AsmPrinter.cpp revision ce40984980d8cc39e903382478c111d967aed337
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/CodeGen/GCMetadataPrinter.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineLoopInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/Analysis/DebugInfo.h"
28#include "llvm/MC/MCContext.h"
29#include "llvm/MC/MCInst.h"
30#include "llvm/MC/MCSection.h"
31#include "llvm/MC/MCStreamer.h"
32#include "llvm/MC/MCSymbol.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/FormattedStream.h"
36#include "llvm/MC/MCAsmInfo.h"
37#include "llvm/Target/Mangler.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetLoweringObjectFile.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Target/TargetRegisterInfo.h"
44#include "llvm/ADT/SmallPtrSet.h"
45#include "llvm/ADT/SmallString.h"
46#include <cerrno>
47using namespace llvm;
48
49static cl::opt<cl::boolOrDefault>
50AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
51           cl::init(cl::BOU_UNSET));
52
53char AsmPrinter::ID = 0;
54AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
55                       const MCAsmInfo *T, bool VDef)
56  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
57    TM(tm), MAI(T), TRI(tm.getRegisterInfo()),
58
59    OutContext(*new MCContext()),
60    // FIXME: Pass instprinter to streamer.
61    OutStreamer(*createAsmStreamer(OutContext, O, *T, 0)),
62
63    LastMI(0), LastFn(0), Counter(~0U), PrevDLT(NULL) {
64  DW = 0; MMI = 0;
65  switch (AsmVerbose) {
66  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
67  case cl::BOU_TRUE:  VerboseAsm = true;  break;
68  case cl::BOU_FALSE: VerboseAsm = false; break;
69  }
70}
71
72AsmPrinter::~AsmPrinter() {
73  for (gcp_iterator I = GCMetadataPrinters.begin(),
74                    E = GCMetadataPrinters.end(); I != E; ++I)
75    delete I->second;
76
77  delete &OutStreamer;
78  delete &OutContext;
79}
80
81TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
82  return TM.getTargetLowering()->getObjFileLowering();
83}
84
85/// getCurrentSection() - Return the current section we are emitting to.
86const MCSection *AsmPrinter::getCurrentSection() const {
87  return OutStreamer.getCurrentSection();
88}
89
90
91void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
92  AU.setPreservesAll();
93  MachineFunctionPass::getAnalysisUsage(AU);
94  AU.addRequired<GCModuleInfo>();
95  if (VerboseAsm)
96    AU.addRequired<MachineLoopInfo>();
97}
98
99bool AsmPrinter::doInitialization(Module &M) {
100  // Initialize TargetLoweringObjectFile.
101  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
102    .Initialize(OutContext, TM);
103
104  Mang = new Mangler(*MAI);
105
106  // Allow the target to emit any magic that it wants at the start of the file.
107  EmitStartOfAsmFile(M);
108
109  if (MAI->hasSingleParameterDotFile()) {
110    /* Very minimal debug info. It is ignored if we emit actual
111       debug info. If we don't, this at least helps the user find where
112       a function came from. */
113    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
114  }
115
116  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
117  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
118  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
119    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
120      MP->beginAssembly(O, *this, *MAI);
121
122  if (!M.getModuleInlineAsm().empty())
123    O << MAI->getCommentString() << " Start of file scope inline assembly\n"
124      << M.getModuleInlineAsm()
125      << '\n' << MAI->getCommentString()
126      << " End of file scope inline assembly\n";
127
128  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
129  if (MMI)
130    MMI->AnalyzeModule(M);
131  DW = getAnalysisIfAvailable<DwarfWriter>();
132  if (DW)
133    DW->BeginModule(&M, MMI, O, this, MAI);
134
135  return false;
136}
137
138bool AsmPrinter::doFinalization(Module &M) {
139  // Emit global variables.
140  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
141       I != E; ++I)
142    PrintGlobalVariable(I);
143
144  // Emit final debug information.
145  if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling())
146    DW->EndModule();
147
148  // If the target wants to know about weak references, print them all.
149  if (MAI->getWeakRefDirective()) {
150    // FIXME: This is not lazy, it would be nice to only print weak references
151    // to stuff that is actually used.  Note that doing so would require targets
152    // to notice uses in operands (due to constant exprs etc).  This should
153    // happen with the MC stuff eventually.
154
155    // Print out module-level global variables here.
156    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
157         I != E; ++I) {
158      if (!I->hasExternalWeakLinkage()) continue;
159      O << MAI->getWeakRefDirective() << *GetGlobalValueSymbol(I) << '\n';
160    }
161
162    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
163      if (!I->hasExternalWeakLinkage()) continue;
164      O << MAI->getWeakRefDirective() << *GetGlobalValueSymbol(I) << '\n';
165    }
166  }
167
168  if (MAI->getSetDirective()) {
169    O << '\n';
170    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
171         I != E; ++I) {
172      MCSymbol *Name = GetGlobalValueSymbol(I);
173
174      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
175      MCSymbol *Target = GetGlobalValueSymbol(GV);
176
177      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
178        O << "\t.globl\t" << *Name << '\n';
179      else if (I->hasWeakLinkage())
180        O << MAI->getWeakRefDirective() << *Name << '\n';
181      else
182        assert(I->hasLocalLinkage() && "Invalid alias linkage");
183
184      printVisibility(Name, I->getVisibility());
185
186      O << MAI->getSetDirective() << ' ' << *Name << ", " << *Target << '\n';
187    }
188  }
189
190  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
191  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
192  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
193    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
194      MP->finishAssembly(O, *this, *MAI);
195
196  // If we don't have any trampolines, then we don't require stack memory
197  // to be executable. Some targets have a directive to declare this.
198  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
199  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
200    if (MAI->getNonexecutableStackDirective())
201      O << MAI->getNonexecutableStackDirective() << '\n';
202
203
204  // Allow the target to emit any magic that it wants at the end of the file,
205  // after everything else has gone out.
206  EmitEndOfAsmFile(M);
207
208  delete Mang; Mang = 0;
209  DW = 0; MMI = 0;
210
211  OutStreamer.Finish();
212  return false;
213}
214
215void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
216  // Get the function symbol.
217  CurrentFnSym = GetGlobalValueSymbol(MF.getFunction());
218  IncrementFunctionNumber();
219
220  if (VerboseAsm)
221    LI = &getAnalysis<MachineLoopInfo>();
222}
223
224namespace {
225  // SectionCPs - Keep track the alignment, constpool entries per Section.
226  struct SectionCPs {
227    const MCSection *S;
228    unsigned Alignment;
229    SmallVector<unsigned, 4> CPEs;
230    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
231  };
232}
233
234/// EmitConstantPool - Print to the current output stream assembly
235/// representations of the constants in the constant pool MCP. This is
236/// used to print out constants which have been "spilled to memory" by
237/// the code generator.
238///
239void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
240  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
241  if (CP.empty()) return;
242
243  // Calculate sections for constant pool entries. We collect entries to go into
244  // the same section together to reduce amount of section switch statements.
245  SmallVector<SectionCPs, 4> CPSections;
246  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
247    const MachineConstantPoolEntry &CPE = CP[i];
248    unsigned Align = CPE.getAlignment();
249
250    SectionKind Kind;
251    switch (CPE.getRelocationInfo()) {
252    default: llvm_unreachable("Unknown section kind");
253    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
254    case 1:
255      Kind = SectionKind::getReadOnlyWithRelLocal();
256      break;
257    case 0:
258    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
259    case 4:  Kind = SectionKind::getMergeableConst4(); break;
260    case 8:  Kind = SectionKind::getMergeableConst8(); break;
261    case 16: Kind = SectionKind::getMergeableConst16();break;
262    default: Kind = SectionKind::getMergeableConst(); break;
263    }
264    }
265
266    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
267
268    // The number of sections are small, just do a linear search from the
269    // last section to the first.
270    bool Found = false;
271    unsigned SecIdx = CPSections.size();
272    while (SecIdx != 0) {
273      if (CPSections[--SecIdx].S == S) {
274        Found = true;
275        break;
276      }
277    }
278    if (!Found) {
279      SecIdx = CPSections.size();
280      CPSections.push_back(SectionCPs(S, Align));
281    }
282
283    if (Align > CPSections[SecIdx].Alignment)
284      CPSections[SecIdx].Alignment = Align;
285    CPSections[SecIdx].CPEs.push_back(i);
286  }
287
288  // Now print stuff into the calculated sections.
