AsmPrinter.cpp revision d68f13bf716faa496767a21140fab558adddc19a
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/Support/Mangler.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Target/TargetAsmInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34#include <cerrno>
35using namespace llvm;
36
37char AsmPrinter::ID = 0;
38AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
39                       const TargetAsmInfo *T)
40  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
41    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
42    IsInTextSection(false)
43{}
44
45AsmPrinter::~AsmPrinter() {
46  for (gcp_iterator I = GCMetadataPrinters.begin(),
47                    E = GCMetadataPrinters.end(); I != E; ++I)
48    delete I->second;
49}
50
51/// SwitchToTextSection - Switch to the specified text section of the executable
52/// if we are not already in it!
53///
54void AsmPrinter::SwitchToTextSection(const char *NewSection,
55                                     const GlobalValue *GV) {
56  std::string NS;
57  if (GV && GV->hasSection())
58    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
59  else
60    NS = NewSection;
61
62  // If we're already in this section, we're done.
63  if (CurrentSection == NS) return;
64
65  // Close the current section, if applicable.
66  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
67    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
68
69  CurrentSection = NS;
70
71  if (!CurrentSection.empty())
72    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
73
74  IsInTextSection = true;
75}
76
77/// SwitchToDataSection - Switch to the specified data section of the executable
78/// if we are not already in it!
79///
80void AsmPrinter::SwitchToDataSection(const char *NewSection,
81                                     const GlobalValue *GV) {
82  std::string NS;
83  if (GV && GV->hasSection())
84    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
85  else
86    NS = NewSection;
87
88  // If we're already in this section, we're done.
89  if (CurrentSection == NS) return;
90
91  // Close the current section, if applicable.
92  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
93    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
94
95  CurrentSection = NS;
96
97  if (!CurrentSection.empty())
98    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
99
100  IsInTextSection = false;
101}
102
103/// SwitchToSection - Switch to the specified section of the executable if we
104/// are not already in it!
105void AsmPrinter::SwitchToSection(const Section* NS) {
106  const std::string& NewSection = NS->getName();
107
108  // If we're already in this section, we're done.
109  if (CurrentSection == NewSection) return;
110
111  // Close the current section, if applicable.
112  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
113    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
114
115  // FIXME: Make CurrentSection a Section* in the future
116  CurrentSection = NewSection;
117  CurrentSection_ = NS;
118
119  if (!CurrentSection.empty()) {
120    // If section is named we need to switch into it via special '.section'
121    // directive and also append funky flags. Otherwise - section name is just
122    // some magic assembler directive.
123    if (NS->isNamed())
124      O << TAI->getSwitchToSectionDirective()
125        << CurrentSection
126        << TAI->getSectionFlags(NS->getFlags());
127    else
128      O << CurrentSection;
129    O << TAI->getDataSectionStartSuffix() << '\n';
130  }
131
132  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
133}
134
135void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
136  MachineFunctionPass::getAnalysisUsage(AU);
137  AU.addRequired<GCModuleInfo>();
138}
139
140bool AsmPrinter::doInitialization(Module &M) {
141  Mang = new Mangler(M, TAI->getGlobalPrefix());
142
143  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
144  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
145
146  if (TAI->hasSingleParameterDotFile()) {
147    /* Very minimal debug info. It is ignored if we emit actual
148       debug info. If we don't, this at helps the user find where
149       a function came from. */
150    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
151  }
152
153  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
154    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
155      MP->beginAssembly(O, *this, *TAI);
156
157  if (!M.getModuleInlineAsm().empty())
158    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
159      << M.getModuleInlineAsm()
160      << '\n' << TAI->getCommentString()
161      << " End of file scope inline assembly\n";
162
163  SwitchToDataSection("");   // Reset back to no section.
164
165  MMI = getAnalysisToUpdate<MachineModuleInfo>();
166  if (MMI) MMI->AnalyzeModule(M);
167
168  return false;
169}
170
171bool AsmPrinter::doFinalization(Module &M) {
172  if (TAI->getWeakRefDirective()) {
173    if (!ExtWeakSymbols.empty())
174      SwitchToDataSection("");
175
176    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
177         e = ExtWeakSymbols.end(); i != e; ++i) {
178      const GlobalValue *GV = *i;
179      std::string Name = Mang->getValueName(GV);
180      O << TAI->getWeakRefDirective() << Name << '\n';
181    }
182  }
183
184  if (TAI->getSetDirective()) {
185    if (!M.alias_empty())
186      SwitchToSection(TAI->getTextSection());
187
188    O << '\n';
189    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
190         I!=E; ++I) {
191      std::string Name = Mang->getValueName(I);
192      std::string Target;
193
194      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
195      Target = Mang->getValueName(GV);
196
197      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
198        O << "\t.globl\t" << Name << '\n';
199      else if (I->hasWeakLinkage())
200        O << TAI->getWeakRefDirective() << Name << '\n';
201      else if (!I->hasInternalLinkage())
202        assert(0 && "Invalid alias linkage");
203
204      printVisibility(Name, I->getVisibility());
205
206      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
207
208      // If the aliasee has external weak linkage it can be referenced only by
209      // alias itself. In this case it can be not in ExtWeakSymbols list. Emit
210      // weak reference in such case.
211      if (GV->hasExternalWeakLinkage()) {
212        if (TAI->getWeakRefDirective())
213          O << TAI->getWeakRefDirective() << Target << '\n';
214        else
215          O << "\t.globl\t" << Target << '\n';
216      }
217    }
218  }
219
220  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
221  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
222  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
223    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
224      MP->finishAssembly(O, *this, *TAI);
225
226  // If we don't have any trampolines, then we don't require stack memory
227  // to be executable. Some targets have a directive to declare this.
228  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
229  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
230    if (TAI->getNonexecutableStackDirective())
231      O << TAI->getNonexecutableStackDirective() << '\n';
232
233  delete Mang; Mang = 0;
234  return false;
235}
236
237std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
238  assert(MF && "No machine function?");
239  std::string Name = MF->getFunction()->getName();
240  if (Name.empty())
241    Name = Mang->getValueName(MF->getFunction());
242  return Mang->makeNameProper(TAI->getEHGlobalPrefix() +
243                              Name + ".eh", TAI->getGlobalPrefix());
244}
245
246void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
247  // What's my mangled name?
