AsmPrinter.cpp revision d7ca416d6c9ae1966e0df8193112e3c5f430a053
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/Support/Mangler.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Target/TargetAsmInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34#include <cerrno>
35using namespace llvm;
36
37char AsmPrinter::ID = 0;
38AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
39                       const TargetAsmInfo *T)
40  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
41    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
42    IsInTextSection(false)
43{}
44
45AsmPrinter::~AsmPrinter() {
46  for (gcp_iterator I = GCMetadataPrinters.begin(),
47                    E = GCMetadataPrinters.end(); I != E; ++I)
48    delete I->second;
49}
50
51/// SwitchToTextSection - Switch to the specified text section of the executable
52/// if we are not already in it!
53///
54void AsmPrinter::SwitchToTextSection(const char *NewSection,
55                                     const GlobalValue *GV) {
56  std::string NS;
57  if (GV && GV->hasSection())
58    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
59  else
60    NS = NewSection;
61
62  // If we're already in this section, we're done.
63  if (CurrentSection == NS) return;
64
65  // Close the current section, if applicable.
66  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
67    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
68
69  CurrentSection = NS;
70
71  if (!CurrentSection.empty())
72    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
73
74  IsInTextSection = true;
75}
76
77/// SwitchToDataSection - Switch to the specified data section of the executable
78/// if we are not already in it!
79///
80void AsmPrinter::SwitchToDataSection(const char *NewSection,
81                                     const GlobalValue *GV) {
82  std::string NS;
83  if (GV && GV->hasSection())
84    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
85  else
86    NS = NewSection;
87
88  // If we're already in this section, we're done.
89  if (CurrentSection == NS) return;
90
91  // Close the current section, if applicable.
92  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
93    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
94
95  CurrentSection = NS;
96
97  if (!CurrentSection.empty())
98    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
99
100  IsInTextSection = false;
101}
102
103/// SwitchToSection - Switch to the specified section of the executable if we
104/// are not already in it!
105void AsmPrinter::SwitchToSection(const Section* NS) {
106  const std::string& NewSection = NS->getName();
107
108  // If we're already in this section, we're done.
109  if (CurrentSection == NewSection) return;
110
111  // Close the current section, if applicable.
112  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
113    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
114
115  // FIXME: Make CurrentSection a Section* in the future
116  CurrentSection = NewSection;
117  CurrentSection_ = NS;
118
119  if (!CurrentSection.empty()) {
120    // If section is named we need to switch into it via special '.section'
121    // directive and also append funky flags. Otherwise - section name is just
122    // some magic assembler directive.
123    if (NS->isNamed())
124      O << TAI->getSwitchToSectionDirective()
125        << CurrentSection
126        << TAI->getSectionFlags(NS->getFlags());
127    else
128      O << CurrentSection;
129    O << TAI->getDataSectionStartSuffix() << '\n';
130  }
131
132  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
133}
134
135void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
136  MachineFunctionPass::getAnalysisUsage(AU);
137  AU.addRequired<GCModuleInfo>();
138}
139
140bool AsmPrinter::doInitialization(Module &M) {
141  Mang = new Mangler(M, TAI->getGlobalPrefix());
142
143  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
144  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
145  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
146    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
147      MP->beginAssembly(O, *this, *TAI);
148
149  if (!M.getModuleInlineAsm().empty())
150    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
151      << M.getModuleInlineAsm()
152      << '\n' << TAI->getCommentString()
153      << " End of file scope inline assembly\n";
154
155  SwitchToDataSection("");   // Reset back to no section.
156
157  MMI = getAnalysisToUpdate<MachineModuleInfo>();
158  if (MMI) MMI->AnalyzeModule(M);
159
160  return false;
161}
162
163bool AsmPrinter::doFinalization(Module &M) {
164  if (TAI->getWeakRefDirective()) {
165    if (!ExtWeakSymbols.empty())
166      SwitchToDataSection("");
167
168    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
169         e = ExtWeakSymbols.end(); i != e; ++i) {
170      const GlobalValue *GV = *i;
171      std::string Name = Mang->getValueName(GV);
172      O << TAI->getWeakRefDirective() << Name << '\n';
173    }
174  }
175
176  if (TAI->getSetDirective()) {
177    if (!M.alias_empty())
178      SwitchToSection(TAI->getTextSection());
179
180    O << '\n';
181    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
182         I!=E; ++I) {
183      std::string Name = Mang->getValueName(I);
184      std::string Target;
185
186      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
187      Target = Mang->getValueName(GV);
188
189      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
190        O << "\t.globl\t" << Name << '\n';
191      else if (I->hasWeakLinkage())
192        O << TAI->getWeakRefDirective() << Name << '\n';
193      else if (!I->hasInternalLinkage())
194        assert(0 && "Invalid alias linkage");
195
196      if (I->hasHiddenVisibility()) {
197        if (const char *Directive = TAI->getHiddenDirective())
198          O << Directive << Name << '\n';
199      } else if (I->hasProtectedVisibility()) {
200        if (const char *Directive = TAI->getProtectedDirective())
201          O << Directive << Name << '\n';
202      }
203
204      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
205
206      // If the aliasee has external weak linkage it can be referenced only by
207      // alias itself. In this case it can be not in ExtWeakSymbols list. Emit
208      // weak reference in such case.
209      if (GV->hasExternalWeakLinkage()) {
210        if (TAI->getWeakRefDirective())
211          O << TAI->getWeakRefDirective() << Target << '\n';
212        else
213          O << "\t.globl\t" << Target << '\n';
214      }
215    }
216  }
217
218  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
219  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
220  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
221    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
222      MP->finishAssembly(O, *this, *TAI);
223
224  // If we don't have any trampolines, then we don't require stack memory
225  // to be executable. Some targets have a directive to declare this.
226  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
227  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
228    if (TAI->getNonexecutableStackDirective())
229      O << TAI->getNonexecutableStackDirective() << '\n';
230
231  delete Mang; Mang = 0;
232  return false;
233}
234
235std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
236  assert(MF && "No machine function?");
237  std::string Name = MF->getFunction()->getName();
238  if (Name.empty())
239    Name = Mang->getValueName(MF->getFunction());
240  return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix());
241}
242
243void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
244  // What's my mangled name?
