AsmPrinter.cpp revision e03513b6e418341df9f2c18559c3e3557ac9b695
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/DwarfWriter.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/MC/MCInst.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/FormattedStream.h"
29#include "llvm/Support/Mangler.h"
30#include "llvm/Target/TargetAsmInfo.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Target/TargetLowering.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringExtras.h"
38#include <cerrno>
39using namespace llvm;
40
41static cl::opt<cl::boolOrDefault>
42AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
43           cl::init(cl::BOU_UNSET));
44
45char AsmPrinter::ID = 0;
46AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
47                       const TargetAsmInfo *T, bool VDef)
48  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
49    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
50    IsInTextSection(false), LastMI(0), LastFn(0), Counter(~0U),
51    PrevDLT(0, ~0U, ~0U) {
52  DW = 0; MMI = 0;
53  switch (AsmVerbose) {
54  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
55  case cl::BOU_TRUE:  VerboseAsm = true;  break;
56  case cl::BOU_FALSE: VerboseAsm = false; break;
57  }
58}
59
60AsmPrinter::~AsmPrinter() {
61  for (gcp_iterator I = GCMetadataPrinters.begin(),
62                    E = GCMetadataPrinters.end(); I != E; ++I)
63    delete I->second;
64}
65
66/// SwitchToTextSection - Switch to the specified text section of the executable
67/// if we are not already in it!
68///
69void AsmPrinter::SwitchToTextSection(const char *NewSection,
70                                     const GlobalValue *GV) {
71  std::string NS;
72  if (GV && GV->hasSection())
73    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
74  else
75    NS = NewSection;
76
77  // If we're already in this section, we're done.
78  if (CurrentSection == NS) return;
79
80  // Close the current section, if applicable.
81  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
82    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
83
84  CurrentSection = NS;
85
86  if (!CurrentSection.empty())
87    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
88
89  IsInTextSection = true;
90}
91
92/// SwitchToDataSection - Switch to the specified data section of the executable
93/// if we are not already in it!
94///
95void AsmPrinter::SwitchToDataSection(const char *NewSection,
96                                     const GlobalValue *GV) {
97  std::string NS;
98  if (GV && GV->hasSection())
99    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
100  else
101    NS = NewSection;
102
103  // If we're already in this section, we're done.
104  if (CurrentSection == NS) return;
105
106  // Close the current section, if applicable.
107  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
108    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
109
110  CurrentSection = NS;
111
112  if (!CurrentSection.empty())
113    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
114
115  IsInTextSection = false;
116}
117
118/// SwitchToSection - Switch to the specified section of the executable if we
119/// are not already in it!
120void AsmPrinter::SwitchToSection(const Section* NS) {
121  const std::string& NewSection = NS->getName();
122
123  // If we're already in this section, we're done.
124  if (CurrentSection == NewSection) return;
125
126  // Close the current section, if applicable.
127  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
128    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
129
130  // FIXME: Make CurrentSection a Section* in the future
131  CurrentSection = NewSection;
132  CurrentSection_ = NS;
133
134  if (!CurrentSection.empty()) {
135    // If section is named we need to switch into it via special '.section'
136    // directive and also append funky flags. Otherwise - section name is just
137    // some magic assembler directive.
138    if (NS->hasFlag(SectionFlags::Named))
139      O << TAI->getSwitchToSectionDirective()
140        << CurrentSection
141        << TAI->getSectionFlags(NS->getFlags());
142    else
143      O << CurrentSection;
144    O << TAI->getDataSectionStartSuffix() << '\n';
145  }
146
147  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
148}
149
150void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
151  MachineFunctionPass::getAnalysisUsage(AU);
152  AU.addRequired<GCModuleInfo>();
153}
154
155bool AsmPrinter::doInitialization(Module &M) {
156  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(),
157                     TAI->getLinkerPrivateGlobalPrefix());
158
159  if (TAI->doesAllowQuotesInName())
160    Mang->setUseQuotes(true);
161
162  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
163  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
164
165  if (TAI->hasSingleParameterDotFile()) {
166    /* Very minimal debug info. It is ignored if we emit actual
167       debug info. If we don't, this at helps the user find where
168       a function came from. */
169    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
170  }
171
172  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
173    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
174      MP->beginAssembly(O, *this, *TAI);
175
176  if (!M.getModuleInlineAsm().empty())
177    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
178      << M.getModuleInlineAsm()
179      << '\n' << TAI->getCommentString()
180      << " End of file scope inline assembly\n";
181
182  SwitchToDataSection("");   // Reset back to no section.
183
184  if (TAI->doesSupportDebugInformation() ||
185      TAI->doesSupportExceptionHandling()) {
186    MMI = getAnalysisIfAvailable<MachineModuleInfo>();
187    if (MMI)
188      MMI->AnalyzeModule(M);
189    DW = getAnalysisIfAvailable<DwarfWriter>();
190    if (DW)
191      DW->BeginModule(&M, MMI, O, this, TAI);
192  }
193
194  return false;
195}
196
197bool AsmPrinter::doFinalization(Module &M) {
198  // Emit global variables.
199  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
200       I != E; ++I)
201    PrintGlobalVariable(I);
202
203  // Emit final debug information.
204  if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
205    DW->EndModule();
206
207  // If the target wants to know about weak references, print them all.
208  if (TAI->getWeakRefDirective()) {
209    // FIXME: This is not lazy, it would be nice to only print weak references
210    // to stuff that is actually used.  Note that doing so would require targets
211    // to notice uses in operands (due to constant exprs etc).  This should
212    // happen with the MC stuff eventually.
213    SwitchToDataSection("");
214
215    // Print out module-level global variables here.
216    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
217         I != E; ++I) {
218      if (I->hasExternalWeakLinkage())
219        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
220    }
221
222    for (Module::const_iterator I = M.begin(), E = M.end();
223         I != E; ++I) {
224      if (I->hasExternalWeakLinkage())
225        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
226    }
227  }
228
229  if (TAI->getSetDirective()) {
230    if (!M.alias_empty())
231      SwitchToSection(TAI->getTextSection());
232
233    O << '\n';
234    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
235         I != E; ++I) {
236      std::string Name = Mang->getMangledName(I);
237
238      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
239      std::string Target = Mang->getMangledName(GV);
240
241      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
242        O << "\t.globl\t" << Name << '\n';
243      else if (I->hasWeakLinkage())
244        O << TAI->getWeakRefDirective() << Name << '\n';
245      else if (!I->hasLocalLinkage())
246        llvm_unreachable("Invalid alias linkage");
247
248      printVisibility(Name, I->getVisibility());
249
250      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
251    }
252  }
253
254  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
255  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
256  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
257    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
258      MP->finishAssembly(O, *this, *TAI);
259
260  // If we don't have any trampolines, then we don't require stack memory
261  // to be executable. Some targets have a directive to declare this.
