AsmPrinter.cpp revision dba37a3c43b79be8a54d5e07ff390b621da5958d
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/DebugInfo.h"
19#include "llvm/Module.h"
20#include "llvm/CodeGen/GCMetadataPrinter.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineLoopInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/MC/MCAsmInfo.h"
29#include "llvm/MC/MCContext.h"
30#include "llvm/MC/MCExpr.h"
31#include "llvm/MC/MCInst.h"
32#include "llvm/MC/MCSection.h"
33#include "llvm/MC/MCStreamer.h"
34#include "llvm/MC/MCSymbol.h"
35#include "llvm/Target/Mangler.h"
36#include "llvm/DataLayout.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetLowering.h"
39#include "llvm/Target/TargetLoweringObjectFile.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Assembly/Writer.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/Format.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/Timer.h"
49using namespace llvm;
50
51static const char *DWARFGroupName = "DWARF Emission";
52static const char *DbgTimerName = "DWARF Debug Writer";
53static const char *EHTimerName = "DWARF Exception Writer";
54
55STATISTIC(EmittedInsts, "Number of machine instrs printed");
56
57char AsmPrinter::ID = 0;
58
59typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
60static gcp_map_type &getGCMap(void *&P) {
61  if (P == 0)
62    P = new gcp_map_type();
63  return *(gcp_map_type*)P;
64}
65
66
67/// getGVAlignmentLog2 - Return the alignment to use for the specified global
68/// value in log2 form.  This rounds up to the preferred alignment if possible
69/// and legal.
70static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
71                                   unsigned InBits = 0) {
72  unsigned NumBits = 0;
73  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
74    NumBits = TD.getPreferredAlignmentLog(GVar);
75
76  // If InBits is specified, round it to it.
77  if (InBits > NumBits)
78    NumBits = InBits;
79
80  // If the GV has a specified alignment, take it into account.
81  if (GV->getAlignment() == 0)
82    return NumBits;
83
84  unsigned GVAlign = Log2_32(GV->getAlignment());
85
86  // If the GVAlign is larger than NumBits, or if we are required to obey
87  // NumBits because the GV has an assigned section, obey it.
88  if (GVAlign > NumBits || GV->hasSection())
89    NumBits = GVAlign;
90  return NumBits;
91}
92
93AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
94  : MachineFunctionPass(ID),
95    TM(tm), MAI(tm.getMCAsmInfo()),
96    OutContext(Streamer.getContext()),
97    OutStreamer(Streamer),
98    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
99  DD = 0; DE = 0; MMI = 0; LI = 0;
100  CurrentFnSym = CurrentFnSymForSize = 0;
101  GCMetadataPrinters = 0;
102  VerboseAsm = Streamer.isVerboseAsm();
103}
104
105AsmPrinter::~AsmPrinter() {
106  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
107
108  if (GCMetadataPrinters != 0) {
109    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
110
111    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
112      delete I->second;
113    delete &GCMap;
114    GCMetadataPrinters = 0;
115  }
116
117  delete &OutStreamer;
118}
119
120/// getFunctionNumber - Return a unique ID for the current function.
121///
122unsigned AsmPrinter::getFunctionNumber() const {
123  return MF->getFunctionNumber();
124}
125
126const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
127  return TM.getTargetLowering()->getObjFileLowering();
128}
129
130/// getDataLayout - Return information about data layout.
131const DataLayout &AsmPrinter::getDataLayout() const {
132  return *TM.getDataLayout();
133}
134
135/// getCurrentSection() - Return the current section we are emitting to.
136const MCSection *AsmPrinter::getCurrentSection() const {
137  return OutStreamer.getCurrentSection();
138}
139
140
141
142void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
143  AU.setPreservesAll();
144  MachineFunctionPass::getAnalysisUsage(AU);
145  AU.addRequired<MachineModuleInfo>();
146  AU.addRequired<GCModuleInfo>();
147  if (isVerbose())
148    AU.addRequired<MachineLoopInfo>();
149}
150
151bool AsmPrinter::doInitialization(Module &M) {
152  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
153  MMI->AnalyzeModule(M);
154
155  // Initialize TargetLoweringObjectFile.
156  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
157    .Initialize(OutContext, TM);
158
159  Mang = new Mangler(OutContext, *TM.getDataLayout());
160
161  // Allow the target to emit any magic that it wants at the start of the file.
162  EmitStartOfAsmFile(M);
163
164  // Very minimal debug info. It is ignored if we emit actual debug info. If we
165  // don't, this at least helps the user find where a global came from.
166  if (MAI->hasSingleParameterDotFile()) {
167    // .file "foo.c"
168    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
169  }
170
171  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
172  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
173  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
174    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
175      MP->beginAssembly(*this);
176
177  // Emit module-level inline asm if it exists.
178  if (!M.getModuleInlineAsm().empty()) {
179    OutStreamer.AddComment("Start of file scope inline assembly");
180    OutStreamer.AddBlankLine();
181    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
182    OutStreamer.AddComment("End of file scope inline assembly");
183    OutStreamer.AddBlankLine();
184  }
185
186  if (MAI->doesSupportDebugInformation())
187    DD = new DwarfDebug(this, &M);
188
189  switch (MAI->getExceptionHandlingType()) {
190  case ExceptionHandling::None:
191    return false;
192  case ExceptionHandling::SjLj:
193  case ExceptionHandling::DwarfCFI:
194    DE = new DwarfCFIException(this);
195    return false;
196  case ExceptionHandling::ARM:
197    DE = new ARMException(this);
198    return false;
199  case ExceptionHandling::Win64:
200    DE = new Win64Exception(this);
201    return false;
202  }
203
204  llvm_unreachable("Unknown exception type.");
205}
206
207void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
208  switch ((GlobalValue::LinkageTypes)Linkage) {
209  case GlobalValue::CommonLinkage:
210  case GlobalValue::LinkOnceAnyLinkage:
211  case GlobalValue::LinkOnceODRLinkage:
212  case GlobalValue::LinkOnceODRAutoHideLinkage:
213  case GlobalValue::WeakAnyLinkage:
214  case GlobalValue::WeakODRLinkage:
215  case GlobalValue::LinkerPrivateWeakLinkage:
216    if (MAI->getWeakDefDirective() != 0) {
217      // .globl _foo
218      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
219
220      if ((GlobalValue::LinkageTypes)Linkage !=
221          GlobalValue::LinkOnceODRAutoHideLinkage)
222        // .weak_definition _foo
223        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
224      else
225        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
226    } else if (MAI->getLinkOnceDirective() != 0) {
227      // .globl _foo
228      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
229      //NOTE: linkonce is handled by the section the symbol was assigned to.
230    } else {
231      // .weak _foo
232      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
233    }
234    break;
235  case GlobalValue::DLLExportLinkage:
236  case GlobalValue::AppendingLinkage:
237    // FIXME: appending linkage variables should go into a section of
238    // their name or something.  For now, just emit them as external.
239  case GlobalValue::ExternalLinkage:
240    // If external or appending, declare as a global symbol.
241    // .globl _foo
242    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
243    break;
244  case GlobalValue::PrivateLinkage:
245  case GlobalValue::InternalLinkage:
246  case GlobalValue::LinkerPrivateLinkage:
247    break;
248  default:
249    llvm_unreachable("Unknown linkage type!");
250  }
251}
252
253
254/// EmitGlobalVariable - Emit the specified global variable to the .s file.
255void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
256  if (GV->hasInitializer()) {
257    // Check to see if this is a special global used by LLVM, if so, emit it.
258    if (EmitSpecialLLVMGlobal(GV))
259      return;
260
261    if (isVerbose()) {
262      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
263                     /*PrintType=*/false, GV->getParent());
264      OutStreamer.GetCommentOS() << '\n';
265    }
266  }
267
268  MCSymbol *GVSym = Mang->getSymbol(GV);
269  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
270
271  if (!GV->hasInitializer())   // External globals require no extra code.
272    return;
273
274  if (MAI->hasDotTypeDotSizeDirective())
275    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
276
277  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
278
279  const DataLayout *TD = TM.getDataLayout();
280  uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
281
282  // If the alignment is specified, we *must* obey it.  Overaligning a global
283  // with a specified alignment is a prompt way to break globals emitted to
284  // sections and expected to be contiguous (e.g. ObjC metadata).
