AsmPrinter.cpp revision df39be6cb4eb44011db3d3e86f8fe463f81ce127
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CodeGen/GCMetadataPrinter.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineJumpTableInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/DebugInfo.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/MC/MCContext.h"
35#include "llvm/MC/MCExpr.h"
36#include "llvm/MC/MCInst.h"
37#include "llvm/MC/MCSection.h"
38#include "llvm/MC/MCStreamer.h"
39#include "llvm/MC/MCSymbol.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/Format.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Timer.h"
44#include "llvm/Target/Mangler.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetLowering.h"
47#include "llvm/Target/TargetLoweringObjectFile.h"
48#include "llvm/Target/TargetOptions.h"
49#include "llvm/Target/TargetRegisterInfo.h"
50using namespace llvm;
51
52static const char *DWARFGroupName = "DWARF Emission";
53static const char *DbgTimerName = "DWARF Debug Writer";
54static const char *EHTimerName = "DWARF Exception Writer";
55
56STATISTIC(EmittedInsts, "Number of machine instrs printed");
57
58char AsmPrinter::ID = 0;
59
60typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
61static gcp_map_type &getGCMap(void *&P) {
62  if (P == 0)
63    P = new gcp_map_type();
64  return *(gcp_map_type*)P;
65}
66
67
68/// getGVAlignmentLog2 - Return the alignment to use for the specified global
69/// value in log2 form.  This rounds up to the preferred alignment if possible
70/// and legal.
71static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
72                                   unsigned InBits = 0) {
73  unsigned NumBits = 0;
74  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
75    NumBits = TD.getPreferredAlignmentLog(GVar);
76
77  // If InBits is specified, round it to it.
78  if (InBits > NumBits)
79    NumBits = InBits;
80
81  // If the GV has a specified alignment, take it into account.
82  if (GV->getAlignment() == 0)
83    return NumBits;
84
85  unsigned GVAlign = Log2_32(GV->getAlignment());
86
87  // If the GVAlign is larger than NumBits, or if we are required to obey
88  // NumBits because the GV has an assigned section, obey it.
89  if (GVAlign > NumBits || GV->hasSection())
90    NumBits = GVAlign;
91  return NumBits;
92}
93
94AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
95  : MachineFunctionPass(ID),
96    TM(tm), MAI(tm.getMCAsmInfo()),
97    OutContext(Streamer.getContext()),
98    OutStreamer(Streamer),
99    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
100  DD = 0; DE = 0; MMI = 0; LI = 0;
101  CurrentFnSym = CurrentFnSymForSize = 0;
102  GCMetadataPrinters = 0;
103  VerboseAsm = Streamer.isVerboseAsm();
104}
105
106AsmPrinter::~AsmPrinter() {
107  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
108
109  if (GCMetadataPrinters != 0) {
110    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
111
112    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
113      delete I->second;
114    delete &GCMap;
115    GCMetadataPrinters = 0;
116  }
117
118  delete &OutStreamer;
119}
120
121/// getFunctionNumber - Return a unique ID for the current function.
122///
123unsigned AsmPrinter::getFunctionNumber() const {
124  return MF->getFunctionNumber();
125}
126
127const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
128  return TM.getTargetLowering()->getObjFileLowering();
129}
130
131/// getDataLayout - Return information about data layout.
132const DataLayout &AsmPrinter::getDataLayout() const {
133  return *TM.getDataLayout();
134}
135
136/// getCurrentSection() - Return the current section we are emitting to.
137const MCSection *AsmPrinter::getCurrentSection() const {
138  return OutStreamer.getCurrentSection().first;
139}
140
141
142
143void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
144  AU.setPreservesAll();
145  MachineFunctionPass::getAnalysisUsage(AU);
146  AU.addRequired<MachineModuleInfo>();
147  AU.addRequired<GCModuleInfo>();
148  if (isVerbose())
149    AU.addRequired<MachineLoopInfo>();
150}
151
152bool AsmPrinter::doInitialization(Module &M) {
153  OutStreamer.InitStreamer();
154
155  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
156  MMI->AnalyzeModule(M);
157
158  // Initialize TargetLoweringObjectFile.
159  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
160    .Initialize(OutContext, TM);
161
162  Mang = new Mangler(OutContext, *TM.getDataLayout());
163
164  // Allow the target to emit any magic that it wants at the start of the file.
165  EmitStartOfAsmFile(M);
166
167  // Very minimal debug info. It is ignored if we emit actual debug info. If we
168  // don't, this at least helps the user find where a global came from.
169  if (MAI->hasSingleParameterDotFile()) {
170    // .file "foo.c"
171    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
172  }
173
174  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
175  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
176  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
177    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
178      MP->beginAssembly(*this);
179
180  // Emit module-level inline asm if it exists.
181  if (!M.getModuleInlineAsm().empty()) {
182    OutStreamer.AddComment("Start of file scope inline assembly");
183    OutStreamer.AddBlankLine();
184    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
185    OutStreamer.AddComment("End of file scope inline assembly");
186    OutStreamer.AddBlankLine();
187  }
188
189  if (MAI->doesSupportDebugInformation())
190    DD = new DwarfDebug(this, &M);
191
192  switch (MAI->getExceptionHandlingType()) {
193  case ExceptionHandling::None:
194    return false;
195  case ExceptionHandling::SjLj:
196  case ExceptionHandling::DwarfCFI:
197    DE = new DwarfCFIException(this);
198    return false;
199  case ExceptionHandling::ARM:
200    DE = new ARMException(this);
201    return false;
202  case ExceptionHandling::Win64:
203    DE = new Win64Exception(this);
204    return false;
205  }
206
207  llvm_unreachable("Unknown exception type.");
208}
209
210void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
211  switch ((GlobalValue::LinkageTypes)Linkage) {
212  case GlobalValue::CommonLinkage:
213  case GlobalValue::LinkOnceAnyLinkage:
214  case GlobalValue::LinkOnceODRLinkage:
215  case GlobalValue::LinkOnceODRAutoHideLinkage:
216  case GlobalValue::WeakAnyLinkage:
217  case GlobalValue::WeakODRLinkage:
218  case GlobalValue::LinkerPrivateWeakLinkage:
219    if (MAI->getWeakDefDirective() != 0) {
220      // .globl _foo
221      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
222
223      if ((GlobalValue::LinkageTypes)Linkage !=
224          GlobalValue::LinkOnceODRAutoHideLinkage)
225        // .weak_definition _foo
226        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
227      else
228        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
229    } else if (MAI->getLinkOnceDirective() != 0) {
230      // .globl _foo
231      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
232      //NOTE: linkonce is handled by the section the symbol was assigned to.
233    } else {
234      // .weak _foo
235      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
236    }
237    break;
238  case GlobalValue::DLLExportLinkage:
239  case GlobalValue::AppendingLinkage:
240    // FIXME: appending linkage variables should go into a section of
241    // their name or something.  For now, just emit them as external.
242  case GlobalValue::ExternalLinkage:
243    // If external or appending, declare as a global symbol.
244    // .globl _foo
245    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
246    break;
247  case GlobalValue::PrivateLinkage:
248  case GlobalValue::InternalLinkage:
249  case GlobalValue::LinkerPrivateLinkage:
250    break;
251  default:
252    llvm_unreachable("Unknown linkage type!");
253  }
254}
255
256
257/// EmitGlobalVariable - Emit the specified global variable to the .s file.
258void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
259  if (GV->hasInitializer()) {
260    // Check to see if this is a special global used by LLVM, if so, emit it.
261    if (EmitSpecialLLVMGlobal(GV))
262      return;
263
264    if (isVerbose()) {
265      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
266                     /*PrintType=*/false, GV->getParent());
267      OutStreamer.GetCommentOS() << '\n';
268    }
269  }
270
271  MCSymbol *GVSym = Mang->getSymbol(GV);
272  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
273
274  if (!GV->hasInitializer())   // External globals require no extra code.
275    return;
276
277  if (MAI->hasDotTypeDotSizeDirective())
278    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
279
280  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
281
282  const DataLayout *TD = TM.getDataLayout();
283  uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
284
285  // If the alignment is specified, we *must* obey it.  Overaligning a global
286  // with a specified alignment is a prompt way to break globals emitted to
287  // sections and expected to be contiguous (e.g. ObjC metadata).
