRawDataValues();
1562  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1563  char C = Data[0];
1564  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1565    if (Data[i] != C) return -1;
1566  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1567}
1568
1569
1570/// isRepeatedByteSequence - Determine whether the given value is
1571/// composed of a repeated sequence of identical bytes and return the
1572/// byte value.  If it is not a repeated sequence, return -1.
1573static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1574
1575  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1576    if (CI->getBitWidth() > 64) return -1;
1577
1578    uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
1579    uint64_t Value = CI->getZExtValue();
1580
1581    // Make sure the constant is at least 8 bits long and has a power
1582    // of 2 bit width.  This guarantees the constant bit width is
1583    // always a multiple of 8 bits, avoiding issues with padding out
1584    // to Size and other such corner cases.
1585    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1586
1587    uint8_t Byte = static_cast<uint8_t>(Value);
1588
1589    for (unsigned i = 1; i < Size; ++i) {
1590      Value >>= 8;
1591      if (static_cast<uint8_t>(Value) != Byte) return -1;
1592    }
1593    return Byte;
1594  }
1595  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1596    // Make sure all array elements are sequences of the same repeated
1597    // byte.
1598    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1599    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1600    if (Byte == -1) return -1;
1601
1602    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1603      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1604      if (ThisByte == -1) return -1;
1605      if (Byte != ThisByte) return -1;
1606    }
1607    return Byte;
1608  }
1609
1610  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1611    return isRepeatedByteSequence(CDS);
1612
1613  return -1;
1614}
1615
1616static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1617                                             unsigned AddrSpace,AsmPrinter &AP){
1618
1619  // See if we can aggregate this into a .fill, if so, emit it as such.
1620  int Value = isRepeatedByteSequence(CDS, AP.TM);
1621  if (Value != -1) {
1622    uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
1623    // Don't emit a 1-byte object as a .fill.
1624    if (Bytes > 1)
1625      return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1626  }
1627
1628  // If this can be emitted with .ascii/.asciz, emit it as such.
1629  if (CDS->isString())
1630    return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1631
1632  // Otherwise, emit the values in successive locations.
1633  unsigned ElementByteSize = CDS->getElementByteSize();
1634  if (isa<IntegerType>(CDS->getElementType())) {
1635    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1636      if (AP.isVerbose())
1637        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1638                                                CDS->getElementAsInteger(i));
1639      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1640                                  ElementByteSize, AddrSpace);
1641    }
1642  } else if (ElementByteSize == 4) {
1643    // FP Constants are printed as integer constants to avoid losing
1644    // precision.
1645    assert(CDS->getElementType()->isFloatTy());
1646    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1647      union {
1648        float F;
1649        uint32_t I;
1650      };
1651
1652      F = CDS->getElementAsFloat(i);
1653      if (AP.isVerbose())
1654        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1655      AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1656    }
1657  } else {
1658    assert(CDS->getElementType()->isDoubleTy());
1659    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1660      union {
1661        double F;
1662        uint64_t I;
1663      };
1664
1665      F = CDS->getElementAsDouble(i);
1666      if (AP.isVerbose())
1667        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1668      AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1669    }
1670  }
1671
1672  const TargetData &TD = *AP.TM.getTargetData();
1673  unsigned Size = TD.getTypeAllocSize(CDS->getType());
1674  unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1675                        CDS->getNumElements();
1676  if (unsigned Padding = Size - EmittedSize)
1677    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1678
1679}
1680
1681static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1682                                    AsmPrinter &AP) {
1683  // See if we can aggregate some values.  Make sure it can be
1684  // represented as a series of bytes of the constant value.
1685  int Value = isRepeatedByteSequence(CA, AP.TM);
1686
1687  if (Value != -1) {
1688    uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
1689    AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1690  }
1691  else {
1692    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1693      emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1694  }
1695}
1696
1697static void emitGlobalConstantVector(const ConstantVector *CV,
1698                                     unsigned AddrSpace, AsmPrinter &AP) {
1699  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1700    emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1701
1702  const TargetData &TD = *AP.TM.getTargetData();
1703  unsigned Size = TD.getTypeAllocSize(CV->getType());
1704  unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1705                         CV->getType()->getNumElements();
1706  if (unsigned Padding = Size - EmittedSize)
1707    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1708}
1709
1710static void emitGlobalConstantStruct(const ConstantStruct *CS,
1711                                     unsigned AddrSpace, AsmPrinter &AP) {
1712  // Print the fields in successive locations. Pad to align if needed!
1713  const TargetData *TD = AP.TM.getTargetData();
1714  unsigned Size = TD->getTypeAllocSize(CS->getType());
1715  const StructLayout *Layout = TD->getStructLayout(CS->getType());
1716  uint64_t SizeSoFar = 0;
1717  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1718    const Constant *Field = CS->getOperand(i);
1719
1720    // Check if padding is needed and insert one or more 0s.