245  CurrentFnName = Mang->getValueName(MF.getFunction());
246  IncrementFunctionNumber();
247}
248
249/// EmitConstantPool - Print to the current output stream assembly
250/// representations of the constants in the constant pool MCP. This is
251/// used to print out constants which have been "spilled to memory" by
252/// the code generator.
253///
254void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
255  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
256  if (CP.empty()) return;
257
258  // Some targets require 4-, 8-, and 16- byte constant literals to be placed
259  // in special sections.
260  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > FourByteCPs;
261  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > EightByteCPs;
262  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > SixteenByteCPs;
263  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > OtherCPs;
264  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > TargetCPs;
265  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
266    MachineConstantPoolEntry CPE = CP[i];
267    const Type *Ty = CPE.getType();
268    if (TAI->getFourByteConstantSection() &&
269        TM.getTargetData()->getABITypeSize(Ty) == 4)
270      FourByteCPs.push_back(std::make_pair(CPE, i));
271    else if (TAI->getEightByteConstantSection() &&
272             TM.getTargetData()->getABITypeSize(Ty) == 8)
273      EightByteCPs.push_back(std::make_pair(CPE, i));
274    else if (TAI->getSixteenByteConstantSection() &&
275             TM.getTargetData()->getABITypeSize(Ty) == 16)
276      SixteenByteCPs.push_back(std::make_pair(CPE, i));
277    else
278      OtherCPs.push_back(std::make_pair(CPE, i));
279  }
280
281  unsigned Alignment = MCP->getConstantPoolAlignment();
282  EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs);
283  EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs);
284  EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(),
285                   SixteenByteCPs);
286  EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs);
287}
288
289void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section,
290               std::vector<std::pair<MachineConstantPoolEntry,unsigned> > &CP) {
291  if (CP.empty()) return;
292
293  SwitchToDataSection(Section);
294  EmitAlignment(Alignment);
295  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
296    O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
297      << CP[i].second << ":\t\t\t\t\t";
298    // O << TAI->getCommentString() << ' ' <<
299    //      WriteTypeSymbolic(O, CP[i].first.getType(), 0);
300    O << '\n';
301    if (CP[i].first.isMachineConstantPoolEntry())
302      EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal);
303     else
304      EmitGlobalConstant(CP[i].first.Val.ConstVal);
305    if (i != e-1) {
306      const Type *Ty = CP[i].first.getType();
307      unsigned EntSize =
308        TM.getTargetData()->getABITypeSize(Ty);
309      unsigned ValEnd = CP[i].first.getOffset() + EntSize;
310      // Emit inter-object padding for alignment.
311      EmitZeros(CP[i+1].first.getOffset()-ValEnd);
312    }
313  }
314}
315
316/// EmitJumpTableInfo - Print assembly representations of the jump tables used
317/// by the current function to the current output stream.
318///
319void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
320                                   MachineFunction &MF) {
321  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
322  if (JT.empty()) return;
323
324  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
325
326  // Pick the directive to use to print the jump table entries, and switch to
327  // the appropriate section.
328  TargetLowering *LoweringInfo = TM.getTargetLowering();
329
330  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
331  const Function *F = MF.getFunction();
332  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
333  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
334     !JumpTableDataSection ||
335      SectionFlags & SectionFlags::Linkonce) {
336    // In PIC mode, we need to emit the jump table to the same section as the
337    // function body itself, otherwise the label differences won't make sense.
338    // We should also do if the section name is NULL or function is declared in
339    // discardable section.
340    SwitchToSection(TAI->SectionForGlobal(F));
341  } else {
342    SwitchToDataSection(JumpTableDataSection);
343  }
344
345  EmitAlignment(Log2_32(MJTI->getAlignment()));
346
347  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
348    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
349
350    // If this jump table was deleted, ignore it.
351    if (JTBBs.empty()) continue;
352
353    // For PIC codegen, if possible we want to use the SetDirective to reduce
354    // the number of relocations the assembler will generate for the jump table.
355    // Set directives are all printed before the jump table itself.
356    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
357    if (TAI->getSetDirective() && IsPic)
358      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
359        if (EmittedSets.insert(JTBBs[ii]))
360          printPICJumpTableSetLabel(i, JTBBs[ii]);
361
362    // On some targets (e.g. darwin) we want to emit two consequtive labels
363    // before each jump table.  The first label is never referenced, but tells
364    // the assembler and linker the extents of the jump table object.  The
365    // second label is actually referenced by the code.
366    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
367      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
368
369    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
370      << '_' << i << ":\n";
371
372    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
373      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
374      O << '\n';
375    }
376  }
377}
378
379void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
380                                        const MachineBasicBlock *MBB,
381                                        unsigned uid)  const {
382  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
383
384  // Use JumpTableDirective otherwise honor the entry size from the jump table
385  // info.
386  const char *JTEntryDirective = TAI->getJumpTableDirective();
387  bool HadJTEntryDirective = JTEntryDirective != NULL;
388  if (!HadJTEntryDirective) {
389    JTEntryDirective = MJTI->getEntrySize() == 4 ?
390      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
391  }
392
393  O << JTEntryDirective << ' ';
394
395  // If we have emitted set directives for the jump table entries, print
396  // them rather than the entries themselves.  If we're emitting PIC, then
397  // emit the table entries as differences between two text section labels.
398  // If we're emitting non-PIC code, then emit the entries as direct
399  // references to the target basic blocks.
400  if (IsPic) {
401    if (TAI->getSetDirective()) {
402      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
403        << '_' << uid << "_set_" << MBB->getNumber();
404    } else {
405      printBasicBlockLabel(MBB, false, false, false);
406      // If the arch uses custom Jump Table directives, don't calc relative to
407      // JT
408      if (!HadJTEntryDirective)
409        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
410          << getFunctionNumber() << '_' << uid;
411    }
412  } else {
413    printBasicBlockLabel(MBB, false, false, false);
414  }
415}
416
417
418/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
419/// special global used by LLVM.  If so, emit it and return true, otherwise
420/// do nothing and return false.
421bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
422  if (GV->getName() == "llvm.used") {
423    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
424      EmitLLVMUsedList(GV->getInitializer());
425    return true;
426  }
427
428  // Ignore debug and non-emitted data.
429  if (GV->getSection() == "llvm.metadata") return true;
430
431  if (!GV->hasAppendingLinkage()) return false;
432
433  assert(GV->hasInitializer() && "Not a special LLVM global!");
434
435  const TargetData *TD = TM.getTargetData();
436  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
437  if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
438    SwitchToDataSection(TAI->getStaticCtorsSection());
439    EmitAlignment(Align, 0);
440    EmitXXStructorList(GV->getInitializer());
441    return true;
442  }
443
444  if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
445    SwitchToDataSection(TAI->getStaticDtorsSection());
446    EmitAlignment(Align, 0);
447    EmitXXStructorList(GV->getInitializer());
448    return true;
449  }
450
451  return false;
452}
453
454/// findGlobalValue - if CV is an expression equivalent to a single
455/// global value, return that value.
456const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
457  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
458    return GV;
459  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
460    const TargetData *TD = TM.getTargetData();
461    unsigned Opcode = CE->getOpcode();
462    switch (Opcode) {
463    case Instruction::GetElementPtr: {
464      const Constant *ptrVal = CE->getOperand(0);
465      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
466      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
467        return 0;
468      return findGlobalValue(ptrVal);
469    }
470    case Instruction::BitCast:
471      return findGlobalValue(CE->getOperand(0));
472    default:
473      return 0;
474    }
475  }
476  return 0;
477}
478
479/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
480/// global in the specified llvm.used list for which emitUsedDirectiveFor
481/// is true, as being used with this directive.
482
483void AsmPrinter::EmitLLVMUsedList(Constant *List) {
484  const char *Directive = TAI->getUsedDirective();
485
486  // Should be an array of 'sbyte*'.
487  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
488  if (InitList == 0) return;
489
490  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
491    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
492    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
493      O << Directive;
494      EmitConstantValueOnly(InitList->getOperand(i));
495      O << '\n';
496    }
497  }
498}
499
500/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
501/// function pointers, ignoring the init priority.
502void AsmPrinter::EmitXXStructorList(Constant *List) {
503  // Should be an array of '{ int, void ()* }' structs.  The first value is the
504  // init priority, which we ignore.
505  if (!isa<ConstantArray>(List)) return;
506  ConstantArray *InitList = cast<ConstantArray>(List);
507  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
508    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
509      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
510
511      if (CS->getOperand(1)->isNullValue())
512        return;  // Found a null terminator, exit printing.
513      // Emit the function pointer.
514      EmitGlobalConstant(CS->getOperand(1));
515    }
516}
517
518/// getGlobalLinkName - Returns the asm/link name of of the specified
519/// global variable.  Should be overridden by each target asm printer to
520/// generate the appropriate value.
521const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
522  std::string LinkName;
523
524  if (isa<Function>(GV)) {
525    LinkName += TAI->getFunctionAddrPrefix();
526    LinkName += Mang->getValueName(GV);
527    LinkName += TAI->getFunctionAddrSuffix();
528  } else {
529    LinkName += TAI->getGlobalVarAddrPrefix();
530    LinkName += Mang->getValueName(GV);
531    LinkName += TAI->getGlobalVarAddrSuffix();
532  }
533
534  return LinkName;
535}
536
537/// EmitExternalGlobal - Emit the external reference to a global variable.
538/// Should be overridden if an indirect reference should be used.
539void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
540  O << getGlobalLinkName(GV);
541}
542
543
544
545//===----------------------------------------------------------------------===//
546/// LEB 128 number encoding.
547
548/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
549/// representing an unsigned leb128 value.
550void AsmPrinter::PrintULEB128(unsigned Value) const {
551  do {
552    unsigned Byte = Value & 0x7f;
553    Value >>= 7;
554    if (Value) Byte |= 0x80;
555    O << "0x" <<  utohexstr(Byte);
556    if (Value) O << ", ";
557  } while (Value);
558}
559
560/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
561/// representing a signed leb128 value.
562void AsmPrinter::PrintSLEB128(int Value) const {
563  int Sign = Value >> (8 * sizeof(Value) - 1);
564  bool IsMore;
565
566  do {
567    unsigned Byte = Value & 0x7f;
568    Value >>= 7;
569    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
570    if (IsMore) Byte |= 0x80;
571    O << "0x" << utohexstr(Byte);
572    if (IsMore) O << ", ";
573  } while (IsMore);
574}
575
576//===--------------------------------------------------------------------===//
577// Emission and print routines
578//
579
580/// PrintHex - Print a value as a hexidecimal value.
581///
582void AsmPrinter::PrintHex(int Value) const {
583  O << "0x" << utohexstr(static_cast<unsigned>(Value));
584}
585
586/// EOL - Print a newline character to asm stream.  If a comment is present
587/// then it will be printed first.  Comments should not contain '\n'.
588void AsmPrinter::EOL() const {
589  O << '\n';
590}
591
592void AsmPrinter::EOL(const std::string &Comment) const {
593  if (VerboseAsm && !Comment.empty()) {
594    O << '\t'
595      << TAI->getCommentString()
596      << ' '
597      << Comment;
598  }
599  O << '\n';
600}
601
602void AsmPrinter::EOL(const char* Comment) const {
603  if (VerboseAsm && *Comment) {
604    O << '\t'
605      << TAI->getCommentString()
606      << ' '
607      << Comment;
608  }
609  O << '\n';
610}
611
612/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
613/// unsigned leb128 value.
614void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
615  if (TAI->hasLEB128()) {
616    O << "\t.uleb128\t"
617      << Value;
618  } else {
619    O << TAI->getData8bitsDirective();
620    PrintULEB128(Value);
621  }
622}
623
624/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
625/// signed leb128 value.
626void AsmPrinter::EmitSLEB128Bytes(int Value) const {
627  if (TAI->hasLEB128()) {
628    O << "\t.sleb128\t"
629      << Value;
630  } else {
631    O << TAI->getData8bitsDirective();
632    PrintSLEB128(Value);
633  }
634}
635
636/// EmitInt8 - Emit a byte directive and value.