262  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
263  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
264    if (TAI->getNonexecutableStackDirective())
265      O << TAI->getNonexecutableStackDirective() << '\n';
266
267  delete Mang; Mang = 0;
268  DW = 0; MMI = 0;
269  return false;
270}
271
272std::string
273AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const {
274  assert(MF && "No machine function?");
275  return Mang->getMangledName(MF->getFunction(), ".eh",
276                              TAI->is_EHSymbolPrivate());
277}
278
279void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
280  // What's my mangled name?
281  CurrentFnName = Mang->getMangledName(MF.getFunction());
282  IncrementFunctionNumber();
283}
284
285namespace {
286  // SectionCPs - Keep track the alignment, constpool entries per Section.
287  struct SectionCPs {
288    const Section *S;
289    unsigned Alignment;
290    SmallVector<unsigned, 4> CPEs;
291    SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {};
292  };
293}
294
295/// EmitConstantPool - Print to the current output stream assembly
296/// representations of the constants in the constant pool MCP. This is
297/// used to print out constants which have been "spilled to memory" by
298/// the code generator.
299///
300void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
301  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
302  if (CP.empty()) return;
303
304  const TargetData &TD = *TM.getTargetData();
305
306  // Calculate sections for constant pool entries. We collect entries to go into
307  // the same section together to reduce amount of section switch statements.
308  SmallVector<SectionCPs, 4> CPSections;
309  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
310    const MachineConstantPoolEntry &CPE = CP[i];
311    unsigned Align = CPE.getAlignment();
312    uint64_t Size = TD.getTypeAllocSize(CPE.getType());
313    const Section *S =
314      TAI->getSectionForMergableConstant(Size, CPE.getRelocationInfo());
315
316    // The number of sections are small, just do a linear search from the
317    // last section to the first.
318    bool Found = false;
319    unsigned SecIdx = CPSections.size();
320    while (SecIdx != 0) {
321      if (CPSections[--SecIdx].S == S) {
322        Found = true;
323        break;
324      }
325    }
326    if (!Found) {
327      SecIdx = CPSections.size();
328      CPSections.push_back(SectionCPs(S, Align));
329    }
330
331    if (Align > CPSections[SecIdx].Alignment)
332      CPSections[SecIdx].Alignment = Align;
333    CPSections[SecIdx].CPEs.push_back(i);
334  }
335
336  // Now print stuff into the calculated sections.
337  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
338    SwitchToSection(CPSections[i].S);
339    EmitAlignment(Log2_32(CPSections[i].Alignment));
340
341    unsigned Offset = 0;
342    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
343      unsigned CPI = CPSections[i].CPEs[j];
344      MachineConstantPoolEntry CPE = CP[CPI];
345
346      // Emit inter-object padding for alignment.
347      unsigned AlignMask = CPE.getAlignment() - 1;
348      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
349      EmitZeros(NewOffset - Offset);
350
351      const Type *Ty = CPE.getType();
352      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
353
354      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
355        << CPI << ":\t\t\t\t\t";
356      if (VerboseAsm) {
357        O << TAI->getCommentString() << ' ';
358        WriteTypeSymbolic(O, CPE.getType(), 0);
359      }
360      O << '\n';
361      if (CPE.isMachineConstantPoolEntry())
362        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
363      else
364        EmitGlobalConstant(CPE.Val.ConstVal);
365    }
366  }
367}
368
369/// EmitJumpTableInfo - Print assembly representations of the jump tables used
370/// by the current function to the current output stream.
371///
372void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
373                                   MachineFunction &MF) {
374  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
375  if (JT.empty()) return;
376
377  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
378
379  // Pick the directive to use to print the jump table entries, and switch to
380  // the appropriate section.
381  TargetLowering *LoweringInfo = TM.getTargetLowering();
382
383  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
384  const Function *F = MF.getFunction();
385  const Section *FuncSection = TAI->SectionForGlobal(F);
386
387  bool JTInDiffSection = false;
388  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
389      !JumpTableDataSection ||
390      FuncSection->hasFlag(SectionFlags::Linkonce)) {
391    // In PIC mode, we need to emit the jump table to the same section as the
392    // function body itself, otherwise the label differences won't make sense.
393    // We should also do if the section name is NULL or function is declared in
394    // discardable section.
395    SwitchToSection(FuncSection);
396  } else {
397    SwitchToDataSection(JumpTableDataSection);
398    JTInDiffSection = true;
399  }
400
401  EmitAlignment(Log2_32(MJTI->getAlignment()));
402
403  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
404    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
405
406    // If this jump table was deleted, ignore it.
407    if (JTBBs.empty()) continue;
408
409    // For PIC codegen, if possible we want to use the SetDirective to reduce
410    // the number of relocations the assembler will generate for the jump table.
411    // Set directives are all printed before the jump table itself.
412    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
413    if (TAI->getSetDirective() && IsPic)
414      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
415        if (EmittedSets.insert(JTBBs[ii]))
416          printPICJumpTableSetLabel(i, JTBBs[ii]);
417
418    // On some targets (e.g. darwin) we want to emit two consequtive labels
419    // before each jump table.  The first label is never referenced, but tells
420    // the assembler and linker the extents of the jump table object.  The
421    // second label is actually referenced by the code.
422    if (JTInDiffSection) {
423      if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
424        O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
425    }
426
427    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
428      << '_' << i << ":\n";
429
430    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
431      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
432      O << '\n';
433    }
434  }
435}
436
437void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
438                                        const MachineBasicBlock *MBB,
439                                        unsigned uid)  const {
440  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
441
442  // Use JumpTableDirective otherwise honor the entry size from the jump table
443  // info.
444  const char *JTEntryDirective = TAI->getJumpTableDirective();
445  bool HadJTEntryDirective = JTEntryDirective != NULL;
446  if (!HadJTEntryDirective) {
447    JTEntryDirective = MJTI->getEntrySize() == 4 ?
448      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
449  }
450
451  O << JTEntryDirective << ' ';
452
453  // If we have emitted set directives for the jump table entries, print
454  // them rather than the entries themselves.  If we're emitting PIC, then
455  // emit the table entries as differences between two text section labels.
456  // If we're emitting non-PIC code, then emit the entries as direct
457  // references to the target basic blocks.
458  if (IsPic) {
459    if (TAI->getSetDirective()) {
460      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
461        << '_' << uid << "_set_" << MBB->getNumber();
462    } else {
463      printBasicBlockLabel(MBB, false, false, false);
464      // If the arch uses custom Jump Table directives, don't calc relative to
465      // JT
466      if (!HadJTEntryDirective)
467        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
468          << getFunctionNumber() << '_' << uid;
469    }
470  } else {
471    printBasicBlockLabel(MBB, false, false, false);
472  }
473}
474
475
476/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
477/// special global used by LLVM.  If so, emit it and return true, otherwise
478/// do nothing and return false.
479bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
480  if (GV->getName() == "llvm.used") {
481    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
482      EmitLLVMUsedList(GV->getInitializer());
483    return true;
484  }
485
486  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
487  if (GV->getSection() == "llvm.metadata" ||
488      GV->hasAvailableExternallyLinkage())
489    return true;
490
491  if (!GV->hasAppendingLinkage()) return false;
492
493  assert(GV->hasInitializer() && "Not a special LLVM global!");
494
495  const TargetData *TD = TM.getTargetData();
496  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
497  if (GV->getName() == "llvm.global_ctors") {
498    SwitchToDataSection(TAI->getStaticCtorsSection());
499    EmitAlignment(Align, 0);
500    EmitXXStructorList(GV->getInitializer());
501    return true;
502  }
503
504  if (GV->getName() == "llvm.global_dtors") {
505    SwitchToDataSection(TAI->getStaticDtorsSection());
506    EmitAlignment(Align, 0);
507    EmitXXStructorList(GV->getInitializer());
508    return true;
509  }
510
511  return false;
512}
513
514/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
515/// global in the specified llvm.used list for which emitUsedDirectiveFor
516/// is true, as being used with this directive.
517void AsmPrinter::EmitLLVMUsedList(Constant *List) {
518  const char *Directive = TAI->getUsedDirective();
519
520  // Should be an array of 'i8*'.
521  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
522  if (InitList == 0) return;
523
524  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
525    const GlobalValue *GV =
526      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
527    if (GV && TAI->emitUsedDirectiveFor(GV, Mang)) {
528      O << Directive;
529      EmitConstantValueOnly(InitList->getOperand(i));
530      O << '\n';
531    }
532  }
533}
534
535/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
536/// function pointers, ignoring the init priority.
537void AsmPrinter::EmitXXStructorList(Constant *List) {
538  // Should be an array of '{ int, void ()* }' structs.  The first value is the
539  // init priority, which we ignore.
540  if (!isa<ConstantArray>(List)) return;
541  ConstantArray *InitList = cast<ConstantArray>(List);
542  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
543    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
544      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
545
546      if (CS->getOperand(1)->isNullValue())
547        return;  // Found a null terminator, exit printing.
548      // Emit the function pointer.
549      EmitGlobalConstant(CS->getOperand(1));
550    }
551}
552
553/// getGlobalLinkName - Returns the asm/link name of of the specified
554/// global variable.  Should be overridden by each target asm printer to
555/// generate the appropriate value.
556const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
557                                                 std::string &LinkName) const {
558  if (isa<Function>(GV)) {
559    LinkName += TAI->getFunctionAddrPrefix();
560    LinkName += Mang->getMangledName(GV);
561    LinkName += TAI->getFunctionAddrSuffix();
562  } else {
563    LinkName += TAI->getGlobalVarAddrPrefix();
564    LinkName += Mang->getMangledName(GV);
565    LinkName += TAI->getGlobalVarAddrSuffix();
566  }
567
568  return LinkName;
569}
570
571/// EmitExternalGlobal - Emit the external reference to a global variable.
572/// Should be overridden if an indirect reference should be used.
573void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
574  std::string GLN;
575  O << getGlobalLinkName(GV, GLN);
576}
577
578
579
580//===----------------------------------------------------------------------===//
581/// LEB 128 number encoding.
582
583/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
584/// representing an unsigned leb128 value.
585void AsmPrinter::PrintULEB128(unsigned Value) const {
586  char Buffer[20];
587  do {
588    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
589    Value >>= 7;
590    if (Value) Byte |= 0x80;
591    O << "0x" << utohex_buffer(Byte, Buffer+20);
592    if (Value) O << ", ";
593  } while (Value);
594}
595
596/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
597/// representing a signed leb128 value.
598void AsmPrinter::PrintSLEB128(int Value) const {
599  int Sign = Value >> (8 * sizeof(Value) - 1);
600  bool IsMore;
601  char Buffer[20];
602
603  do {
604    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
605    Value >>= 7;
606    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
607    if (IsMore) Byte |= 0x80;
608    O << "0x" << utohex_buffer(Byte, Buffer+20);
609    if (IsMore) O << ", ";
610  } while (IsMore);
611}
612
613//===--------------------------------------------------------------------===//
614// Emission and print routines
615//
616
617/// PrintHex - Print a value as a hexidecimal value.
618///
619void AsmPrinter::PrintHex(int Value) const {
620  char Buffer[20];
621  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
622}
623
624/// EOL - Print a newline character to asm stream.  If a comment is present
625/// then it will be printed first.  Comments should not contain '\n'.
626void AsmPrinter::EOL() const {
627  O << '\n';
628}
629
630void AsmPrinter::EOL(const std::string &Comment) const {
631  if (VerboseAsm && !Comment.empty()) {
632    O << '\t'
633      << TAI->getCommentString()
634      << ' '
635      << Comment;
636  }
637  O << '\n';
638}
639
640void AsmPrinter::EOL(const char* Comment) const {
641  if (VerboseAsm && *Comment) {
642    O << '\t'
643      << TAI->getCommentString()
644      << ' '
645      << Comment;
646  }
647  O << '\n';
648}
649
650/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
651/// unsigned leb128 value.
652void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
653  if (TAI->hasLEB128()) {
654    O << "\t.uleb128\t"
655      << Value;
656  } else {
657    O << TAI->getData8bitsDirective();
658    PrintULEB128(Value);
659  }
660}
661
662/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
663/// signed leb128 value.
664void AsmPrinter::EmitSLEB128Bytes(int Value) const {
665  if (TAI->hasLEB128()) {
666    O << "\t.sleb128\t"
667      << Value;
668  } else {
669    O << TAI->getData8bitsDirective();
670    PrintSLEB128(Value);
671  }
672}
673
674/// EmitInt8 - Emit a byte directive and value.
675///
676void AsmPrinter::EmitInt8(int Value) const {
677  O << TAI->getData8bitsDirective();
678  PrintHex(Value & 0xFF);
679}
680
681/// EmitInt16 - Emit a short directive and value.
682///
683void AsmPrinter::EmitInt16(int Value) const {
684  O << TAI->getData16bitsDirective();
685  PrintHex(Value & 0xFFFF);
686}
687
688/// EmitInt32 - Emit a long directive and value.
689///
690void AsmPrinter::EmitInt32(int Value) const {
691  O << TAI->getData32bitsDirective();
692  PrintHex(Value);
693}
694
695/// EmitInt64 - Emit a long long directive and value.
696///
697void AsmPrinter::EmitInt64(uint64_t Value) const {
698  if (TAI->getData64bitsDirective()) {
699    O << TAI->getData64bitsDirective();
700    PrintHex(Value);
701  } else {
702    if (TM.getTargetData()->isBigEndian()) {
703      EmitInt32(unsigned(Value >> 32)); O << '\n';
704      EmitInt32(unsigned(Value));
705    } else {
706      EmitInt32(unsigned(Value)); O << '\n';
707      EmitInt32(unsigned(Value >> 32));
708    }
709  }
710}
711
712/// toOctal - Convert the low order bits of X into an octal digit.