288  unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
289
290  // Handle common and BSS local symbols (.lcomm).
291  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
292    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
293    unsigned Align = 1 << AlignLog;
294
295    // Handle common symbols.
296    if (GVKind.isCommon()) {
297      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
298        Align = 0;
299
300      // .comm _foo, 42, 4
301      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
302      return;
303    }
304
305    // Handle local BSS symbols.
306    if (MAI->hasMachoZeroFillDirective()) {
307      const MCSection *TheSection =
308        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
309      // .zerofill __DATA, __bss, _foo, 400, 5
310      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
311      return;
312    }
313
314    // Use .lcomm only if it supports user-specified alignment.
315    // Otherwise, while it would still be correct to use .lcomm in some
316    // cases (e.g. when Align == 1), the external assembler might enfore
317    // some -unknown- default alignment behavior, which could cause
318    // spurious differences between external and integrated assembler.
319    // Prefer to simply fall back to .local / .comm in this case.
320    if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
321      // .lcomm _foo, 42
322      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
323      return;
324    }
325
326    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
327      Align = 0;
328
329    // .local _foo
330    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
331    // .comm _foo, 42, 4
332    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
333    return;
334  }
335
336  const MCSection *TheSection =
337    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
338
339  // Handle the zerofill directive on darwin, which is a special form of BSS
340  // emission.
341  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
342    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
343
344    // .globl _foo
345    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
346    // .zerofill __DATA, __common, _foo, 400, 5
347    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
348    return;
349  }
350
351  // Handle thread local data for mach-o which requires us to output an
352  // additional structure of data and mangle the original symbol so that we
353  // can reference it later.
354  //
355  // TODO: This should become an "emit thread local global" method on TLOF.
356  // All of this macho specific stuff should be sunk down into TLOFMachO and
357  // stuff like "TLSExtraDataSection" should no longer be part of the parent
358  // TLOF class.  This will also make it more obvious that stuff like
359  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
360  // specific code.
361  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
362    // Emit the .tbss symbol
363    MCSymbol *MangSym =
364      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
365
366    if (GVKind.isThreadBSS())
367      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
368    else if (GVKind.isThreadData()) {
369      OutStreamer.SwitchSection(TheSection);
370
371      EmitAlignment(AlignLog, GV);
372      OutStreamer.EmitLabel(MangSym);
373
374      EmitGlobalConstant(GV->getInitializer());
375    }
376
377    OutStreamer.AddBlankLine();
378
379    // Emit the variable struct for the runtime.
380    const MCSection *TLVSect
381      = getObjFileLowering().getTLSExtraDataSection();
382
383    OutStreamer.SwitchSection(TLVSect);
384    // Emit the linkage here.
385    EmitLinkage(GV->getLinkage(), GVSym);
386    OutStreamer.EmitLabel(GVSym);
387
388    // Three pointers in size:
389    //   - __tlv_bootstrap - used to make sure support exists
390    //   - spare pointer, used when mapped by the runtime
391    //   - pointer to mangled symbol above with initializer
392    unsigned PtrSize = TD->getPointerSizeInBits()/8;
393    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
394				PtrSize);
395    OutStreamer.EmitIntValue(0, PtrSize);
396    OutStreamer.EmitSymbolValue(MangSym, PtrSize);
397
398    OutStreamer.AddBlankLine();
399    return;
400  }
401
402  OutStreamer.SwitchSection(TheSection);
403
404  EmitLinkage(GV->getLinkage(), GVSym);
405  EmitAlignment(AlignLog, GV);
406
407  OutStreamer.EmitLabel(GVSym);
408
409  EmitGlobalConstant(GV->getInitializer());
410
411  if (MAI->hasDotTypeDotSizeDirective())
412    // .size foo, 42
413    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
414
415  OutStreamer.AddBlankLine();
416}
417
418/// EmitFunctionHeader - This method emits the header for the current
419/// function.
420void AsmPrinter::EmitFunctionHeader() {
421  // Print out constants referenced by the function
422  EmitConstantPool();
423
424  // Print the 'header' of function.
425  const Function *F = MF->getFunction();
426
427  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
428  EmitVisibility(CurrentFnSym, F->getVisibility());
429
430  EmitLinkage(F->getLinkage(), CurrentFnSym);
431  EmitAlignment(MF->getAlignment(), F);
432
433  if (MAI->hasDotTypeDotSizeDirective())
434    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
435
436  if (isVerbose()) {
437    WriteAsOperand(OutStreamer.GetCommentOS(), F,
438                   /*PrintType=*/false, F->getParent());
439    OutStreamer.GetCommentOS() << '\n';
440  }
441
442  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
443  // do their wild and crazy things as required.
444  EmitFunctionEntryLabel();
445
446  // If the function had address-taken blocks that got deleted, then we have
447  // references to the dangling symbols.  Emit them at the start of the function
448  // so that we don't get references to undefined symbols.
449  std::vector<MCSymbol*> DeadBlockSyms;
450  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
451  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
452    OutStreamer.AddComment("Address taken block that was later removed");
453    OutStreamer.EmitLabel(DeadBlockSyms[i]);
454  }
455
456  // Add some workaround for linkonce linkage on Cygwin\MinGW.
457  if (MAI->getLinkOnceDirective() != 0 &&
458      (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
459    // FIXME: What is this?
460    MCSymbol *FakeStub =
461      OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
462                                   CurrentFnSym->getName());
463    OutStreamer.EmitLabel(FakeStub);
464  }
465
466  // Emit pre-function debug and/or EH information.
467  if (DE) {
468    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
469    DE->BeginFunction(MF);
470  }
471  if (DD) {
472    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
473    DD->beginFunction(MF);
474  }
475}
476
477/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
478/// function.  This can be overridden by targets as required to do custom stuff.
479void AsmPrinter::EmitFunctionEntryLabel() {
480  // The function label could have already been emitted if two symbols end up
481  // conflicting due to asm renaming.  Detect this and emit an error.
482  if (CurrentFnSym->isUndefined())
483    return OutStreamer.EmitLabel(CurrentFnSym);
484
485  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
486                     "' label emitted multiple times to assembly file");
487}
488
489/// emitComments - Pretty-print comments for instructions.
490static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
491  const MachineFunction *MF = MI.getParent()->getParent();
492  const TargetMachine &TM = MF->getTarget();
493
494  // Check for spills and reloads
495  int FI;
496
497  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
498
499  // We assume a single instruction only has a spill or reload, not
500  // both.
501  const MachineMemOperand *MMO;
502  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
503    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
504      MMO = *MI.memoperands_begin();
505      CommentOS << MMO->getSize() << "-byte Reload\n";
506    }
507  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
508    if (FrameInfo->isSpillSlotObjectIndex(FI))
509      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
510  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
511    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
512      MMO = *MI.memoperands_begin();
513      CommentOS << MMO->getSize() << "-byte Spill\n";
514    }
515  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
516    if (FrameInfo->isSpillSlotObjectIndex(FI))
517      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
518  }
519
520  // Check for spill-induced copies
521  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
522    CommentOS << " Reload Reuse\n";
523}
524
525/// emitImplicitDef - This method emits the specified machine instruction
526/// that is an implicit def.
527static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
528  unsigned RegNo = MI->getOperand(0).getReg();
529  AP.OutStreamer.AddComment(Twine("implicit-def: ") +
530                            AP.TM.getRegisterInfo()->getName(RegNo));
531  AP.OutStreamer.AddBlankLine();
532}
533
534static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
535  std::string Str = "kill:";
536  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
537    const MachineOperand &Op = MI->getOperand(i);
538    assert(Op.isReg() && "KILL instruction must have only register operands");
539    Str += ' ';
540    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
541    Str += (Op.isDef() ? "<def>" : "<kill>");
542  }
543  AP.OutStreamer.AddComment(Str);
544  AP.OutStreamer.AddBlankLine();
545}
546
547/// emitDebugValueComment - This method handles the target-independent form
548/// of DBG_VALUE, returning true if it was able to do so.  A false return
549/// means the target will need to handle MI in EmitInstruction.