637///
638void AsmPrinter::EmitInt8(int Value) const {
639  O << TAI->getData8bitsDirective();
640  PrintHex(Value & 0xFF);
641}
642
643/// EmitInt16 - Emit a short directive and value.
644///
645void AsmPrinter::EmitInt16(int Value) const {
646  O << TAI->getData16bitsDirective();
647  PrintHex(Value & 0xFFFF);
648}
649
650/// EmitInt32 - Emit a long directive and value.
651///
652void AsmPrinter::EmitInt32(int Value) const {
653  O << TAI->getData32bitsDirective();
654  PrintHex(Value);
655}
656
657/// EmitInt64 - Emit a long long directive and value.
658///
659void AsmPrinter::EmitInt64(uint64_t Value) const {
660  if (TAI->getData64bitsDirective()) {
661    O << TAI->getData64bitsDirective();
662    PrintHex(Value);
663  } else {
664    if (TM.getTargetData()->isBigEndian()) {
665      EmitInt32(unsigned(Value >> 32)); O << '\n';
666      EmitInt32(unsigned(Value));
667    } else {
668      EmitInt32(unsigned(Value)); O << '\n';
669      EmitInt32(unsigned(Value >> 32));
670    }
671  }
672}
673
674/// toOctal - Convert the low order bits of X into an octal digit.
675///
676static inline char toOctal(int X) {
677  return (X&7)+'0';
678}
679
680/// printStringChar - Print a char, escaped if necessary.
681///
682static void printStringChar(raw_ostream &O, char C) {
683  if (C == '"') {
684    O << "\\\"";
685  } else if (C == '\\') {
686    O << "\\\\";
687  } else if (isprint(C)) {
688    O << C;
689  } else {
690    switch(C) {
691    case '\b': O << "\\b"; break;
692    case '\f': O << "\\f"; break;
693    case '\n': O << "\\n"; break;
694    case '\r': O << "\\r"; break;
695    case '\t': O << "\\t"; break;
696    default:
697      O << '\\';
698      O << toOctal(C >> 6);
699      O << toOctal(C >> 3);
700      O << toOctal(C >> 0);
701      break;
702    }
703  }
704}
705
706/// EmitString - Emit a string with quotes and a null terminator.
707/// Special characters are emitted properly.
708/// \literal (Eg. '\t') \endliteral
709void AsmPrinter::EmitString(const std::string &String) const {
710  const char* AscizDirective = TAI->getAscizDirective();
711  if (AscizDirective)
712    O << AscizDirective;
713  else
714    O << TAI->getAsciiDirective();
715  O << '\"';
716  for (unsigned i = 0, N = String.size(); i < N; ++i) {
717    unsigned char C = String[i];
718    printStringChar(O, C);
719  }
720  if (AscizDirective)
721    O << '\"';
722  else
723    O << "\\0\"";
724}
725
726
727/// EmitFile - Emit a .file directive.
728void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
729  O << "\t.file\t" << Number << " \"";
730  for (unsigned i = 0, N = Name.size(); i < N; ++i) {
731    unsigned char C = Name[i];
732    printStringChar(O, C);
733  }
734  O << '\"';
735}
736
737
738//===----------------------------------------------------------------------===//
739
740// EmitAlignment - Emit an alignment directive to the specified power of
741// two boundary.  For example, if you pass in 3 here, you will get an 8
742// byte alignment.  If a global value is specified, and if that global has
743// an explicit alignment requested, it will unconditionally override the
744// alignment request.  However, if ForcedAlignBits is specified, this value
745// has final say: the ultimate alignment will be the max of ForcedAlignBits
746// and the alignment computed with NumBits and the global.
747//
748// The algorithm is:
749//     Align = NumBits;
750//     if (GV && GV->hasalignment) Align = GV->getalignment();
751//     Align = std::max(Align, ForcedAlignBits);
752//
753void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
754                               unsigned ForcedAlignBits,
755                               bool UseFillExpr) const {
756  if (GV && GV->getAlignment())
757    NumBits = Log2_32(GV->getAlignment());
758  NumBits = std::max(NumBits, ForcedAlignBits);
759
760  if (NumBits == 0) return;   // No need to emit alignment.
761  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
762  O << TAI->getAlignDirective() << NumBits;
763
764  unsigned FillValue = TAI->getTextAlignFillValue();
765  UseFillExpr &= IsInTextSection && FillValue;
766  if (UseFillExpr) O << ",0x" << utohexstr(FillValue);
767  O << '\n';
768}
769
770
771/// EmitZeros - Emit a block of zeros.
772///
773void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
774  if (NumZeros) {
775    if (TAI->getZeroDirective()) {
776      O << TAI->getZeroDirective() << NumZeros;
777      if (TAI->getZeroDirectiveSuffix())
778        O << TAI->getZeroDirectiveSuffix();
779      O << '\n';
780    } else {
781      for (; NumZeros; --NumZeros)
782        O << TAI->getData8bitsDirective() << "0\n";
783    }
784  }
785}
786
787// Print out the specified constant, without a storage class.  Only the
788// constants valid in constant expressions can occur here.
789void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
790  if (CV->isNullValue() || isa<UndefValue>(CV))
791    O << '0';
792  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
793    O << CI->getZExtValue();
794  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
795    // This is a constant address for a global variable or function. Use the
796    // name of the variable or function as the address value, possibly
797    // decorating it with GlobalVarAddrPrefix/Suffix or
798    // FunctionAddrPrefix/Suffix (these all default to "" )
799    if (isa<Function>(GV)) {
800      O << TAI->getFunctionAddrPrefix()
801        << Mang->getValueName(GV)
802        << TAI->getFunctionAddrSuffix();
803    } else {
804      O << TAI->getGlobalVarAddrPrefix()
805        << Mang->getValueName(GV)
806        << TAI->getGlobalVarAddrSuffix();
807    }
808  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
809    const TargetData *TD = TM.getTargetData();
810    unsigned Opcode = CE->getOpcode();
811    switch (Opcode) {
812    case Instruction::GetElementPtr: {
813      // generate a symbolic expression for the byte address
814      const Constant *ptrVal = CE->getOperand(0);
815      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
816      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
817                                                idxVec.size())) {
818        if (Offset)
819          O << '(';
820        EmitConstantValueOnly(ptrVal);
821        if (Offset > 0)
822          O << ") + " << Offset;
823        else if (Offset < 0)
824          O << ") - " << -Offset;
825      } else {
826        EmitConstantValueOnly(ptrVal);
827      }
828      break;
829    }
830    case Instruction::Trunc:
831    case Instruction::ZExt:
832    case Instruction::SExt:
833    case Instruction::FPTrunc:
834    case Instruction::FPExt:
835    case Instruction::UIToFP:
836    case Instruction::SIToFP:
837    case Instruction::FPToUI:
838    case Instruction::FPToSI:
839      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
840      break;
841    case Instruction::BitCast:
842      return EmitConstantValueOnly(CE->getOperand(0));
843
844    case Instruction::IntToPtr: {
845      // Handle casts to pointers by changing them into casts to the appropriate
846      // integer type.  This promotes constant folding and simplifies this code.