713///
714static inline char toOctal(int X) {
715  return (X&7)+'0';
716}
717
718/// printStringChar - Print a char, escaped if necessary.
719///
720static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
721  if (C == '"') {
722    O << "\\\"";
723  } else if (C == '\\') {
724    O << "\\\\";
725  } else if (isprint((unsigned char)C)) {
726    O << C;
727  } else {
728    switch(C) {
729    case '\b': O << "\\b"; break;
730    case '\f': O << "\\f"; break;
731    case '\n': O << "\\n"; break;
732    case '\r': O << "\\r"; break;
733    case '\t': O << "\\t"; break;
734    default:
735      O << '\\';
736      O << toOctal(C >> 6);
737      O << toOctal(C >> 3);
738      O << toOctal(C >> 0);
739      break;
740    }
741  }
742}
743
744/// EmitString - Emit a string with quotes and a null terminator.
745/// Special characters are emitted properly.
746/// \literal (Eg. '\t') \endliteral
747void AsmPrinter::EmitString(const std::string &String) const {
748  EmitString(String.c_str(), String.size());
749}
750
751void AsmPrinter::EmitString(const char *String, unsigned Size) const {
752  const char* AscizDirective = TAI->getAscizDirective();
753  if (AscizDirective)
754    O << AscizDirective;
755  else
756    O << TAI->getAsciiDirective();
757  O << '\"';
758  for (unsigned i = 0; i < Size; ++i)
759    printStringChar(O, String[i]);
760  if (AscizDirective)
761    O << '\"';
762  else
763    O << "\\0\"";
764}
765
766
767/// EmitFile - Emit a .file directive.
768void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
769  O << "\t.file\t" << Number << " \"";
770  for (unsigned i = 0, N = Name.size(); i < N; ++i)
771    printStringChar(O, Name[i]);
772  O << '\"';
773}
774
775
776//===----------------------------------------------------------------------===//
777
778// EmitAlignment - Emit an alignment directive to the specified power of
779// two boundary.  For example, if you pass in 3 here, you will get an 8
780// byte alignment.  If a global value is specified, and if that global has
781// an explicit alignment requested, it will unconditionally override the
782// alignment request.  However, if ForcedAlignBits is specified, this value
783// has final say: the ultimate alignment will be the max of ForcedAlignBits
784// and the alignment computed with NumBits and the global.
785//
786// The algorithm is:
787//     Align = NumBits;
788//     if (GV && GV->hasalignment) Align = GV->getalignment();
789//     Align = std::max(Align, ForcedAlignBits);
790//
791void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
792                               unsigned ForcedAlignBits,
793                               bool UseFillExpr) const {
794  if (GV && GV->getAlignment())
795    NumBits = Log2_32(GV->getAlignment());
796  NumBits = std::max(NumBits, ForcedAlignBits);
797
798  if (NumBits == 0) return;   // No need to emit alignment.
799  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
800  O << TAI->getAlignDirective() << NumBits;
801
802  unsigned FillValue = TAI->getTextAlignFillValue();
803  UseFillExpr &= IsInTextSection && FillValue;
804  if (UseFillExpr) {
805    O << ',';
806    PrintHex(FillValue);
807  }
808  O << '\n';
809}
810
811
812/// EmitZeros - Emit a block of zeros.
813///
814void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
815  if (NumZeros) {
816    if (TAI->getZeroDirective()) {
817      O << TAI->getZeroDirective() << NumZeros;
818      if (TAI->getZeroDirectiveSuffix())
819        O << TAI->getZeroDirectiveSuffix();
820      O << '\n';
821    } else {
822      for (; NumZeros; --NumZeros)
823        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
824    }
825  }
826}
827
828// Print out the specified constant, without a storage class.  Only the
829// constants valid in constant expressions can occur here.
830void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
831  if (CV->isNullValue() || isa<UndefValue>(CV))
832    O << '0';
833  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
834    O << CI->getZExtValue();
835  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
836    // This is a constant address for a global variable or function. Use the
837    // name of the variable or function as the address value, possibly
838    // decorating it with GlobalVarAddrPrefix/Suffix or
839    // FunctionAddrPrefix/Suffix (these all default to "" )
840    if (isa<Function>(GV)) {
841      O << TAI->getFunctionAddrPrefix()
842        << Mang->getMangledName(GV)
843        << TAI->getFunctionAddrSuffix();
844    } else {
845      O << TAI->getGlobalVarAddrPrefix()
846        << Mang->getMangledName(GV)
847        << TAI->getGlobalVarAddrSuffix();
848    }
849  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
850    const TargetData *TD = TM.getTargetData();
851    unsigned Opcode = CE->getOpcode();
852    switch (Opcode) {
853    case Instruction::GetElementPtr: {
854      // generate a symbolic expression for the byte address
855      const Constant *ptrVal = CE->getOperand(0);
856      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
857      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
858                                                idxVec.size())) {
859        // Truncate/sext the offset to the pointer size.
860        if (TD->getPointerSizeInBits() != 64) {
861          int SExtAmount = 64-TD->getPointerSizeInBits();
862          Offset = (Offset << SExtAmount) >> SExtAmount;
863        }
864
865        if (Offset)
866          O << '(';
867        EmitConstantValueOnly(ptrVal);
868        if (Offset > 0)
869          O << ") + " << Offset;
870        else if (Offset < 0)
871          O << ") - " << -Offset;
872      } else {
873        EmitConstantValueOnly(ptrVal);
874      }
875      break;
876    }
877    case Instruction::Trunc:
878    case Instruction::ZExt:
879    case Instruction::SExt:
880    case Instruction::FPTrunc:
881    case Instruction::FPExt:
882    case Instruction::UIToFP:
883    case Instruction::SIToFP:
884    case Instruction::FPToUI:
885    case Instruction::FPToSI:
886      llvm_unreachable("FIXME: Don't yet support this kind of constant cast expr");
887      break;
888    case Instruction::BitCast:
889      return EmitConstantValueOnly(CE->getOperand(0));
890
891    case Instruction::IntToPtr: {
892      // Handle casts to pointers by changing them into casts to the appropriate
893      // integer type.  This promotes constant folding and simplifies this code.
894      Constant *Op = CE->getOperand(0);
895      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
896      return EmitConstantValueOnly(Op);
897    }
898
899
900    case Instruction::PtrToInt: {
901      // Support only foldable casts to/from pointers that can be eliminated by
902      // changing the pointer to the appropriately sized integer type.
903      Constant *Op = CE->getOperand(0);
904      const Type *Ty = CE->getType();
905
906      // We can emit the pointer value into this slot if the slot is an
907      // integer slot greater or equal to the size of the pointer.