289  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
290    OutStreamer.SwitchSection(CPSections[i].S);
291    EmitAlignment(Log2_32(CPSections[i].Alignment));
292
293    unsigned Offset = 0;
294    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
295      unsigned CPI = CPSections[i].CPEs[j];
296      MachineConstantPoolEntry CPE = CP[CPI];
297
298      // Emit inter-object padding for alignment.
299      unsigned AlignMask = CPE.getAlignment() - 1;
300      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
301      EmitZeros(NewOffset - Offset);
302
303      const Type *Ty = CPE.getType();
304      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
305
306      O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
307        << CPI << ':';
308      if (VerboseAsm) {
309        O.PadToColumn(MAI->getCommentColumn());
310        O << MAI->getCommentString() << " constant ";
311        WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent());
312      }
313      O << '\n';
314      if (CPE.isMachineConstantPoolEntry())
315        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
316      else
317        EmitGlobalConstant(CPE.Val.ConstVal);
318    }
319  }
320}
321
322/// EmitJumpTableInfo - Print assembly representations of the jump tables used
323/// by the current function to the current output stream.
324///
325void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
326                                   MachineFunction &MF) {
327  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
328  if (JT.empty()) return;
329
330  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
331
332  // Pick the directive to use to print the jump table entries, and switch to
333  // the appropriate section.
334  TargetLowering *LoweringInfo = TM.getTargetLowering();
335
336  const Function *F = MF.getFunction();
337  bool JTInDiffSection = false;
338  if (F->isWeakForLinker() ||
339      (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
340    // In PIC mode, we need to emit the jump table to the same section as the
341    // function body itself, otherwise the label differences won't make sense.
342    // We should also do if the section name is NULL or function is declared in
343    // discardable section.
344    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang,
345                                                                    TM));
346  } else {
347    // Otherwise, drop it in the readonly section.
348    const MCSection *ReadOnlySection =
349      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
350    OutStreamer.SwitchSection(ReadOnlySection);
351    JTInDiffSection = true;
352  }
353
354  EmitAlignment(Log2_32(MJTI->getAlignment()));
355
356  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
357    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
358
359    // If this jump table was deleted, ignore it.
360    if (JTBBs.empty()) continue;
361
362    // For PIC codegen, if possible we want to use the SetDirective to reduce
363    // the number of relocations the assembler will generate for the jump table.
364    // Set directives are all printed before the jump table itself.
365    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
366    if (MAI->getSetDirective() && IsPic)
367      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
368        if (EmittedSets.insert(JTBBs[ii]))
369          printPICJumpTableSetLabel(i, JTBBs[ii]);
370
371    // On some targets (e.g. Darwin) we want to emit two consequtive labels
372    // before each jump table.  The first label is never referenced, but tells
373    // the assembler and linker the extents of the jump table object.  The
374    // second label is actually referenced by the code.
375    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) {
376      O << MAI->getLinkerPrivateGlobalPrefix()
377        << "JTI" << getFunctionNumber() << '_' << i << ":\n";
378    }
379
380    O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
381      << '_' << i << ":\n";
382
383    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
384      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
385      O << '\n';
386    }
387  }
388}
389
390void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
391                                        const MachineBasicBlock *MBB,
392                                        unsigned uid)  const {
393  bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
394
395  // Use JumpTableDirective otherwise honor the entry size from the jump table
396  // info.
397  const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC);
398  bool HadJTEntryDirective = JTEntryDirective != NULL;
399  if (!HadJTEntryDirective) {
400    JTEntryDirective = MJTI->getEntrySize() == 4 ?
401      MAI->getData32bitsDirective() : MAI->getData64bitsDirective();
402  }
403
404  O << JTEntryDirective << ' ';
405
406  // If we have emitted set directives for the jump table entries, print
407  // them rather than the entries themselves.  If we're emitting PIC, then
408  // emit the table entries as differences between two text section labels.
409  // If we're emitting non-PIC code, then emit the entries as direct
410  // references to the target basic blocks.
411  if (!isPIC) {
412    O << *GetMBBSymbol(MBB->getNumber());
413  } else if (MAI->getSetDirective()) {
414    O << MAI->getPrivateGlobalPrefix() << getFunctionNumber()
415      << '_' << uid << "_set_" << MBB->getNumber();
416  } else {
417    O << *GetMBBSymbol(MBB->getNumber());
418    // If the arch uses custom Jump Table directives, don't calc relative to
419    // JT
420    if (!HadJTEntryDirective)
421      O << '-' << MAI->getPrivateGlobalPrefix() << "JTI"
422        << getFunctionNumber() << '_' << uid;
423  }
424}
425
426
427/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
428/// special global used by LLVM.  If so, emit it and return true, otherwise
429/// do nothing and return false.
430bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
431  if (GV->getName() == "llvm.used") {
432    if (MAI->getUsedDirective() != 0)    // No need to emit this at all.
433      EmitLLVMUsedList(GV->getInitializer());
434    return true;
435  }
436
437  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
438  if (GV->getSection() == "llvm.metadata" ||
439      GV->hasAvailableExternallyLinkage())
440    return true;
441
442  if (!GV->hasAppendingLinkage()) return false;
443
444  assert(GV->hasInitializer() && "Not a special LLVM global!");
445
446  const TargetData *TD = TM.getTargetData();
447  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
448  if (GV->getName() == "llvm.global_ctors") {
449    OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection());
450    EmitAlignment(Align, 0);
451    EmitXXStructorList(GV->getInitializer());
452    return true;
453  }
454
455  if (GV->getName() == "llvm.global_dtors") {
456    OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection());
457    EmitAlignment(Align, 0);
458    EmitXXStructorList(GV->getInitializer());
459    return true;
460  }
461
462  return false;
463}
464
465/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
466/// global in the specified llvm.used list for which emitUsedDirectiveFor
467/// is true, as being used with this directive.
468void AsmPrinter::EmitLLVMUsedList(Constant *List) {
469  const char *Directive = MAI->getUsedDirective();
470
471  // Should be an array of 'i8*'.
472  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
473  if (InitList == 0) return;
474
475  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
476    const GlobalValue *GV =
477      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
478    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
479      O << Directive;
480      EmitConstantValueOnly(InitList->getOperand(i));
481      O << '\n';
482    }
483  }
484}
485
486/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
487/// function pointers, ignoring the init priority.
488void AsmPrinter::EmitXXStructorList(Constant *List) {
489  // Should be an array of '{ int, void ()* }' structs.  The first value is the
490  // init priority, which we ignore.
491  if (!isa<ConstantArray>(List)) return;
492  ConstantArray *InitList = cast<ConstantArray>(List);
493  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
494    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
495      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
496
497      if (CS->getOperand(1)->isNullValue())
498        return;  // Found a null terminator, exit printing.
499      // Emit the function pointer.
500      EmitGlobalConstant(CS->getOperand(1));
501    }
502}
503
504
505//===----------------------------------------------------------------------===//
506/// LEB 128 number encoding.
507
508/// PrintULEB128 - Print a series of hexadecimal values (separated by commas)
509/// representing an unsigned leb128 value.
510void AsmPrinter::PrintULEB128(unsigned Value) const {
511  do {
512    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
513    Value >>= 7;
514    if (Value) Byte |= 0x80;
515    PrintHex(Byte);
516    if (Value) O << ", ";
517  } while (Value);
518}
519
520/// PrintSLEB128 - Print a series of hexadecimal values (separated by commas)
521/// representing a signed leb128 value.
522void AsmPrinter::PrintSLEB128(int Value) const {
523  int Sign = Value >> (8 * sizeof(Value) - 1);
524  bool IsMore;
525
526  do {
527    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
528    Value >>= 7;
529    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
530    if (IsMore) Byte |= 0x80;
531    PrintHex(Byte);
532    if (IsMore) O << ", ";
533  } while (IsMore);
534}
535
536//===--------------------------------------------------------------------===//
537// Emission and print routines
538//
539
540/// PrintHex - Print a value as a hexadecimal value.