550static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
551  // This code handles only the 3-operand target-independent form.
552  if (MI->getNumOperands() != 3)
553    return false;
554
555  SmallString<128> Str;
556  raw_svector_ostream OS(Str);
557  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
558
559  // cast away const; DIetc do not take const operands for some reason.
560  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
561  if (V.getContext().isSubprogram())
562    OS << DISubprogram(V.getContext()).getDisplayName() << ":";
563  OS << V.getName() << " <- ";
564
565  // Register or immediate value. Register 0 means undef.
566  if (MI->getOperand(0).isFPImm()) {
567    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
568    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
569      OS << (double)APF.convertToFloat();
570    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
571      OS << APF.convertToDouble();
572    } else {
573      // There is no good way to print long double.  Convert a copy to
574      // double.  Ah well, it's only a comment.
575      bool ignored;
576      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
577                  &ignored);
578      OS << "(long double) " << APF.convertToDouble();
579    }
580  } else if (MI->getOperand(0).isImm()) {
581    OS << MI->getOperand(0).getImm();
582  } else if (MI->getOperand(0).isCImm()) {
583    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
584  } else {
585    assert(MI->getOperand(0).isReg() && "Unknown operand type");
586    if (MI->getOperand(0).getReg() == 0) {
587      // Suppress offset, it is not meaningful here.
588      OS << "undef";
589      // NOTE: Want this comment at start of line, don't emit with AddComment.
590      AP.OutStreamer.EmitRawText(OS.str());
591      return true;
592    }
593    OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
594  }
595
596  OS << '+' << MI->getOperand(1).getImm();
597  // NOTE: Want this comment at start of line, don't emit with AddComment.
598  AP.OutStreamer.EmitRawText(OS.str());
599  return true;
600}
601
602AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
603  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
604      MF->getFunction()->needsUnwindTableEntry())
605    return CFI_M_EH;
606
607  if (MMI->hasDebugInfo())
608    return CFI_M_Debug;
609
610  return CFI_M_None;
611}
612
613bool AsmPrinter::needsSEHMoves() {
614  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
615    MF->getFunction()->needsUnwindTableEntry();
616}
617
618bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
619  return MAI->doesDwarfUseRelocationsAcrossSections();
620}
621
622void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
623  MCSymbol *Label = MI.getOperand(0).getMCSymbol();
624
625  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
626    return;
627
628  if (needsCFIMoves() == CFI_M_None)
629    return;
630
631  if (MMI->getCompactUnwindEncoding() != 0)
632    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
633
634  MachineModuleInfo &MMI = MF->getMMI();
635  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
636  bool FoundOne = false;
637  (void)FoundOne;
638  for (std::vector<MachineMove>::iterator I = Moves.begin(),
639         E = Moves.end(); I != E; ++I) {
640    if (I->getLabel() == Label) {
641      EmitCFIFrameMove(*I);
642      FoundOne = true;
643    }
644  }
645  assert(FoundOne);
646}
647
648/// EmitFunctionBody - This method emits the body and trailer for a
649/// function.
650void AsmPrinter::EmitFunctionBody() {
651  // Emit target-specific gunk before the function body.
652  EmitFunctionBodyStart();
653
654  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
655
656  // Print out code for the function.
657  bool HasAnyRealCode = false;
658  const MachineInstr *LastMI = 0;
659  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
660       I != E; ++I) {
661    // Print a label for the basic block.
662    EmitBasicBlockStart(I);
663    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
664         II != IE; ++II) {
665      LastMI = II;
666
667      // Print the assembly for the instruction.
668      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
669          !II->isDebugValue()) {
670        HasAnyRealCode = true;
671        ++EmittedInsts;
672      }
673
674      if (ShouldPrintDebugScopes) {
675        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
676        DD->beginInstruction(II);
677      }
678
679      if (isVerbose())
680        emitComments(*II, OutStreamer.GetCommentOS());
681
682      switch (II->getOpcode()) {
683      case TargetOpcode::PROLOG_LABEL:
684        emitPrologLabel(*II);
685        break;
686
687      case TargetOpcode::EH_LABEL:
688      case TargetOpcode::GC_LABEL:
689        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
690        break;
691      case TargetOpcode::INLINEASM:
692        EmitInlineAsm(II);
693        break;
694      case TargetOpcode::DBG_VALUE:
695        if (isVerbose()) {
696          if (!emitDebugValueComment(II, *this))
697            EmitInstruction(II);
698        }
699        break;
700      case TargetOpcode::IMPLICIT_DEF:
701        if (isVerbose()) emitImplicitDef(II, *this);
702        break;
703      case TargetOpcode::KILL:
704        if (isVerbose()) emitKill(II, *this);
705        break;
706      default:
707        if (!TM.hasMCUseLoc())
708          MCLineEntry::Make(&OutStreamer, getCurrentSection());
709
710        EmitInstruction(II);
711        break;
712      }
713
714      if (ShouldPrintDebugScopes) {
715        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
716        DD->endInstruction(II);
717      }
718    }
719  }
720
721  // If the last instruction was a prolog label, then we have a situation where
722  // we emitted a prolog but no function body. This results in the ending prolog
723  // label equaling the end of function label and an invalid "row" in the
724  // FDE. We need to emit a noop in this situation so that the FDE's rows are
725  // valid.
726  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
727
728  // If the function is empty and the object file uses .subsections_via_symbols,
729  // then we need to emit *something* to the function body to prevent the
730  // labels from collapsing together.  Just emit a noop.
731  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
732    MCInst Noop;
733    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
734    if (Noop.getOpcode()) {
735      OutStreamer.AddComment("avoids zero-length function");
736      OutStreamer.EmitInstruction(Noop);
737    } else  // Target not mc-ized yet.
738      OutStreamer.EmitRawText(StringRef("\tnop\n"));
739  }
740
741  const Function *F = MF->getFunction();
742  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
743    const BasicBlock *BB = i;
744    if (!BB->hasAddressTaken())
745      continue;
746    MCSymbol *Sym = GetBlockAddressSymbol(BB);
747    if (Sym->isDefined())
748      continue;
749    OutStreamer.AddComment("Address of block that was removed by CodeGen");
750    OutStreamer.EmitLabel(Sym);
751  }
752
753  // Emit target-specific gunk after the function body.
754  EmitFunctionBodyEnd();
755
756  // If the target wants a .size directive for the size of the function, emit
757  // it.
758  if (MAI->hasDotTypeDotSizeDirective()) {
759    // Create a symbol for the end of function, so we can get the size as
760    // difference between the function label and the temp label.
761    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
762    OutStreamer.EmitLabel(FnEndLabel);
763
764    const MCExpr *SizeExp =
765      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
766                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
767                                                      OutContext),
768                              OutContext);
769    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
770  }
771
772  // Emit post-function debug information.
773  if (DD) {
774    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
775    DD->endFunction(MF);
776  }
777  if (DE) {
778    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
779    DE->EndFunction();
780  }
781  MMI->EndFunction();
782
783  // Print out jump tables referenced by the function.
784  EmitJumpTableInfo();
785
786  OutStreamer.AddBlankLine();
787}
788
789/// getDebugValueLocation - Get location information encoded by DBG_VALUE
790/// operands.
791MachineLocation AsmPrinter::
792getDebugValueLocation(const MachineInstr *MI) const {
793  // Target specific DBG_VALUE instructions are handled by each target.
794  return MachineLocation();
795}
796
797/// EmitDwarfRegOp - Emit dwarf register operation.
798void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
799  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
800  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
801
802  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
803       ++SR) {
804    Reg = TRI->getDwarfRegNum(*SR, false);
805    // FIXME: Get the bit range this register uses of the superregister
806    // so that we can produce a DW_OP_bit_piece
807  }
808
809  // FIXME: Handle cases like a super register being encoded as
810  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
811
812  // FIXME: We have no reasonable way of handling errors in here. The
813  // caller might be in the middle of an dwarf expression. We should
814  // probably assert that Reg >= 0 once debug info generation is more mature.