908      if (TD->getTypeAllocSize(Ty) >= TD->getTypeAllocSize(Op->getType()))
909        return EmitConstantValueOnly(Op);
910
911      O << "((";
912      EmitConstantValueOnly(Op);
913      APInt ptrMask = APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Ty));
914
915      SmallString<40> S;
916      ptrMask.toStringUnsigned(S);
917      O << ") & " << S.c_str() << ')';
918      break;
919    }
920    case Instruction::Add:
921    case Instruction::Sub:
922    case Instruction::And:
923    case Instruction::Or:
924    case Instruction::Xor:
925      O << '(';
926      EmitConstantValueOnly(CE->getOperand(0));
927      O << ')';
928      switch (Opcode) {
929      case Instruction::Add:
930       O << " + ";
931       break;
932      case Instruction::Sub:
933       O << " - ";
934       break;
935      case Instruction::And:
936       O << " & ";
937       break;
938      case Instruction::Or:
939       O << " | ";
940       break;
941      case Instruction::Xor:
942       O << " ^ ";
943       break;
944      default:
945       break;
946      }
947      O << '(';
948      EmitConstantValueOnly(CE->getOperand(1));
949      O << ')';
950      break;
951    default:
952      llvm_unreachable("Unsupported operator!");
953    }
954  } else {
955    llvm_unreachable("Unknown constant value!");
956  }
957}
958
959/// printAsCString - Print the specified array as a C compatible string, only if
960/// the predicate isString is true.
961///
962static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
963                           unsigned LastElt) {
964  assert(CVA->isString() && "Array is not string compatible!");
965
966  O << '\"';
967  for (unsigned i = 0; i != LastElt; ++i) {
968    unsigned char C =
969        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
970    printStringChar(O, C);
971  }
972  O << '\"';
973}
974
975/// EmitString - Emit a zero-byte-terminated string constant.
976///
977void AsmPrinter::EmitString(const ConstantArray *CVA) const {
978  unsigned NumElts = CVA->getNumOperands();
979  if (TAI->getAscizDirective() && NumElts &&
980      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
981    O << TAI->getAscizDirective();
982    printAsCString(O, CVA, NumElts-1);
983  } else {
984    O << TAI->getAsciiDirective();
985    printAsCString(O, CVA, NumElts);
986  }
987  O << '\n';
988}
989
990void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
991                                         unsigned AddrSpace) {
992  if (CVA->isString()) {
993    EmitString(CVA);
994  } else { // Not a string.  Print the values in successive locations
995    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
996      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
997  }
998}
999
1000void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
1001  const VectorType *PTy = CP->getType();
1002
1003  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1004    EmitGlobalConstant(CP->getOperand(I));
1005}
1006
1007void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
1008                                          unsigned AddrSpace) {
1009  // Print the fields in successive locations. Pad to align if needed!
1010  const TargetData *TD = TM.getTargetData();
1011  unsigned Size = TD->getTypeAllocSize(CVS->getType());
1012  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
1013  uint64_t sizeSoFar = 0;
1014  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
1015    const Constant* field = CVS->getOperand(i);
1016
1017    // Check if padding is needed and insert one or more 0s.
1018    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
1019    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1020                        - cvsLayout->getElementOffset(i)) - fieldSize;
1021    sizeSoFar += fieldSize + padSize;
1022
1023    // Now print the actual field value.
1024    EmitGlobalConstant(field, AddrSpace);
1025
1026    // Insert padding - this may include padding to increase the size of the
1027    // current field up to the ABI size (if the struct is not packed) as well
1028    // as padding to ensure that the next field starts at the right offset.
1029    EmitZeros(padSize, AddrSpace);
1030  }
1031  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1032         "Layout of constant struct may be incorrect!");
1033}
1034
1035void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1036                                      unsigned AddrSpace) {
1037  // FP Constants are printed as integer constants to avoid losing
1038  // precision...
1039  const TargetData *TD = TM.getTargetData();
1040  if (CFP->getType() == Type::DoubleTy) {
1041    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1042    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1043    if (TAI->getData64bitsDirective(AddrSpace)) {
1044      O << TAI->getData64bitsDirective(AddrSpace) << i;
1045      if (VerboseAsm)
1046        O << '\t' << TAI->getCommentString() << " double value: " << Val;
1047      O << '\n';
1048    } else if (TD->isBigEndian()) {
1049      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1050      if (VerboseAsm)
1051        O << '\t' << TAI->getCommentString()
1052          << " double most significant word " << Val;
1053      O << '\n';
1054      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1055      if (VerboseAsm)
1056        O << '\t' << TAI->getCommentString()
1057          << " double least significant word " << Val;
1058      O << '\n';
1059    } else {
1060      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1061      if (VerboseAsm)
1062        O << '\t' << TAI->getCommentString()
1063          << " double least significant word " << Val;
1064      O << '\n';
1065      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1066      if (VerboseAsm)
1067        O << '\t' << TAI->getCommentString()
1068          << " double most significant word " << Val;
1069      O << '\n';
1070    }
1071    return;
1072  } else if (CFP->getType() == Type::FloatTy) {
1073    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1074    O << TAI->getData32bitsDirective(AddrSpace)
1075      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1076    if (VerboseAsm)
1077      O << '\t' << TAI->getCommentString() << " float " << Val;
1078    O << '\n';
1079    return;
1080  } else if (CFP->getType() == Type::X86_FP80Ty) {
1081    // all long double variants are printed as hex
1082    // api needed to prevent premature destruction
1083    APInt api = CFP->getValueAPF().bitcastToAPInt();
1084    const uint64_t *p = api.getRawData();
1085    // Convert to double so we can print the approximate val as a comment.