248  CurrentFnName = Mang->getValueName(MF.getFunction());
249  IncrementFunctionNumber();
250}
251
252/// EmitConstantPool - Print to the current output stream assembly
253/// representations of the constants in the constant pool MCP. This is
254/// used to print out constants which have been "spilled to memory" by
255/// the code generator.
256///
257void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
258  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
259  if (CP.empty()) return;
260
261  // Calculate sections for constant pool entries. We collect entries to go into
262  // the same section together to reduce amount of section switch statements.
263  typedef
264    std::multimap<const Section*,
265                  std::pair<MachineConstantPoolEntry, unsigned> > CPMap;
266  CPMap  CPs;
267  SmallPtrSet<const Section*, 5> Sections;
268
269  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
270    MachineConstantPoolEntry CPE = CP[i];
271    const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
272    CPs.insert(std::make_pair(S, std::make_pair(CPE, i)));
273    Sections.insert(S);
274  }
275
276  // Now print stuff into the calculated sections.
277  for (SmallPtrSet<const Section*, 5>::iterator IS = Sections.begin(),
278         ES = Sections.end(); IS != ES; ++IS) {
279    SwitchToSection(*IS);
280    EmitAlignment(MCP->getConstantPoolAlignment());
281
282    std::pair<CPMap::iterator, CPMap::iterator> II = CPs.equal_range(*IS);
283    for (CPMap::iterator I = II.first, E = II.second; I != E; ++I) {
284      CPMap::iterator J = next(I);
285      MachineConstantPoolEntry Entry = I->second.first;
286      unsigned index = I->second.second;
287
288      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
289        << index << ":\t\t\t\t\t";
290    // O << TAI->getCommentString() << ' ' <<
291    //      WriteTypeSymbolic(O, CP[i].first.getType(), 0);
292      O << '\n';
293      if (Entry.isMachineConstantPoolEntry())
294        EmitMachineConstantPoolValue(Entry.Val.MachineCPVal);
295      else
296        EmitGlobalConstant(Entry.Val.ConstVal);
297
298      // Emit inter-object padding for alignment.
299      if (J != E) {
300        const Type *Ty = Entry.getType();
301        unsigned EntSize = TM.getTargetData()->getTypePaddedSize(Ty);
302        unsigned ValEnd = Entry.getOffset() + EntSize;
303        EmitZeros(J->second.first.getOffset()-ValEnd);
304      }
305    }
306  }
307}
308
309/// EmitJumpTableInfo - Print assembly representations of the jump tables used
310/// by the current function to the current output stream.
311///
312void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
313                                   MachineFunction &MF) {
314  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
315  if (JT.empty()) return;
316
317  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
318
319  // Pick the directive to use to print the jump table entries, and switch to
320  // the appropriate section.
321  TargetLowering *LoweringInfo = TM.getTargetLowering();
322
323  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
324  const Function *F = MF.getFunction();
325  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
326  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
327     !JumpTableDataSection ||
328      SectionFlags & SectionFlags::Linkonce) {
329    // In PIC mode, we need to emit the jump table to the same section as the
330    // function body itself, otherwise the label differences won't make sense.
331    // We should also do if the section name is NULL or function is declared in
332    // discardable section.
333    SwitchToSection(TAI->SectionForGlobal(F));
334  } else {
335    SwitchToDataSection(JumpTableDataSection);
336  }
337
338  EmitAlignment(Log2_32(MJTI->getAlignment()));
339
340  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
341    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
342
343    // If this jump table was deleted, ignore it.
344    if (JTBBs.empty()) continue;
345
346    // For PIC codegen, if possible we want to use the SetDirective to reduce
347    // the number of relocations the assembler will generate for the jump table.
348    // Set directives are all printed before the jump table itself.
349    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
350    if (TAI->getSetDirective() && IsPic)
351      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
352        if (EmittedSets.insert(JTBBs[ii]))
353          printPICJumpTableSetLabel(i, JTBBs[ii]);
354
355    // On some targets (e.g. darwin) we want to emit two consequtive labels
356    // before each jump table.  The first label is never referenced, but tells
357    // the assembler and linker the extents of the jump table object.  The
358    // second label is actually referenced by the code.
359    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
360      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
361
362    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
363      << '_' << i << ":\n";
364
365    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
366      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
367      O << '\n';
368    }
369  }
370}
371
372void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
373                                        const MachineBasicBlock *MBB,
374                                        unsigned uid)  const {
375  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
376
377  // Use JumpTableDirective otherwise honor the entry size from the jump table
378  // info.
379  const char *JTEntryDirective = TAI->getJumpTableDirective();
380  bool HadJTEntryDirective = JTEntryDirective != NULL;
381  if (!HadJTEntryDirective) {
382    JTEntryDirective = MJTI->getEntrySize() == 4 ?
383      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
384  }
385
386  O << JTEntryDirective << ' ';
387
388  // If we have emitted set directives for the jump table entries, print
389  // them rather than the entries themselves.  If we're emitting PIC, then
390  // emit the table entries as differences between two text section labels.
391  // If we're emitting non-PIC code, then emit the entries as direct
392  // references to the target basic blocks.
393  if (IsPic) {
394    if (TAI->getSetDirective()) {
395      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
396        << '_' << uid << "_set_" << MBB->getNumber();
397    } else {
398      printBasicBlockLabel(MBB, false, false, false);
399      // If the arch uses custom Jump Table directives, don't calc relative to
400      // JT
401      if (!HadJTEntryDirective)
402        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
403          << getFunctionNumber() << '_' << uid;
404    }
405  } else {
406    printBasicBlockLabel(MBB, false, false, false);
407  }
408}
409
410
411/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
412/// special global used by LLVM.  If so, emit it and return true, otherwise
413/// do nothing and return false.
414bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
415  if (GV->getName() == "llvm.used") {
416    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
417      EmitLLVMUsedList(GV->getInitializer());
418    return true;
419  }
420
421  // Ignore debug and non-emitted data.