285  unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
286
287  // Handle common and BSS local symbols (.lcomm).
288  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
289    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
290    unsigned Align = 1 << AlignLog;
291
292    // Handle common symbols.
293    if (GVKind.isCommon()) {
294      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
295        Align = 0;
296
297      // .comm _foo, 42, 4
298      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
299      return;
300    }
301
302    // Handle local BSS symbols.
303    if (MAI->hasMachoZeroFillDirective()) {
304      const MCSection *TheSection =
305        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
306      // .zerofill __DATA, __bss, _foo, 400, 5
307      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
308      return;
309    }
310
311    // Use .lcomm only if it supports user-specified alignment.
312    // Otherwise, while it would still be correct to use .lcomm in some
313    // cases (e.g. when Align == 1), the external assembler might enfore
314    // some -unknown- default alignment behavior, which could cause
315    // spurious differences between external and integrated assembler.
316    // Prefer to simply fall back to .local / .comm in this case.
317    if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
318      // .lcomm _foo, 42
319      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
320      return;
321    }
322
323    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
324      Align = 0;
325
326    // .local _foo
327    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
328    // .comm _foo, 42, 4
329    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
330    return;
331  }
332
333  const MCSection *TheSection =
334    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
335
336  // Handle the zerofill directive on darwin, which is a special form of BSS
337  // emission.
338  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
339    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
340
341    // .globl _foo
342    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
343    // .zerofill __DATA, __common, _foo, 400, 5
344    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
345    return;
346  }
347
348  // Handle thread local data for mach-o which requires us to output an
349  // additional structure of data and mangle the original symbol so that we
350  // can reference it later.
351  //
352  // TODO: This should become an "emit thread local global" method on TLOF.
353  // All of this macho specific stuff should be sunk down into TLOFMachO and
354  // stuff like "TLSExtraDataSection" should no longer be part of the parent
355  // TLOF class.  This will also make it more obvious that stuff like
356  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
357  // specific code.
358  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
359    // Emit the .tbss symbol
360    MCSymbol *MangSym =
361      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
362
363    if (GVKind.isThreadBSS())
364      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
365    else if (GVKind.isThreadData()) {
366      OutStreamer.SwitchSection(TheSection);
367
368      EmitAlignment(AlignLog, GV);
369      OutStreamer.EmitLabel(MangSym);
370
371      EmitGlobalConstant(GV->getInitializer());
372    }
373
374    OutStreamer.AddBlankLine();
375
376    // Emit the variable struct for the runtime.
377    const MCSection *TLVSect
378      = getObjFileLowering().getTLSExtraDataSection();
379
380    OutStreamer.SwitchSection(TLVSect);
381    // Emit the linkage here.
382    EmitLinkage(GV->getLinkage(), GVSym);
383    OutStreamer.EmitLabel(GVSym);
384
385    // Three pointers in size:
386    //   - __tlv_bootstrap - used to make sure support exists
387    //   - spare pointer, used when mapped by the runtime
388    //   - pointer to mangled symbol above with initializer
389    unsigned PtrSize = TD->getPointerSizeInBits()/8;
390    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
391                          PtrSize, 0);
392    OutStreamer.EmitIntValue(0, PtrSize, 0);
393    OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
394
395    OutStreamer.AddBlankLine();
396    return;
397  }
398
399  OutStreamer.SwitchSection(TheSection);
400
401  EmitLinkage(GV->getLinkage(), GVSym);
402  EmitAlignment(AlignLog, GV);
403
404  OutStreamer.EmitLabel(GVSym);
405
406  EmitGlobalConstant(GV->getInitializer());
407
408  if (MAI->hasDotTypeDotSizeDirective())
409    // .size foo, 42
410    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
411
412  OutStreamer.AddBlankLine();
413}
414
415/// EmitFunctionHeader - This method emits the header for the current
416/// function.
417void AsmPrinter::EmitFunctionHeader() {
418  // Print out constants referenced by the function
419  EmitConstantPool();
420
421  // Print the 'header' of function.
422  const Function *F = MF->getFunction();
423
424  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
425  EmitVisibility(CurrentFnSym, F->getVisibility());
426
427  EmitLinkage(F->getLinkage(), CurrentFnSym);
428  EmitAlignment(MF->getAlignment(), F);
429
430  if (MAI->hasDotTypeDotSizeDirective())
431    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
432
433  if (isVerbose()) {
434    WriteAsOperand(OutStreamer.GetCommentOS(), F,
435                   /*PrintType=*/false, F->getParent());
436    OutStreamer.GetCommentOS() << '\n';
437  }
438
439  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
440  // do their wild and crazy things as required.
441  EmitFunctionEntryLabel();
442
443  // If the function had address-taken blocks that got deleted, then we have
444  // references to the dangling symbols.  Emit them at the start of the function
445  // so that we don't get references to undefined symbols.
446  std::vector<MCSymbol*> DeadBlockSyms;
447  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
448  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
449    OutStreamer.AddComment("Address taken block that was later removed");
450    OutStreamer.EmitLabel(DeadBlockSyms[i]);
451  }
452
453  // Add some workaround for linkonce linkage on Cygwin\MinGW.
454  if (MAI->getLinkOnceDirective() != 0 &&
455      (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
456    // FIXME: What is this?
457    MCSymbol *FakeStub =
458      OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
459                                   CurrentFnSym->getName());
460    OutStreamer.EmitLabel(FakeStub);
461  }
462
463  // Emit pre-function debug and/or EH information.
464  if (DE) {
465    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
466    DE->BeginFunction(MF);
467  }
468  if (DD) {
469    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
470    DD->beginFunction(MF);
471  }
472}
473
474/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
475/// function.  This can be overridden by targets as required to do custom stuff.
476void AsmPrinter::EmitFunctionEntryLabel() {
477  // The function label could have already been emitted if two symbols end up
478  // conflicting due to asm renaming.  Detect this and emit an error.
479  if (CurrentFnSym->isUndefined())
480    return OutStreamer.EmitLabel(CurrentFnSym);
481
482  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
483                     "' label emitted multiple times to assembly file");
484}
485
486/// emitComments - Pretty-print comments for instructions.
487static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
488  const MachineFunction *MF = MI.getParent()->getParent();
489  const TargetMachine &TM = MF->getTarget();
490
491  // Check for spills and reloads
492  int FI;
493
494  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
495
496  // We assume a single instruction only has a spill or reload, not
497  // both.
498  const MachineMemOperand *MMO;
499  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
500    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
501      MMO = *MI.memoperands_begin();
502      CommentOS << MMO->getSize() << "-byte Reload\n";
503    }
504  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
505    if (FrameInfo->isSpillSlotObjectIndex(FI))
506      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
507  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
508    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
509      MMO = *MI.memoperands_begin();
510      CommentOS << MMO->getSize() << "-byte Spill\n";
511    }
512  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
513    if (FrameInfo->isSpillSlotObjectIndex(FI))
514      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
515  }
516
517  // Check for spill-induced copies
518  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
519    CommentOS << " Reload Reuse\n";
520}
521
522/// emitImplicitDef - This method emits the specified machine instruction
523/// that is an implicit def.
524static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
525  unsigned RegNo = MI->getOperand(0).getReg();
526  AP.OutStreamer.AddComment(Twine("implicit-def: ") +
527                            AP.TM.getRegisterInfo()->getName(RegNo));
528  AP.OutStreamer.AddBlankLine();
529}
530
531static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
532  std::string Str = "kill:";
533  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
534    const MachineOperand &Op = MI->getOperand(i);
535    assert(Op.isReg() && "KILL instruction must have only register operands");
536    Str += ' ';
537    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
538    Str += (Op.isDef() ? "<def>" : "<kill>");
539  }
540  AP.OutStreamer.AddComment(Str);
541  AP.OutStreamer.AddBlankLine();
542}
543
544/// emitDebugValueComment - This method handles the target-independent form
545/// of DBG_VALUE, returning true if it was able to do so.  A false return
546/// means the target will need to handle MI in EmitInstruction.
547static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
548  // This code handles only the 3-operand target-independent form.