847      Constant *Op = CE->getOperand(0);
848      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
849      return EmitConstantValueOnly(Op);
850    }
851
852
853    case Instruction::PtrToInt: {
854      // Support only foldable casts to/from pointers that can be eliminated by
855      // changing the pointer to the appropriately sized integer type.
856      Constant *Op = CE->getOperand(0);
857      const Type *Ty = CE->getType();
858
859      // We can emit the pointer value into this slot if the slot is an
860      // integer slot greater or equal to the size of the pointer.
861      if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType()))
862        return EmitConstantValueOnly(Op);
863
864      O << "((";
865      EmitConstantValueOnly(Op);
866      APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty));
867
868      SmallString<40> S;
869      ptrMask.toStringUnsigned(S);
870      O << ") & " << S.c_str() << ')';
871      break;
872    }
873    case Instruction::Add:
874    case Instruction::Sub:
875    case Instruction::And:
876    case Instruction::Or:
877    case Instruction::Xor:
878      O << '(';
879      EmitConstantValueOnly(CE->getOperand(0));
880      O << ')';
881      switch (Opcode) {
882      case Instruction::Add:
883       O << " + ";
884       break;
885      case Instruction::Sub:
886       O << " - ";
887       break;
888      case Instruction::And:
889       O << " & ";
890       break;
891      case Instruction::Or:
892       O << " | ";
893       break;
894      case Instruction::Xor:
895       O << " ^ ";
896       break;
897      default:
898       break;
899      }
900      O << '(';
901      EmitConstantValueOnly(CE->getOperand(1));
902      O << ')';
903      break;
904    default:
905      assert(0 && "Unsupported operator!");
906    }
907  } else {
908    assert(0 && "Unknown constant value!");
909  }
910}
911
912/// printAsCString - Print the specified array as a C compatible string, only if
913/// the predicate isString is true.
914///
915static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
916                           unsigned LastElt) {
917  assert(CVA->isString() && "Array is not string compatible!");
918
919  O << '\"';
920  for (unsigned i = 0; i != LastElt; ++i) {
921    unsigned char C =
922        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
923    printStringChar(O, C);
924  }
925  O << '\"';
926}
927
928/// EmitString - Emit a zero-byte-terminated string constant.
929///
930void AsmPrinter::EmitString(const ConstantArray *CVA) const {
931  unsigned NumElts = CVA->getNumOperands();
932  if (TAI->getAscizDirective() && NumElts &&
933      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
934    O << TAI->getAscizDirective();
935    printAsCString(O, CVA, NumElts-1);
936  } else {
937    O << TAI->getAsciiDirective();
938    printAsCString(O, CVA, NumElts);
939  }
940  O << '\n';
941}
942
943/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
944void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
945  const TargetData *TD = TM.getTargetData();
946  unsigned Size = TD->getABITypeSize(CV->getType());
947
948  if (CV->isNullValue() || isa<UndefValue>(CV)) {
949    EmitZeros(Size);
950    return;
951  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
952    if (CVA->isString()) {
953      EmitString(CVA);
954    } else { // Not a string.  Print the values in successive locations
955      for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
956        EmitGlobalConstant(CVA->getOperand(i));
957    }
958    return;
959  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
960    // Print the fields in successive locations. Pad to align if needed!
961    const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
962    uint64_t sizeSoFar = 0;
963    for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
964      const Constant* field = CVS->getOperand(i);
965
966      // Check if padding is needed and insert one or more 0s.
967      uint64_t fieldSize = TD->getABITypeSize(field->getType());
968      uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
969                          - cvsLayout->getElementOffset(i)) - fieldSize;
970      sizeSoFar += fieldSize + padSize;
971
972      // Now print the actual field value.
973      EmitGlobalConstant(field);
974
975      // Insert padding - this may include padding to increase the size of the
976      // current field up to the ABI size (if the struct is not packed) as well
977      // as padding to ensure that the next field starts at the right offset.
978      EmitZeros(padSize);
979    }
980    assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
981           "Layout of constant struct may be incorrect!");
982    return;
983  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
984    // FP Constants are printed as integer constants to avoid losing
985    // precision...