1721    uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1722    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1723                        - Layout->getElementOffset(i)) - FieldSize;
1724    SizeSoFar += FieldSize + PadSize;
1725
1726    // Now print the actual field value.
1727    emitGlobalConstantImpl(Field, AddrSpace, AP);
1728
1729    // Insert padding - this may include padding to increase the size of the
1730    // current field up to the ABI size (if the struct is not packed) as well
1731    // as padding to ensure that the next field starts at the right offset.
1732    AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1733  }
1734  assert(SizeSoFar == Layout->getSizeInBytes() &&
1735         "Layout of constant struct may be incorrect!");
1736}
1737
1738static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1739                                 AsmPrinter &AP) {
1740  if (CFP->getType()->isHalfTy()) {
1741    if (AP.isVerbose()) {
1742      SmallString<10> Str;
1743      CFP->getValueAPF().toString(Str);
1744      AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
1745    }
1746    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1747    AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
1748    return;
1749  }
1750
1751  if (CFP->getType()->isFloatTy()) {
1752    if (AP.isVerbose()) {
1753      float Val = CFP->getValueAPF().convertToFloat();
1754      uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1755      AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'
1756                                    << " (" << format("0x%x", IntVal) << ")\n";
1757    }
1758    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1759    AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1760    return;
1761  }
1762
1763  // FP Constants are printed as integer constants to avoid losing
1764  // precision.
1765  if (CFP->getType()->isDoubleTy()) {
1766    if (AP.isVerbose()) {
1767      double Val = CFP->getValueAPF().convertToDouble();
1768      uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1769      AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'
1770                                    << " (" << format("0x%lx", IntVal) << ")\n";
1771    }
1772
1773    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1774    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1775    return;
1776  }
1777
1778  if (CFP->getType()->isX86_FP80Ty()) {
1779    // all long double variants are printed as hex
1780    // API needed to prevent premature destruction
1781    APInt API = CFP->getValueAPF().bitcastToAPInt();
1782    const uint64_t *p = API.getRawData();
1783    if (AP.isVerbose()) {
1784      // Convert to double so we can print the approximate val as a comment.
1785      APFloat DoubleVal = CFP->getValueAPF();
1786      bool ignored;
1787      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1788                        &ignored);
1789      AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1790        << DoubleVal.convertToDouble() << '\n';
1791    }
1792
1793    if (AP.TM.getTargetData()->isBigEndian()) {
1794      AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1795      AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1796    } else {
1797      AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1798      AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1799    }
1800
1801    // Emit the tail padding for the long double.
1802    const TargetData &TD = *AP.TM.getTargetData();
1803    AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1804                             TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1805    return;
1806  }
1807
1808  assert(CFP->getType()->isPPC_FP128Ty() &&
1809         "Floating point constant type not handled");
1810  // All long double variants are printed as hex
1811  // API needed to prevent premature destruction.
1812  APInt API = CFP->getValueAPF().bitcastToAPInt();
1813  const uint64_t *p = API.getRawData();
1814  if (AP.TM.getTargetData()->isBigEndian()) {
1815    AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1816    AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1817  } else {
1818    AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1819    AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1820  }
1821}
1822
1823static void emitGlobalConstantLargeInt(const ConstantInt *CI,
1824                                       unsigned AddrSpace, AsmPrinter &AP) {
1825  const TargetData *TD = AP.TM.getTargetData();
1826  unsigned BitWidth = CI->getBitWidth();
1827  assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1828
1829  // We don't expect assemblers to support integer data directives
1830  // for more than 64 bits, so we emit the data in at most 64-bit
1831  // quantities at a time.
1832  const uint64_t *RawData = CI->getValue().getRawData();
1833  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1834    uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1835    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1836  }
1837}
1838
1839static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1840                                   AsmPrinter &AP) {
1841  const TargetData *TD = AP.TM.getTargetData();
1842  uint64_t Size = TD->getTypeAllocSize(CV->getType());
1843  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1844    return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1845
1846  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1847    switch (Size) {
1848    case 1:
1849    case 2:
1850    case 4:
1851    case 8:
1852      if (AP.isVerbose())
1853        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1854                                                CI->getZExtValue());
1855      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1856      return;
1857    default:
1858      emitGlobalConstantLargeInt(CI, AddrSpace, AP);
1859      return;
1860    }
1861  }
1862
1863  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1864    return emitGlobalConstantFP(CFP, AddrSpace, AP);
1865
1866  if (isa<ConstantPointerNull>(CV)) {
1867    AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1868    return;
1869  }
1870
1871  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1872    return emitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1873
1874  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1875    return emitGlobalConstantArray(CVA, AddrSpace, AP);
1876
1877  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1878    return emitGlobalConstantStruct(CVS, AddrSpace, AP);
1879
1880  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1881    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1882    // vectors).