549  if (MI->getNumOperands() != 3)
550    return false;
551
552  SmallString<128> Str;
553  raw_svector_ostream OS(Str);
554  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
555
556  // cast away const; DIetc do not take const operands for some reason.
557  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
558  if (V.getContext().isSubprogram())
559    OS << DISubprogram(V.getContext()).getDisplayName() << ":";
560  OS << V.getName() << " <- ";
561
562  // Register or immediate value. Register 0 means undef.
563  if (MI->getOperand(0).isFPImm()) {
564    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
565    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
566      OS << (double)APF.convertToFloat();
567    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
568      OS << APF.convertToDouble();
569    } else {
570      // There is no good way to print long double.  Convert a copy to
571      // double.  Ah well, it's only a comment.
572      bool ignored;
573      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
574                  &ignored);
575      OS << "(long double) " << APF.convertToDouble();
576    }
577  } else if (MI->getOperand(0).isImm()) {
578    OS << MI->getOperand(0).getImm();
579  } else if (MI->getOperand(0).isCImm()) {
580    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
581  } else {
582    assert(MI->getOperand(0).isReg() && "Unknown operand type");
583    if (MI->getOperand(0).getReg() == 0) {
584      // Suppress offset, it is not meaningful here.
585      OS << "undef";
586      // NOTE: Want this comment at start of line, don't emit with AddComment.
587      AP.OutStreamer.EmitRawText(OS.str());
588      return true;
589    }
590    OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
591  }
592
593  OS << '+' << MI->getOperand(1).getImm();
594  // NOTE: Want this comment at start of line, don't emit with AddComment.
595  AP.OutStreamer.EmitRawText(OS.str());
596  return true;
597}
598
599AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
600  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
601      MF->getFunction()->needsUnwindTableEntry())
602    return CFI_M_EH;
603
604  if (MMI->hasDebugInfo())
605    return CFI_M_Debug;
606
607  return CFI_M_None;
608}
609
610bool AsmPrinter::needsSEHMoves() {
611  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
612    MF->getFunction()->needsUnwindTableEntry();
613}
614
615bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
616  return MAI->doesDwarfUseRelocationsAcrossSections();
617}
618
619void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
620  MCSymbol *Label = MI.getOperand(0).getMCSymbol();
621
622  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
623    return;
624
625  if (needsCFIMoves() == CFI_M_None)
626    return;
627
628  if (MMI->getCompactUnwindEncoding() != 0)
629    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
630
631  MachineModuleInfo &MMI = MF->getMMI();
632  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
633  bool FoundOne = false;
634  (void)FoundOne;
635  for (std::vector<MachineMove>::iterator I = Moves.begin(),
636         E = Moves.end(); I != E; ++I) {
637    if (I->getLabel() == Label) {
638      EmitCFIFrameMove(*I);
639      FoundOne = true;
640    }
641  }
642  assert(FoundOne);
643}
644
645/// EmitFunctionBody - This method emits the body and trailer for a
646/// function.
647void AsmPrinter::EmitFunctionBody() {
648  // Emit target-specific gunk before the function body.
649  EmitFunctionBodyStart();
650
651  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
652
653  // Print out code for the function.
654  bool HasAnyRealCode = false;
655  const MachineInstr *LastMI = 0;
656  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
657       I != E; ++I) {
658    // Print a label for the basic block.
659    EmitBasicBlockStart(I);
660    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
661         II != IE; ++II) {
662      LastMI = II;
663
664      // Print the assembly for the instruction.
665      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
666          !II->isDebugValue()) {
667        HasAnyRealCode = true;
668        ++EmittedInsts;
669      }
670
671      if (ShouldPrintDebugScopes) {
672        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
673        DD->beginInstruction(II);
674      }
675
676      if (isVerbose())
677        emitComments(*II, OutStreamer.GetCommentOS());
678
679      switch (II->getOpcode()) {
680      case TargetOpcode::PROLOG_LABEL:
681        emitPrologLabel(*II);
682        break;
683
684      case TargetOpcode::EH_LABEL:
685      case TargetOpcode::GC_LABEL:
686        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
687        break;
688      case TargetOpcode::INLINEASM:
689        EmitInlineAsm(II);
690        break;
691      case TargetOpcode::DBG_VALUE:
692        if (isVerbose()) {
693          if (!emitDebugValueComment(II, *this))
694            EmitInstruction(II);
695        }
696        break;
697      case TargetOpcode::IMPLICIT_DEF:
698        if (isVerbose()) emitImplicitDef(II, *this);
699        break;
700      case TargetOpcode::KILL:
701        if (isVerbose()) emitKill(II, *this);
702        break;
703      default:
704        if (!TM.hasMCUseLoc())
705          MCLineEntry::Make(&OutStreamer, getCurrentSection());
706
707        EmitInstruction(II);
708        break;
709      }
710
711      if (ShouldPrintDebugScopes) {
712        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
713        DD->endInstruction(II);
714      }
715    }
716  }
717
718  // If the last instruction was a prolog label, then we have a situation where
719  // we emitted a prolog but no function body. This results in the ending prolog
720  // label equaling the end of function label and an invalid "row" in the
721  // FDE. We need to emit a noop in this situation so that the FDE's rows are
722  // valid.
723  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
724
725  // If the function is empty and the object file uses .subsections_via_symbols,
726  // then we need to emit *something* to the function body to prevent the
727  // labels from collapsing together.  Just emit a noop.
728  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
729    MCInst Noop;
730    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
731    if (Noop.getOpcode()) {
732      OutStreamer.AddComment("avoids zero-length function");
733      OutStreamer.EmitInstruction(Noop);
734    } else  // Target not mc-ized yet.
735      OutStreamer.EmitRawText(StringRef("\tnop\n"));
736  }
737
738  const Function *F = MF->getFunction();
739  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
740    const BasicBlock *BB = i;
741    if (!BB->hasAddressTaken())
742      continue;
743    MCSymbol *Sym = GetBlockAddressSymbol(BB);
744    if (Sym->isDefined())
745      continue;
746    OutStreamer.AddComment("Address of block that was removed by CodeGen");
747    OutStreamer.EmitLabel(Sym);
748  }
749
750  // Emit target-specific gunk after the function body.
751  EmitFunctionBodyEnd();
752
753  // If the target wants a .size directive for the size of the function, emit
754  // it.
755  if (MAI->hasDotTypeDotSizeDirective()) {
756    // Create a symbol for the end of function, so we can get the size as
757    // difference between the function label and the temp label.
758    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
759    OutStreamer.EmitLabel(FnEndLabel);
760
761    const MCExpr *SizeExp =
762      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
763                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
764                                                      OutContext),
765                              OutContext);
766    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
767  }
768
769  // Emit post-function debug information.
770  if (DD) {
771    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
772    DD->endFunction(MF);
773  }
774  if (DE) {
775    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
776    DE->EndFunction();
777  }
778  MMI->EndFunction();
779
780  // Print out jump tables referenced by the function.
781  EmitJumpTableInfo();
782
783  OutStreamer.AddBlankLine();
784}
785
786/// getDebugValueLocation - Get location information encoded by DBG_VALUE
787/// operands.
788MachineLocation AsmPrinter::
789getDebugValueLocation(const MachineInstr *MI) const {
790  // Target specific DBG_VALUE instructions are handled by each target.
791  return MachineLocation();
792}
793
794/// EmitDwarfRegOp - Emit dwarf register operation.
795void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
796  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
797  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
798
799  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
800       ++SR) {
801    Reg = TRI->getDwarfRegNum(*SR, false);
802    // FIXME: Get the bit range this register uses of the superregister
803    // so that we can produce a DW_OP_bit_piece
804  }
805
806  // FIXME: Handle cases like a super register being encoded as
807  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
808
809  // FIXME: We have no reasonable way of handling errors in here. The
810  // caller might be in the middle of an dwarf expression. We should
811  // probably assert that Reg >= 0 once debug info generation is more mature.