1086    APFloat DoubleVal = CFP->getValueAPF();
1087    bool ignored;
1088    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1089                      &ignored);
1090    if (TD->isBigEndian()) {
1091      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1092      if (VerboseAsm)
1093        O << '\t' << TAI->getCommentString()
1094          << " long double most significant halfword of ~"
1095          << DoubleVal.convertToDouble();
1096      O << '\n';
1097      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1098      if (VerboseAsm)
1099        O << '\t' << TAI->getCommentString() << " long double next halfword";
1100      O << '\n';
1101      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1102      if (VerboseAsm)
1103        O << '\t' << TAI->getCommentString() << " long double next halfword";
1104      O << '\n';
1105      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1106      if (VerboseAsm)
1107        O << '\t' << TAI->getCommentString() << " long double next halfword";
1108      O << '\n';
1109      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1110      if (VerboseAsm)
1111        O << '\t' << TAI->getCommentString()
1112          << " long double least significant halfword";
1113      O << '\n';
1114     } else {
1115      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1116      if (VerboseAsm)
1117        O << '\t' << TAI->getCommentString()
1118          << " long double least significant halfword of ~"
1119          << DoubleVal.convertToDouble();
1120      O << '\n';
1121      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1122      if (VerboseAsm)
1123        O << '\t' << TAI->getCommentString()
1124          << " long double next halfword";
1125      O << '\n';
1126      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1127      if (VerboseAsm)
1128        O << '\t' << TAI->getCommentString()
1129          << " long double next halfword";
1130      O << '\n';
1131      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1132      if (VerboseAsm)
1133        O << '\t' << TAI->getCommentString()
1134          << " long double next halfword";
1135      O << '\n';
1136      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1137      if (VerboseAsm)
1138        O << '\t' << TAI->getCommentString()
1139          << " long double most significant halfword";
1140      O << '\n';
1141    }
1142    EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) -
1143              TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1144    return;
1145  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1146    // all long double variants are printed as hex
1147    // api needed to prevent premature destruction
1148    APInt api = CFP->getValueAPF().bitcastToAPInt();
1149    const uint64_t *p = api.getRawData();
1150    if (TD->isBigEndian()) {
1151      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1152      if (VerboseAsm)
1153        O << '\t' << TAI->getCommentString()
1154          << " long double most significant word";
1155      O << '\n';
1156      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1157      if (VerboseAsm)
1158        O << '\t' << TAI->getCommentString()
1159        << " long double next word";
1160      O << '\n';
1161      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1162      if (VerboseAsm)
1163        O << '\t' << TAI->getCommentString()
1164          << " long double next word";
1165      O << '\n';
1166      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1167      if (VerboseAsm)
1168        O << '\t' << TAI->getCommentString()
1169          << " long double least significant word";
1170      O << '\n';
1171     } else {
1172      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1173      if (VerboseAsm)
1174        O << '\t' << TAI->getCommentString()
1175          << " long double least significant word";
1176      O << '\n';
1177      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1178      if (VerboseAsm)
1179        O << '\t' << TAI->getCommentString()
1180          << " long double next word";
1181      O << '\n';
1182      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1183      if (VerboseAsm)
1184        O << '\t' << TAI->getCommentString()
1185          << " long double next word";
1186      O << '\n';
1187      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1188      if (VerboseAsm)
1189        O << '\t' << TAI->getCommentString()
1190          << " long double most significant word";
1191      O << '\n';
1192    }
1193    return;
1194  } else llvm_unreachable("Floating point constant type not handled");
1195}
1196
1197void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1198                                            unsigned AddrSpace) {
1199  const TargetData *TD = TM.getTargetData();
1200  unsigned BitWidth = CI->getBitWidth();
1201  assert(isPowerOf2_32(BitWidth) &&
1202         "Non-power-of-2-sized integers not handled!");
1203
1204  // We don't expect assemblers to support integer data directives
1205  // for more than 64 bits, so we emit the data in at most 64-bit
1206  // quantities at a time.
1207  const uint64_t *RawData = CI->getValue().getRawData();
1208  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1209    uint64_t Val;
1210    if (TD->isBigEndian())
1211      Val = RawData[e - i - 1];
1212    else
1213      Val = RawData[i];
1214
1215    if (TAI->getData64bitsDirective(AddrSpace))
1216      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1217    else if (TD->isBigEndian()) {
1218      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1219      if (VerboseAsm)
1220        O << '\t' << TAI->getCommentString()
1221          << " Double-word most significant word " << Val;
1222      O << '\n';
1223      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1224      if (VerboseAsm)
1225        O << '\t' << TAI->getCommentString()
1226          << " Double-word least significant word " << Val;
1227      O << '\n';
1228    } else {
1229      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1230      if (VerboseAsm)
1231        O << '\t' << TAI->getCommentString()
1232          << " Double-word least significant word " << Val;
1233      O << '\n';
1234      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1235      if (VerboseAsm)
1236        O << '\t' << TAI->getCommentString()
1237          << " Double-word most significant word " << Val;
1238      O << '\n';
1239    }
1240  }
1241}
1242
1243/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1244void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1245  const TargetData *TD = TM.getTargetData();
1246  const Type *type = CV->getType();
1247  unsigned Size = TD->getTypeAllocSize(type);
1248
1249  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1250    EmitZeros(Size, AddrSpace);
1251    return;
1252  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1253    EmitGlobalConstantArray(CVA , AddrSpace);
1254    return;
1255  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1256    EmitGlobalConstantStruct(CVS, AddrSpace);
1257    return;
1258  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1259    EmitGlobalConstantFP(CFP, AddrSpace);
1260    return;
1261  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1262    // Small integers are handled below; large integers are handled here.
1263    if (Size > 4) {
1264      EmitGlobalConstantLargeInt(CI, AddrSpace);
1265      return;
1266    }
1267  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1268    EmitGlobalConstantVector(CP);
1269    return;
1270  }
1271
1272  printDataDirective(type, AddrSpace);
1273  EmitConstantValueOnly(CV);
1274  if (VerboseAsm) {
1275    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1276      SmallString<40> S;
1277      CI->getValue().toStringUnsigned(S, 16);
1278      O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1279    }
1280  }
1281  O << '\n';
1282}
1283
1284void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1285  // Target doesn't support this yet!
1286  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1287}
1288
1289/// PrintSpecial - Print information related to the specified machine instr
1290/// that is independent of the operand, and may be independent of the instr
1291/// itself.  This can be useful for portably encoding the comment character
1292/// or other bits of target-specific knowledge into the asmstrings.  The
1293/// syntax used is ${:comment}.  Targets can override this to add support
1294/// for their own strange codes.
1295void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1296  if (!strcmp(Code, "private")) {
1297    O << TAI->getPrivateGlobalPrefix();
1298  } else if (!strcmp(Code, "comment")) {
1299    if (VerboseAsm)
1300      O << TAI->getCommentString();
1301  } else if (!strcmp(Code, "uid")) {
1302    // Comparing the address of MI isn't sufficient, because machineinstrs may
1303    // be allocated to the same address across functions.
1304    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1305
1306    // If this is a new LastFn instruction, bump the counter.
1307    if (LastMI != MI || LastFn != ThisF) {
1308      ++Counter;
1309      LastMI = MI;
1310      LastFn = ThisF;
1311    }
1312    O << Counter;
1313  } else {
1314    std::string msg;
1315    raw_string_ostream Msg(msg);
1316    Msg << "Unknown special formatter '" << Code
1317         << "' for machine instr: " << *MI;
1318    llvm_report_error(Msg.str());
1319  }
1320}
1321
1322/// processDebugLoc - Processes the debug information of each machine
1323/// instruction's DebugLoc.
1324void AsmPrinter::processDebugLoc(DebugLoc DL) {
1325  if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
1326    if (!DL.isUnknown()) {
1327      DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1328
1329      if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
1330        printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1331                                        DICompileUnit(CurDLT.CompileUnit)));
1332
1333      PrevDLT = CurDLT;
1334    }
1335  }
1336}
1337
1338/// printInlineAsm - This method formats and prints the specified machine
1339/// instruction that is an inline asm.