541///
542void AsmPrinter::PrintHex(uint64_t Value) const {
543  O << "0x";
544  O.write_hex(Value);
545}
546
547/// EOL - Print a newline character to asm stream.  If a comment is present
548/// then it will be printed first.  Comments should not contain '\n'.
549void AsmPrinter::EOL() const {
550  O << '\n';
551}
552
553void AsmPrinter::EOL(const Twine &Comment) const {
554  if (VerboseAsm && !Comment.isTriviallyEmpty()) {
555    O.PadToColumn(MAI->getCommentColumn());
556    O << MAI->getCommentString()
557      << ' '
558      << Comment;
559  }
560  O << '\n';
561}
562
563static const char *DecodeDWARFEncoding(unsigned Encoding) {
564  switch (Encoding) {
565  case dwarf::DW_EH_PE_absptr:
566    return "absptr";
567  case dwarf::DW_EH_PE_omit:
568    return "omit";
569  case dwarf::DW_EH_PE_pcrel:
570    return "pcrel";
571  case dwarf::DW_EH_PE_udata4:
572    return "udata4";
573  case dwarf::DW_EH_PE_udata8:
574    return "udata8";
575  case dwarf::DW_EH_PE_sdata4:
576    return "sdata4";
577  case dwarf::DW_EH_PE_sdata8:
578    return "sdata8";
579  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4:
580    return "pcrel udata4";
581  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4:
582    return "pcrel sdata4";
583  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8:
584    return "pcrel udata8";
585  case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8:
586    return "pcrel sdata8";
587  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4:
588    return "indirect pcrel udata4";
589  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4:
590    return "indirect pcrel sdata4";
591  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8:
592    return "indirect pcrel udata8";
593  case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8:
594    return "indirect pcrel sdata8";
595  }
596
597  return 0;
598}
599
600void AsmPrinter::EOL(const Twine &Comment, unsigned Encoding) const {
601  if (VerboseAsm && !Comment.isTriviallyEmpty()) {
602    O.PadToColumn(MAI->getCommentColumn());
603    O << MAI->getCommentString()
604      << ' '
605      << Comment;
606
607    if (const char *EncStr = DecodeDWARFEncoding(Encoding))
608      O << " (" << EncStr << ')';
609  }
610  O << '\n';
611}
612
613/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
614/// unsigned leb128 value.
615void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
616  if (MAI->hasLEB128()) {
617    O << "\t.uleb128\t"
618      << Value;
619  } else {
620    O << MAI->getData8bitsDirective();
621    PrintULEB128(Value);
622  }
623}
624
625/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
626/// signed leb128 value.
627void AsmPrinter::EmitSLEB128Bytes(int Value) const {
628  if (MAI->hasLEB128()) {
629    O << "\t.sleb128\t"
630      << Value;
631  } else {
632    O << MAI->getData8bitsDirective();
633    PrintSLEB128(Value);
634  }
635}
636
637/// EmitInt8 - Emit a byte directive and value.
638///
639void AsmPrinter::EmitInt8(int Value) const {
640  O << MAI->getData8bitsDirective();
641  PrintHex(Value & 0xFF);
642}
643
644/// EmitInt16 - Emit a short directive and value.
645///
646void AsmPrinter::EmitInt16(int Value) const {
647  O << MAI->getData16bitsDirective();
648  PrintHex(Value & 0xFFFF);
649}
650
651/// EmitInt32 - Emit a long directive and value.
652///
653void AsmPrinter::EmitInt32(int Value) const {
654  O << MAI->getData32bitsDirective();
655  PrintHex(Value);
656}
657
658/// EmitInt64 - Emit a long long directive and value.
659///
660void AsmPrinter::EmitInt64(uint64_t Value) const {
661  if (MAI->getData64bitsDirective()) {
662    O << MAI->getData64bitsDirective();
663    PrintHex(Value);
664  } else {
665    if (TM.getTargetData()->isBigEndian()) {
666      EmitInt32(unsigned(Value >> 32)); O << '\n';
667      EmitInt32(unsigned(Value));
668    } else {
669      EmitInt32(unsigned(Value)); O << '\n';
670      EmitInt32(unsigned(Value >> 32));
671    }
672  }
673}
674
675/// toOctal - Convert the low order bits of X into an octal digit.
676///
677static inline char toOctal(int X) {
678  return (X&7)+'0';
679}
680
681/// printStringChar - Print a char, escaped if necessary.
682///
683static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
684  if (C == '"') {
685    O << "\\\"";
686  } else if (C == '\\') {
687    O << "\\\\";
688  } else if (isprint((unsigned char)C)) {
689    O << C;
690  } else {
691    switch(C) {
692    case '\b': O << "\\b"; break;
693    case '\f': O << "\\f"; break;
694    case '\n': O << "\\n"; break;
695    case '\r': O << "\\r"; break;
696    case '\t': O << "\\t"; break;
697    default:
698      O << '\\';
699      O << toOctal(C >> 6);
700      O << toOctal(C >> 3);
701      O << toOctal(C >> 0);
702      break;
703    }
704  }
705}
706
707/// EmitString - Emit a string with quotes and a null terminator.
708/// Special characters are emitted properly.
709/// \literal (Eg. '\t') \endliteral
710void AsmPrinter::EmitString(const StringRef String) const {
711  EmitString(String.data(), String.size());
712}
713
714void AsmPrinter::EmitString(const char *String, unsigned Size) const {
715  const char* AscizDirective = MAI->getAscizDirective();
716  if (AscizDirective)
717    O << AscizDirective;
718  else
719    O << MAI->getAsciiDirective();
720  O << '\"';
721  for (unsigned i = 0; i < Size; ++i)
722    printStringChar(O, String[i]);
723  if (AscizDirective)
724    O << '\"';
725  else
726    O << "\\0\"";
727}
728
729
730/// EmitFile - Emit a .file directive.
731void AsmPrinter::EmitFile(unsigned Number, StringRef Name) const {
732  O << "\t.file\t" << Number << " \"";
733  for (unsigned i = 0, N = Name.size(); i < N; ++i)
734    printStringChar(O, Name[i]);
735  O << '\"';
736}
737
738
739//===----------------------------------------------------------------------===//
740
741// EmitAlignment - Emit an alignment directive to the specified power of
742// two boundary.  For example, if you pass in 3 here, you will get an 8
743// byte alignment.  If a global value is specified, and if that global has
744// an explicit alignment requested, it will unconditionally override the
745// alignment request.  However, if ForcedAlignBits is specified, this value
746// has final say: the ultimate alignment will be the max of ForcedAlignBits
747// and the alignment computed with NumBits and the global.
748//
749// The algorithm is:
750//     Align = NumBits;
751//     if (GV && GV->hasalignment) Align = GV->getalignment();
752//     Align = std::max(Align, ForcedAlignBits);
753//
754void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
755                               unsigned ForcedAlignBits,
756                               bool UseFillExpr) const {
757  if (GV && GV->getAlignment())
758    NumBits = Log2_32(GV->getAlignment());
759  NumBits = std::max(NumBits, ForcedAlignBits);
760
761  if (NumBits == 0) return;   // No need to emit alignment.
762
763  unsigned FillValue = 0;
764  if (getCurrentSection()->getKind().isText())
765    FillValue = MAI->getTextAlignFillValue();
766
767  OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0);
768}
769
770/// EmitZeros - Emit a block of zeros.
771///
772void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
773  if (NumZeros) {
774    if (MAI->getZeroDirective()) {
775      O << MAI->getZeroDirective() << NumZeros;
776      if (MAI->getZeroDirectiveSuffix())
777        O << MAI->getZeroDirectiveSuffix();
778      O << '\n';
779    } else {
780      for (; NumZeros; --NumZeros)
781        O << MAI->getData8bitsDirective(AddrSpace) << "0\n";
782    }
783  }
784}
785
786// Print out the specified constant, without a storage class.  Only the
787// constants valid in constant expressions can occur here.
788void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
789  if (CV->isNullValue() || isa<UndefValue>(CV)) {
790    O << '0';
791    return;
792  }
793
794  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
795    O << CI->getZExtValue();
796    return;
797  }
798
799  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
800    // This is a constant address for a global variable or function. Use the
801    // name of the variable or function as the address value.