815
816  if (int Offset =  MLoc.getOffset()) {
817    if (Reg < 32) {
818      OutStreamer.AddComment(
819        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
820      EmitInt8(dwarf::DW_OP_breg0 + Reg);
821    } else {
822      OutStreamer.AddComment("DW_OP_bregx");
823      EmitInt8(dwarf::DW_OP_bregx);
824      OutStreamer.AddComment(Twine(Reg));
825      EmitULEB128(Reg);
826    }
827    EmitSLEB128(Offset);
828  } else {
829    if (Reg < 32) {
830      OutStreamer.AddComment(
831        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
832      EmitInt8(dwarf::DW_OP_reg0 + Reg);
833    } else {
834      OutStreamer.AddComment("DW_OP_regx");
835      EmitInt8(dwarf::DW_OP_regx);
836      OutStreamer.AddComment(Twine(Reg));
837      EmitULEB128(Reg);
838    }
839  }
840
841  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
842}
843
844bool AsmPrinter::doFinalization(Module &M) {
845  // Emit global variables.
846  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
847       I != E; ++I)
848    EmitGlobalVariable(I);
849
850  // Emit visibility info for declarations
851  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
852    const Function &F = *I;
853    if (!F.isDeclaration())
854      continue;
855    GlobalValue::VisibilityTypes V = F.getVisibility();
856    if (V == GlobalValue::DefaultVisibility)
857      continue;
858
859    MCSymbol *Name = Mang->getSymbol(&F);
860    EmitVisibility(Name, V, false);
861  }
862
863  // Emit module flags.
864  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
865  M.getModuleFlagsMetadata(ModuleFlags);
866  if (!ModuleFlags.empty())
867    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
868
869  // Finalize debug and EH information.
870  if (DE) {
871    {
872      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
873      DE->EndModule();
874    }
875    delete DE; DE = 0;
876  }
877  if (DD) {
878    {
879      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
880      DD->endModule();
881    }
882    delete DD; DD = 0;
883  }
884
885  // If the target wants to know about weak references, print them all.
886  if (MAI->getWeakRefDirective()) {
887    // FIXME: This is not lazy, it would be nice to only print weak references
888    // to stuff that is actually used.  Note that doing so would require targets
889    // to notice uses in operands (due to constant exprs etc).  This should
890    // happen with the MC stuff eventually.
891
892    // Print out module-level global variables here.
893    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
894         I != E; ++I) {
895      if (!I->hasExternalWeakLinkage()) continue;
896      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
897    }
898
899    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
900      if (!I->hasExternalWeakLinkage()) continue;
901      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
902    }
903  }
904
905  if (MAI->hasSetDirective()) {
906    OutStreamer.AddBlankLine();
907    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
908         I != E; ++I) {
909      MCSymbol *Name = Mang->getSymbol(I);
910
911      const GlobalValue *GV = I->getAliasedGlobal();
912      MCSymbol *Target = Mang->getSymbol(GV);
913
914      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
915        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
916      else if (I->hasWeakLinkage())
917        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
918      else
919        assert(I->hasLocalLinkage() && "Invalid alias linkage");
920
921      EmitVisibility(Name, I->getVisibility());
922
923      // Emit the directives as assignments aka .set:
924      OutStreamer.EmitAssignment(Name,
925                                 MCSymbolRefExpr::Create(Target, OutContext));
926    }
927  }
928
929  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
930  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
931  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
932    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
933      MP->finishAssembly(*this);
934
935  // If we don't have any trampolines, then we don't require stack memory
936  // to be executable. Some targets have a directive to declare this.
937  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
938  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
939    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
940      OutStreamer.SwitchSection(S);
941
942  // Allow the target to emit any magic that it wants at the end of the file,
943  // after everything else has gone out.
944  EmitEndOfAsmFile(M);
945
946  delete Mang; Mang = 0;
947  MMI = 0;
948
949  OutStreamer.Finish();
950  OutStreamer.reset();
951
952  return false;
953}
954
955void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
956  this->MF = &MF;
957  // Get the function symbol.
958  CurrentFnSym = Mang->getSymbol(MF.getFunction());
959  CurrentFnSymForSize = CurrentFnSym;
960
961  if (isVerbose())
962    LI = &getAnalysis<MachineLoopInfo>();
963}
964
965namespace {
966  // SectionCPs - Keep track the alignment, constpool entries per Section.
967  struct SectionCPs {
968    const MCSection *S;
969    unsigned Alignment;
970    SmallVector<unsigned, 4> CPEs;
971    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
972  };
973}
974
975/// EmitConstantPool - Print to the current output stream assembly
976/// representations of the constants in the constant pool MCP. This is
977/// used to print out constants which have been "spilled to memory" by
978/// the code generator.
979///
980void AsmPrinter::EmitConstantPool() {
981  const MachineConstantPool *MCP = MF->getConstantPool();
982  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
983  if (CP.empty()) return;
984
985  // Calculate sections for constant pool entries. We collect entries to go into
986  // the same section together to reduce amount of section switch statements.
987  SmallVector<SectionCPs, 4> CPSections;
988  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
989    const MachineConstantPoolEntry &CPE = CP[i];
990    unsigned Align = CPE.getAlignment();
991
992    SectionKind Kind;
993    switch (CPE.getRelocationInfo()) {
994    default: llvm_unreachable("Unknown section kind");
995    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
996    case 1:
997      Kind = SectionKind::getReadOnlyWithRelLocal();
998      break;
999    case 0:
1000    switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
1001    case 4:  Kind = SectionKind::getMergeableConst4(); break;
1002    case 8:  Kind = SectionKind::getMergeableConst8(); break;
1003    case 16: Kind = SectionKind::getMergeableConst16();break;
1004    default: Kind = SectionKind::getMergeableConst(); break;
1005    }
1006    }
1007
1008    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1009
1010    // The number of sections are small, just do a linear search from the
1011    // last section to the first.
1012    bool Found = false;
1013    unsigned SecIdx = CPSections.size();
1014    while (SecIdx != 0) {
1015      if (CPSections[--SecIdx].S == S) {
1016        Found = true;
1017        break;
1018      }
1019    }
1020    if (!Found) {
1021      SecIdx = CPSections.size();
1022      CPSections.push_back(SectionCPs(S, Align));
1023    }
1024
1025    if (Align > CPSections[SecIdx].Alignment)
1026      CPSections[SecIdx].Alignment = Align;
1027    CPSections[SecIdx].CPEs.push_back(i);
1028  }
1029
1030  // Now print stuff into the calculated sections.
1031  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1032    OutStreamer.SwitchSection(CPSections[i].S);
1033    EmitAlignment(Log2_32(CPSections[i].Alignment));
1034
1035    unsigned Offset = 0;
1036    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1037      unsigned CPI = CPSections[i].CPEs[j];
1038      MachineConstantPoolEntry CPE = CP[CPI];
1039
1040      // Emit inter-object padding for alignment.
1041      unsigned AlignMask = CPE.getAlignment() - 1;
1042      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1043      OutStreamer.EmitZeros(NewOffset - Offset);
1044
1045      Type *Ty = CPE.getType();
1046      Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1047      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1048
1049      if (CPE.isMachineConstantPoolEntry())
1050        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1051      else
1052        EmitGlobalConstant(CPE.Val.ConstVal);
1053    }
1054  }
1055}
1056
1057/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1058/// by the current function to the current output stream.
1059///
1060void AsmPrinter::EmitJumpTableInfo() {
1061  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1062  if (MJTI == 0) return;
1063  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1064  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1065  if (JT.empty()) return;
1066
1067  // Pick the directive to use to print the jump table entries, and switch to
1068  // the appropriate section.
1069  const Function *F = MF->getFunction();
1070  bool JTInDiffSection = false;
1071  if (// In PIC mode, we need to emit the jump table to the same section as the
1072      // function body itself, otherwise the label differences won't make sense.
1073      // FIXME: Need a better predicate for this: what about custom entries?
1074      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1075      // We should also do if the section name is NULL or function is declared
1076      // in discardable section
1077      // FIXME: this isn't the right predicate, should be based on the MCSection
1078      // for the function.