812
813  if (int Offset =  MLoc.getOffset()) {
814    if (Reg < 32) {
815      OutStreamer.AddComment(
816        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
817      EmitInt8(dwarf::DW_OP_breg0 + Reg);
818    } else {
819      OutStreamer.AddComment("DW_OP_bregx");
820      EmitInt8(dwarf::DW_OP_bregx);
821      OutStreamer.AddComment(Twine(Reg));
822      EmitULEB128(Reg);
823    }
824    EmitSLEB128(Offset);
825  } else {
826    if (Reg < 32) {
827      OutStreamer.AddComment(
828        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
829      EmitInt8(dwarf::DW_OP_reg0 + Reg);
830    } else {
831      OutStreamer.AddComment("DW_OP_regx");
832      EmitInt8(dwarf::DW_OP_regx);
833      OutStreamer.AddComment(Twine(Reg));
834      EmitULEB128(Reg);
835    }
836  }
837
838  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
839}
840
841bool AsmPrinter::doFinalization(Module &M) {
842  // Emit global variables.
843  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
844       I != E; ++I)
845    EmitGlobalVariable(I);
846
847  // Emit visibility info for declarations
848  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
849    const Function &F = *I;
850    if (!F.isDeclaration())
851      continue;
852    GlobalValue::VisibilityTypes V = F.getVisibility();
853    if (V == GlobalValue::DefaultVisibility)
854      continue;
855
856    MCSymbol *Name = Mang->getSymbol(&F);
857    EmitVisibility(Name, V, false);
858  }
859
860  // Emit module flags.
861  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
862  M.getModuleFlagsMetadata(ModuleFlags);
863  if (!ModuleFlags.empty())
864    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
865
866  // Finalize debug and EH information.
867  if (DE) {
868    {
869      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
870      DE->EndModule();
871    }
872    delete DE; DE = 0;
873  }
874  if (DD) {
875    {
876      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
877      DD->endModule();
878    }
879    delete DD; DD = 0;
880  }
881
882  // If the target wants to know about weak references, print them all.
883  if (MAI->getWeakRefDirective()) {
884    // FIXME: This is not lazy, it would be nice to only print weak references
885    // to stuff that is actually used.  Note that doing so would require targets
886    // to notice uses in operands (due to constant exprs etc).  This should
887    // happen with the MC stuff eventually.
888
889    // Print out module-level global variables here.
890    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
891         I != E; ++I) {
892      if (!I->hasExternalWeakLinkage()) continue;
893      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
894    }
895
896    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
897      if (!I->hasExternalWeakLinkage()) continue;
898      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
899    }
900  }
901
902  if (MAI->hasSetDirective()) {
903    OutStreamer.AddBlankLine();
904    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
905         I != E; ++I) {
906      MCSymbol *Name = Mang->getSymbol(I);
907
908      const GlobalValue *GV = I->getAliasedGlobal();
909      MCSymbol *Target = Mang->getSymbol(GV);
910
911      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
912        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
913      else if (I->hasWeakLinkage())
914        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
915      else
916        assert(I->hasLocalLinkage() && "Invalid alias linkage");
917
918      EmitVisibility(Name, I->getVisibility());
919
920      // Emit the directives as assignments aka .set:
921      OutStreamer.EmitAssignment(Name,
922                                 MCSymbolRefExpr::Create(Target, OutContext));
923    }
924  }
925
926  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
927  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
928  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
929    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
930      MP->finishAssembly(*this);
931
932  // If we don't have any trampolines, then we don't require stack memory
933  // to be executable. Some targets have a directive to declare this.
934  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
935  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
936    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
937      OutStreamer.SwitchSection(S);
938
939  // Allow the target to emit any magic that it wants at the end of the file,
940  // after everything else has gone out.
941  EmitEndOfAsmFile(M);
942
943  delete Mang; Mang = 0;
944  MMI = 0;
945
946  OutStreamer.Finish();
947  return false;
948}
949
950void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
951  this->MF = &MF;
952  // Get the function symbol.
953  CurrentFnSym = Mang->getSymbol(MF.getFunction());
954  CurrentFnSymForSize = CurrentFnSym;
955
956  if (isVerbose())
957    LI = &getAnalysis<MachineLoopInfo>();
958}
959
960namespace {
961  // SectionCPs - Keep track the alignment, constpool entries per Section.
962  struct SectionCPs {
963    const MCSection *S;
964    unsigned Alignment;
965    SmallVector<unsigned, 4> CPEs;
966    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
967  };
968}
969
970/// EmitConstantPool - Print to the current output stream assembly
971/// representations of the constants in the constant pool MCP. This is
972/// used to print out constants which have been "spilled to memory" by
973/// the code generator.
974///
975void AsmPrinter::EmitConstantPool() {
976  const MachineConstantPool *MCP = MF->getConstantPool();
977  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
978  if (CP.empty()) return;
979
980  // Calculate sections for constant pool entries. We collect entries to go into
981  // the same section together to reduce amount of section switch statements.
982  SmallVector<SectionCPs, 4> CPSections;
983  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
984    const MachineConstantPoolEntry &CPE = CP[i];
985    unsigned Align = CPE.getAlignment();
986
987    SectionKind Kind;
988    switch (CPE.getRelocationInfo()) {
989    default: llvm_unreachable("Unknown section kind");
990    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
991    case 1:
992      Kind = SectionKind::getReadOnlyWithRelLocal();
993      break;
994    case 0:
995    switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
996    case 4:  Kind = SectionKind::getMergeableConst4(); break;
997    case 8:  Kind = SectionKind::getMergeableConst8(); break;
998    case 16: Kind = SectionKind::getMergeableConst16();break;
999    default: Kind = SectionKind::getMergeableConst(); break;
1000    }
1001    }
1002
1003    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1004
1005    // The number of sections are small, just do a linear search from the
1006    // last section to the first.
1007    bool Found = false;
1008    unsigned SecIdx = CPSections.size();
1009    while (SecIdx != 0) {
1010      if (CPSections[--SecIdx].S == S) {
1011        Found = true;
1012        break;
1013      }
1014    }
1015    if (!Found) {
1016      SecIdx = CPSections.size();
1017      CPSections.push_back(SectionCPs(S, Align));
1018    }
1019
1020    if (Align > CPSections[SecIdx].Alignment)
1021      CPSections[SecIdx].Alignment = Align;
1022    CPSections[SecIdx].CPEs.push_back(i);
1023  }
1024
1025  // Now print stuff into the calculated sections.
1026  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1027    OutStreamer.SwitchSection(CPSections[i].S);
1028    EmitAlignment(Log2_32(CPSections[i].Alignment));
1029
1030    unsigned Offset = 0;
1031    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1032      unsigned CPI = CPSections[i].CPEs[j];
1033      MachineConstantPoolEntry CPE = CP[CPI];
1034
1035      // Emit inter-object padding for alignment.
1036      unsigned AlignMask = CPE.getAlignment() - 1;
1037      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1038      OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1039
1040      Type *Ty = CPE.getType();
1041      Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1042      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1043
1044      if (CPE.isMachineConstantPoolEntry())
1045        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1046      else
1047        EmitGlobalConstant(CPE.Val.ConstVal);
1048    }
1049  }
1050}
1051
1052/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1053/// by the current function to the current output stream.
1054///
1055void AsmPrinter::EmitJumpTableInfo() {
1056  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1057  if (MJTI == 0) return;
1058  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1059  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1060  if (JT.empty()) return;
1061
1062  // Pick the directive to use to print the jump table entries, and switch to
1063  // the appropriate section.
1064  const Function *F = MF->getFunction();
1065  bool JTInDiffSection = false;
1066  if (// In PIC mode, we need to emit the jump table to the same section as the
1067      // function body itself, otherwise the label differences won't make sense.
1068      // FIXME: Need a better predicate for this: what about custom entries?
1069      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1070      // We should also do if the section name is NULL or function is declared
1071      // in discardable section
1072      // FIXME: this isn't the right predicate, should be based on the MCSection
1073      // for the function.
1074      F->isWeakForLinker()) {
1075    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1076  } else {
1077    // Otherwise, drop it in the readonly section.
1078    const MCSection *ReadOnlySection =
1079      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1080    OutStreamer.SwitchSection(ReadOnlySection);
1081    JTInDiffSection = true;
1082  }
1083
1084  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1085
1086  // Jump tables in code sections are marked with a data_region directive
1087  // where that's supported.
1088  if (!JTInDiffSection)
1089    OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1090
1091  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1092    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1093
1094    // If this jump table was deleted, ignore it.