802    O << *GetGlobalValueSymbol(GV);
803    return;
804  }
805
806  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
807    O << *GetBlockAddressSymbol(BA);
808    return;
809  }
810
811  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
812  if (CE == 0) {
813    llvm_unreachable("Unknown constant value!");
814    O << '0';
815    return;
816  }
817
818  switch (CE->getOpcode()) {
819  case Instruction::ZExt:
820  case Instruction::SExt:
821  case Instruction::FPTrunc:
822  case Instruction::FPExt:
823  case Instruction::UIToFP:
824  case Instruction::SIToFP:
825  case Instruction::FPToUI:
826  case Instruction::FPToSI:
827  default:
828    llvm_unreachable("FIXME: Don't support this constant cast expr");
829  case Instruction::GetElementPtr: {
830    // generate a symbolic expression for the byte address
831    const TargetData *TD = TM.getTargetData();
832    const Constant *ptrVal = CE->getOperand(0);
833    SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
834    int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
835                                          idxVec.size());
836    if (Offset == 0)
837      return EmitConstantValueOnly(ptrVal);
838
839    // Truncate/sext the offset to the pointer size.
840    if (TD->getPointerSizeInBits() != 64) {
841      int SExtAmount = 64-TD->getPointerSizeInBits();
842      Offset = (Offset << SExtAmount) >> SExtAmount;
843    }
844
845    if (Offset)
846      O << '(';
847    EmitConstantValueOnly(ptrVal);
848    if (Offset > 0)
849      O << ") + " << Offset;
850    else
851      O << ") - " << -Offset;
852    return;
853  }
854  case Instruction::BitCast:
855    return EmitConstantValueOnly(CE->getOperand(0));
856
857  case Instruction::IntToPtr: {
858    // Handle casts to pointers by changing them into casts to the appropriate
859    // integer type.  This promotes constant folding and simplifies this code.
860    const TargetData *TD = TM.getTargetData();
861    Constant *Op = CE->getOperand(0);
862    Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
863                                      false/*ZExt*/);
864    return EmitConstantValueOnly(Op);
865  }
866
867  case Instruction::PtrToInt: {
868    // Support only foldable casts to/from pointers that can be eliminated by
869    // changing the pointer to the appropriately sized integer type.
870    Constant *Op = CE->getOperand(0);
871    const Type *Ty = CE->getType();
872    const TargetData *TD = TM.getTargetData();
873
874    // We can emit the pointer value into this slot if the slot is an
875    // integer slot greater or equal to the size of the pointer.
876    if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
877      return EmitConstantValueOnly(Op);
878
879    O << "((";
880    EmitConstantValueOnly(Op);
881    APInt ptrMask =
882      APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
883
884    SmallString<40> S;
885    ptrMask.toStringUnsigned(S);
886    O << ") & " << S.str() << ')';
887    return;
888  }
889
890  case Instruction::Trunc:
891    // We emit the value and depend on the assembler to truncate the generated
892    // expression properly.  This is important for differences between
893    // blockaddress labels.  Since the two labels are in the same function, it
894    // is reasonable to treat their delta as a 32-bit value.
895    return EmitConstantValueOnly(CE->getOperand(0));
896
897  case Instruction::Add:
898  case Instruction::Sub:
899  case Instruction::And:
900  case Instruction::Or:
901  case Instruction::Xor:
902    O << '(';
903    EmitConstantValueOnly(CE->getOperand(0));
904    O << ')';
905    switch (CE->getOpcode()) {
906    case Instruction::Add:
907     O << " + ";
908     break;
909    case Instruction::Sub:
910     O << " - ";
911     break;
912    case Instruction::And:
913     O << " & ";
914     break;
915    case Instruction::Or:
916     O << " | ";
917     break;
918    case Instruction::Xor:
919     O << " ^ ";
920     break;
921    default:
922     break;
923    }
924    O << '(';
925    EmitConstantValueOnly(CE->getOperand(1));
926    O << ')';
927    break;
928  }
929}
930
931/// printAsCString - Print the specified array as a C compatible string, only if
932/// the predicate isString is true.
933///
934static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
935                           unsigned LastElt) {
936  assert(CVA->isString() && "Array is not string compatible!");
937
938  O << '\"';
939  for (unsigned i = 0; i != LastElt; ++i) {
940    unsigned char C =
941        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
942    printStringChar(O, C);
943  }
944  O << '\"';
945}
946
947/// EmitString - Emit a zero-byte-terminated string constant.
948///
949void AsmPrinter::EmitString(const ConstantArray *CVA) const {
950  unsigned NumElts = CVA->getNumOperands();
951  if (MAI->getAscizDirective() && NumElts &&
952      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
953    O << MAI->getAscizDirective();
954    printAsCString(O, CVA, NumElts-1);
955  } else {
956    O << MAI->getAsciiDirective();
957    printAsCString(O, CVA, NumElts);
958  }
959  O << '\n';
960}
961
962void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
963                                         unsigned AddrSpace) {
964  if (CVA->isString()) {
965    EmitString(CVA);
966  } else { // Not a string.  Print the values in successive locations
967    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
968      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
969  }
970}
971
972void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
973  const VectorType *PTy = CP->getType();
974
975  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
976    EmitGlobalConstant(CP->getOperand(I));
977}
978
979void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
980                                          unsigned AddrSpace) {
981  // Print the fields in successive locations. Pad to align if needed!
982  const TargetData *TD = TM.getTargetData();
983  unsigned Size = TD->getTypeAllocSize(CVS->getType());
984  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
985  uint64_t sizeSoFar = 0;
986  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
987    const Constant* field = CVS->getOperand(i);
988
989    // Check if padding is needed and insert one or more 0s.
990    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
991    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
992                        - cvsLayout->getElementOffset(i)) - fieldSize;
993    sizeSoFar += fieldSize + padSize;
994
995    // Now print the actual field value.
996    EmitGlobalConstant(field, AddrSpace);
997
998    // Insert padding - this may include padding to increase the size of the
999    // current field up to the ABI size (if the struct is not packed) as well
1000    // as padding to ensure that the next field starts at the right offset.
1001    EmitZeros(padSize, AddrSpace);
1002  }
1003  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1004         "Layout of constant struct may be incorrect!");
1005}
1006
1007void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1008                                      unsigned AddrSpace) {
1009  // FP Constants are printed as integer constants to avoid losing
1010  // precision...
1011  LLVMContext &Context = CFP->getContext();
1012  const TargetData *TD = TM.getTargetData();
1013  if (CFP->getType()->isDoubleTy()) {
1014    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1015    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1016    if (MAI->getData64bitsDirective(AddrSpace)) {
1017      O << MAI->getData64bitsDirective(AddrSpace) << i;
1018      if (VerboseAsm) {
1019        O.PadToColumn(MAI->getCommentColumn());
1020        O << MAI->getCommentString() << " double " << Val;
1021      }
1022      O << '\n';
1023    } else if (TD->isBigEndian()) {
1024      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1025      if (VerboseAsm) {
1026        O.PadToColumn(MAI->getCommentColumn());
1027        O << MAI->getCommentString()
1028          << " most significant word of double " << Val;
1029      }
1030      O << '\n';
1031      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1032      if (VerboseAsm) {
1033        O.PadToColumn(MAI->getCommentColumn());
1034        O << MAI->getCommentString()
1035          << " least significant word of double " << Val;
1036      }
1037      O << '\n';
1038    } else {
1039      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1040      if (VerboseAsm) {
1041        O.PadToColumn(MAI->getCommentColumn());
1042        O << MAI->getCommentString()
1043          << " least significant word of double " << Val;
1044      }
1045      O << '\n';
1046      O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1047      if (VerboseAsm) {
1048        O.PadToColumn(MAI->getCommentColumn());
1049        O << MAI->getCommentString()
1050          << " most significant word of double " << Val;
1051      }
1052      O << '\n';
1053    }
1054    return;
1055  }
1056
1057  if (CFP->getType()->isFloatTy()) {
1058    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1059    O << MAI->getData32bitsDirective(AddrSpace)
1060      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1061    if (VerboseAsm) {
1062      O.PadToColumn(MAI->getCommentColumn());
1063      O << MAI->getCommentString() << " float " << Val;
1064    }
1065    O << '\n';
1066    return;
1067  }
1068
1069  if (CFP->getType()->isX86_FP80Ty()) {
1070    // all long double variants are printed as hex
1071    // api needed to prevent premature destruction
1072    APInt api = CFP->getValueAPF().bitcastToAPInt();
1073    const uint64_t *p = api.getRawData();
1074    // Convert to double so we can print the approximate val as a comment.