1340void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1341  unsigned NumOperands = MI->getNumOperands();
1342
1343  // Count the number of register definitions.
1344  unsigned NumDefs = 0;
1345  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1346       ++NumDefs)
1347    assert(NumDefs != NumOperands-1 && "No asm string?");
1348
1349  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1350
1351  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1352  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1353
1354  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1355  // These are useful to see where empty asm's wound up.
1356  if (AsmStr[0] == 0) {
1357    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1358    return;
1359  }
1360
1361  O << TAI->getInlineAsmStart() << "\n\t";
1362
1363  // The variant of the current asmprinter.
1364  int AsmPrinterVariant = TAI->getAssemblerDialect();
1365
1366  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1367  const char *LastEmitted = AsmStr; // One past the last character emitted.
1368
1369  while (*LastEmitted) {
1370    switch (*LastEmitted) {
1371    default: {
1372      // Not a special case, emit the string section literally.
1373      const char *LiteralEnd = LastEmitted+1;
1374      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1375             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1376        ++LiteralEnd;
1377      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1378        O.write(LastEmitted, LiteralEnd-LastEmitted);
1379      LastEmitted = LiteralEnd;
1380      break;
1381    }
1382    case '\n':
1383      ++LastEmitted;   // Consume newline character.
1384      O << '\n';       // Indent code with newline.
1385      break;
1386    case '$': {
1387      ++LastEmitted;   // Consume '$' character.
1388      bool Done = true;
1389
1390      // Handle escapes.
1391      switch (*LastEmitted) {
1392      default: Done = false; break;
1393      case '$':     // $$ -> $
1394        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1395          O << '$';
1396        ++LastEmitted;  // Consume second '$' character.
1397        break;
1398      case '(':             // $( -> same as GCC's { character.
1399        ++LastEmitted;      // Consume '(' character.
1400        if (CurVariant != -1) {
1401          llvm_report_error("Nested variants found in inline asm string: '"
1402                            + std::string(AsmStr) + "'");
1403        }
1404        CurVariant = 0;     // We're in the first variant now.
1405        break;
1406      case '|':
1407        ++LastEmitted;  // consume '|' character.
1408        if (CurVariant == -1)
1409          O << '|';       // this is gcc's behavior for | outside a variant
1410        else
1411          ++CurVariant;   // We're in the next variant.
1412        break;
1413      case ')':         // $) -> same as GCC's } char.
1414        ++LastEmitted;  // consume ')' character.
1415        if (CurVariant == -1)
1416          O << '}';     // this is gcc's behavior for } outside a variant
1417        else
1418          CurVariant = -1;
1419        break;
1420      }
1421      if (Done) break;
1422
1423      bool HasCurlyBraces = false;
1424      if (*LastEmitted == '{') {     // ${variable}
1425        ++LastEmitted;               // Consume '{' character.
1426        HasCurlyBraces = true;
1427      }
1428
1429      // If we have ${:foo}, then this is not a real operand reference, it is a
1430      // "magic" string reference, just like in .td files.  Arrange to call
1431      // PrintSpecial.
1432      if (HasCurlyBraces && *LastEmitted == ':') {
1433        ++LastEmitted;
1434        const char *StrStart = LastEmitted;
1435        const char *StrEnd = strchr(StrStart, '}');
1436        if (StrEnd == 0) {
1437          llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1438                            + std::string(AsmStr) + "'");
1439        }
1440
1441        std::string Val(StrStart, StrEnd);
1442        PrintSpecial(MI, Val.c_str());
1443        LastEmitted = StrEnd+1;
1444        break;
1445      }
1446
1447      const char *IDStart = LastEmitted;
1448      char *IDEnd;
1449      errno = 0;
1450      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1451      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1452        llvm_report_error("Bad $ operand number in inline asm string: '"
1453                          + std::string(AsmStr) + "'");
1454      }
1455      LastEmitted = IDEnd;
1456
1457      char Modifier[2] = { 0, 0 };
1458
1459      if (HasCurlyBraces) {
1460        // If we have curly braces, check for a modifier character.  This
1461        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1462        if (*LastEmitted == ':') {
1463          ++LastEmitted;    // Consume ':' character.
1464          if (*LastEmitted == 0) {
1465            llvm_report_error("Bad ${:} expression in inline asm string: '"
1466                              + std::string(AsmStr) + "'");
1467          }
1468
1469          Modifier[0] = *LastEmitted;
1470          ++LastEmitted;    // Consume modifier character.
1471        }
1472
1473        if (*LastEmitted != '}') {
1474          llvm_report_error("Bad ${} expression in inline asm string: '"
1475                            + std::string(AsmStr) + "'");
1476        }
1477        ++LastEmitted;    // Consume '}' character.
1478      }
1479
1480      if ((unsigned)Val >= NumOperands-1) {
1481        llvm_report_error("Invalid $ operand number in inline asm string: '"
1482                          + std::string(AsmStr) + "'");
1483      }
1484
1485      // Okay, we finally have a value number.  Ask the target to print this
1486      // operand!
1487      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1488        unsigned OpNo = 1;
1489
1490        bool Error = false;
1491
1492        // Scan to find the machine operand number for the operand.
1493        for (; Val; --Val) {
1494          if (OpNo >= MI->getNumOperands()) break;
1495          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1496          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1497        }
1498
1499        if (OpNo >= MI->getNumOperands()) {
1500          Error = true;
1501        } else {
1502          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1503          ++OpNo;  // Skip over the ID number.
1504
1505          if (Modifier[0]=='l')  // labels are target independent
1506            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1507                                 false, false, false);
1508          else {
1509            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1510            if ((OpFlags & 7) == 4) {
1511              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1512                                                Modifier[0] ? Modifier : 0);
1513            } else {
1514              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1515                                          Modifier[0] ? Modifier : 0);
1516            }
1517          }
1518        }
1519        if (Error) {
1520          std::string msg;
1521          raw_string_ostream Msg(msg);
1522          Msg << "Invalid operand found in inline asm: '"
1523               << AsmStr << "'\n";
1524          MI->print(Msg);
1525          llvm_report_error(Msg.str());
1526        }
1527      }
1528      break;
1529    }
1530    }
1531  }
1532  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1533}
1534
1535/// printImplicitDef - This method prints the specified machine instruction
1536/// that is an implicit def.
1537void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1538  if (VerboseAsm)
1539    O << '\t' << TAI->getCommentString() << " implicit-def: "
1540      << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1541}
1542
1543/// printLabel - This method prints a local label used by debug and
1544/// exception handling tables.
1545void AsmPrinter::printLabel(const MachineInstr *MI) const {
1546  printLabel(MI->getOperand(0).getImm());
1547}
1548
1549void AsmPrinter::printLabel(unsigned Id) const {
1550  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1551}
1552
1553/// printDeclare - This method prints a local variable declaration used by
1554/// debug tables.
1555/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1556/// entry into dwarf table.