422  if (GV->getSection() == "llvm.metadata") return true;
423
424  if (!GV->hasAppendingLinkage()) return false;
425
426  assert(GV->hasInitializer() && "Not a special LLVM global!");
427
428  const TargetData *TD = TM.getTargetData();
429  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
430  if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
431    SwitchToDataSection(TAI->getStaticCtorsSection());
432    EmitAlignment(Align, 0);
433    EmitXXStructorList(GV->getInitializer());
434    return true;
435  }
436
437  if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
438    SwitchToDataSection(TAI->getStaticDtorsSection());
439    EmitAlignment(Align, 0);
440    EmitXXStructorList(GV->getInitializer());
441    return true;
442  }
443
444  return false;
445}
446
447/// findGlobalValue - if CV is an expression equivalent to a single
448/// global value, return that value.
449const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
450  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
451    return GV;
452  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
453    const TargetData *TD = TM.getTargetData();
454    unsigned Opcode = CE->getOpcode();
455    switch (Opcode) {
456    case Instruction::GetElementPtr: {
457      const Constant *ptrVal = CE->getOperand(0);
458      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
459      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
460        return 0;
461      return findGlobalValue(ptrVal);
462    }
463    case Instruction::BitCast:
464      return findGlobalValue(CE->getOperand(0));
465    default:
466      return 0;
467    }
468  }
469  return 0;
470}
471
472/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
473/// global in the specified llvm.used list for which emitUsedDirectiveFor
474/// is true, as being used with this directive.
475
476void AsmPrinter::EmitLLVMUsedList(Constant *List) {
477  const char *Directive = TAI->getUsedDirective();
478
479  // Should be an array of 'sbyte*'.
480  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
481  if (InitList == 0) return;
482
483  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
484    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
485    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
486      O << Directive;
487      EmitConstantValueOnly(InitList->getOperand(i));
488      O << '\n';
489    }
490  }
491}
492
493/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
494/// function pointers, ignoring the init priority.
495void AsmPrinter::EmitXXStructorList(Constant *List) {
496  // Should be an array of '{ int, void ()* }' structs.  The first value is the
497  // init priority, which we ignore.
498  if (!isa<ConstantArray>(List)) return;
499  ConstantArray *InitList = cast<ConstantArray>(List);
500  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
501    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
502      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
503
504      if (CS->getOperand(1)->isNullValue())
505        return;  // Found a null terminator, exit printing.
506      // Emit the function pointer.
507      EmitGlobalConstant(CS->getOperand(1));
508    }
509}
510
511/// getGlobalLinkName - Returns the asm/link name of of the specified
512/// global variable.  Should be overridden by each target asm printer to
513/// generate the appropriate value.
514const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
515  std::string LinkName;
516
517  if (isa<Function>(GV)) {
518    LinkName += TAI->getFunctionAddrPrefix();
519    LinkName += Mang->getValueName(GV);
520    LinkName += TAI->getFunctionAddrSuffix();
521  } else {
522    LinkName += TAI->getGlobalVarAddrPrefix();
523    LinkName += Mang->getValueName(GV);
524    LinkName += TAI->getGlobalVarAddrSuffix();
525  }
526
527  return LinkName;
528}
529
530/// EmitExternalGlobal - Emit the external reference to a global variable.
531/// Should be overridden if an indirect reference should be used.
532void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
533  O << getGlobalLinkName(GV);
534}
535
536
537
538//===----------------------------------------------------------------------===//
539/// LEB 128 number encoding.
540
541/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
542/// representing an unsigned leb128 value.
543void AsmPrinter::PrintULEB128(unsigned Value) const {
544  char Buffer[20];
545  do {
546    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
547    Value >>= 7;
548    if (Value) Byte |= 0x80;
549    O << "0x" << utohex_buffer(Byte, Buffer+20);
550    if (Value) O << ", ";
551  } while (Value);
552}
553
554/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
555/// representing a signed leb128 value.
556void AsmPrinter::PrintSLEB128(int Value) const {
557  int Sign = Value >> (8 * sizeof(Value) - 1);
558  bool IsMore;
559  char Buffer[20];
560
561  do {
562    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
563    Value >>= 7;
564    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
565    if (IsMore) Byte |= 0x80;
566    O << "0x" << utohex_buffer(Byte, Buffer+20);
567    if (IsMore) O << ", ";
568  } while (IsMore);
569}
570
571//===--------------------------------------------------------------------===//
572// Emission and print routines
573//
574
575/// PrintHex - Print a value as a hexidecimal value.
576///
577void AsmPrinter::PrintHex(int Value) const {
578  char Buffer[20];
579  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
580}
581
582/// EOL - Print a newline character to asm stream.  If a comment is present
583/// then it will be printed first.  Comments should not contain '\n'.
584void AsmPrinter::EOL() const {
585  O << '\n';
586}
587
588void AsmPrinter::EOL(const std::string &Comment) const {
589  if (VerboseAsm && !Comment.empty()) {
590    O << '\t'
591      << TAI->getCommentString()
592      << ' '
593      << Comment;
594  }
595  O << '\n';
596}
597
598void AsmPrinter::EOL(const char* Comment) const {
599  if (VerboseAsm && *Comment) {
600    O << '\t'
601      << TAI->getCommentString()
602      << ' '
603      << Comment;
604  }
605  O << '\n';
606}
607
608/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
609/// unsigned leb128 value.
610void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
611  if (TAI->hasLEB128()) {
612    O << "\t.uleb128\t"
613      << Value;
614  } else {
615    O << TAI->getData8bitsDirective();
616    PrintULEB128(Value);
617  }
618}
619
620/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
621/// signed leb128 value.
622void AsmPrinter::EmitSLEB128Bytes(int Value) const {
623  if (TAI->hasLEB128()) {
624    O << "\t.sleb128\t"
625      << Value;
626  } else {
627    O << TAI->getData8bitsDirective();
628    PrintSLEB128(Value);
629  }
630}
631
632/// EmitInt8 - Emit a byte directive and value.
633///
634void AsmPrinter::EmitInt8(int Value) const {
635  O << TAI->getData8bitsDirective();
636  PrintHex(Value & 0xFF);
637}
638
639/// EmitInt16 - Emit a short directive and value.
640///
641void AsmPrinter::EmitInt16(int Value) const {
642  O << TAI->getData16bitsDirective();
643  PrintHex(Value & 0xFFFF);
644}
645
646/// EmitInt32 - Emit a long directive and value.
647///
648void AsmPrinter::EmitInt32(int Value) const {
649  O << TAI->getData32bitsDirective();
650  PrintHex(Value);
651}
652
653/// EmitInt64 - Emit a long long directive and value.