1079      F->isWeakForLinker()) {
1080    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1081  } else {
1082    // Otherwise, drop it in the readonly section.
1083    const MCSection *ReadOnlySection =
1084      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1085    OutStreamer.SwitchSection(ReadOnlySection);
1086    JTInDiffSection = true;
1087  }
1088
1089  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1090
1091  // Jump tables in code sections are marked with a data_region directive
1092  // where that's supported.
1093  if (!JTInDiffSection)
1094    OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1095
1096  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1097    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1098
1099    // If this jump table was deleted, ignore it.
1100    if (JTBBs.empty()) continue;
1101
1102    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1103    // .set directive for each unique entry.  This reduces the number of
1104    // relocations the assembler will generate for the jump table.
1105    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1106        MAI->hasSetDirective()) {
1107      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1108      const TargetLowering *TLI = TM.getTargetLowering();
1109      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1110      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1111        const MachineBasicBlock *MBB = JTBBs[ii];
1112        if (!EmittedSets.insert(MBB)) continue;
1113
1114        // .set LJTSet, LBB32-base
1115        const MCExpr *LHS =
1116          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1117        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1118                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1119      }
1120    }
1121
1122    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1123    // before each jump table.  The first label is never referenced, but tells
1124    // the assembler and linker the extents of the jump table object.  The
1125    // second label is actually referenced by the code.
1126    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1127      // FIXME: This doesn't have to have any specific name, just any randomly
1128      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1129      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1130
1131    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1132
1133    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1134      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1135  }
1136  if (!JTInDiffSection)
1137    OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1138}
1139
1140/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1141/// current stream.
1142void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1143                                    const MachineBasicBlock *MBB,
1144                                    unsigned UID) const {
1145  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1146  const MCExpr *Value = 0;
1147  switch (MJTI->getEntryKind()) {
1148  case MachineJumpTableInfo::EK_Inline:
1149    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1150  case MachineJumpTableInfo::EK_Custom32:
1151    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1152                                                              OutContext);
1153    break;
1154  case MachineJumpTableInfo::EK_BlockAddress:
1155    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1156    //     .word LBB123
1157    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1158    break;
1159  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1160    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1161    // with a relocation as gp-relative, e.g.:
1162    //     .gprel32 LBB123
1163    MCSymbol *MBBSym = MBB->getSymbol();
1164    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1165    return;
1166  }
1167
1168  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1169    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1170    // with a relocation as gp-relative, e.g.:
1171    //     .gpdword LBB123
1172    MCSymbol *MBBSym = MBB->getSymbol();
1173    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1174    return;
1175  }
1176
1177  case MachineJumpTableInfo::EK_LabelDifference32: {
1178    // EK_LabelDifference32 - Each entry is the address of the block minus
1179    // the address of the jump table.  This is used for PIC jump tables where
1180    // gprel32 is not supported.  e.g.:
1181    //      .word LBB123 - LJTI1_2
1182    // If the .set directive is supported, this is emitted as:
1183    //      .set L4_5_set_123, LBB123 - LJTI1_2
1184    //      .word L4_5_set_123
1185
1186    // If we have emitted set directives for the jump table entries, print
1187    // them rather than the entries themselves.  If we're emitting PIC, then
1188    // emit the table entries as differences between two text section labels.
1189    if (MAI->hasSetDirective()) {
1190      // If we used .set, reference the .set's symbol.
1191      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1192                                      OutContext);
1193      break;
1194    }
1195    // Otherwise, use the difference as the jump table entry.
1196    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1197    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1198    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1199    break;
1200  }
1201  }
1202
1203  assert(Value && "Unknown entry kind!");
1204
1205  unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1206  OutStreamer.EmitValue(Value, EntrySize);
1207}
1208
1209
1210/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1211/// special global used by LLVM.  If so, emit it and return true, otherwise
1212/// do nothing and return false.
1213bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1214  if (GV->getName() == "llvm.used") {
1215    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1216      EmitLLVMUsedList(GV->getInitializer());
1217    return true;
1218  }
1219
1220  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1221  if (GV->getSection() == "llvm.metadata" ||
1222      GV->hasAvailableExternallyLinkage())
1223    return true;
1224
1225  if (!GV->hasAppendingLinkage()) return false;
1226
1227  assert(GV->hasInitializer() && "Not a special LLVM global!");
1228
1229  if (GV->getName() == "llvm.global_ctors") {
1230    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1231
1232    if (TM.getRelocationModel() == Reloc::Static &&
1233        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1234      StringRef Sym(".constructors_used");
1235      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1236                                      MCSA_Reference);
1237    }
1238    return true;
1239  }
1240
1241  if (GV->getName() == "llvm.global_dtors") {
1242    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1243
1244    if (TM.getRelocationModel() == Reloc::Static &&
1245        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1246      StringRef Sym(".destructors_used");
1247      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1248                                      MCSA_Reference);
1249    }
1250    return true;
1251  }
1252
1253  return false;
1254}
1255
1256/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1257/// global in the specified llvm.used list for which emitUsedDirectiveFor
1258/// is true, as being used with this directive.
1259void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1260  // Should be an array of 'i8*'.
1261  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1262  if (InitList == 0) return;
1263
1264  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1265    const GlobalValue *GV =
1266      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1267    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1268      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1269  }
1270}
1271
1272typedef std::pair<unsigned, Constant*> Structor;
1273
1274static bool priority_order(const Structor& lhs, const Structor& rhs) {
1275  return lhs.first < rhs.first;
1276}
1277
1278/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1279/// priority.
1280void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1281  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1282  // init priority.
1283  if (!isa<ConstantArray>(List)) return;
1284
1285  // Sanity check the structors list.
1286  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1287  if (!InitList) return; // Not an array!
1288  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1289  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1290  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1291      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1292
1293  // Gather the structors in a form that's convenient for sorting by priority.
1294  SmallVector<Structor, 8> Structors;
1295  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1296    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1297    if (!CS) continue; // Malformed.
1298    if (CS->getOperand(1)->isNullValue())
1299      break;  // Found a null terminator, skip the rest.
1300    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1301    if (!Priority) continue; // Malformed.
1302    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1303                                       CS->getOperand(1)));
1304  }
1305
1306  // Emit the function pointers in the target-specific order
1307  const DataLayout *TD = TM.getDataLayout();
1308  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1309  std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1310  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1311    const MCSection *OutputSection =
1312      (isCtor ?
1313       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1314       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1315    OutStreamer.SwitchSection(OutputSection);
1316    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1317      EmitAlignment(Align);
1318    EmitXXStructor(Structors[i].second);
1319  }
1320}
1321
1322//===--------------------------------------------------------------------===//
1323// Emission and print routines
1324//
1325
1326/// EmitInt8 - Emit a byte directive and value.
1327///
1328void AsmPrinter::EmitInt8(int Value) const {
1329  OutStreamer.EmitIntValue(Value, 1);
1330}
1331
1332/// EmitInt16 - Emit a short directive and value.
1333///
1334void AsmPrinter::EmitInt16(int Value) const {
1335  OutStreamer.EmitIntValue(Value, 2);
1336}
1337
1338/// EmitInt32 - Emit a long directive and value.
1339///
1340void AsmPrinter::EmitInt32(int Value) const {
1341  OutStreamer.EmitIntValue(Value, 4);
1342}
1343
1344/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1345/// in bytes of the directive is specified by Size and Hi/Lo specify the
1346/// labels.  This implicitly uses .set if it is available.
1347void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1348                                     unsigned Size) const {
1349  // Get the Hi-Lo expression.
1350  const MCExpr *Diff =
1351    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1352                            MCSymbolRefExpr::Create(Lo, OutContext),
1353                            OutContext);
1354
1355  if (!MAI->hasSetDirective()) {
1356    OutStreamer.EmitValue(Diff, Size);
1357    return;
1358  }
1359
1360  // Otherwise, emit with .set (aka assignment).
1361  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1362  OutStreamer.EmitAssignment(SetLabel, Diff);
1363  OutStreamer.EmitSymbolValue(SetLabel, Size);
1364}
1365
1366/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1367/// where the size in bytes of the directive is specified by Size and Hi/Lo
1368/// specify the labels.  This implicitly uses .set if it is available.