986    if (CFP->getType() == Type::DoubleTy) {
987      double Val = CFP->getValueAPF().convertToDouble();  // for comment only
988      uint64_t i = CFP->getValueAPF().convertToAPInt().getZExtValue();
989      if (TAI->getData64bitsDirective())
990        O << TAI->getData64bitsDirective() << i << '\t'
991          << TAI->getCommentString() << " double value: " << Val << '\n';
992      else if (TD->isBigEndian()) {
993        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
994          << '\t' << TAI->getCommentString()
995          << " double most significant word " << Val << '\n';
996        O << TAI->getData32bitsDirective() << unsigned(i)
997          << '\t' << TAI->getCommentString()
998          << " double least significant word " << Val << '\n';
999      } else {
1000        O << TAI->getData32bitsDirective() << unsigned(i)
1001          << '\t' << TAI->getCommentString()
1002          << " double least significant word " << Val << '\n';
1003        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
1004          << '\t' << TAI->getCommentString()
1005          << " double most significant word " << Val << '\n';
1006      }
1007      return;
1008    } else if (CFP->getType() == Type::FloatTy) {
1009      float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1010      O << TAI->getData32bitsDirective()
1011        << CFP->getValueAPF().convertToAPInt().getZExtValue()
1012        << '\t' << TAI->getCommentString() << " float " << Val << '\n';
1013      return;
1014    } else if (CFP->getType() == Type::X86_FP80Ty) {
1015      // all long double variants are printed as hex
1016      // api needed to prevent premature destruction
1017      APInt api = CFP->getValueAPF().convertToAPInt();
1018      const uint64_t *p = api.getRawData();
1019      APFloat DoubleVal = CFP->getValueAPF();
1020      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
1021      if (TD->isBigEndian()) {
1022        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1023          << '\t' << TAI->getCommentString()
1024          << " long double most significant halfword of ~"
1025          << DoubleVal.convertToDouble() << '\n';
1026        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1027          << '\t' << TAI->getCommentString()
1028          << " long double next halfword\n";
1029        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1030          << '\t' << TAI->getCommentString()
1031          << " long double next halfword\n";
1032        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1033          << '\t' << TAI->getCommentString()
1034          << " long double next halfword\n";
1035        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1036          << '\t' << TAI->getCommentString()
1037          << " long double least significant halfword\n";
1038       } else {
1039        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1040          << '\t' << TAI->getCommentString()
1041          << " long double least significant halfword of ~"
1042          << DoubleVal.convertToDouble() << '\n';
1043        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1044          << '\t' << TAI->getCommentString()
1045          << " long double next halfword\n";
1046        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1047          << '\t' << TAI->getCommentString()
1048          << " long double next halfword\n";
1049        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1050          << '\t' << TAI->getCommentString()
1051          << " long double next halfword\n";
1052        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1053          << '\t' << TAI->getCommentString()
1054          << " long double most significant halfword\n";
1055      }
1056      EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty));
1057      return;
1058    } else if (CFP->getType() == Type::PPC_FP128Ty) {
1059      // all long double variants are printed as hex
1060      // api needed to prevent premature destruction
1061      APInt api = CFP->getValueAPF().convertToAPInt();
1062      const uint64_t *p = api.getRawData();
1063      if (TD->isBigEndian()) {
1064        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1065          << '\t' << TAI->getCommentString()
1066          << " long double most significant word\n";
1067        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1068          << '\t' << TAI->getCommentString()
1069          << " long double next word\n";
1070        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1071          << '\t' << TAI->getCommentString()
1072          << " long double next word\n";
1073        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1074          << '\t' << TAI->getCommentString()
1075          << " long double least significant word\n";
1076       } else {
1077        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1078          << '\t' << TAI->getCommentString()
1079          << " long double least significant word\n";
1080        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1081          << '\t' << TAI->getCommentString()
1082          << " long double next word\n";
1083        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1084          << '\t' << TAI->getCommentString()
1085          << " long double next word\n";
1086        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1087          << '\t' << TAI->getCommentString()
1088          << " long double most significant word\n";
1089      }
1090      return;
1091    } else assert(0 && "Floating point constant type not handled");
1092  } else if (CV->getType()->isInteger() &&
1093             cast<IntegerType>(CV->getType())->getBitWidth() >= 64) {
1094    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1095      unsigned BitWidth = CI->getBitWidth();
1096      assert(isPowerOf2_32(BitWidth) &&
1097             "Non-power-of-2-sized integers not handled!");
1098
1099      // We don't expect assemblers to support integer data directives
1100      // for more than 64 bits, so we emit the data in at most 64-bit
1101      // quantities at a time.
1102      const uint64_t *RawData = CI->getValue().getRawData();
1103      for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1104        uint64_t Val;
1105        if (TD->isBigEndian())
1106          Val = RawData[e - i - 1];
1107        else
1108          Val = RawData[i];
1109
1110        if (TAI->getData64bitsDirective())
1111          O << TAI->getData64bitsDirective() << Val << '\n';
1112        else if (TD->isBigEndian()) {
1113          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1114            << '\t' << TAI->getCommentString()
1115            << " Double-word most significant word " << Val << '\n';
1116          O << TAI->getData32bitsDirective() << unsigned(Val)
1117            << '\t' << TAI->getCommentString()
1118            << " Double-word least significant word " << Val << '\n';
1119        } else {
1120          O << TAI->getData32bitsDirective() << unsigned(Val)
1121            << '\t' << TAI->getCommentString()
1122            << " Double-word least significant word " << Val << '\n';
1123          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1124            << '\t' << TAI->getCommentString()
1125            << " Double-word most significant word " << Val << '\n';
1126        }
1127      }
1128      return;
1129    }
1130  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1131    const VectorType *PTy = CP->getType();
1132
1133    for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1134      EmitGlobalConstant(CP->getOperand(I));
1135
1136    return;
1137  }
1138
1139  const Type *type = CV->getType();
1140  printDataDirective(type);
1141  EmitConstantValueOnly(CV);
1142  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1143    SmallString<40> S;
1144    CI->getValue().toStringUnsigned(S, 16);
1145    O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1146  }
1147  O << '\n';
1148}
1149
1150void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1151  // Target doesn't support this yet!
1152  abort();
1153}
1154
1155/// PrintSpecial - Print information related to the specified machine instr
1156/// that is independent of the operand, and may be independent of the instr
1157/// itself.  This can be useful for portably encoding the comment character
1158/// or other bits of target-specific knowledge into the asmstrings.  The
1159/// syntax used is ${:comment}.  Targets can override this to add support
1160/// for their own strange codes.
1161void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
1162  if (!strcmp(Code, "private")) {
1163    O << TAI->getPrivateGlobalPrefix();
1164  } else if (!strcmp(Code, "comment")) {
1165    O << TAI->getCommentString();
1166  } else if (!strcmp(Code, "uid")) {
1167    // Assign a unique ID to this machine instruction.
1168    static const MachineInstr *LastMI = 0;
1169    static const Function *F = 0;
1170    static unsigned Counter = 0U-1;
1171
1172    // Comparing the address of MI isn't sufficient, because machineinstrs may
1173    // be allocated to the same address across functions.