654///
655void AsmPrinter::EmitInt64(uint64_t Value) const {
656  if (TAI->getData64bitsDirective()) {
657    O << TAI->getData64bitsDirective();
658    PrintHex(Value);
659  } else {
660    if (TM.getTargetData()->isBigEndian()) {
661      EmitInt32(unsigned(Value >> 32)); O << '\n';
662      EmitInt32(unsigned(Value));
663    } else {
664      EmitInt32(unsigned(Value)); O << '\n';
665      EmitInt32(unsigned(Value >> 32));
666    }
667  }
668}
669
670/// toOctal - Convert the low order bits of X into an octal digit.
671///
672static inline char toOctal(int X) {
673  return (X&7)+'0';
674}
675
676/// printStringChar - Print a char, escaped if necessary.
677///
678static void printStringChar(raw_ostream &O, char C) {
679  if (C == '"') {
680    O << "\\\"";
681  } else if (C == '\\') {
682    O << "\\\\";
683  } else if (isprint(C)) {
684    O << C;
685  } else {
686    switch(C) {
687    case '\b': O << "\\b"; break;
688    case '\f': O << "\\f"; break;
689    case '\n': O << "\\n"; break;
690    case '\r': O << "\\r"; break;
691    case '\t': O << "\\t"; break;
692    default:
693      O << '\\';
694      O << toOctal(C >> 6);
695      O << toOctal(C >> 3);
696      O << toOctal(C >> 0);
697      break;
698    }
699  }
700}
701
702/// EmitString - Emit a string with quotes and a null terminator.
703/// Special characters are emitted properly.
704/// \literal (Eg. '\t') \endliteral
705void AsmPrinter::EmitString(const std::string &String) const {
706  const char* AscizDirective = TAI->getAscizDirective();
707  if (AscizDirective)
708    O << AscizDirective;
709  else
710    O << TAI->getAsciiDirective();
711  O << '\"';
712  for (unsigned i = 0, N = String.size(); i < N; ++i) {
713    unsigned char C = String[i];
714    printStringChar(O, C);
715  }
716  if (AscizDirective)
717    O << '\"';
718  else
719    O << "\\0\"";
720}
721
722
723/// EmitFile - Emit a .file directive.
724void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
725  O << "\t.file\t" << Number << " \"";
726  for (unsigned i = 0, N = Name.size(); i < N; ++i) {
727    unsigned char C = Name[i];
728    printStringChar(O, C);
729  }
730  O << '\"';
731}
732
733
734//===----------------------------------------------------------------------===//
735
736// EmitAlignment - Emit an alignment directive to the specified power of
737// two boundary.  For example, if you pass in 3 here, you will get an 8
738// byte alignment.  If a global value is specified, and if that global has
739// an explicit alignment requested, it will unconditionally override the
740// alignment request.  However, if ForcedAlignBits is specified, this value
741// has final say: the ultimate alignment will be the max of ForcedAlignBits
742// and the alignment computed with NumBits and the global.
743//
744// The algorithm is:
745//     Align = NumBits;
746//     if (GV && GV->hasalignment) Align = GV->getalignment();
747//     Align = std::max(Align, ForcedAlignBits);
748//
749void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
750                               unsigned ForcedAlignBits,
751                               bool UseFillExpr) const {
752  if (GV && GV->getAlignment())
753    NumBits = Log2_32(GV->getAlignment());
754  NumBits = std::max(NumBits, ForcedAlignBits);
755
756  if (NumBits == 0) return;   // No need to emit alignment.
757  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
758  O << TAI->getAlignDirective() << NumBits;
759
760  unsigned FillValue = TAI->getTextAlignFillValue();
761  UseFillExpr &= IsInTextSection && FillValue;
762  if (UseFillExpr) {
763    O << ',';
764    PrintHex(FillValue);
765  }
766  O << '\n';
767}
768
769
770/// EmitZeros - Emit a block of zeros.
771///
772void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
773  if (NumZeros) {
774    if (TAI->getZeroDirective()) {
775      O << TAI->getZeroDirective() << NumZeros;
776      if (TAI->getZeroDirectiveSuffix())
777        O << TAI->getZeroDirectiveSuffix();
778      O << '\n';
779    } else {
780      for (; NumZeros; --NumZeros)
781        O << TAI->getData8bitsDirective() << "0\n";
782    }
783  }
784}
785
786// Print out the specified constant, without a storage class.  Only the
787// constants valid in constant expressions can occur here.
788void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
789  if (CV->isNullValue() || isa<UndefValue>(CV))
790    O << '0';
791  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
792    O << CI->getZExtValue();
793  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
794    // This is a constant address for a global variable or function. Use the
795    // name of the variable or function as the address value, possibly
796    // decorating it with GlobalVarAddrPrefix/Suffix or
797    // FunctionAddrPrefix/Suffix (these all default to "" )
798    if (isa<Function>(GV)) {
799      O << TAI->getFunctionAddrPrefix()
800        << Mang->getValueName(GV)
801        << TAI->getFunctionAddrSuffix();
802    } else {
803      O << TAI->getGlobalVarAddrPrefix()
804        << Mang->getValueName(GV)
805        << TAI->getGlobalVarAddrSuffix();
806    }
807  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
808    const TargetData *TD = TM.getTargetData();
809    unsigned Opcode = CE->getOpcode();
810    switch (Opcode) {
811    case Instruction::GetElementPtr: {
812      // generate a symbolic expression for the byte address
813      const Constant *ptrVal = CE->getOperand(0);
814      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
815      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
816                                                idxVec.size())) {
817        if (Offset)
818          O << '(';
819        EmitConstantValueOnly(ptrVal);
820        if (Offset > 0)
821          O << ") + " << Offset;
822        else if (Offset < 0)
823          O << ") - " << -Offset;
824      } else {
825        EmitConstantValueOnly(ptrVal);
826      }
827      break;
828    }
829    case Instruction::Trunc:
830    case Instruction::ZExt:
831    case Instruction::SExt:
832    case Instruction::FPTrunc:
833    case Instruction::FPExt:
834    case Instruction::UIToFP:
835    case Instruction::SIToFP:
836    case Instruction::FPToUI:
837    case Instruction::FPToSI:
838      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
839      break;
840    case Instruction::BitCast:
841      return EmitConstantValueOnly(CE->getOperand(0));
842
843    case Instruction::IntToPtr: {
844      // Handle casts to pointers by changing them into casts to the appropriate
845      // integer type.  This promotes constant folding and simplifies this code.