1369void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1370                                           const MCSymbol *Lo, unsigned Size)
1371  const {
1372
1373  // Emit Hi+Offset - Lo
1374  // Get the Hi+Offset expression.
1375  const MCExpr *Plus =
1376    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1377                            MCConstantExpr::Create(Offset, OutContext),
1378                            OutContext);
1379
1380  // Get the Hi+Offset-Lo expression.
1381  const MCExpr *Diff =
1382    MCBinaryExpr::CreateSub(Plus,
1383                            MCSymbolRefExpr::Create(Lo, OutContext),
1384                            OutContext);
1385
1386  if (!MAI->hasSetDirective())
1387    OutStreamer.EmitValue(Diff, 4);
1388  else {
1389    // Otherwise, emit with .set (aka assignment).
1390    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1391    OutStreamer.EmitAssignment(SetLabel, Diff);
1392    OutStreamer.EmitSymbolValue(SetLabel, 4);
1393  }
1394}
1395
1396/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1397/// where the size in bytes of the directive is specified by Size and Label
1398/// specifies the label.  This implicitly uses .set if it is available.
1399void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1400                                      unsigned Size)
1401  const {
1402
1403  // Emit Label+Offset (or just Label if Offset is zero)
1404  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1405  if (Offset)
1406    Expr = MCBinaryExpr::CreateAdd(Expr,
1407                                   MCConstantExpr::Create(Offset, OutContext),
1408                                   OutContext);
1409
1410  OutStreamer.EmitValue(Expr, Size);
1411}
1412
1413
1414//===----------------------------------------------------------------------===//
1415
1416// EmitAlignment - Emit an alignment directive to the specified power of
1417// two boundary.  For example, if you pass in 3 here, you will get an 8
1418// byte alignment.  If a global value is specified, and if that global has
1419// an explicit alignment requested, it will override the alignment request
1420// if required for correctness.
1421//
1422void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1423  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1424
1425  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1426
1427  if (getCurrentSection()->getKind().isText())
1428    OutStreamer.EmitCodeAlignment(1 << NumBits);
1429  else
1430    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1431}
1432
1433//===----------------------------------------------------------------------===//
1434// Constant emission.
1435//===----------------------------------------------------------------------===//
1436
1437/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1438///
1439static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1440  MCContext &Ctx = AP.OutContext;
1441
1442  if (CV->isNullValue() || isa<UndefValue>(CV))
1443    return MCConstantExpr::Create(0, Ctx);
1444
1445  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1446    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1447
1448  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1449    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1450
1451  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1452    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1453
1454  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1455  if (CE == 0) {
1456    llvm_unreachable("Unknown constant value to lower!");
1457  }
1458
1459  switch (CE->getOpcode()) {
1460  default:
1461    // If the code isn't optimized, there may be outstanding folding
1462    // opportunities. Attempt to fold the expression using DataLayout as a
1463    // last resort before giving up.
1464    if (Constant *C =
1465          ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1466      if (C != CE)
1467        return lowerConstant(C, AP);
1468
1469    // Otherwise report the problem to the user.
1470    {
1471      std::string S;
1472      raw_string_ostream OS(S);
1473      OS << "Unsupported expression in static initializer: ";
1474      WriteAsOperand(OS, CE, /*PrintType=*/false,
1475                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1476      report_fatal_error(OS.str());
1477    }
1478  case Instruction::GetElementPtr: {
1479    const DataLayout &TD = *AP.TM.getDataLayout();
1480    // Generate a symbolic expression for the byte address
1481    APInt OffsetAI(TD.getPointerSizeInBits(), 0);
1482    cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
1483
1484    const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1485    if (!OffsetAI)
1486      return Base;
1487
1488    int64_t Offset = OffsetAI.getSExtValue();
1489    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1490                                   Ctx);
1491  }
1492
1493  case Instruction::Trunc:
1494    // We emit the value and depend on the assembler to truncate the generated
1495    // expression properly.  This is important for differences between
1496    // blockaddress labels.  Since the two labels are in the same function, it
1497    // is reasonable to treat their delta as a 32-bit value.
1498    // FALL THROUGH.
1499  case Instruction::BitCast:
1500    return lowerConstant(CE->getOperand(0), AP);
1501
1502  case Instruction::IntToPtr: {
1503    const DataLayout &TD = *AP.TM.getDataLayout();
1504    // Handle casts to pointers by changing them into casts to the appropriate
1505    // integer type.  This promotes constant folding and simplifies this code.
1506    Constant *Op = CE->getOperand(0);
1507    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1508                                      false/*ZExt*/);
1509    return lowerConstant(Op, AP);
1510  }
1511
1512  case Instruction::PtrToInt: {
1513    const DataLayout &TD = *AP.TM.getDataLayout();
1514    // Support only foldable casts to/from pointers that can be eliminated by
1515    // changing the pointer to the appropriately sized integer type.
1516    Constant *Op = CE->getOperand(0);
1517    Type *Ty = CE->getType();
1518
1519    const MCExpr *OpExpr = lowerConstant(Op, AP);
1520
1521    // We can emit the pointer value into this slot if the slot is an
1522    // integer slot equal to the size of the pointer.
1523    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1524      return OpExpr;
1525
1526    // Otherwise the pointer is smaller than the resultant integer, mask off
1527    // the high bits so we are sure to get a proper truncation if the input is
1528    // a constant expr.
1529    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1530    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1531    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1532  }
1533
1534  // The MC library also has a right-shift operator, but it isn't consistently
1535  // signed or unsigned between different targets.
1536  case Instruction::Add:
1537  case Instruction::Sub:
1538  case Instruction::Mul:
1539  case Instruction::SDiv:
1540  case Instruction::SRem:
1541  case Instruction::Shl:
1542  case Instruction::And:
1543  case Instruction::Or:
1544  case Instruction::Xor: {
1545    const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1546    const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1547    switch (CE->getOpcode()) {
1548    default: llvm_unreachable("Unknown binary operator constant cast expr");
1549    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1550    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1551    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1552    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1553    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1554    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1555    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1556    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1557    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1558    }
1559  }
1560  }
1561}
1562
1563static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1564                                   AsmPrinter &AP);
1565
1566/// isRepeatedByteSequence - Determine whether the given value is
1567/// composed of a repeated sequence of identical bytes and return the
1568/// byte value.  If it is not a repeated sequence, return -1.
1569static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1570  StringRef Data = V->getRawDataValues();
1571  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1572  char C = Data[0];
1573  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1574    if (Data[i] != C) return -1;
1575  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1576}
1577
1578
1579/// isRepeatedByteSequence - Determine whether the given value is
1580/// composed of a repeated sequence of identical bytes and return the
1581/// byte value.  If it is not a repeated sequence, return -1.
1582static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1583
1584  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1585    if (CI->getBitWidth() > 64) return -1;
1586
1587    uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1588    uint64_t Value = CI->getZExtValue();
1589
1590    // Make sure the constant is at least 8 bits long and has a power
1591    // of 2 bit width.  This guarantees the constant bit width is
1592    // always a multiple of 8 bits, avoiding issues with padding out
1593    // to Size and other such corner cases.
1594    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1595
1596    uint8_t Byte = static_cast<uint8_t>(Value);
1597
1598    for (unsigned i = 1; i < Size; ++i) {
1599      Value >>= 8;
1600      if (static_cast<uint8_t>(Value) != Byte) return -1;
1601    }
1602    return Byte;
1603  }
1604  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1605    // Make sure all array elements are sequences of the same repeated
1606    // byte.
1607    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1608    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1609    if (Byte == -1) return -1;
1610
1611    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1612      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1613      if (ThisByte == -1) return -1;
1614      if (Byte != ThisByte) return -1;
1615    }
1616    return Byte;
1617  }
1618
1619  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1620    return isRepeatedByteSequence(CDS);
1621
1622  return -1;
1623}
1624
1625static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1626                                             unsigned AddrSpace,AsmPrinter &AP){
1627
1628  // See if we can aggregate this into a .fill, if so, emit it as such.
1629  int Value = isRepeatedByteSequence(CDS, AP.TM);
1630  if (Value != -1) {
1631    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1632    // Don't emit a 1-byte object as a .fill.