1174    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1175
1176    // If this is a new machine instruction, bump the counter.
1177    if (LastMI != MI || F != ThisF) {
1178      ++Counter;
1179      LastMI = MI;
1180      F = ThisF;
1181    }
1182    O << Counter;
1183  } else {
1184    cerr << "Unknown special formatter '" << Code
1185         << "' for machine instr: " << *MI;
1186    exit(1);
1187  }
1188}
1189
1190
1191/// printInlineAsm - This method formats and prints the specified machine
1192/// instruction that is an inline asm.
1193void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1194  unsigned NumOperands = MI->getNumOperands();
1195
1196  // Count the number of register definitions.
1197  unsigned NumDefs = 0;
1198  for (; MI->getOperand(NumDefs).isRegister() && MI->getOperand(NumDefs).isDef();
1199       ++NumDefs)
1200    assert(NumDefs != NumOperands-1 && "No asm string?");
1201
1202  assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?");
1203
1204  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1205  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1206
1207  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1208  // These are useful to see where empty asm's wound up.
1209  if (AsmStr[0] == 0) {
1210    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1211    return;
1212  }
1213
1214  O << TAI->getInlineAsmStart() << "\n\t";
1215
1216  // The variant of the current asmprinter.
1217  int AsmPrinterVariant = TAI->getAssemblerDialect();
1218
1219  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1220  const char *LastEmitted = AsmStr; // One past the last character emitted.
1221
1222  while (*LastEmitted) {
1223    switch (*LastEmitted) {
1224    default: {
1225      // Not a special case, emit the string section literally.
1226      const char *LiteralEnd = LastEmitted+1;
1227      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1228             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1229        ++LiteralEnd;
1230      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1231        O.write(LastEmitted, LiteralEnd-LastEmitted);
1232      LastEmitted = LiteralEnd;
1233      break;
1234    }
1235    case '\n':
1236      ++LastEmitted;   // Consume newline character.
1237      O << '\n';       // Indent code with newline.
1238      break;
1239    case '$': {
1240      ++LastEmitted;   // Consume '$' character.
1241      bool Done = true;
1242
1243      // Handle escapes.
1244      switch (*LastEmitted) {
1245      default: Done = false; break;
1246      case '$':     // $$ -> $
1247        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1248          O << '$';
1249        ++LastEmitted;  // Consume second '$' character.
1250        break;
1251      case '(':             // $( -> same as GCC's { character.
1252        ++LastEmitted;      // Consume '(' character.
1253        if (CurVariant != -1) {
1254          cerr << "Nested variants found in inline asm string: '"
1255               << AsmStr << "'\n";
1256          exit(1);
1257        }
1258        CurVariant = 0;     // We're in the first variant now.
1259        break;
1260      case '|':
1261        ++LastEmitted;  // consume '|' character.
1262        if (CurVariant == -1) {
1263          cerr << "Found '|' character outside of variant in inline asm "
1264               << "string: '" << AsmStr << "'\n";
1265          exit(1);
1266        }
1267        ++CurVariant;   // We're in the next variant.
1268        break;
1269      case ')':         // $) -> same as GCC's } char.
1270        ++LastEmitted;  // consume ')' character.
1271        if (CurVariant == -1) {
1272          cerr << "Found '}' character outside of variant in inline asm "
1273               << "string: '" << AsmStr << "'\n";
1274          exit(1);
1275        }
1276        CurVariant = -1;
1277        break;
1278      }
1279      if (Done) break;
1280
1281      bool HasCurlyBraces = false;
1282      if (*LastEmitted == '{') {     // ${variable}
1283        ++LastEmitted;               // Consume '{' character.
1284        HasCurlyBraces = true;
1285      }
1286
1287      const char *IDStart = LastEmitted;
1288      char *IDEnd;
1289      errno = 0;
1290      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1291      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1292        cerr << "Bad $ operand number in inline asm string: '"
1293             << AsmStr << "'\n";
1294        exit(1);
1295      }
1296      LastEmitted = IDEnd;
1297
1298      char Modifier[2] = { 0, 0 };
1299
1300      if (HasCurlyBraces) {
1301        // If we have curly braces, check for a modifier character.  This
1302        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1303        if (*LastEmitted == ':') {
1304          ++LastEmitted;    // Consume ':' character.
1305          if (*LastEmitted == 0) {
1306            cerr << "Bad ${:} expression in inline asm string: '"
1307                 << AsmStr << "'\n";
1308            exit(1);
1309          }
1310
1311          Modifier[0] = *LastEmitted;
1312          ++LastEmitted;    // Consume modifier character.
1313        }
1314
1315        if (*LastEmitted != '}') {
1316          cerr << "Bad ${} expression in inline asm string: '"
1317               << AsmStr << "'\n";
1318          exit(1);
1319        }
1320        ++LastEmitted;    // Consume '}' character.
1321      }
1322
1323      if ((unsigned)Val >= NumOperands-1) {
1324        cerr << "Invalid $ operand number in inline asm string: '"
1325             << AsmStr << "'\n";
1326        exit(1);
1327      }
1328
1329      // Okay, we finally have a value number.  Ask the target to print this
1330      // operand!
1331      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1332        unsigned OpNo = 1;
1333
1334        bool Error = false;
1335
1336        // Scan to find the machine operand number for the operand.
1337        for (; Val; --Val) {
1338          if (OpNo >= MI->getNumOperands()) break;
1339          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1340          OpNo += (OpFlags >> 3) + 1;
1341        }
1342
1343        if (OpNo >= MI->getNumOperands()) {
1344          Error = true;
1345        } else {
1346          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1347          ++OpNo;  // Skip over the ID number.
1348
1349          if (Modifier[0]=='l')  // labels are target independent
1350            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1351                                 false, false, false);
1352          else {
1353            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1354            if ((OpFlags & 7) == 4) {
1355              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1356                                                Modifier[0] ? Modifier : 0);
1357            } else {
1358              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1359                                          Modifier[0] ? Modifier : 0);
1360            }
1361          }
1362        }
1363        if (Error) {
1364          cerr << "Invalid operand found in inline asm: '"
1365               << AsmStr << "'\n";
1366          MI->dump();
1367          exit(1);
1368        }
1369      }
1370      break;
1371    }
1372    }
1373  }
1374  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1375}
1376
1377/// printImplicitDef - This method prints the specified machine instruction
1378/// that is an implicit def.