846      Constant *Op = CE->getOperand(0);
847      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
848      return EmitConstantValueOnly(Op);
849    }
850
851
852    case Instruction::PtrToInt: {
853      // Support only foldable casts to/from pointers that can be eliminated by
854      // changing the pointer to the appropriately sized integer type.
855      Constant *Op = CE->getOperand(0);
856      const Type *Ty = CE->getType();
857
858      // We can emit the pointer value into this slot if the slot is an
859      // integer slot greater or equal to the size of the pointer.
860      if (TD->getTypePaddedSize(Ty) >= TD->getTypePaddedSize(Op->getType()))
861        return EmitConstantValueOnly(Op);
862
863      O << "((";
864      EmitConstantValueOnly(Op);
865      APInt ptrMask = APInt::getAllOnesValue(TD->getTypePaddedSizeInBits(Ty));
866
867      SmallString<40> S;
868      ptrMask.toStringUnsigned(S);
869      O << ") & " << S.c_str() << ')';
870      break;
871    }
872    case Instruction::Add:
873    case Instruction::Sub:
874    case Instruction::And:
875    case Instruction::Or:
876    case Instruction::Xor:
877      O << '(';
878      EmitConstantValueOnly(CE->getOperand(0));
879      O << ')';
880      switch (Opcode) {
881      case Instruction::Add:
882       O << " + ";
883       break;
884      case Instruction::Sub:
885       O << " - ";
886       break;
887      case Instruction::And:
888       O << " & ";
889       break;
890      case Instruction::Or:
891       O << " | ";
892       break;
893      case Instruction::Xor:
894       O << " ^ ";
895       break;
896      default:
897       break;
898      }
899      O << '(';
900      EmitConstantValueOnly(CE->getOperand(1));
901      O << ')';
902      break;
903    default:
904      assert(0 && "Unsupported operator!");
905    }
906  } else {
907    assert(0 && "Unknown constant value!");
908  }
909}
910
911/// printAsCString - Print the specified array as a C compatible string, only if
912/// the predicate isString is true.
913///
914static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
915                           unsigned LastElt) {
916  assert(CVA->isString() && "Array is not string compatible!");
917
918  O << '\"';
919  for (unsigned i = 0; i != LastElt; ++i) {
920    unsigned char C =
921        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
922    printStringChar(O, C);
923  }
924  O << '\"';
925}
926
927/// EmitString - Emit a zero-byte-terminated string constant.
928///
929void AsmPrinter::EmitString(const ConstantArray *CVA) const {
930  unsigned NumElts = CVA->getNumOperands();
931  if (TAI->getAscizDirective() && NumElts &&
932      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
933    O << TAI->getAscizDirective();
934    printAsCString(O, CVA, NumElts-1);
935  } else {
936    O << TAI->getAsciiDirective();
937    printAsCString(O, CVA, NumElts);
938  }
939  O << '\n';
940}
941
942void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA) {
943  if (CVA->isString()) {
944    EmitString(CVA);
945  } else { // Not a string.  Print the values in successive locations
946    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
947      EmitGlobalConstant(CVA->getOperand(i));
948  }
949}
950
951void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
952  const VectorType *PTy = CP->getType();
953
954  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
955    EmitGlobalConstant(CP->getOperand(I));
956}
957
958void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS) {
959  // Print the fields in successive locations. Pad to align if needed!
960  const TargetData *TD = TM.getTargetData();
961  unsigned Size = TD->getTypePaddedSize(CVS->getType());
962  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
963  uint64_t sizeSoFar = 0;
964  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
965    const Constant* field = CVS->getOperand(i);
966
967    // Check if padding is needed and insert one or more 0s.
968    uint64_t fieldSize = TD->getTypePaddedSize(field->getType());
969    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
970                        - cvsLayout->getElementOffset(i)) - fieldSize;
971    sizeSoFar += fieldSize + padSize;
972
973    // Now print the actual field value.
974    EmitGlobalConstant(field);
975
976    // Insert padding - this may include padding to increase the size of the
977    // current field up to the ABI size (if the struct is not packed) as well
978    // as padding to ensure that the next field starts at the right offset.
979    EmitZeros(padSize);
980  }
981  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
982         "Layout of constant struct may be incorrect!");
983}
984
985void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP) {
986  // FP Constants are printed as integer constants to avoid losing
987  // precision...
988  const TargetData *TD = TM.getTargetData();
989  if (CFP->getType() == Type::DoubleTy) {
990    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
991    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
992    if (TAI->getData64bitsDirective())
993      O << TAI->getData64bitsDirective() << i << '\t'
994        << TAI->getCommentString() << " double value: " << Val << '\n';
995    else if (TD->isBigEndian()) {
996      O << TAI->getData32bitsDirective() << unsigned(i >> 32)
997        << '\t' << TAI->getCommentString()
998        << " double most significant word " << Val << '\n';
999      O << TAI->getData32bitsDirective() << unsigned(i)
1000        << '\t' << TAI->getCommentString()
1001        << " double least significant word " << Val << '\n';
1002    } else {
1003      O << TAI->getData32bitsDirective() << unsigned(i)
1004        << '\t' << TAI->getCommentString()
1005        << " double least significant word " << Val << '\n';
1006      O << TAI->getData32bitsDirective() << unsigned(i >> 32)
1007        << '\t' << TAI->getCommentString()
1008        << " double most significant word " << Val << '\n';
1009    }
1010    return;
1011  } else if (CFP->getType() == Type::FloatTy) {
1012    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1013    O << TAI->getData32bitsDirective()
1014      << CFP->getValueAPF().bitcastToAPInt().getZExtValue()
1015      << '\t' << TAI->getCommentString() << " float " << Val << '\n';
1016    return;
1017  } else if (CFP->getType() == Type::X86_FP80Ty) {
1018    // all long double variants are printed as hex
1019    // api needed to prevent premature destruction
1020    APInt api = CFP->getValueAPF().bitcastToAPInt();
1021    const uint64_t *p = api.getRawData();
1022    // Convert to double so we can print the approximate val as a comment.