1095    if (JTBBs.empty()) continue;
1096
1097    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1098    // .set directive for each unique entry.  This reduces the number of
1099    // relocations the assembler will generate for the jump table.
1100    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1101        MAI->hasSetDirective()) {
1102      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1103      const TargetLowering *TLI = TM.getTargetLowering();
1104      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1105      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1106        const MachineBasicBlock *MBB = JTBBs[ii];
1107        if (!EmittedSets.insert(MBB)) continue;
1108
1109        // .set LJTSet, LBB32-base
1110        const MCExpr *LHS =
1111          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1112        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1113                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1114      }
1115    }
1116
1117    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1118    // before each jump table.  The first label is never referenced, but tells
1119    // the assembler and linker the extents of the jump table object.  The
1120    // second label is actually referenced by the code.
1121    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1122      // FIXME: This doesn't have to have any specific name, just any randomly
1123      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1124      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1125
1126    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1127
1128    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1129      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1130  }
1131  if (!JTInDiffSection)
1132    OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1133}
1134
1135/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1136/// current stream.
1137void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1138                                    const MachineBasicBlock *MBB,
1139                                    unsigned UID) const {
1140  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1141  const MCExpr *Value = 0;
1142  switch (MJTI->getEntryKind()) {
1143  case MachineJumpTableInfo::EK_Inline:
1144    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1145  case MachineJumpTableInfo::EK_Custom32:
1146    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1147                                                              OutContext);
1148    break;
1149  case MachineJumpTableInfo::EK_BlockAddress:
1150    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1151    //     .word LBB123
1152    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1153    break;
1154  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1155    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1156    // with a relocation as gp-relative, e.g.:
1157    //     .gprel32 LBB123
1158    MCSymbol *MBBSym = MBB->getSymbol();
1159    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1160    return;
1161  }
1162
1163  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1164    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1165    // with a relocation as gp-relative, e.g.:
1166    //     .gpdword LBB123
1167    MCSymbol *MBBSym = MBB->getSymbol();
1168    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1169    return;
1170  }
1171
1172  case MachineJumpTableInfo::EK_LabelDifference32: {
1173    // EK_LabelDifference32 - Each entry is the address of the block minus
1174    // the address of the jump table.  This is used for PIC jump tables where
1175    // gprel32 is not supported.  e.g.:
1176    //      .word LBB123 - LJTI1_2
1177    // If the .set directive is supported, this is emitted as:
1178    //      .set L4_5_set_123, LBB123 - LJTI1_2
1179    //      .word L4_5_set_123
1180
1181    // If we have emitted set directives for the jump table entries, print
1182    // them rather than the entries themselves.  If we're emitting PIC, then
1183    // emit the table entries as differences between two text section labels.
1184    if (MAI->hasSetDirective()) {
1185      // If we used .set, reference the .set's symbol.
1186      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1187                                      OutContext);
1188      break;
1189    }
1190    // Otherwise, use the difference as the jump table entry.
1191    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1192    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1193    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1194    break;
1195  }
1196  }
1197
1198  assert(Value && "Unknown entry kind!");
1199
1200  unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1201  OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1202}
1203
1204
1205/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1206/// special global used by LLVM.  If so, emit it and return true, otherwise
1207/// do nothing and return false.
1208bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1209  if (GV->getName() == "llvm.used") {
1210    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1211      EmitLLVMUsedList(GV->getInitializer());
1212    return true;
1213  }
1214
1215  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1216  if (GV->getSection() == "llvm.metadata" ||
1217      GV->hasAvailableExternallyLinkage())
1218    return true;
1219
1220  if (!GV->hasAppendingLinkage()) return false;
1221
1222  assert(GV->hasInitializer() && "Not a special LLVM global!");
1223
1224  if (GV->getName() == "llvm.global_ctors") {
1225    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1226
1227    if (TM.getRelocationModel() == Reloc::Static &&
1228        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1229      StringRef Sym(".constructors_used");
1230      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1231                                      MCSA_Reference);
1232    }
1233    return true;
1234  }
1235
1236  if (GV->getName() == "llvm.global_dtors") {
1237    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1238
1239    if (TM.getRelocationModel() == Reloc::Static &&
1240        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1241      StringRef Sym(".destructors_used");
1242      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1243                                      MCSA_Reference);
1244    }
1245    return true;
1246  }
1247
1248  return false;
1249}
1250
1251/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1252/// global in the specified llvm.used list for which emitUsedDirectiveFor
1253/// is true, as being used with this directive.
1254void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1255  // Should be an array of 'i8*'.
1256  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1257  if (InitList == 0) return;
1258
1259  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1260    const GlobalValue *GV =
1261      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1262    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1263      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1264  }
1265}
1266
1267typedef std::pair<unsigned, Constant*> Structor;
1268
1269static bool priority_order(const Structor& lhs, const Structor& rhs) {
1270  return lhs.first < rhs.first;
1271}
1272
1273/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1274/// priority.
1275void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1276  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1277  // init priority.
1278  if (!isa<ConstantArray>(List)) return;
1279
1280  // Sanity check the structors list.
1281  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1282  if (!InitList) return; // Not an array!
1283  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1284  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1285  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1286      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1287
1288  // Gather the structors in a form that's convenient for sorting by priority.
1289  SmallVector<Structor, 8> Structors;
1290  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1291    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1292    if (!CS) continue; // Malformed.
1293    if (CS->getOperand(1)->isNullValue())
1294      break;  // Found a null terminator, skip the rest.
1295    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1296    if (!Priority) continue; // Malformed.
1297    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1298                                       CS->getOperand(1)));
1299  }
1300
1301  // Emit the function pointers in the target-specific order
1302  const DataLayout *TD = TM.getDataLayout();
1303  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1304  std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1305  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1306    const MCSection *OutputSection =
1307      (isCtor ?
1308       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1309       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1310    OutStreamer.SwitchSection(OutputSection);
1311    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1312      EmitAlignment(Align);
1313    EmitXXStructor(Structors[i].second);
1314  }
1315}
1316
1317//===--------------------------------------------------------------------===//
1318// Emission and print routines
1319//
1320
1321/// EmitInt8 - Emit a byte directive and value.
1322///
1323void AsmPrinter::EmitInt8(int Value) const {
1324  OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1325}
1326
1327/// EmitInt16 - Emit a short directive and value.
1328///
1329void AsmPrinter::EmitInt16(int Value) const {
1330  OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1331}
1332
1333/// EmitInt32 - Emit a long directive and value.
1334///
1335void AsmPrinter::EmitInt32(int Value) const {
1336  OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1337}
1338
1339/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1340/// in bytes of the directive is specified by Size and Hi/Lo specify the
1341/// labels.  This implicitly uses .set if it is available.
1342void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1343                                     unsigned Size) const {
1344  // Get the Hi-Lo expression.
1345  const MCExpr *Diff =
1346    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1347                            MCSymbolRefExpr::Create(Lo, OutContext),
1348                            OutContext);
1349
1350  if (!MAI->hasSetDirective()) {
1351    OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1352    return;
1353  }
1354
1355  // Otherwise, emit with .set (aka assignment).
1356  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1357  OutStreamer.EmitAssignment(SetLabel, Diff);
1358  OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1359}
1360
1361/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1362/// where the size in bytes of the directive is specified by Size and Hi/Lo
1363/// specify the labels.  This implicitly uses .set if it is available.
1364void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1365                                           const MCSymbol *Lo, unsigned Size)
1366  const {
1367
1368  // Emit Hi+Offset - Lo
1369  // Get the Hi+Offset expression.
1370  const MCExpr *Plus =
1371    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1372                            MCConstantExpr::Create(Offset, OutContext),
1373                            OutContext);
1374
1375  // Get the Hi+Offset-Lo expression.
1376  const MCExpr *Diff =
1377    MCBinaryExpr::CreateSub(Plus,
1378                            MCSymbolRefExpr::Create(Lo, OutContext),
1379                            OutContext);
1380
1381  if (!MAI->hasSetDirective())
1382    OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1383  else {
1384    // Otherwise, emit with .set (aka assignment).