1883    if (CE->getOpcode() == Instruction::BitCast)
1884      return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1885
1886    if (Size > 8) {
1887      // If the constant expression's size is greater than 64-bits, then we have
1888      // to emit the value in chunks. Try to constant fold the value and emit it
1889      // that way.
1890      Constant *New = ConstantFoldConstantExpression(CE, TD);
1891      if (New && New != CE)
1892        return emitGlobalConstantImpl(New, AddrSpace, AP);
1893    }
1894  }
1895
1896  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1897    return emitGlobalConstantVector(V, AddrSpace, AP);
1898
1899  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1900  // thread the streamer with EmitValue.
1901  AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace);
1902}
1903
1904/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1905void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1906  uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
1907  if (Size)
1908    emitGlobalConstantImpl(CV, AddrSpace, *this);
1909  else if (MAI->hasSubsectionsViaSymbols()) {
1910    // If the global has zero size, emit a single byte so that two labels don't
1911    // look like they are at the same location.
1912    OutStreamer.EmitIntValue(0, 1, AddrSpace);
1913  }
1914}
1915
1916void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1917  // Target doesn't support this yet!
1918  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1919}
1920
1921void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1922  if (Offset > 0)
1923    OS << '+' << Offset;
1924  else if (Offset < 0)
1925    OS << Offset;
1926}
1927
1928//===----------------------------------------------------------------------===//
1929// Symbol Lowering Routines.
1930//===----------------------------------------------------------------------===//
1931
1932/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1933/// temporary label with the specified stem and unique ID.
1934MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1935  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1936                                      Name + Twine(ID));
1937}
1938
1939/// GetTempSymbol - Return an assembler temporary label with the specified
1940/// stem.
1941MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1942  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1943                                      Name);
1944}
1945
1946
1947MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1948  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1949}
1950
1951MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1952  return MMI->getAddrLabelSymbol(BB);
1953}
1954
1955/// GetCPISymbol - Return the symbol for the specified constant pool entry.
1956MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1957  return OutContext.GetOrCreateSymbol
1958    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1959     + "_" + Twine(CPID));
1960}
1961
1962/// GetJTISymbol - Return the symbol for the specified jump table entry.
1963MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1964  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1965}
1966
1967/// GetJTSetSymbol - Return the symbol for the specified jump table .set
1968/// FIXME: privatize to AsmPrinter.
1969MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1970  return OutContext.GetOrCreateSymbol
1971  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1972   Twine(UID) + "_set_" + Twine(MBBID));
1973}
1974
1975/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1976/// global value name as its base, with the specified suffix, and where the
1977/// symbol is forced to have private linkage if ForcePrivate is true.
1978MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1979                                                   StringRef Suffix,
1980                                                   bool ForcePrivate) const {
1981  SmallString<60> NameStr;
1982  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1983  NameStr.append(Suffix.begin(), Suffix.end());
1984  return OutContext.GetOrCreateSymbol(NameStr.str());
1985}
1986
1987/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1988/// ExternalSymbol.
1989MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1990  SmallString<60> NameStr;
1991  Mang->getNameWithPrefix(NameStr, Sym);
1992  return OutContext.GetOrCreateSymbol(NameStr.str());
1993}
1994
1995
1996
1997/// PrintParentLoopComment - Print comments about parent loops of this one.
1998static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
1999                                   unsigned FunctionNumber) {
2000  if (Loop == 0) return;
2001  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2002  OS.indent(Loop->getLoopDepth()*2)
2003    << "Parent Loop BB" << FunctionNumber << "_"
2004    << Loop->getHeader()->getNumber()
2005    << " Depth=" << Loop->getLoopDepth() << '\n';
2006}
2007
2008
2009/// PrintChildLoopComment - Print comments about child loops within
2010/// the loop for this basic block, with nesting.
2011static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2012                                  unsigned FunctionNumber) {
2013  // Add child loop information
2014  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2015    OS.indent((*CL)->getLoopDepth()*2)
2016      << "Child Loop BB" << FunctionNumber << "_"
2017      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2018      << '\n';
2019    PrintChildLoopComment(OS, *CL, FunctionNumber);
2020  }
2021}
2022
2023/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2024static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2025                                       const MachineLoopInfo *LI,
2026                                       const AsmPrinter &AP) {
2027  // Add loop depth information
2028  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2029  if (Loop == 0) return;
2030
2031  MachineBasicBlock *Header = Loop->getHeader();
2032  assert(Header && "No header for loop");
2033
2034  // If this block is not a loop header, just print out what is the loop header
2035  // and return.
2036  if (Header != &MBB) {
2037    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2038                              Twine(AP.getFunctionNumber())+"_" +
2039                              Twine(Loop->getHeader()->getNumber())+
2040                              " Depth="+Twine(Loop->getLoopDepth()));
2041    return;
2042  }
2043
2044  // Otherwise, it is a loop header.  Print out information about child and
2045  // parent loops.