1023    APFloat DoubleVal = CFP->getValueAPF();
1024    bool ignored;
1025    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1026                      &ignored);
1027    if (TD->isBigEndian()) {
1028      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1029        << '\t' << TAI->getCommentString()
1030        << " long double most significant halfword of ~"
1031        << DoubleVal.convertToDouble() << '\n';
1032      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1033        << '\t' << TAI->getCommentString()
1034        << " long double next halfword\n";
1035      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1036        << '\t' << TAI->getCommentString()
1037        << " long double next halfword\n";
1038      O << TAI->getData16bitsDirective() << uint16_t(p[0])
1039        << '\t' << TAI->getCommentString()
1040        << " long double next halfword\n";
1041      O << TAI->getData16bitsDirective() << uint16_t(p[1])
1042        << '\t' << TAI->getCommentString()
1043        << " long double least significant halfword\n";
1044     } else {
1045      O << TAI->getData16bitsDirective() << uint16_t(p[1])
1046        << '\t' << TAI->getCommentString()
1047        << " long double least significant halfword of ~"
1048        << DoubleVal.convertToDouble() << '\n';
1049      O << TAI->getData16bitsDirective() << uint16_t(p[0])
1050        << '\t' << TAI->getCommentString()
1051        << " long double next halfword\n";
1052      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1053        << '\t' << TAI->getCommentString()
1054        << " long double next halfword\n";
1055      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1056        << '\t' << TAI->getCommentString()
1057        << " long double next halfword\n";
1058      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1059        << '\t' << TAI->getCommentString()
1060        << " long double most significant halfword\n";
1061    }
1062    EmitZeros(TD->getTypePaddedSize(Type::X86_FP80Ty) -
1063              TD->getTypeStoreSize(Type::X86_FP80Ty));
1064    return;
1065  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1066    // all long double variants are printed as hex
1067    // api needed to prevent premature destruction
1068    APInt api = CFP->getValueAPF().bitcastToAPInt();
1069    const uint64_t *p = api.getRawData();
1070    if (TD->isBigEndian()) {
1071      O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1072        << '\t' << TAI->getCommentString()
1073        << " long double most significant word\n";
1074      O << TAI->getData32bitsDirective() << uint32_t(p[0])
1075        << '\t' << TAI->getCommentString()
1076        << " long double next word\n";
1077      O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1078        << '\t' << TAI->getCommentString()
1079        << " long double next word\n";
1080      O << TAI->getData32bitsDirective() << uint32_t(p[1])
1081        << '\t' << TAI->getCommentString()
1082        << " long double least significant word\n";
1083     } else {
1084      O << TAI->getData32bitsDirective() << uint32_t(p[1])
1085        << '\t' << TAI->getCommentString()
1086        << " long double least significant word\n";
1087      O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1088        << '\t' << TAI->getCommentString()
1089        << " long double next word\n";
1090      O << TAI->getData32bitsDirective() << uint32_t(p[0])
1091        << '\t' << TAI->getCommentString()
1092        << " long double next word\n";
1093      O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1094        << '\t' << TAI->getCommentString()
1095        << " long double most significant word\n";
1096    }
1097    return;
1098  } else assert(0 && "Floating point constant type not handled");
1099}
1100
1101void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI) {
1102  const TargetData *TD = TM.getTargetData();
1103  unsigned BitWidth = CI->getBitWidth();
1104  assert(isPowerOf2_32(BitWidth) &&
1105         "Non-power-of-2-sized integers not handled!");
1106
1107  // We don't expect assemblers to support integer data directives
1108  // for more than 64 bits, so we emit the data in at most 64-bit
1109  // quantities at a time.
1110  const uint64_t *RawData = CI->getValue().getRawData();
1111  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1112    uint64_t Val;
1113    if (TD->isBigEndian())
1114      Val = RawData[e - i - 1];
1115    else
1116      Val = RawData[i];
1117
1118    if (TAI->getData64bitsDirective())
1119      O << TAI->getData64bitsDirective() << Val << '\n';
1120    else if (TD->isBigEndian()) {
1121      O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1122        << '\t' << TAI->getCommentString()
1123        << " Double-word most significant word " << Val << '\n';
1124      O << TAI->getData32bitsDirective() << unsigned(Val)
1125        << '\t' << TAI->getCommentString()
1126        << " Double-word least significant word " << Val << '\n';
1127    } else {
1128      O << TAI->getData32bitsDirective() << unsigned(Val)
1129        << '\t' << TAI->getCommentString()
1130        << " Double-word least significant word " << Val << '\n';
1131      O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1132        << '\t' << TAI->getCommentString()
1133        << " Double-word most significant word " << Val << '\n';
1134    }
1135  }
1136}
1137
1138/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1139void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
1140  const TargetData *TD = TM.getTargetData();
1141  const Type *type = CV->getType();
1142  unsigned Size = TD->getTypePaddedSize(type);
1143
1144  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1145    EmitZeros(Size);
1146    return;
1147  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1148    EmitGlobalConstantArray(CVA);
1149    return;
1150  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1151    EmitGlobalConstantStruct(CVS);
1152    return;
1153  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1154    EmitGlobalConstantFP(CFP);
1155    return;
1156  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1157    // Small integers are handled below; large integers are handled here.
1158    if (Size > 4) {
1159      EmitGlobalConstantLargeInt(CI);
1160      return;
1161    }
1162  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1163    EmitGlobalConstantVector(CP);
1164    return;
1165  }
1166
1167  printDataDirective(type);
1168  EmitConstantValueOnly(CV);
1169  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1170    SmallString<40> S;
1171    CI->getValue().toStringUnsigned(S, 16);
1172    O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1173  }
1174  O << '\n';
1175}
1176
1177void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1178  // Target doesn't support this yet!
1179  abort();
1180}
1181
1182/// PrintSpecial - Print information related to the specified machine instr
1183/// that is independent of the operand, and may be independent of the instr
1184/// itself.  This can be useful for portably encoding the comment character
1185/// or other bits of target-specific knowledge into the asmstrings.  The
1186/// syntax used is ${:comment}.  Targets can override this to add support
1187/// for their own strange codes.
1188void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
1189  if (!strcmp(Code, "private")) {
1190    O << TAI->getPrivateGlobalPrefix();
1191  } else if (!strcmp(Code, "comment")) {
1192    O << TAI->getCommentString();
1193  } else if (!strcmp(Code, "uid")) {
1194    // Assign a unique ID to this machine instruction.