1385    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1386    OutStreamer.EmitAssignment(SetLabel, Diff);
1387    OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1388  }
1389}
1390
1391/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1392/// where the size in bytes of the directive is specified by Size and Label
1393/// specifies the label.  This implicitly uses .set if it is available.
1394void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1395                                      unsigned Size)
1396  const {
1397
1398  // Emit Label+Offset (or just Label if Offset is zero)
1399  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1400  if (Offset)
1401    Expr = MCBinaryExpr::CreateAdd(Expr,
1402                                   MCConstantExpr::Create(Offset, OutContext),
1403                                   OutContext);
1404
1405  OutStreamer.EmitValue(Expr, Size, 0/*AddrSpace*/);
1406}
1407
1408
1409//===----------------------------------------------------------------------===//
1410
1411// EmitAlignment - Emit an alignment directive to the specified power of
1412// two boundary.  For example, if you pass in 3 here, you will get an 8
1413// byte alignment.  If a global value is specified, and if that global has
1414// an explicit alignment requested, it will override the alignment request
1415// if required for correctness.
1416//
1417void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1418  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1419
1420  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1421
1422  if (getCurrentSection()->getKind().isText())
1423    OutStreamer.EmitCodeAlignment(1 << NumBits);
1424  else
1425    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1426}
1427
1428//===----------------------------------------------------------------------===//
1429// Constant emission.
1430//===----------------------------------------------------------------------===//
1431
1432/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1433///
1434static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1435  MCContext &Ctx = AP.OutContext;
1436
1437  if (CV->isNullValue() || isa<UndefValue>(CV))
1438    return MCConstantExpr::Create(0, Ctx);
1439
1440  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1441    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1442
1443  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1444    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1445
1446  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1447    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1448
1449  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1450  if (CE == 0) {
1451    llvm_unreachable("Unknown constant value to lower!");
1452  }
1453
1454  switch (CE->getOpcode()) {
1455  default:
1456    // If the code isn't optimized, there may be outstanding folding
1457    // opportunities. Attempt to fold the expression using DataLayout as a
1458    // last resort before giving up.
1459    if (Constant *C =
1460          ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1461      if (C != CE)
1462        return lowerConstant(C, AP);
1463
1464    // Otherwise report the problem to the user.
1465    {
1466      std::string S;
1467      raw_string_ostream OS(S);
1468      OS << "Unsupported expression in static initializer: ";
1469      WriteAsOperand(OS, CE, /*PrintType=*/false,
1470                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1471      report_fatal_error(OS.str());
1472    }
1473  case Instruction::GetElementPtr: {
1474    const DataLayout &TD = *AP.TM.getDataLayout();
1475    // Generate a symbolic expression for the byte address
1476    const Constant *PtrVal = CE->getOperand(0);
1477    SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1478    int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
1479
1480    const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1481    if (Offset == 0)
1482      return Base;
1483
1484    // Truncate/sext the offset to the pointer size.
1485    unsigned Width = TD.getPointerSizeInBits();
1486    if (Width < 64)
1487      Offset = SignExtend64(Offset, Width);
1488
1489    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1490                                   Ctx);
1491  }
1492
1493  case Instruction::Trunc:
1494    // We emit the value and depend on the assembler to truncate the generated
1495    // expression properly.  This is important for differences between
1496    // blockaddress labels.  Since the two labels are in the same function, it
1497    // is reasonable to treat their delta as a 32-bit value.
1498    // FALL THROUGH.
1499  case Instruction::BitCast:
1500    return lowerConstant(CE->getOperand(0), AP);
1501
1502  case Instruction::IntToPtr: {
1503    const DataLayout &TD = *AP.TM.getDataLayout();
1504    // Handle casts to pointers by changing them into casts to the appropriate
1505    // integer type.  This promotes constant folding and simplifies this code.
1506    Constant *Op = CE->getOperand(0);
1507    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1508                                      false/*ZExt*/);
1509    return lowerConstant(Op, AP);
1510  }
1511
1512  case Instruction::PtrToInt: {
1513    const DataLayout &TD = *AP.TM.getDataLayout();
1514    // Support only foldable casts to/from pointers that can be eliminated by
1515    // changing the pointer to the appropriately sized integer type.
1516    Constant *Op = CE->getOperand(0);
1517    Type *Ty = CE->getType();
1518
1519    const MCExpr *OpExpr = lowerConstant(Op, AP);
1520
1521    // We can emit the pointer value into this slot if the slot is an
1522    // integer slot equal to the size of the pointer.
1523    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1524      return OpExpr;
1525
1526    // Otherwise the pointer is smaller than the resultant integer, mask off
1527    // the high bits so we are sure to get a proper truncation if the input is
1528    // a constant expr.
1529    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1530    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1531    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1532  }
1533
1534  // The MC library also has a right-shift operator, but it isn't consistently
1535  // signed or unsigned between different targets.
1536  case Instruction::Add:
1537  case Instruction::Sub:
1538  case Instruction::Mul:
1539  case Instruction::SDiv:
1540  case Instruction::SRem:
1541  case Instruction::Shl:
1542  case Instruction::And:
1543  case Instruction::Or:
1544  case Instruction::Xor: {
1545    const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1546    const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1547    switch (CE->getOpcode()) {
1548    default: llvm_unreachable("Unknown binary operator constant cast expr");
1549    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1550    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1551    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1552    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1553    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1554    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1555    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1556    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1557    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1558    }
1559  }
1560  }
1561}
1562
1563static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1564                                   AsmPrinter &AP);
1565
1566/// isRepeatedByteSequence - Determine whether the given value is
1567/// composed of a repeated sequence of identical bytes and return the
1568/// byte value.  If it is not a repeated sequence, return -1.
1569static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1570  StringRef Data = V->getRawDataValues();
1571  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1572  char C = Data[0];
1573  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1574    if (Data[i] != C) return -1;
1575  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1576}
1577
1578
1579/// isRepeatedByteSequence - Determine whether the given value is
1580/// composed of a repeated sequence of identical bytes and return the
1581/// byte value.  If it is not a repeated sequence, return -1.
1582static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1583
1584  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1585    if (CI->getBitWidth() > 64) return -1;
1586
1587    uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1588    uint64_t Value = CI->getZExtValue();
1589
1590    // Make sure the constant is at least 8 bits long and has a power
1591    // of 2 bit width.  This guarantees the constant bit width is
1592    // always a multiple of 8 bits, avoiding issues with padding out
1593    // to Size and other such corner cases.
1594    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1595
1596    uint8_t Byte = static_cast<uint8_t>(Value);
1597
1598    for (unsigned i = 1; i < Size; ++i) {
1599      Value >>= 8;
1600      if (static_cast<uint8_t>(Value) != Byte) return -1;
1601    }
1602    return Byte;
1603  }
1604  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1605    // Make sure all array elements are sequences of the same repeated
1606    // byte.
1607    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1608    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1609    if (Byte == -1) return -1;
1610
1611    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1612      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1613      if (ThisByte == -1) return -1;
1614      if (Byte != ThisByte) return -1;
1615    }
1616    return Byte;
1617  }
1618
1619  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1620    return isRepeatedByteSequence(CDS);
1621
1622  return -1;
1623}
1624
1625static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1626                                             unsigned AddrSpace,AsmPrinter &AP){
1627
1628  // See if we can aggregate this into a .fill, if so, emit it as such.
1629  int Value = isRepeatedByteSequence(CDS, AP.TM);
1630  if (Value != -1) {
1631    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1632    // Don't emit a 1-byte object as a .fill.
1633    if (Bytes > 1)
1634      return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1635  }
1636
1637  // If this can be emitted with .ascii/.asciz, emit it as such.
1638  if (CDS->isString())
1639    return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1640
1641  // Otherwise, emit the values in successive locations.
1642  unsigned ElementByteSize = CDS->getElementByteSize();
1643  if (isa<IntegerType>(CDS->getElementType())) {
1644    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1645      if (AP.isVerbose())
1646        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1647                                                CDS->getElementAsInteger(i));
1648      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1649                                  ElementByteSize, AddrSpace);
1650    }
1651  } else if (ElementByteSize == 4) {
1652    // FP Constants are printed as integer constants to avoid losing
1653    // precision.