1075    APFloat DoubleVal = CFP->getValueAPF();
1076    bool ignored;
1077    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1078                      &ignored);
1079    if (TD->isBigEndian()) {
1080      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1081      if (VerboseAsm) {
1082        O.PadToColumn(MAI->getCommentColumn());
1083        O << MAI->getCommentString()
1084          << " most significant halfword of x86_fp80 ~"
1085          << DoubleVal.convertToDouble();
1086      }
1087      O << '\n';
1088      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1089      if (VerboseAsm) {
1090        O.PadToColumn(MAI->getCommentColumn());
1091        O << MAI->getCommentString() << " next halfword";
1092      }
1093      O << '\n';
1094      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1095      if (VerboseAsm) {
1096        O.PadToColumn(MAI->getCommentColumn());
1097        O << MAI->getCommentString() << " next halfword";
1098      }
1099      O << '\n';
1100      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1101      if (VerboseAsm) {
1102        O.PadToColumn(MAI->getCommentColumn());
1103        O << MAI->getCommentString() << " next halfword";
1104      }
1105      O << '\n';
1106      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1107      if (VerboseAsm) {
1108        O.PadToColumn(MAI->getCommentColumn());
1109        O << MAI->getCommentString()
1110          << " least significant halfword";
1111      }
1112      O << '\n';
1113     } else {
1114      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1115      if (VerboseAsm) {
1116        O.PadToColumn(MAI->getCommentColumn());
1117        O << MAI->getCommentString()
1118          << " least significant halfword of x86_fp80 ~"
1119          << DoubleVal.convertToDouble();
1120      }
1121      O << '\n';
1122      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1123      if (VerboseAsm) {
1124        O.PadToColumn(MAI->getCommentColumn());
1125        O << MAI->getCommentString()
1126          << " next halfword";
1127      }
1128      O << '\n';
1129      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1130      if (VerboseAsm) {
1131        O.PadToColumn(MAI->getCommentColumn());
1132        O << MAI->getCommentString()
1133          << " next halfword";
1134      }
1135      O << '\n';
1136      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1137      if (VerboseAsm) {
1138        O.PadToColumn(MAI->getCommentColumn());
1139        O << MAI->getCommentString()
1140          << " next halfword";
1141      }
1142      O << '\n';
1143      O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1144      if (VerboseAsm) {
1145        O.PadToColumn(MAI->getCommentColumn());
1146        O << MAI->getCommentString()
1147          << " most significant halfword";
1148      }
1149      O << '\n';
1150    }
1151    EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) -
1152              TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace);
1153    return;
1154  }
1155
1156  if (CFP->getType()->isPPC_FP128Ty()) {
1157    // all long double variants are printed as hex
1158    // api needed to prevent premature destruction
1159    APInt api = CFP->getValueAPF().bitcastToAPInt();
1160    const uint64_t *p = api.getRawData();
1161    if (TD->isBigEndian()) {
1162      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1163      if (VerboseAsm) {
1164        O.PadToColumn(MAI->getCommentColumn());
1165        O << MAI->getCommentString()
1166          << " most significant word of ppc_fp128";
1167      }
1168      O << '\n';
1169      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1170      if (VerboseAsm) {
1171        O.PadToColumn(MAI->getCommentColumn());
1172        O << MAI->getCommentString()
1173        << " next word";
1174      }
1175      O << '\n';
1176      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1177      if (VerboseAsm) {
1178        O.PadToColumn(MAI->getCommentColumn());
1179        O << MAI->getCommentString()
1180          << " next word";
1181      }
1182      O << '\n';
1183      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1184      if (VerboseAsm) {
1185        O.PadToColumn(MAI->getCommentColumn());
1186        O << MAI->getCommentString()
1187          << " least significant word";
1188      }
1189      O << '\n';
1190     } else {
1191      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1192      if (VerboseAsm) {
1193        O.PadToColumn(MAI->getCommentColumn());
1194        O << MAI->getCommentString()
1195          << " least significant word of ppc_fp128";
1196      }
1197      O << '\n';
1198      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1199      if (VerboseAsm) {
1200        O.PadToColumn(MAI->getCommentColumn());
1201        O << MAI->getCommentString()
1202          << " next word";
1203      }
1204      O << '\n';
1205      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1206      if (VerboseAsm) {
1207        O.PadToColumn(MAI->getCommentColumn());
1208        O << MAI->getCommentString()
1209          << " next word";
1210      }
1211      O << '\n';
1212      O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1213      if (VerboseAsm) {
1214        O.PadToColumn(MAI->getCommentColumn());
1215        O << MAI->getCommentString()
1216          << " most significant word";
1217      }
1218      O << '\n';
1219    }
1220    return;
1221  } else llvm_unreachable("Floating point constant type not handled");
1222}
1223
1224void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1225                                            unsigned AddrSpace) {
1226  const TargetData *TD = TM.getTargetData();
1227  unsigned BitWidth = CI->getBitWidth();
1228  assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1229
1230  // We don't expect assemblers to support integer data directives
1231  // for more than 64 bits, so we emit the data in at most 64-bit
1232  // quantities at a time.
1233  const uint64_t *RawData = CI->getValue().getRawData();
1234  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1235    uint64_t Val;
1236    if (TD->isBigEndian())
1237      Val = RawData[e - i - 1];
1238    else
1239      Val = RawData[i];
1240
1241    if (MAI->getData64bitsDirective(AddrSpace)) {
1242      O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1243      continue;
1244    }
1245
1246    // Emit two 32-bit chunks, order depends on endianness.
1247    unsigned FirstChunk = unsigned(Val), SecondChunk = unsigned(Val >> 32);
1248    const char *FirstName = " least", *SecondName = " most";
1249    if (TD->isBigEndian()) {
1250      std::swap(FirstChunk, SecondChunk);
1251      std::swap(FirstName, SecondName);
1252    }
1253
1254    O << MAI->getData32bitsDirective(AddrSpace) << FirstChunk;
1255    if (VerboseAsm) {
1256      O.PadToColumn(MAI->getCommentColumn());
1257      O << MAI->getCommentString()
1258        << FirstName << " significant half of i64 " << Val;
1259    }
1260    O << '\n';
1261
1262    O << MAI->getData32bitsDirective(AddrSpace) << SecondChunk;
1263    if (VerboseAsm) {
1264      O.PadToColumn(MAI->getCommentColumn());
1265      O << MAI->getCommentString()
1266        << SecondName << " significant half of i64 " << Val;
1267    }
1268    O << '\n';
1269  }
1270}
1271
1272/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1273void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1274  const TargetData *TD = TM.getTargetData();
1275  const Type *type = CV->getType();
1276  unsigned Size = TD->getTypeAllocSize(type);
1277
1278  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1279    EmitZeros(Size, AddrSpace);
1280    return;
1281  }
1282
1283  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1284    EmitGlobalConstantArray(CVA , AddrSpace);
1285    return;
1286  }
1287
1288  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1289    EmitGlobalConstantStruct(CVS, AddrSpace);
1290    return;
1291  }
1292
1293  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1294    EmitGlobalConstantFP(CFP, AddrSpace);
1295    return;
1296  }
1297
1298  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1299    // If we can directly emit an 8-byte constant, do it.
1300    if (Size == 8)
1301      if (const char *Data64Dir = MAI->getData64bitsDirective(AddrSpace)) {
1302        O << Data64Dir << CI->getZExtValue() << '\n';
1303        return;
1304      }
1305
1306    // Small integers are handled below; large integers are handled here.
1307    if (Size > 4) {
1308      EmitGlobalConstantLargeInt(CI, AddrSpace);
1309      return;
1310    }
1311  }
1312
1313  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1314    EmitGlobalConstantVector(CP);
1315    return;
1316  }
1317
1318  printDataDirective(type, AddrSpace);
1319  EmitConstantValueOnly(CV);
1320  if (VerboseAsm) {
1321    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1322      SmallString<40> S;
1323      CI->getValue().toStringUnsigned(S, 16);
1324      O.PadToColumn(MAI->getCommentColumn());
1325      O << MAI->getCommentString() << " 0x" << S.str();
1326    }
1327  }
1328  O << '\n';
1329}
1330
1331void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1332  // Target doesn't support this yet!