1195    static const MachineInstr *LastMI = 0;
1196    static const Function *F = 0;
1197    static unsigned Counter = 0U-1;
1198
1199    // Comparing the address of MI isn't sufficient, because machineinstrs may
1200    // be allocated to the same address across functions.
1201    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1202
1203    // If this is a new machine instruction, bump the counter.
1204    if (LastMI != MI || F != ThisF) {
1205      ++Counter;
1206      LastMI = MI;
1207      F = ThisF;
1208    }
1209    O << Counter;
1210  } else {
1211    cerr << "Unknown special formatter '" << Code
1212         << "' for machine instr: " << *MI;
1213    exit(1);
1214  }
1215}
1216
1217
1218/// printInlineAsm - This method formats and prints the specified machine
1219/// instruction that is an inline asm.
1220void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1221  unsigned NumOperands = MI->getNumOperands();
1222
1223  // Count the number of register definitions.
1224  unsigned NumDefs = 0;
1225  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1226       ++NumDefs)
1227    assert(NumDefs != NumOperands-1 && "No asm string?");
1228
1229  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1230
1231  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1232  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1233
1234  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1235  // These are useful to see where empty asm's wound up.
1236  if (AsmStr[0] == 0) {
1237    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1238    return;
1239  }
1240
1241  O << TAI->getInlineAsmStart() << "\n\t";
1242
1243  // The variant of the current asmprinter.
1244  int AsmPrinterVariant = TAI->getAssemblerDialect();
1245
1246  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1247  const char *LastEmitted = AsmStr; // One past the last character emitted.
1248
1249  while (*LastEmitted) {
1250    switch (*LastEmitted) {
1251    default: {
1252      // Not a special case, emit the string section literally.
1253      const char *LiteralEnd = LastEmitted+1;
1254      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1255             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1256        ++LiteralEnd;
1257      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1258        O.write(LastEmitted, LiteralEnd-LastEmitted);
1259      LastEmitted = LiteralEnd;
1260      break;
1261    }
1262    case '\n':
1263      ++LastEmitted;   // Consume newline character.
1264      O << '\n';       // Indent code with newline.
1265      break;
1266    case '$': {
1267      ++LastEmitted;   // Consume '$' character.
1268      bool Done = true;
1269
1270      // Handle escapes.
1271      switch (*LastEmitted) {
1272      default: Done = false; break;
1273      case '$':     // $$ -> $
1274        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1275          O << '$';
1276        ++LastEmitted;  // Consume second '$' character.
1277        break;
1278      case '(':             // $( -> same as GCC's { character.
1279        ++LastEmitted;      // Consume '(' character.
1280        if (CurVariant != -1) {
1281          cerr << "Nested variants found in inline asm string: '"
1282               << AsmStr << "'\n";
1283          exit(1);
1284        }
1285        CurVariant = 0;     // We're in the first variant now.
1286        break;
1287      case '|':
1288        ++LastEmitted;  // consume '|' character.
1289        if (CurVariant == -1)
1290          O << '|';       // this is gcc's behavior for | outside a variant
1291        else
1292          ++CurVariant;   // We're in the next variant.
1293        break;
1294      case ')':         // $) -> same as GCC's } char.
1295        ++LastEmitted;  // consume ')' character.
1296        if (CurVariant == -1)
1297          O << '}';     // this is gcc's behavior for } outside a variant
1298        else
1299          CurVariant = -1;
1300        break;
1301      }
1302      if (Done) break;
1303
1304      bool HasCurlyBraces = false;
1305      if (*LastEmitted == '{') {     // ${variable}
1306        ++LastEmitted;               // Consume '{' character.
1307        HasCurlyBraces = true;
1308      }
1309
1310      const char *IDStart = LastEmitted;
1311      char *IDEnd;
1312      errno = 0;
1313      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1314      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1315        cerr << "Bad $ operand number in inline asm string: '"
1316             << AsmStr << "'\n";
1317        exit(1);
1318      }
1319      LastEmitted = IDEnd;
1320
1321      char Modifier[2] = { 0, 0 };
1322
1323      if (HasCurlyBraces) {
1324        // If we have curly braces, check for a modifier character.  This
1325        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1326        if (*LastEmitted == ':') {
1327          ++LastEmitted;    // Consume ':' character.
1328          if (*LastEmitted == 0) {
1329            cerr << "Bad ${:} expression in inline asm string: '"
1330                 << AsmStr << "'\n";
1331            exit(1);
1332          }
1333
1334          Modifier[0] = *LastEmitted;
1335          ++LastEmitted;    // Consume modifier character.
1336        }
1337
1338        if (*LastEmitted != '}') {
1339          cerr << "Bad ${} expression in inline asm string: '"
1340               << AsmStr << "'\n";
1341          exit(1);
1342        }
1343        ++LastEmitted;    // Consume '}' character.
1344      }
1345
1346      if ((unsigned)Val >= NumOperands-1) {
1347        cerr << "Invalid $ operand number in inline asm string: '"
1348             << AsmStr << "'\n";
1349        exit(1);
1350      }
1351
1352      // Okay, we finally have a value number.  Ask the target to print this
1353      // operand!
1354      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1355        unsigned OpNo = 1;
1356
1357        bool Error = false;
1358
1359        // Scan to find the machine operand number for the operand.
1360        for (; Val; --Val) {
1361          if (OpNo >= MI->getNumOperands()) break;
1362          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1363          OpNo += (OpFlags >> 3) + 1;
1364        }
1365
1366        if (OpNo >= MI->getNumOperands()) {
1367          Error = true;
1368        } else {
1369          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1370          ++OpNo;  // Skip over the ID number.
1371
1372          if (Modifier[0]=='l')  // labels are target independent
1373            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1374                                 false, false, false);
1375          else {
1376            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1377            if ((OpFlags & 7) == 4) {
1378              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1379                                                Modifier[0] ? Modifier : 0);
1380            } else {
1381              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1382                                          Modifier[0] ? Modifier : 0);
1383            }
1384          }
1385        }
1386        if (Error) {
1387          cerr << "Invalid operand found in inline asm: '"
1388               << AsmStr << "'\n";
1389          MI->dump();
1390          exit(1);
1391        }
1392      }
1393      break;
1394    }
1395    }
1396  }
1397  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1398}
1399
1400/// printImplicitDef - This method prints the specified machine instruction
1401/// that is an implicit def.