1654    assert(CDS->getElementType()->isFloatTy());
1655    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1656      union {
1657        float F;
1658        uint32_t I;
1659      };
1660
1661      F = CDS->getElementAsFloat(i);
1662      if (AP.isVerbose())
1663        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1664      AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1665    }
1666  } else {
1667    assert(CDS->getElementType()->isDoubleTy());
1668    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1669      union {
1670        double F;
1671        uint64_t I;
1672      };
1673
1674      F = CDS->getElementAsDouble(i);
1675      if (AP.isVerbose())
1676        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1677      AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1678    }
1679  }
1680
1681  const DataLayout &TD = *AP.TM.getDataLayout();
1682  unsigned Size = TD.getTypeAllocSize(CDS->getType());
1683  unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1684                        CDS->getNumElements();
1685  if (unsigned Padding = Size - EmittedSize)
1686    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1687
1688}
1689
1690static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1691                                    AsmPrinter &AP) {
1692  // See if we can aggregate some values.  Make sure it can be
1693  // represented as a series of bytes of the constant value.
1694  int Value = isRepeatedByteSequence(CA, AP.TM);
1695
1696  if (Value != -1) {
1697    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1698    AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1699  }
1700  else {
1701    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1702      emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1703  }
1704}
1705
1706static void emitGlobalConstantVector(const ConstantVector *CV,
1707                                     unsigned AddrSpace, AsmPrinter &AP) {
1708  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1709    emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1710
1711  const DataLayout &TD = *AP.TM.getDataLayout();
1712  unsigned Size = TD.getTypeAllocSize(CV->getType());
1713  unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1714                         CV->getType()->getNumElements();
1715  if (unsigned Padding = Size - EmittedSize)
1716    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1717}
1718
1719static void emitGlobalConstantStruct(const ConstantStruct *CS,
1720                                     unsigned AddrSpace, AsmPrinter &AP) {
1721  // Print the fields in successive locations. Pad to align if needed!
1722  const DataLayout *TD = AP.TM.getDataLayout();
1723  unsigned Size = TD->getTypeAllocSize(CS->getType());
1724  const StructLayout *Layout = TD->getStructLayout(CS->getType());
1725  uint64_t SizeSoFar = 0;
1726  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1727    const Constant *Field = CS->getOperand(i);
1728
1729    // Check if padding is needed and insert one or more 0s.
1730    uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1731    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1732                        - Layout->getElementOffset(i)) - FieldSize;
1733    SizeSoFar += FieldSize + PadSize;
1734
1735    // Now print the actual field value.
1736    emitGlobalConstantImpl(Field, AddrSpace, AP);
1737
1738    // Insert padding - this may include padding to increase the size of the
1739    // current field up to the ABI size (if the struct is not packed) as well
1740    // as padding to ensure that the next field starts at the right offset.
1741    AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1742  }
1743  assert(SizeSoFar == Layout->getSizeInBytes() &&
1744         "Layout of constant struct may be incorrect!");
1745}
1746
1747static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1748                                 AsmPrinter &AP) {
1749  if (CFP->getType()->isHalfTy()) {
1750    if (AP.isVerbose()) {
1751      SmallString<10> Str;
1752      CFP->getValueAPF().toString(Str);
1753      AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
1754    }
1755    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1756    AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
1757    return;
1758  }
1759
1760  if (CFP->getType()->isFloatTy()) {
1761    if (AP.isVerbose()) {
1762      float Val = CFP->getValueAPF().convertToFloat();
1763      uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1764      AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'
1765                                    << " (" << format("0x%x", IntVal) << ")\n";
1766    }
1767    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1768    AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1769    return;
1770  }
1771
1772  // FP Constants are printed as integer constants to avoid losing
1773  // precision.
1774  if (CFP->getType()->isDoubleTy()) {
1775    if (AP.isVerbose()) {
1776      double Val = CFP->getValueAPF().convertToDouble();
1777      uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1778      AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'
1779                                    << " (" << format("0x%lx", IntVal) << ")\n";
1780    }
1781
1782    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1783    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1784    return;
1785  }
1786
1787  if (CFP->getType()->isX86_FP80Ty()) {
1788    // all long double variants are printed as hex
1789    // API needed to prevent premature destruction
1790    APInt API = CFP->getValueAPF().bitcastToAPInt();
1791    const uint64_t *p = API.getRawData();
1792    if (AP.isVerbose()) {
1793      // Convert to double so we can print the approximate val as a comment.
1794      APFloat DoubleVal = CFP->getValueAPF();
1795      bool ignored;
1796      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1797                        &ignored);
1798      AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1799        << DoubleVal.convertToDouble() << '\n';
1800    }
1801
1802    if (AP.TM.getDataLayout()->isBigEndian()) {
1803      AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1804      AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1805    } else {
1806      AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1807      AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1808    }
1809
1810    // Emit the tail padding for the long double.
1811    const DataLayout &TD = *AP.TM.getDataLayout();
1812    AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1813                             TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1814    return;
1815  }
1816
1817  assert(CFP->getType()->isPPC_FP128Ty() &&
1818         "Floating point constant type not handled");
1819  // All long double variants are printed as hex
1820  // API needed to prevent premature destruction.
1821  APInt API = CFP->getValueAPF().bitcastToAPInt();
1822  const uint64_t *p = API.getRawData();
1823  if (AP.TM.getDataLayout()->isBigEndian()) {
1824    AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1825    AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1826  } else {
1827    AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1828    AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1829  }
1830}
1831
1832static void emitGlobalConstantLargeInt(const ConstantInt *CI,
1833                                       unsigned AddrSpace, AsmPrinter &AP) {
1834  const DataLayout *TD = AP.TM.getDataLayout();
1835  unsigned BitWidth = CI->getBitWidth();
1836  assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1837
1838  // We don't expect assemblers to support integer data directives
1839  // for more than 64 bits, so we emit the data in at most 64-bit
1840  // quantities at a time.
1841  const uint64_t *RawData = CI->getValue().getRawData();
1842  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1843    uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1844    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1845  }
1846}
1847
1848static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1849                                   AsmPrinter &AP) {
1850  const DataLayout *TD = AP.TM.getDataLayout();
1851  uint64_t Size = TD->getTypeAllocSize(CV->getType());
1852  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1853    return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1854
1855  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1856    switch (Size) {
1857    case 1:
1858    case 2:
1859    case 4:
1860    case 8:
1861      if (AP.isVerbose())
1862        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1863                                                CI->getZExtValue());
1864      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1865      return;
1866    default:
1867      emitGlobalConstantLargeInt(CI, AddrSpace, AP);
1868      return;
1869    }
1870  }
1871
1872  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1873    return emitGlobalConstantFP(CFP, AddrSpace, AP);
1874
1875  if (isa<ConstantPointerNull>(CV)) {
1876    AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1877    return;
1878  }
1879
1880  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1881    return emitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1882
1883  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1884    return emitGlobalConstantArray(CVA, AddrSpace, AP);
1885
1886  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1887    return emitGlobalConstantStruct(CVS, AddrSpace, AP);
1888
1889  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1890    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1891    // vectors).
1892    if (CE->getOpcode() == Instruction::BitCast)
1893      return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1894
1895    if (Size > 8) {
1896      // If the constant expression's size is greater than 64-bits, then we have
1897      // to emit the value in chunks. Try to constant fold the value and emit it
1898      // that way.
1899      Constant *New = ConstantFoldConstantExpression(CE, TD);
1900      if (New && New != CE)
1901        return emitGlobalConstantImpl(New, AddrSpace, AP);
1902    }
1903  }
1904
1905  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1906    return emitGlobalConstantVector(V, AddrSpace, AP);
1907
1908  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1909  // thread the streamer with EmitValue.
1910  AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace);
1911}
1912
1913/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1914void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1915  uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
1916  if (Size)
1917    emitGlobalConstantImpl(CV, AddrSpace, *this);
1918  else if (MAI->hasSubsectionsViaSymbols()) {
1919    // If the global has zero size, emit a single byte so that two labels don't
1920    // look like they are at the same location.
1921    OutStreamer.EmitIntValue(0, 1, AddrSpace);
1922  }
1923}
1924
1925void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1926  // Target doesn't support this yet!