1379void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1380  O << '\t' << TAI->getCommentString() << " implicit-def: "
1381    << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1382}
1383
1384/// printLabel - This method prints a local label used by debug and
1385/// exception handling tables.
1386void AsmPrinter::printLabel(const MachineInstr *MI) const {
1387  printLabel(MI->getOperand(0).getImm());
1388}
1389
1390void AsmPrinter::printLabel(unsigned Id) const {
1391  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1392}
1393
1394/// printDeclare - This method prints a local variable declaration used by
1395/// debug tables.
1396/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1397/// entry into dwarf table.
1398void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1399  int FI = MI->getOperand(0).getIndex();
1400  GlobalValue *GV = MI->getOperand(1).getGlobal();
1401  MMI->RecordVariable(GV, FI);
1402}
1403
1404/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1405/// instruction, using the specified assembler variant.  Targets should
1406/// overried this to format as appropriate.
1407bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1408                                 unsigned AsmVariant, const char *ExtraCode) {
1409  // Target doesn't support this yet!
1410  return true;
1411}
1412
1413bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1414                                       unsigned AsmVariant,
1415                                       const char *ExtraCode) {
1416  // Target doesn't support this yet!
1417  return true;
1418}
1419
1420/// printBasicBlockLabel - This method prints the label for the specified
1421/// MachineBasicBlock
1422void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1423                                      bool printAlign,
1424                                      bool printColon,
1425                                      bool printComment) const {
1426  if (printAlign) {
1427    unsigned Align = MBB->getAlignment();
1428    if (Align)
1429      EmitAlignment(Log2_32(Align));
1430  }
1431
1432  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1433    << MBB->getNumber();
1434  if (printColon)
1435    O << ':';
1436  if (printComment && MBB->getBasicBlock())
1437    O << '\t' << TAI->getCommentString() << ' '
1438      << MBB->getBasicBlock()->getNameStart();
1439}
1440
1441/// printPICJumpTableSetLabel - This method prints a set label for the
1442/// specified MachineBasicBlock for a jumptable entry.
1443void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1444                                           const MachineBasicBlock *MBB) const {
1445  if (!TAI->getSetDirective())
1446    return;
1447
1448  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1449    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1450  printBasicBlockLabel(MBB, false, false, false);
1451  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1452    << '_' << uid << '\n';
1453}
1454
1455void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1456                                           const MachineBasicBlock *MBB) const {
1457  if (!TAI->getSetDirective())
1458    return;
1459
1460  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1461    << getFunctionNumber() << '_' << uid << '_' << uid2
1462    << "_set_" << MBB->getNumber() << ',';
1463  printBasicBlockLabel(MBB, false, false, false);
1464  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1465    << '_' << uid << '_' << uid2 << '\n';
1466}
1467
1468/// printDataDirective - This method prints the asm directive for the
1469/// specified type.
1470void AsmPrinter::printDataDirective(const Type *type) {
1471  const TargetData *TD = TM.getTargetData();
1472  switch (type->getTypeID()) {
1473  case Type::IntegerTyID: {
1474    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1475    if (BitWidth <= 8)
1476      O << TAI->getData8bitsDirective();
1477    else if (BitWidth <= 16)
1478      O << TAI->getData16bitsDirective();
1479    else if (BitWidth <= 32)
1480      O << TAI->getData32bitsDirective();
1481    else if (BitWidth <= 64) {
1482      assert(TAI->getData64bitsDirective() &&
1483             "Target cannot handle 64-bit constant exprs!");
1484      O << TAI->getData64bitsDirective();
1485    } else {
1486      assert(0 && "Target cannot handle given data directive width!");
1487    }
1488    break;
1489  }
1490  case Type::PointerTyID:
1491    if (TD->getPointerSize() == 8) {
1492      assert(TAI->getData64bitsDirective() &&
1493             "Target cannot handle 64-bit pointer exprs!");
1494      O << TAI->getData64bitsDirective();
1495    } else {
1496      O << TAI->getData32bitsDirective();
1497    }
1498    break;
1499  case Type::FloatTyID: case Type::DoubleTyID:
1500  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1501    assert (0 && "Should have already output floating point constant.");
1502  default:
1503    assert (0 && "Can't handle printing this type of thing");
1504    break;
1505  }
1506}
1507
1508void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1509                                   const char *Prefix) {
1510  if (Name[0]=='\"')
1511    O << '\"';
1512  O << TAI->getPrivateGlobalPrefix();
1513  if (Prefix) O << Prefix;
1514  if (Name[0]=='\"')
1515    O << '\"';
1516  if (Name[0]=='\"')
1517    O << Name[1];
1518  else
1519    O << Name;
1520  O << Suffix;
1521  if (Name[0]=='\"')
1522    O << '\"';
1523}
1524
1525void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1526  printSuffixedName(Name.c_str(), Suffix);
1527}
1528
1529void AsmPrinter::printVisibility(const std::string& Name,
1530                                 unsigned Visibility) const {
1531  if (Visibility == GlobalValue::HiddenVisibility) {
1532    if (const char *Directive = TAI->getHiddenDirective())
1533      O << Directive << Name << '\n';
1534  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1535    if (const char *Directive = TAI->getProtectedDirective())
1536      O << Directive << Name << '\n';
1537  }
1538}
1539
1540GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1541  if (!S->usesMetadata())
1542    return 0;
1543
1544  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1545  if (GCPI != GCMetadataPrinters.end())
1546    return GCPI->second;
1547
1548  const char *Name = S->getName().c_str();
1549
1550  for (GCMetadataPrinterRegistry::iterator
1551         I = GCMetadataPrinterRegistry::begin(),
1552         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1553    if (strcmp(Name, I->getName()) == 0) {
1554      GCMetadataPrinter *GMP = I->instantiate();
1555      GMP->S = S;
1556      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1557      return GMP;
1558    }
1559
1560  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1561  abort();
1562}
1563