1402void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1403  O << '\t' << TAI->getCommentString() << " implicit-def: "
1404    << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1405}
1406
1407/// printLabel - This method prints a local label used by debug and
1408/// exception handling tables.
1409void AsmPrinter::printLabel(const MachineInstr *MI) const {
1410  printLabel(MI->getOperand(0).getImm());
1411}
1412
1413void AsmPrinter::printLabel(unsigned Id) const {
1414  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1415}
1416
1417/// printDeclare - This method prints a local variable declaration used by
1418/// debug tables.
1419/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1420/// entry into dwarf table.
1421void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1422  int FI = MI->getOperand(0).getIndex();
1423  GlobalValue *GV = MI->getOperand(1).getGlobal();
1424  MMI->RecordVariable(GV, FI);
1425}
1426
1427/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1428/// instruction, using the specified assembler variant.  Targets should
1429/// overried this to format as appropriate.
1430bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1431                                 unsigned AsmVariant, const char *ExtraCode) {
1432  // Target doesn't support this yet!
1433  return true;
1434}
1435
1436bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1437                                       unsigned AsmVariant,
1438                                       const char *ExtraCode) {
1439  // Target doesn't support this yet!
1440  return true;
1441}
1442
1443/// printBasicBlockLabel - This method prints the label for the specified
1444/// MachineBasicBlock
1445void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1446                                      bool printAlign,
1447                                      bool printColon,
1448                                      bool printComment) const {
1449  if (printAlign) {
1450    unsigned Align = MBB->getAlignment();
1451    if (Align)
1452      EmitAlignment(Log2_32(Align));
1453  }
1454
1455  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1456    << MBB->getNumber();
1457  if (printColon)
1458    O << ':';
1459  if (printComment && MBB->getBasicBlock())
1460    O << '\t' << TAI->getCommentString() << ' '
1461      << MBB->getBasicBlock()->getNameStart();
1462}
1463
1464/// printPICJumpTableSetLabel - This method prints a set label for the
1465/// specified MachineBasicBlock for a jumptable entry.
1466void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1467                                           const MachineBasicBlock *MBB) const {
1468  if (!TAI->getSetDirective())
1469    return;
1470
1471  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1472    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1473  printBasicBlockLabel(MBB, false, false, false);
1474  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1475    << '_' << uid << '\n';
1476}
1477
1478void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1479                                           const MachineBasicBlock *MBB) const {
1480  if (!TAI->getSetDirective())
1481    return;
1482
1483  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1484    << getFunctionNumber() << '_' << uid << '_' << uid2
1485    << "_set_" << MBB->getNumber() << ',';
1486  printBasicBlockLabel(MBB, false, false, false);
1487  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1488    << '_' << uid << '_' << uid2 << '\n';
1489}
1490
1491/// printDataDirective - This method prints the asm directive for the
1492/// specified type.
1493void AsmPrinter::printDataDirective(const Type *type) {
1494  const TargetData *TD = TM.getTargetData();
1495  switch (type->getTypeID()) {
1496  case Type::IntegerTyID: {
1497    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1498    if (BitWidth <= 8)
1499      O << TAI->getData8bitsDirective();
1500    else if (BitWidth <= 16)
1501      O << TAI->getData16bitsDirective();
1502    else if (BitWidth <= 32)
1503      O << TAI->getData32bitsDirective();
1504    else if (BitWidth <= 64) {
1505      assert(TAI->getData64bitsDirective() &&
1506             "Target cannot handle 64-bit constant exprs!");
1507      O << TAI->getData64bitsDirective();
1508    } else {
1509      assert(0 && "Target cannot handle given data directive width!");
1510    }
1511    break;
1512  }
1513  case Type::PointerTyID:
1514    if (TD->getPointerSize() == 8) {
1515      assert(TAI->getData64bitsDirective() &&
1516             "Target cannot handle 64-bit pointer exprs!");
1517      O << TAI->getData64bitsDirective();
1518    } else {
1519      O << TAI->getData32bitsDirective();
1520    }
1521    break;
1522  case Type::FloatTyID: case Type::DoubleTyID:
1523  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1524    assert (0 && "Should have already output floating point constant.");
1525  default:
1526    assert (0 && "Can't handle printing this type of thing");
1527    break;
1528  }
1529}
1530
1531void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1532                                   const char *Prefix) {
1533  if (Name[0]=='\"')
1534    O << '\"';
1535  O << TAI->getPrivateGlobalPrefix();
1536  if (Prefix) O << Prefix;
1537  if (Name[0]=='\"')
1538    O << '\"';
1539  if (Name[0]=='\"')
1540    O << Name[1];
1541  else
1542    O << Name;
1543  O << Suffix;
1544  if (Name[0]=='\"')
1545    O << '\"';
1546}
1547
1548void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1549  printSuffixedName(Name.c_str(), Suffix);
1550}
1551
1552void AsmPrinter::printVisibility(const std::string& Name,
1553                                 unsigned Visibility) const {
1554  if (Visibility == GlobalValue::HiddenVisibility) {
1555    if (const char *Directive = TAI->getHiddenDirective())
1556      O << Directive << Name << '\n';
1557  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1558    if (const char *Directive = TAI->getProtectedDirective())
1559      O << Directive << Name << '\n';
1560  }
1561}
1562
1563void AsmPrinter::printOffset(int64_t Offset) const {
1564  if (Offset > 0)
1565    O << '+' << Offset;
1566  else if (Offset < 0)
1567    O << Offset;
1568}
1569
1570GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1571  if (!S->usesMetadata())
1572    return 0;
1573
1574  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1575  if (GCPI != GCMetadataPrinters.end())
1576    return GCPI->second;
1577
1578  const char *Name = S->getName().c_str();
1579
1580  for (GCMetadataPrinterRegistry::iterator
1581         I = GCMetadataPrinterRegistry::begin(),
1582         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1583    if (strcmp(Name, I->getName()) == 0) {
1584      GCMetadataPrinter *GMP = I->instantiate();
1585      GMP->S = S;
1586      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1587      return GMP;
1588    }
1589
1590  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1591  abort();
1592}
1593