1333  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1334}
1335
1336/// PrintSpecial - Print information related to the specified machine instr
1337/// that is independent of the operand, and may be independent of the instr
1338/// itself.  This can be useful for portably encoding the comment character
1339/// or other bits of target-specific knowledge into the asmstrings.  The
1340/// syntax used is ${:comment}.  Targets can override this to add support
1341/// for their own strange codes.
1342void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1343  if (!strcmp(Code, "private")) {
1344    O << MAI->getPrivateGlobalPrefix();
1345  } else if (!strcmp(Code, "comment")) {
1346    if (VerboseAsm)
1347      O << MAI->getCommentString();
1348  } else if (!strcmp(Code, "uid")) {
1349    // Comparing the address of MI isn't sufficient, because machineinstrs may
1350    // be allocated to the same address across functions.
1351    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1352
1353    // If this is a new LastFn instruction, bump the counter.
1354    if (LastMI != MI || LastFn != ThisF) {
1355      ++Counter;
1356      LastMI = MI;
1357      LastFn = ThisF;
1358    }
1359    O << Counter;
1360  } else {
1361    std::string msg;
1362    raw_string_ostream Msg(msg);
1363    Msg << "Unknown special formatter '" << Code
1364         << "' for machine instr: " << *MI;
1365    llvm_report_error(Msg.str());
1366  }
1367}
1368
1369/// processDebugLoc - Processes the debug information of each machine
1370/// instruction's DebugLoc.
1371void AsmPrinter::processDebugLoc(const MachineInstr *MI,
1372                                 bool BeforePrintingInsn) {
1373  if (!MAI || !DW || !MAI->doesSupportDebugInformation()
1374      || !DW->ShouldEmitDwarfDebug())
1375    return;
1376  DebugLoc DL = MI->getDebugLoc();
1377  if (DL.isUnknown())
1378    return;
1379  DILocation CurDLT = MF->getDILocation(DL);
1380  if (CurDLT.getScope().isNull())
1381    return;
1382
1383  if (BeforePrintingInsn) {
1384    if (CurDLT.getNode() != PrevDLT.getNode()) {
1385      unsigned L = DW->RecordSourceLine(CurDLT.getLineNumber(),
1386                                        CurDLT.getColumnNumber(),
1387                                        CurDLT.getScope().getNode());
1388      printLabel(L);
1389      O << '\n';
1390      DW->BeginScope(MI, L);
1391      PrevDLT = CurDLT;
1392    }
1393  } else {
1394    // After printing instruction
1395    DW->EndScope(MI);
1396  }
1397}
1398
1399
1400/// printInlineAsm - This method formats and prints the specified machine
1401/// instruction that is an inline asm.
1402void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1403  unsigned NumOperands = MI->getNumOperands();
1404
1405  // Count the number of register definitions.
1406  unsigned NumDefs = 0;
1407  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1408       ++NumDefs)
1409    assert(NumDefs != NumOperands-1 && "No asm string?");
1410
1411  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1412
1413  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1414  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1415
1416  O << '\t';
1417
1418  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1419  // These are useful to see where empty asm's wound up.
1420  if (AsmStr[0] == 0) {
1421    O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
1422    O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n';
1423    return;
1424  }
1425
1426  O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
1427
1428  // The variant of the current asmprinter.
1429  int AsmPrinterVariant = MAI->getAssemblerDialect();
1430
1431  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1432  const char *LastEmitted = AsmStr; // One past the last character emitted.
1433
1434  while (*LastEmitted) {
1435    switch (*LastEmitted) {
1436    default: {
1437      // Not a special case, emit the string section literally.
1438      const char *LiteralEnd = LastEmitted+1;
1439      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1440             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1441        ++LiteralEnd;
1442      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1443        O.write(LastEmitted, LiteralEnd-LastEmitted);
1444      LastEmitted = LiteralEnd;
1445      break;
1446    }
1447    case '\n':
1448      ++LastEmitted;   // Consume newline character.
1449      O << '\n';       // Indent code with newline.
1450      break;
1451    case '$': {
1452      ++LastEmitted;   // Consume '$' character.
1453      bool Done = true;
1454
1455      // Handle escapes.
1456      switch (*LastEmitted) {
1457      default: Done = false; break;
1458      case '$':     // $$ -> $
1459        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1460          O << '$';
1461        ++LastEmitted;  // Consume second '$' character.
1462        break;
1463      case '(':             // $( -> same as GCC's { character.
1464        ++LastEmitted;      // Consume '(' character.
1465        if (CurVariant != -1) {
1466          llvm_report_error("Nested variants found in inline asm string: '"
1467                            + std::string(AsmStr) + "'");
1468        }
1469        CurVariant = 0;     // We're in the first variant now.
1470        break;
1471      case '|':
1472        ++LastEmitted;  // consume '|' character.
1473        if (CurVariant == -1)
1474          O << '|';       // this is gcc's behavior for | outside a variant
1475        else
1476          ++CurVariant;   // We're in the next variant.
1477        break;
1478      case ')':         // $) -> same as GCC's } char.
1479        ++LastEmitted;  // consume ')' character.
1480        if (CurVariant == -1)
1481          O << '}';     // this is gcc's behavior for } outside a variant
1482        else
1483          CurVariant = -1;
1484        break;
1485      }
1486      if (Done) break;
1487
1488      bool HasCurlyBraces = false;
1489      if (*LastEmitted == '{') {     // ${variable}
1490        ++LastEmitted;               // Consume '{' character.
1491        HasCurlyBraces = true;
1492      }
1493
1494      // If we have ${:foo}, then this is not a real operand reference, it is a
1495      // "magic" string reference, just like in .td files.  Arrange to call
1496      // PrintSpecial.
1497      if (HasCurlyBraces && *LastEmitted == ':') {
1498        ++LastEmitted;
1499        const char *StrStart = LastEmitted;
1500        const char *StrEnd = strchr(StrStart, '}');
1501        if (StrEnd == 0) {
1502          llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1503                            + std::string(AsmStr) + "'");
1504        }
1505
1506        std::string Val(StrStart, StrEnd);
1507        PrintSpecial(MI, Val.c_str());
1508        LastEmitted = StrEnd+1;
1509        break;
1510      }
1511
1512      const char *IDStart = LastEmitted;
1513      char *IDEnd;
1514      errno = 0;
1515      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1516      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1517        llvm_report_error("Bad $ operand number in inline asm string: '"
1518                          + std::string(AsmStr) + "'");
1519      }
1520      LastEmitted = IDEnd;
1521
1522      char Modifier[2] = { 0, 0 };
1523
1524      if (HasCurlyBraces) {
1525        // If we have curly braces, check for a modifier character.  This
1526        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1527        if (*LastEmitted == ':') {
1528          ++LastEmitted;    // Consume ':' character.
1529          if (*LastEmitted == 0) {
1530            llvm_report_error("Bad ${:} expression in inline asm string: '"
1531                              + std::string(AsmStr) + "'");
1532          }
1533
1534          Modifier[0] = *LastEmitted;
1535          ++LastEmitted;    // Consume modifier character.
1536        }
1537
1538        if (*LastEmitted != '}') {
1539          llvm_report_error("Bad ${} expression in inline asm string: '"
1540                            + std::string(AsmStr) + "'");
1541        }
1542        ++LastEmitted;    // Consume '}' character.
1543      }
1544
1545      if ((unsigned)Val >= NumOperands-1) {
1546        llvm_report_error("Invalid $ operand number in inline asm string: '"
1547                          + std::string(AsmStr) + "'");
1548      }
1549
1550      // Okay, we finally have a value number.  Ask the target to print this
1551      // operand!
1552      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1553        unsigned OpNo = 1;
1554
1555        bool Error = false;
1556
1557        // Scan to find the machine operand number for the operand.
1558        for (; Val; --Val) {
1559          if (OpNo >= MI->getNumOperands()) break;
1560          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1561          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1562        }
1563
1564        if (OpNo >= MI->getNumOperands()) {
1565          Error = true;
1566        } else {
1567          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1568          ++OpNo;  // Skip over the ID number.