1927  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1928}
1929
1930void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1931  if (Offset > 0)
1932    OS << '+' << Offset;
1933  else if (Offset < 0)
1934    OS << Offset;
1935}
1936
1937//===----------------------------------------------------------------------===//
1938// Symbol Lowering Routines.
1939//===----------------------------------------------------------------------===//
1940
1941/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1942/// temporary label with the specified stem and unique ID.
1943MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1944  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1945                                      Name + Twine(ID));
1946}
1947
1948/// GetTempSymbol - Return an assembler temporary label with the specified
1949/// stem.
1950MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1951  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1952                                      Name);
1953}
1954
1955
1956MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1957  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1958}
1959
1960MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1961  return MMI->getAddrLabelSymbol(BB);
1962}
1963
1964/// GetCPISymbol - Return the symbol for the specified constant pool entry.
1965MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1966  return OutContext.GetOrCreateSymbol
1967    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1968     + "_" + Twine(CPID));
1969}
1970
1971/// GetJTISymbol - Return the symbol for the specified jump table entry.
1972MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1973  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1974}
1975
1976/// GetJTSetSymbol - Return the symbol for the specified jump table .set
1977/// FIXME: privatize to AsmPrinter.
1978MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1979  return OutContext.GetOrCreateSymbol
1980  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1981   Twine(UID) + "_set_" + Twine(MBBID));
1982}
1983
1984/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1985/// global value name as its base, with the specified suffix, and where the
1986/// symbol is forced to have private linkage if ForcePrivate is true.
1987MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1988                                                   StringRef Suffix,
1989                                                   bool ForcePrivate) const {
1990  SmallString<60> NameStr;
1991  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1992  NameStr.append(Suffix.begin(), Suffix.end());
1993  return OutContext.GetOrCreateSymbol(NameStr.str());
1994}
1995
1996/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1997/// ExternalSymbol.
1998MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1999  SmallString<60> NameStr;
2000  Mang->getNameWithPrefix(NameStr, Sym);
2001  return OutContext.GetOrCreateSymbol(NameStr.str());
2002}
2003
2004
2005
2006/// PrintParentLoopComment - Print comments about parent loops of this one.
2007static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2008                                   unsigned FunctionNumber) {
2009  if (Loop == 0) return;
2010  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2011  OS.indent(Loop->getLoopDepth()*2)
2012    << "Parent Loop BB" << FunctionNumber << "_"
2013    << Loop->getHeader()->getNumber()
2014    << " Depth=" << Loop->getLoopDepth() << '\n';
2015}
2016
2017
2018/// PrintChildLoopComment - Print comments about child loops within
2019/// the loop for this basic block, with nesting.
2020static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2021                                  unsigned FunctionNumber) {
2022  // Add child loop information
2023  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2024    OS.indent((*CL)->getLoopDepth()*2)
2025      << "Child Loop BB" << FunctionNumber << "_"
2026      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2027      << '\n';
2028    PrintChildLoopComment(OS, *CL, FunctionNumber);
2029  }
2030}
2031
2032/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2033static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2034                                       const MachineLoopInfo *LI,
2035                                       const AsmPrinter &AP) {
2036  // Add loop depth information
2037  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2038  if (Loop == 0) return;
2039
2040  MachineBasicBlock *Header = Loop->getHeader();
2041  assert(Header && "No header for loop");
2042
2043  // If this block is not a loop header, just print out what is the loop header
2044  // and return.
2045  if (Header != &MBB) {
2046    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2047                              Twine(AP.getFunctionNumber())+"_" +
2048                              Twine(Loop->getHeader()->getNumber())+
2049                              " Depth="+Twine(Loop->getLoopDepth()));
2050    return;
2051  }
2052
2053  // Otherwise, it is a loop header.  Print out information about child and
2054  // parent loops.
2055  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2056
2057  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2058
2059  OS << "=>";
2060  OS.indent(Loop->getLoopDepth()*2-2);
2061
2062  OS << "This ";
2063  if (Loop->empty())
2064    OS << "Inner ";
2065  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2066
2067  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2068}
2069
2070
2071/// EmitBasicBlockStart - This method prints the label for the specified
2072/// MachineBasicBlock, an alignment (if present) and a comment describing
2073/// it if appropriate.
2074void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2075  // Emit an alignment directive for this block, if needed.
2076  if (unsigned Align = MBB->getAlignment())
2077    EmitAlignment(Align);
2078
2079  // If the block has its address taken, emit any labels that were used to
2080  // reference the block.  It is possible that there is more than one label
2081  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2082  // the references were generated.
2083  if (MBB->hasAddressTaken()) {
2084    const BasicBlock *BB = MBB->getBasicBlock();
2085    if (isVerbose())
2086      OutStreamer.AddComment("Block address taken");
2087
2088    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2089
2090    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2091      OutStreamer.EmitLabel(Syms[i]);
2092  }
2093
2094  // Print some verbose block comments.
2095  if (isVerbose()) {
2096    if (const BasicBlock *BB = MBB->getBasicBlock())
2097      if (BB->hasName())
2098        OutStreamer.AddComment("%" + BB->getName());
2099    emitBasicBlockLoopComments(*MBB, LI, *this);
2100  }
2101
2102  // Print the main label for the block.
2103  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2104    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2105      // NOTE: Want this comment at start of line, don't emit with AddComment.
2106      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2107                              Twine(MBB->getNumber()) + ":");
2108    }
2109  } else {
2110    OutStreamer.EmitLabel(MBB->getSymbol());
2111  }
2112}
2113
2114void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2115                                bool IsDefinition) const {
2116  MCSymbolAttr Attr = MCSA_Invalid;
2117
2118  switch (Visibility) {
2119  default: break;
2120  case GlobalValue::HiddenVisibility:
2121    if (IsDefinition)
2122      Attr = MAI->getHiddenVisibilityAttr();
2123    else
2124      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2125    break;
2126  case GlobalValue::ProtectedVisibility:
2127    Attr = MAI->getProtectedVisibilityAttr();
2128    break;
2129  }
2130
2131  if (Attr != MCSA_Invalid)
2132    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2133}
2134
2135/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2136/// exactly one predecessor and the control transfer mechanism between
2137/// the predecessor and this block is a fall-through.
2138bool AsmPrinter::
2139isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2140  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2141  // then nothing falls through to it.
2142  if (MBB->isLandingPad() || MBB->pred_empty())
2143    return false;
2144
2145  // If there isn't exactly one predecessor, it can't be a fall through.
2146  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2147  ++PI2;
2148  if (PI2 != MBB->pred_end())
2149    return false;
2150
2151  // The predecessor has to be immediately before this block.
2152  MachineBasicBlock *Pred = *PI;
2153
2154  if (!Pred->isLayoutSuccessor(MBB))
2155    return false;
2156
2157  // If the block is completely empty, then it definitely does fall through.
2158  if (Pred->empty())
2159    return true;
2160
2161  // Check the terminators in the previous blocks
2162  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2163         IE = Pred->end(); II != IE; ++II) {
2164    MachineInstr &MI = *II;
2165
2166    // If it is not a simple branch, we are in a table somewhere.
2167    if (!MI.isBranch() || MI.isIndirectBranch())
2168      return false;
2169
2170    // If we are the operands of one of the branches, this is not
2171    // a fall through.
2172    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2173           OE = MI.operands_end(); OI != OE; ++OI) {
2174      const MachineOperand& OP = *OI;
2175      if (OP.isJTI())
2176        return false;
2177      if (OP.isMBB() && OP.getMBB() == MBB)
2178        return false;
2179    }
2180  }
2181
2182  return true;
2183}
2184
2185
2186
2187GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2188  if (!S->usesMetadata())
2189    return 0;
2190
2191  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2192  gcp_map_type::iterator GCPI = GCMap.find(S);
2193  if (GCPI != GCMap.end())
2194    return GCPI->second;
2195
2196  const char *Name = S->getName().c_str();
2197
2198  for (GCMetadataPrinterRegistry::iterator
2199         I = GCMetadataPrinterRegistry::begin(),
2200         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2201    if (strcmp(Name, I->getName()) == 0) {
2202      GCMetadataPrinter *GMP = I->instantiate();
2203      GMP->S = S;
2204      GCMap.insert(std::make_pair(S, GMP));
2205      return GMP;
2206    }
2207
2208  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2209}
2210