2046  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2047
2048  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2049
2050  OS << "=>";
2051  OS.indent(Loop->getLoopDepth()*2-2);
2052
2053  OS << "This ";
2054  if (Loop->empty())
2055    OS << "Inner ";
2056  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2057
2058  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2059}
2060
2061
2062/// EmitBasicBlockStart - This method prints the label for the specified
2063/// MachineBasicBlock, an alignment (if present) and a comment describing
2064/// it if appropriate.
2065void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2066  // Emit an alignment directive for this block, if needed.
2067  if (unsigned Align = MBB->getAlignment())
2068    EmitAlignment(Align);
2069
2070  // If the block has its address taken, emit any labels that were used to
2071  // reference the block.  It is possible that there is more than one label
2072  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2073  // the references were generated.
2074  if (MBB->hasAddressTaken()) {
2075    const BasicBlock *BB = MBB->getBasicBlock();
2076    if (isVerbose())
2077      OutStreamer.AddComment("Block address taken");
2078
2079    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2080
2081    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2082      OutStreamer.EmitLabel(Syms[i]);
2083  }
2084
2085  // Print some verbose block comments.
2086  if (isVerbose()) {
2087    if (const BasicBlock *BB = MBB->getBasicBlock())
2088      if (BB->hasName())
2089        OutStreamer.AddComment("%" + BB->getName());
2090    emitBasicBlockLoopComments(*MBB, LI, *this);
2091  }
2092
2093  // Print the main label for the block.
2094  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2095    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2096      // NOTE: Want this comment at start of line, don't emit with AddComment.
2097      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2098                              Twine(MBB->getNumber()) + ":");
2099    }
2100  } else {
2101    OutStreamer.EmitLabel(MBB->getSymbol());
2102  }
2103}
2104
2105void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2106                                bool IsDefinition) const {
2107  MCSymbolAttr Attr = MCSA_Invalid;
2108
2109  switch (Visibility) {
2110  default: break;
2111  case GlobalValue::HiddenVisibility:
2112    if (IsDefinition)
2113      Attr = MAI->getHiddenVisibilityAttr();
2114    else
2115      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2116    break;
2117  case GlobalValue::ProtectedVisibility:
2118    Attr = MAI->getProtectedVisibilityAttr();
2119    break;
2120  }
2121
2122  if (Attr != MCSA_Invalid)
2123    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2124}
2125
2126/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2127/// exactly one predecessor and the control transfer mechanism between
2128/// the predecessor and this block is a fall-through.
2129bool AsmPrinter::
2130isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2131  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2132  // then nothing falls through to it.
2133  if (MBB->isLandingPad() || MBB->pred_empty())
2134    return false;
2135
2136  // If there isn't exactly one predecessor, it can't be a fall through.
2137  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2138  ++PI2;
2139  if (PI2 != MBB->pred_end())
2140    return false;
2141
2142  // The predecessor has to be immediately before this block.
2143  MachineBasicBlock *Pred = *PI;
2144
2145  if (!Pred->isLayoutSuccessor(MBB))
2146    return false;
2147
2148  // If the block is completely empty, then it definitely does fall through.
2149  if (Pred->empty())
2150    return true;
2151
2152  // Check the terminators in the previous blocks
2153  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2154         IE = Pred->end(); II != IE; ++II) {
2155    MachineInstr &MI = *II;
2156
2157    // If it is not a simple branch, we are in a table somewhere.
2158    if (!MI.isBranch() || MI.isIndirectBranch())
2159      return false;
2160
2161    // If we are the operands of one of the branches, this is not
2162    // a fall through.
2163    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2164           OE = MI.operands_end(); OI != OE; ++OI) {
2165      const MachineOperand& OP = *OI;
2166      if (OP.isJTI())
2167        return false;
2168      if (OP.isMBB() && OP.getMBB() == MBB)
2169        return false;
2170    }
2171  }
2172
2173  return true;
2174}
2175
2176
2177
2178GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2179  if (!S->usesMetadata())
2180    return 0;
2181
2182  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2183  gcp_map_type::iterator GCPI = GCMap.find(S);
2184  if (GCPI != GCMap.end())
2185    return GCPI->second;
2186
2187  const char *Name = S->getName().c_str();
2188
2189  for (GCMetadataPrinterRegistry::iterator
2190         I = GCMetadataPrinterRegistry::begin(),
2191         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2192    if (strcmp(Name, I->getName()) == 0) {
2193      GCMetadataPrinter *GMP = I->instantiate();
2194      GMP->S = S;
2195      GCMap.insert(std::make_pair(S, GMP));
2196      return GMP;
2197    }
2198
2199  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2200}
2201