1569
1570          if (Modifier[0] == 'l')  // labels are target independent
1571            O << *GetMBBSymbol(MI->getOperand(OpNo).getMBB()->getNumber());
1572          else {
1573            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1574            if ((OpFlags & 7) == 4) {
1575              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1576                                                Modifier[0] ? Modifier : 0);
1577            } else {
1578              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1579                                          Modifier[0] ? Modifier : 0);
1580            }
1581          }
1582        }
1583        if (Error) {
1584          std::string msg;
1585          raw_string_ostream Msg(msg);
1586          Msg << "Invalid operand found in inline asm: '" << AsmStr << "'\n";
1587          MI->print(Msg);
1588          llvm_report_error(Msg.str());
1589        }
1590      }
1591      break;
1592    }
1593    }
1594  }
1595  O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd();
1596}
1597
1598/// printImplicitDef - This method prints the specified machine instruction
1599/// that is an implicit def.
1600void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1601  if (!VerboseAsm) return;
1602  O.PadToColumn(MAI->getCommentColumn());
1603  O << MAI->getCommentString() << " implicit-def: "
1604    << TRI->getName(MI->getOperand(0).getReg());
1605}
1606
1607void AsmPrinter::printKill(const MachineInstr *MI) const {
1608  if (!VerboseAsm) return;
1609  O.PadToColumn(MAI->getCommentColumn());
1610  O << MAI->getCommentString() << " kill:";
1611  for (unsigned n = 0, e = MI->getNumOperands(); n != e; ++n) {
1612    const MachineOperand &op = MI->getOperand(n);
1613    assert(op.isReg() && "KILL instruction must have only register operands");
1614    O << ' ' << TRI->getName(op.getReg()) << (op.isDef() ? "<def>" : "<kill>");
1615  }
1616}
1617
1618/// printLabel - This method prints a local label used by debug and
1619/// exception handling tables.
1620void AsmPrinter::printLabel(const MachineInstr *MI) const {
1621  printLabel(MI->getOperand(0).getImm());
1622}
1623
1624void AsmPrinter::printLabel(unsigned Id) const {
1625  O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':';
1626}
1627
1628/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1629/// instruction, using the specified assembler variant.  Targets should
1630/// override this to format as appropriate.
1631bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1632                                 unsigned AsmVariant, const char *ExtraCode) {
1633  // Target doesn't support this yet!
1634  return true;
1635}
1636
1637bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1638                                       unsigned AsmVariant,
1639                                       const char *ExtraCode) {
1640  // Target doesn't support this yet!
1641  return true;
1642}
1643
1644MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA,
1645                                            const char *Suffix) const {
1646  return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock(), Suffix);
1647}
1648
1649MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F,
1650                                            const BasicBlock *BB,
1651                                            const char *Suffix) const {
1652  assert(BB->hasName() &&
1653         "Address of anonymous basic block not supported yet!");
1654
1655  // This code must use the function name itself, and not the function number,
1656  // since it must be possible to generate the label name from within other
1657  // functions.
1658  SmallString<60> FnName;
1659  Mang->getNameWithPrefix(FnName, F, false);
1660
1661  // FIXME: THIS IS BROKEN IF THE LLVM BASIC BLOCK DOESN'T HAVE A NAME!
1662  SmallString<60> NameResult;
1663  Mang->getNameWithPrefix(NameResult,
1664                          StringRef("BA") + Twine((unsigned)FnName.size()) +
1665                          "_" + FnName.str() + "_" + BB->getName() + Suffix,
1666                          Mangler::Private);
1667
1668  return OutContext.GetOrCreateSymbol(NameResult.str());
1669}
1670
1671MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const {
1672  SmallString<60> Name;
1673  raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB"
1674    << getFunctionNumber() << '_' << MBBID;
1675
1676  return OutContext.GetOrCreateSymbol(Name.str());
1677}
1678
1679/// GetGlobalValueSymbol - Return the MCSymbol for the specified global
1680/// value.
1681MCSymbol *AsmPrinter::GetGlobalValueSymbol(const GlobalValue *GV) const {
1682  SmallString<60> NameStr;
1683  Mang->getNameWithPrefix(NameStr, GV, false);
1684  return OutContext.GetOrCreateSymbol(NameStr.str());
1685}
1686
1687/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1688/// global value name as its base, with the specified suffix, and where the
1689/// symbol is forced to have private linkage if ForcePrivate is true.
1690MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1691                                                   StringRef Suffix,
1692                                                   bool ForcePrivate) const {
1693  SmallString<60> NameStr;
1694  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1695  NameStr.append(Suffix.begin(), Suffix.end());
1696  return OutContext.GetOrCreateSymbol(NameStr.str());
1697}
1698
1699/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1700/// ExternalSymbol.
1701MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1702  SmallString<60> NameStr;
1703  Mang->getNameWithPrefix(NameStr, Sym);
1704  return OutContext.GetOrCreateSymbol(NameStr.str());
1705}
1706
1707
1708/// EmitBasicBlockStart - This method prints the label for the specified
1709/// MachineBasicBlock, an alignment (if present) and a comment describing
1710/// it if appropriate.
1711void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
1712  // Emit an alignment directive for this block, if needed.
1713  if (unsigned Align = MBB->getAlignment())
1714    EmitAlignment(Log2_32(Align));
1715
1716  // If the block has its address taken, emit a special label to satisfy
1717  // references to the block. This is done so that we don't need to
1718  // remember the number of this label, and so that we can make
1719  // forward references to labels without knowing what their numbers
1720  // will be.
1721  if (MBB->hasAddressTaken()) {
1722    O << *GetBlockAddressSymbol(MBB->getBasicBlock()->getParent(),
1723                                MBB->getBasicBlock());
1724    O << ':';
1725    if (VerboseAsm) {
1726      O.PadToColumn(MAI->getCommentColumn());
1727      O << MAI->getCommentString() << " Address Taken";
1728    }
1729    O << '\n';
1730  }
1731
1732  // Print the main label for the block.
1733  if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) {
1734    if (VerboseAsm)
1735      O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':';
1736  } else {
1737    O << *GetMBBSymbol(MBB->getNumber()) << ':';
1738    if (!VerboseAsm)
1739      O << '\n';
1740  }
1741
1742  // Print some comments to accompany the label.
1743  if (VerboseAsm) {
1744    if (const BasicBlock *BB = MBB->getBasicBlock())
1745      if (BB->hasName()) {
1746        O.PadToColumn(MAI->getCommentColumn());
1747        O << MAI->getCommentString() << ' ';
1748        WriteAsOperand(O, BB, /*PrintType=*/false);
1749      }
1750
1751    EmitComments(*MBB);
1752    O << '\n';
1753  }
1754}
1755
1756/// printPICJumpTableSetLabel - This method prints a set label for the
1757/// specified MachineBasicBlock for a jumptable entry.
1758void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1759                                           const MachineBasicBlock *MBB) const {
1760  if (!MAI->getSetDirective())
1761    return;
1762
1763  O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
1764    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','
1765    << *GetMBBSymbol(MBB->getNumber())
1766    << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1767    << '_' << uid << '\n';
1768}
1769
1770void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1771                                           const MachineBasicBlock *MBB) const {
1772  if (!MAI->getSetDirective())
1773    return;
1774
1775  O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
1776    << getFunctionNumber() << '_' << uid << '_' << uid2
1777    << "_set_" << MBB->getNumber() << ','
1778    << *GetMBBSymbol(MBB->getNumber())
1779    << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1780    << '_' << uid << '_' << uid2 << '\n';
1781}
1782
1783/// printDataDirective - This method prints the asm directive for the
1784/// specified type.