1557void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1558  unsigned FI = MI->getOperand(0).getIndex();
1559  GlobalValue *GV = MI->getOperand(1).getGlobal();
1560  DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1561}
1562
1563/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1564/// instruction, using the specified assembler variant.  Targets should
1565/// overried this to format as appropriate.
1566bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1567                                 unsigned AsmVariant, const char *ExtraCode) {
1568  // Target doesn't support this yet!
1569  return true;
1570}
1571
1572bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1573                                       unsigned AsmVariant,
1574                                       const char *ExtraCode) {
1575  // Target doesn't support this yet!
1576  return true;
1577}
1578
1579/// printBasicBlockLabel - This method prints the label for the specified
1580/// MachineBasicBlock
1581void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1582                                      bool printAlign,
1583                                      bool printColon,
1584                                      bool printComment) const {
1585  if (printAlign) {
1586    unsigned Align = MBB->getAlignment();
1587    if (Align)
1588      EmitAlignment(Log2_32(Align));
1589  }
1590
1591  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1592    << MBB->getNumber();
1593  if (printColon)
1594    O << ':';
1595  if (printComment && MBB->getBasicBlock())
1596    O << '\t' << TAI->getCommentString() << ' '
1597      << MBB->getBasicBlock()->getNameStart();
1598}
1599
1600/// printPICJumpTableSetLabel - This method prints a set label for the
1601/// specified MachineBasicBlock for a jumptable entry.
1602void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1603                                           const MachineBasicBlock *MBB) const {
1604  if (!TAI->getSetDirective())
1605    return;
1606
1607  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1608    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1609  printBasicBlockLabel(MBB, false, false, false);
1610  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1611    << '_' << uid << '\n';
1612}
1613
1614void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1615                                           const MachineBasicBlock *MBB) const {
1616  if (!TAI->getSetDirective())
1617    return;
1618
1619  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1620    << getFunctionNumber() << '_' << uid << '_' << uid2
1621    << "_set_" << MBB->getNumber() << ',';
1622  printBasicBlockLabel(MBB, false, false, false);
1623  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1624    << '_' << uid << '_' << uid2 << '\n';
1625}
1626
1627/// printDataDirective - This method prints the asm directive for the
1628/// specified type.
1629void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1630  const TargetData *TD = TM.getTargetData();
1631  switch (type->getTypeID()) {
1632  case Type::FloatTyID: case Type::DoubleTyID:
1633  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1634    assert(0 && "Should have already output floating point constant.");
1635  default:
1636    assert(0 && "Can't handle printing this type of thing");
1637  case Type::IntegerTyID: {
1638    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1639    if (BitWidth <= 8)
1640      O << TAI->getData8bitsDirective(AddrSpace);
1641    else if (BitWidth <= 16)
1642      O << TAI->getData16bitsDirective(AddrSpace);
1643    else if (BitWidth <= 32)
1644      O << TAI->getData32bitsDirective(AddrSpace);
1645    else if (BitWidth <= 64) {
1646      assert(TAI->getData64bitsDirective(AddrSpace) &&
1647             "Target cannot handle 64-bit constant exprs!");
1648      O << TAI->getData64bitsDirective(AddrSpace);
1649    } else {
1650      llvm_unreachable("Target cannot handle given data directive width!");
1651    }
1652    break;
1653  }
1654  case Type::PointerTyID:
1655    if (TD->getPointerSize() == 8) {
1656      assert(TAI->getData64bitsDirective(AddrSpace) &&
1657             "Target cannot handle 64-bit pointer exprs!");
1658      O << TAI->getData64bitsDirective(AddrSpace);
1659    } else if (TD->getPointerSize() == 2) {
1660      O << TAI->getData16bitsDirective(AddrSpace);
1661    } else if (TD->getPointerSize() == 1) {
1662      O << TAI->getData8bitsDirective(AddrSpace);
1663    } else {
1664      O << TAI->getData32bitsDirective(AddrSpace);
1665    }
1666    break;
1667  }
1668}
1669
1670void AsmPrinter::printVisibility(const std::string& Name,
1671                                 unsigned Visibility) const {
1672  if (Visibility == GlobalValue::HiddenVisibility) {
1673    if (const char *Directive = TAI->getHiddenDirective())
1674      O << Directive << Name << '\n';
1675  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1676    if (const char *Directive = TAI->getProtectedDirective())
1677      O << Directive << Name << '\n';
1678  }
1679}
1680
1681void AsmPrinter::printOffset(int64_t Offset) const {
1682  if (Offset > 0)
1683    O << '+' << Offset;
1684  else if (Offset < 0)
1685    O << Offset;
1686}
1687
1688GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1689  if (!S->usesMetadata())
1690    return 0;
1691
1692  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1693  if (GCPI != GCMetadataPrinters.end())
1694    return GCPI->second;
1695
1696  const char *Name = S->getName().c_str();
1697
1698  for (GCMetadataPrinterRegistry::iterator
1699         I = GCMetadataPrinterRegistry::begin(),
1700         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1701    if (strcmp(Name, I->getName()) == 0) {
1702      GCMetadataPrinter *GMP = I->instantiate();
1703      GMP->S = S;
1704      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1705      return GMP;
1706    }
1707
1708  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1709  llvm_unreachable(0);
1710}
1711
1712/// EmitComments - Pretty-print comments for instructions
1713void AsmPrinter::EmitComments(const MachineInstr &MI) const
1714{
1715  if (VerboseAsm) {
1716    if (!MI.getDebugLoc().isUnknown()) {
1717      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1718
1719      // Print source line info
1720      O.PadToColumn(TAI->getCommentColumn(), 1);
1721      O << TAI->getCommentString() << " SrcLine ";
1722      if (DLT.CompileUnit->hasInitializer()) {
1723        Constant *Name = DLT.CompileUnit->getInitializer();
1724        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1725          if (NameString->isString()) {
1726            O << NameString->getAsString() << " ";
1727          }
1728      }
1729      O << DLT.Line;
1730      if (DLT.Col != 0)
1731        O << ":" << DLT.Col;
1732    }
1733  }
1734}
1735
1736/// EmitComments - Pretty-print comments for instructions
1737void AsmPrinter::EmitComments(const MCInst &MI) const
1738{
1739  if (VerboseAsm) {
1740    if (!MI.getDebugLoc().isUnknown()) {
1741      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1742
1743      // Print source line info
1744      O.PadToColumn(TAI->getCommentColumn(), 1);
1745      O << TAI->getCommentString() << " SrcLine ";
1746      if (DLT.CompileUnit->hasInitializer()) {
1747        Constant *Name = DLT.CompileUnit->getInitializer();
1748        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1749          if (NameString->isString()) {
1750            O << NameString->getAsString() << " ";
1751          }
1752      }
1753      O << DLT.Line;
1754      if (DLT.Col != 0)
1755        O << ":" << DLT.Col;
1756    }
1757  }
1758}
1759