1633    if (Bytes > 1)
1634      return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1635  }
1636
1637  // If this can be emitted with .ascii/.asciz, emit it as such.
1638  if (CDS->isString())
1639    return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1640
1641  // Otherwise, emit the values in successive locations.
1642  unsigned ElementByteSize = CDS->getElementByteSize();
1643  if (isa<IntegerType>(CDS->getElementType())) {
1644    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1645      if (AP.isVerbose())
1646        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1647                                                CDS->getElementAsInteger(i));
1648      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1649                                  ElementByteSize, AddrSpace);
1650    }
1651  } else if (ElementByteSize == 4) {
1652    // FP Constants are printed as integer constants to avoid losing
1653    // precision.
1654    assert(CDS->getElementType()->isFloatTy());
1655    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1656      union {
1657        float F;
1658        uint32_t I;
1659      };
1660
1661      F = CDS->getElementAsFloat(i);
1662      if (AP.isVerbose())
1663        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1664      AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1665    }
1666  } else {
1667    assert(CDS->getElementType()->isDoubleTy());
1668    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1669      union {
1670        double F;
1671        uint64_t I;
1672      };
1673
1674      F = CDS->getElementAsDouble(i);
1675      if (AP.isVerbose())
1676        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1677      AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1678    }
1679  }
1680
1681  const DataLayout &TD = *AP.TM.getDataLayout();
1682  unsigned Size = TD.getTypeAllocSize(CDS->getType());
1683  unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1684                        CDS->getNumElements();
1685  if (unsigned Padding = Size - EmittedSize)
1686    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1687
1688}
1689
1690static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1691                                    AsmPrinter &AP) {
1692  // See if we can aggregate some values.  Make sure it can be
1693  // represented as a series of bytes of the constant value.
1694  int Value = isRepeatedByteSequence(CA, AP.TM);
1695
1696  if (Value != -1) {
1697    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1698    AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1699  }
1700  else {
1701    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1702      emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1703  }
1704}
1705
1706static void emitGlobalConstantVector(const ConstantVector *CV,
1707                                     unsigned AddrSpace, AsmPrinter &AP) {
1708  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1709    emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1710
1711  const DataLayout &TD = *AP.TM.getDataLayout();
1712  unsigned Size = TD.getTypeAllocSize(CV->getType());
1713  unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1714                         CV->getType()->getNumElements();
1715  if (unsigned Padding = Size - EmittedSize)
1716    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1717}
1718
1719static void emitGlobalConstantStruct(const ConstantStruct *CS,
1720                                     unsigned AddrSpace, AsmPrinter &AP) {
1721  // Print the fields in successive locations. Pad to align if needed!
1722  const DataLayout *TD = AP.TM.getDataLayout();
1723  unsigned Size = TD->getTypeAllocSize(CS->getType());
1724  const StructLayout *Layout = TD->getStructLayout(CS->getType());
1725  uint64_t SizeSoFar = 0;
1726  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1727    const Constant *Field = CS->getOperand(i);
1728
1729    // Check if padding is needed and insert one or more 0s.
1730    uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1731    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1732                        - Layout->getElementOffset(i)) - FieldSize;
1733    SizeSoFar += FieldSize + PadSize;
1734
1735    // Now print the actual field value.
1736    emitGlobalConstantImpl(Field, AddrSpace, AP);
1737
1738    // Insert padding - this may include padding to increase the size of the
1739    // current field up to the ABI size (if the struct is not packed) as well
1740    // as padding to ensure that the next field starts at the right offset.
1741    AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1742  }
1743  assert(SizeSoFar == Layout->getSizeInBytes() &&
1744         "Layout of constant struct may be incorrect!");
1745}
1746
1747static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1748                                 AsmPrinter &AP) {
1749  APInt API = CFP->getValueAPF().bitcastToAPInt();
1750
1751  // First print a comment with what we think the original floating-point value
1752  // should have been.
1753  if (AP.isVerbose()) {
1754    SmallString<8> StrVal;
1755    CFP->getValueAPF().toString(StrVal);
1756
1757    CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1758    AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1759  }
1760
1761  // Now iterate through the APInt chunks, emitting them in endian-correct
1762  // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1763  // floats).
1764  unsigned NumBytes = API.getBitWidth() / 8;
1765  unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1766  const uint64_t *p = API.getRawData();
1767
1768  // PPC's long double has odd notions of endianness compared to how LLVM
1769  // handles it: p[0] goes first for *big* endian on PPC.
1770  if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
1771    int Chunk = API.getNumWords() - 1;
1772
1773    if (TrailingBytes)
1774      AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes, AddrSpace);
1775
1776    for (; Chunk >= 0; --Chunk)
1777      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace);
1778  } else {
1779    unsigned Chunk;
1780    for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
1781      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace);
1782
1783    if (TrailingBytes)
1784      AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes, AddrSpace);
1785  }
1786
1787  // Emit the tail padding for the long double.
1788  const DataLayout &TD = *AP.TM.getDataLayout();
1789  AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1790                           TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1791}
1792
1793static void emitGlobalConstantLargeInt(const ConstantInt *CI,
1794                                       unsigned AddrSpace, AsmPrinter &AP) {
1795  const DataLayout *TD = AP.TM.getDataLayout();
1796  unsigned BitWidth = CI->getBitWidth();
1797  assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1798
1799  // We don't expect assemblers to support integer data directives
1800  // for more than 64 bits, so we emit the data in at most 64-bit
1801  // quantities at a time.
1802  const uint64_t *RawData = CI->getValue().getRawData();
1803  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1804    uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1805    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1806  }
1807}
1808
1809static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1810                                   AsmPrinter &AP) {
1811  const DataLayout *TD = AP.TM.getDataLayout();
1812  uint64_t Size = TD->getTypeAllocSize(CV->getType());
1813  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1814    return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1815
1816  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1817    switch (Size) {
1818    case 1:
1819    case 2:
1820    case 4:
1821    case 8:
1822      if (AP.isVerbose())
1823        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1824                                                CI->getZExtValue());
1825      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1826      return;
1827    default:
1828      emitGlobalConstantLargeInt(CI, AddrSpace, AP);
1829      return;
1830    }
1831  }
1832
1833  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1834    return emitGlobalConstantFP(CFP, AddrSpace, AP);
1835
1836  if (isa<ConstantPointerNull>(CV)) {
1837    AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1838    return;
1839  }
1840
1841  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1842    return emitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1843
1844  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1845    return emitGlobalConstantArray(CVA, AddrSpace, AP);
1846
1847  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1848    return emitGlobalConstantStruct(CVS, AddrSpace, AP);
1849
1850  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1851    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1852    // vectors).
1853    if (CE->getOpcode() == Instruction::BitCast)
1854      return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1855
1856    if (Size > 8) {
1857      // If the constant expression's size is greater than 64-bits, then we have
1858      // to emit the value in chunks. Try to constant fold the value and emit it
1859      // that way.
1860      Constant *New = ConstantFoldConstantExpression(CE, TD);
1861      if (New && New != CE)
1862        return emitGlobalConstantImpl(New, AddrSpace, AP);
1863    }
1864  }
1865
1866  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1867    return emitGlobalConstantVector(V, AddrSpace, AP);
1868
1869  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1870  // thread the streamer with EmitValue.
1871  AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace);
1872}
1873
1874/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1875void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1876  uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
1877  if (Size)
1878    emitGlobalConstantImpl(CV, AddrSpace, *this);
1879  else if (MAI->hasSubsectionsViaSymbols()) {
1880    // If the global has zero size, emit a single byte so that two labels don't
1881    // look like they are at the same location.
1882    OutStreamer.EmitIntValue(0, 1, AddrSpace);
1883  }
1884}
1885
1886void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1887  // Target doesn't support this yet!
1888  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1889}
1890
1891void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1892  if (Offset > 0)
1893    OS << '+' << Offset;
1894  else if (Offset < 0)
1895    OS << Offset;
1896}
1897
1898//===----------------------------------------------------------------------===//
1899// Symbol Lowering Routines.