1785void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1786  const TargetData *TD = TM.getTargetData();
1787  switch (type->getTypeID()) {
1788  case Type::FloatTyID: case Type::DoubleTyID:
1789  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1790    assert(0 && "Should have already output floating point constant.");
1791  default:
1792    assert(0 && "Can't handle printing this type of thing");
1793  case Type::IntegerTyID: {
1794    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1795    if (BitWidth <= 8)
1796      O << MAI->getData8bitsDirective(AddrSpace);
1797    else if (BitWidth <= 16)
1798      O << MAI->getData16bitsDirective(AddrSpace);
1799    else if (BitWidth <= 32)
1800      O << MAI->getData32bitsDirective(AddrSpace);
1801    else if (BitWidth <= 64) {
1802      assert(MAI->getData64bitsDirective(AddrSpace) &&
1803             "Target cannot handle 64-bit constant exprs!");
1804      O << MAI->getData64bitsDirective(AddrSpace);
1805    } else {
1806      llvm_unreachable("Target cannot handle given data directive width!");
1807    }
1808    break;
1809  }
1810  case Type::PointerTyID:
1811    if (TD->getPointerSize() == 8) {
1812      assert(MAI->getData64bitsDirective(AddrSpace) &&
1813             "Target cannot handle 64-bit pointer exprs!");
1814      O << MAI->getData64bitsDirective(AddrSpace);
1815    } else if (TD->getPointerSize() == 2) {
1816      O << MAI->getData16bitsDirective(AddrSpace);
1817    } else if (TD->getPointerSize() == 1) {
1818      O << MAI->getData8bitsDirective(AddrSpace);
1819    } else {
1820      O << MAI->getData32bitsDirective(AddrSpace);
1821    }
1822    break;
1823  }
1824}
1825
1826void AsmPrinter::printVisibility(const MCSymbol *Sym,
1827                                 unsigned Visibility) const {
1828  if (Visibility == GlobalValue::HiddenVisibility) {
1829    if (const char *Directive = MAI->getHiddenDirective())
1830      O << Directive << *Sym << '\n';
1831  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1832    if (const char *Directive = MAI->getProtectedDirective())
1833      O << Directive << *Sym << '\n';
1834  }
1835}
1836
1837void AsmPrinter::printOffset(int64_t Offset) const {
1838  if (Offset > 0)
1839    O << '+' << Offset;
1840  else if (Offset < 0)
1841    O << Offset;
1842}
1843
1844GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1845  if (!S->usesMetadata())
1846    return 0;
1847
1848  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1849  if (GCPI != GCMetadataPrinters.end())
1850    return GCPI->second;
1851
1852  const char *Name = S->getName().c_str();
1853
1854  for (GCMetadataPrinterRegistry::iterator
1855         I = GCMetadataPrinterRegistry::begin(),
1856         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1857    if (strcmp(Name, I->getName()) == 0) {
1858      GCMetadataPrinter *GMP = I->instantiate();
1859      GMP->S = S;
1860      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1861      return GMP;
1862    }
1863
1864  errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1865  llvm_unreachable(0);
1866}
1867
1868/// EmitComments - Pretty-print comments for instructions
1869void AsmPrinter::EmitComments(const MachineInstr &MI) const {
1870  if (!VerboseAsm)
1871    return;
1872
1873  bool Newline = false;
1874
1875  if (!MI.getDebugLoc().isUnknown()) {
1876    DILocation DLT = MF->getDILocation(MI.getDebugLoc());
1877
1878    // Print source line info.
1879    O.PadToColumn(MAI->getCommentColumn());
1880    O << MAI->getCommentString() << ' ';
1881    DIScope Scope = DLT.getScope();
1882    // Omit the directory, because it's likely to be long and uninteresting.
1883    if (!Scope.isNull())
1884      O << Scope.getFilename();
1885    else
1886      O << "<unknown>";
1887    O << ':' << DLT.getLineNumber();
1888    if (DLT.getColumnNumber() != 0)
1889      O << ':' << DLT.getColumnNumber();
1890    Newline = true;
1891  }
1892
1893  // Check for spills and reloads
1894  int FI;
1895
1896  const MachineFrameInfo *FrameInfo =
1897    MI.getParent()->getParent()->getFrameInfo();
1898
1899  // We assume a single instruction only has a spill or reload, not
1900  // both.
1901  const MachineMemOperand *MMO;
1902  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
1903    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1904      MMO = *MI.memoperands_begin();
1905      if (Newline) O << '\n';
1906      O.PadToColumn(MAI->getCommentColumn());
1907      O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Reload";
1908      Newline = true;
1909    }
1910  }
1911  else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
1912    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1913      if (Newline) O << '\n';
1914      O.PadToColumn(MAI->getCommentColumn());
1915      O << MAI->getCommentString() << ' '
1916        << MMO->getSize() << "-byte Folded Reload";
1917      Newline = true;
1918    }
1919  }
1920  else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
1921    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1922      MMO = *MI.memoperands_begin();
1923      if (Newline) O << '\n';
1924      O.PadToColumn(MAI->getCommentColumn());
1925      O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Spill";
1926      Newline = true;
1927    }
1928  }
1929  else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
1930    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
1931      if (Newline) O << '\n';
1932      O.PadToColumn(MAI->getCommentColumn());
1933      O << MAI->getCommentString() << ' '
1934        << MMO->getSize() << "-byte Folded Spill";
1935      Newline = true;
1936    }
1937  }
1938
1939  // Check for spill-induced copies
1940  unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1941  if (TM.getInstrInfo()->isMoveInstr(MI, SrcReg, DstReg,
1942                                      SrcSubIdx, DstSubIdx)) {
1943    if (MI.getAsmPrinterFlag(ReloadReuse)) {
1944      if (Newline) O << '\n';
1945      O.PadToColumn(MAI->getCommentColumn());
1946      O << MAI->getCommentString() << " Reload Reuse";
1947    }
1948  }
1949}
1950
1951/// PrintChildLoopComment - Print comments about child loops within
1952/// the loop for this basic block, with nesting.
1953///
1954static void PrintChildLoopComment(formatted_raw_ostream &O,
1955                                  const MachineLoop *loop,
1956                                  const MCAsmInfo *MAI,
1957                                  int FunctionNumber) {
1958  // Add child loop information
1959  for(MachineLoop::iterator cl = loop->begin(),
1960        clend = loop->end();
1961      cl != clend;
1962      ++cl) {
1963    MachineBasicBlock *Header = (*cl)->getHeader();
1964    assert(Header && "No header for loop");
1965
1966    O << '\n';
1967    O.PadToColumn(MAI->getCommentColumn());
1968
1969    O << MAI->getCommentString();
1970    O.indent(((*cl)->getLoopDepth()-1)*2)
1971      << " Child Loop BB" << FunctionNumber << "_"
1972      << Header->getNumber() << " Depth " << (*cl)->getLoopDepth();
1973
1974    PrintChildLoopComment(O, *cl, MAI, FunctionNumber);
1975  }
1976}
1977
1978/// EmitComments - Pretty-print comments for basic blocks
1979void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const {
1980  if (VerboseAsm) {
1981    // Add loop depth information
1982    const MachineLoop *loop = LI->getLoopFor(&MBB);
1983
1984    if (loop) {
1985      // Print a newline after bb# annotation.
1986      O << "\n";
1987      O.PadToColumn(MAI->getCommentColumn());
1988      O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth()
1989        << '\n';
1990
1991      O.PadToColumn(MAI->getCommentColumn());
1992
1993      MachineBasicBlock *Header = loop->getHeader();
1994      assert(Header && "No header for loop");
1995
1996      if (Header == &MBB) {
1997        O << MAI->getCommentString() << " Loop Header";
1998        PrintChildLoopComment(O, loop, MAI, getFunctionNumber());
1999      }
2000      else {
2001        O << MAI->getCommentString() << " Loop Header is BB"
2002          << getFunctionNumber() << "_" << loop->getHeader()->getNumber();
2003      }
2004
2005      if (loop->empty()) {
2006        O << '\n';
2007        O.PadToColumn(MAI->getCommentColumn());
2008        O << MAI->getCommentString() << " Inner Loop";
2009      }
2010
2011      // Add parent loop information
2012      for (const MachineLoop *CurLoop = loop->getParentLoop();
2013           CurLoop;
2014           CurLoop = CurLoop->getParentLoop()) {
2015        MachineBasicBlock *Header = CurLoop->getHeader();
2016        assert(Header && "No header for loop");
2017
2018        O << '\n';
2019        O.PadToColumn(MAI->getCommentColumn());
2020        O << MAI->getCommentString();
2021        O.indent((CurLoop->getLoopDepth()-1)*2)
2022          << " Inside Loop BB" << getFunctionNumber() << "_"
2023          << Header->getNumber() << " Depth " << CurLoop->getLoopDepth();
2024      }
2025    }
2026  }
2027}
2028