1900//===----------------------------------------------------------------------===//
1901
1902/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1903/// temporary label with the specified stem and unique ID.
1904MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1905  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1906                                      Name + Twine(ID));
1907}
1908
1909/// GetTempSymbol - Return an assembler temporary label with the specified
1910/// stem.
1911MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1912  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1913                                      Name);
1914}
1915
1916
1917MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1918  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1919}
1920
1921MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1922  return MMI->getAddrLabelSymbol(BB);
1923}
1924
1925/// GetCPISymbol - Return the symbol for the specified constant pool entry.
1926MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1927  return OutContext.GetOrCreateSymbol
1928    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1929     + "_" + Twine(CPID));
1930}
1931
1932/// GetJTISymbol - Return the symbol for the specified jump table entry.
1933MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1934  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1935}
1936
1937/// GetJTSetSymbol - Return the symbol for the specified jump table .set
1938/// FIXME: privatize to AsmPrinter.
1939MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1940  return OutContext.GetOrCreateSymbol
1941  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1942   Twine(UID) + "_set_" + Twine(MBBID));
1943}
1944
1945/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1946/// global value name as its base, with the specified suffix, and where the
1947/// symbol is forced to have private linkage if ForcePrivate is true.
1948MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1949                                                   StringRef Suffix,
1950                                                   bool ForcePrivate) const {
1951  SmallString<60> NameStr;
1952  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1953  NameStr.append(Suffix.begin(), Suffix.end());
1954  return OutContext.GetOrCreateSymbol(NameStr.str());
1955}
1956
1957/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1958/// ExternalSymbol.
1959MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1960  SmallString<60> NameStr;
1961  Mang->getNameWithPrefix(NameStr, Sym);
1962  return OutContext.GetOrCreateSymbol(NameStr.str());
1963}
1964
1965
1966
1967/// PrintParentLoopComment - Print comments about parent loops of this one.
1968static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
1969                                   unsigned FunctionNumber) {
1970  if (Loop == 0) return;
1971  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
1972  OS.indent(Loop->getLoopDepth()*2)
1973    << "Parent Loop BB" << FunctionNumber << "_"
1974    << Loop->getHeader()->getNumber()
1975    << " Depth=" << Loop->getLoopDepth() << '\n';
1976}
1977
1978
1979/// PrintChildLoopComment - Print comments about child loops within
1980/// the loop for this basic block, with nesting.
1981static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
1982                                  unsigned FunctionNumber) {
1983  // Add child loop information
1984  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
1985    OS.indent((*CL)->getLoopDepth()*2)
1986      << "Child Loop BB" << FunctionNumber << "_"
1987      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
1988      << '\n';
1989    PrintChildLoopComment(OS, *CL, FunctionNumber);
1990  }
1991}
1992
1993/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
1994static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
1995                                       const MachineLoopInfo *LI,
1996                                       const AsmPrinter &AP) {
1997  // Add loop depth information
1998  const MachineLoop *Loop = LI->getLoopFor(&MBB);
1999  if (Loop == 0) return;
2000
2001  MachineBasicBlock *Header = Loop->getHeader();
2002  assert(Header && "No header for loop");
2003
2004  // If this block is not a loop header, just print out what is the loop header
2005  // and return.
2006  if (Header != &MBB) {
2007    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2008                              Twine(AP.getFunctionNumber())+"_" +
2009                              Twine(Loop->getHeader()->getNumber())+
2010                              " Depth="+Twine(Loop->getLoopDepth()));
2011    return;
2012  }
2013
2014  // Otherwise, it is a loop header.  Print out information about child and
2015  // parent loops.
2016  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2017
2018  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2019
2020  OS << "=>";
2021  OS.indent(Loop->getLoopDepth()*2-2);
2022
2023  OS << "This ";
2024  if (Loop->empty())
2025    OS << "Inner ";
2026  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2027
2028  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2029}
2030
2031
2032/// EmitBasicBlockStart - This method prints the label for the specified
2033/// MachineBasicBlock, an alignment (if present) and a comment describing
2034/// it if appropriate.
2035void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2036  // Emit an alignment directive for this block, if needed.
2037  if (unsigned Align = MBB->getAlignment())
2038    EmitAlignment(Align);
2039
2040  // If the block has its address taken, emit any labels that were used to
2041  // reference the block.  It is possible that there is more than one label
2042  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2043  // the references were generated.
2044  if (MBB->hasAddressTaken()) {
2045    const BasicBlock *BB = MBB->getBasicBlock();
2046    if (isVerbose())
2047      OutStreamer.AddComment("Block address taken");
2048
2049    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2050
2051    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2052      OutStreamer.EmitLabel(Syms[i]);
2053  }
2054
2055  // Print some verbose block comments.
2056  if (isVerbose()) {
2057    if (const BasicBlock *BB = MBB->getBasicBlock())
2058      if (BB->hasName())
2059        OutStreamer.AddComment("%" + BB->getName());
2060    emitBasicBlockLoopComments(*MBB, LI, *this);
2061  }
2062
2063  // Print the main label for the block.
2064  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2065    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2066      // NOTE: Want this comment at start of line, don't emit with AddComment.
2067      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2068                              Twine(MBB->getNumber()) + ":");
2069    }
2070  } else {
2071    OutStreamer.EmitLabel(MBB->getSymbol());
2072  }
2073}
2074
2075void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2076                                bool IsDefinition) const {
2077  MCSymbolAttr Attr = MCSA_Invalid;
2078
2079  switch (Visibility) {
2080  default: break;
2081  case GlobalValue::HiddenVisibility:
2082    if (IsDefinition)
2083      Attr = MAI->getHiddenVisibilityAttr();
2084    else
2085      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2086    break;
2087  case GlobalValue::ProtectedVisibility:
2088    Attr = MAI->getProtectedVisibilityAttr();
2089    break;
2090  }
2091
2092  if (Attr != MCSA_Invalid)
2093    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2094}
2095
2096/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2097/// exactly one predecessor and the control transfer mechanism between
2098/// the predecessor and this block is a fall-through.
2099bool AsmPrinter::
2100isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2101  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2102  // then nothing falls through to it.
2103  if (MBB->isLandingPad() || MBB->pred_empty())
2104    return false;
2105
2106  // If there isn't exactly one predecessor, it can't be a fall through.
2107  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2108  ++PI2;
2109  if (PI2 != MBB->pred_end())
2110    return false;
2111
2112  // The predecessor has to be immediately before this block.
2113  MachineBasicBlock *Pred = *PI;
2114
2115  if (!Pred->isLayoutSuccessor(MBB))
2116    return false;
2117
2118  // If the block is completely empty, then it definitely does fall through.
2119  if (Pred->empty())
2120    return true;
2121
2122  // Check the terminators in the previous blocks
2123  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2124         IE = Pred->end(); II != IE; ++II) {
2125    MachineInstr &MI = *II;
2126
2127    // If it is not a simple branch, we are in a table somewhere.
2128    if (!MI.isBranch() || MI.isIndirectBranch())
2129      return false;
2130
2131    // If we are the operands of one of the branches, this is not
2132    // a fall through.
2133    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2134           OE = MI.operands_end(); OI != OE; ++OI) {
2135      const MachineOperand& OP = *OI;
2136      if (OP.isJTI())
2137        return false;
2138      if (OP.isMBB() && OP.getMBB() == MBB)
2139        return false;
2140    }
2141  }
2142
2143  return true;
2144}
2145
2146
2147
2148GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2149  if (!S->usesMetadata())
2150    return 0;
2151
2152  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2153  gcp_map_type::iterator GCPI = GCMap.find(S);
2154  if (GCPI != GCMap.end())
2155    return GCPI->second;
2156
2157  const char *Name = S->getName().c_str();
2158
2159  for (GCMetadataPrinterRegistry::iterator
2160         I = GCMetadataPrinterRegistry::begin(),
2161         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2162    if (strcmp(Name, I->getName()) == 0) {
2163      GCMetadataPrinter *GMP = I->instantiate();
2164      GMP->S = S;
2165      GCMap.insert(std::make_pair(S, GMP));
2166      return GMP;
2167    }
2168
2169  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2170}
2171