AsmPrinter.cpp revision e2b060161c92ddf60b5d020f981451e9e34a3f02
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineLoopInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/DwarfWriter.h"
25#include "llvm/Analysis/DebugInfo.h"
26#include "llvm/MC/MCContext.h"
27#include "llvm/MC/MCInst.h"
28#include "llvm/MC/MCSection.h"
29#include "llvm/MC/MCStreamer.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/FormattedStream.h"
33#include "llvm/Support/IOManip.h"
34#include "llvm/Support/Mangler.h"
35#include "llvm/Target/TargetAsmInfo.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetLoweringObjectFile.h"
39#include "llvm/Target/TargetOptions.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/StringExtras.h"
44#include <cerrno>
45using namespace llvm;
46
47static cl::opt<cl::boolOrDefault>
48AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
49           cl::init(cl::BOU_UNSET));
50
51static cl::opt<cl::boolOrDefault>
52AsmExuberant("asm-exuberant", cl::desc("Add many comments."),
53           cl::init(cl::BOU_FALSE));
54
55char AsmPrinter::ID = 0;
56AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
57                       const TargetAsmInfo *T, bool VDef)
58  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
59    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
60
61    OutContext(*new MCContext()),
62    OutStreamer(*createAsmStreamer(OutContext, O)),
63
64    LastMI(0), LastFn(0), Counter(~0U),
65    PrevDLT(0, ~0U, ~0U) {
66  CurrentSection = 0;
67  DW = 0; MMI = 0;
68  switch (AsmVerbose) {
69  case cl::BOU_UNSET: VerboseAsm = VDef;  break;
70  case cl::BOU_TRUE:  VerboseAsm = true;  break;
71  case cl::BOU_FALSE: VerboseAsm = false; break;
72  }
73  switch (AsmExuberant) {
74  case cl::BOU_UNSET: ExuberantAsm = false;  break;
75  case cl::BOU_TRUE:  ExuberantAsm = true;  break;
76  case cl::BOU_FALSE: ExuberantAsm = false; break;
77  }
78}
79
80AsmPrinter::~AsmPrinter() {
81  for (gcp_iterator I = GCMetadataPrinters.begin(),
82                    E = GCMetadataPrinters.end(); I != E; ++I)
83    delete I->second;
84
85  delete &OutStreamer;
86  delete &OutContext;
87}
88
89TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
90  return TM.getTargetLowering()->getObjFileLowering();
91}
92
93/// SwitchToSection - Switch to the specified section of the executable if we
94/// are not already in it!  If "NS" is null, then this causes us to exit the
95/// current section and not reenter another one.  This is generally used for
96/// asmprinter hacks.
97///
98/// FIXME: Remove support for null sections.
99///
100void AsmPrinter::SwitchToSection(const MCSection *NS) {
101  // If we're already in this section, we're done.
102  if (CurrentSection == NS) return;
103
104  CurrentSection = NS;
105
106  if (NS == 0) return;
107
108  NS->PrintSwitchToSection(*TAI, O);
109}
110
111void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
112  AU.setPreservesAll();
113  MachineFunctionPass::getAnalysisUsage(AU);
114  AU.addRequired<GCModuleInfo>();
115  if (ExuberantAsm) {
116    AU.addRequired<MachineLoopInfo>();
117  }
118}
119
120bool AsmPrinter::doInitialization(Module &M) {
121  // Initialize TargetLoweringObjectFile.
122  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
123    .Initialize(OutContext, TM);
124
125  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(),
126                     TAI->getLinkerPrivateGlobalPrefix());
127
128  if (TAI->doesAllowQuotesInName())
129    Mang->setUseQuotes(true);
130
131  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
132  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
133
134  if (TAI->hasSingleParameterDotFile()) {
135    /* Very minimal debug info. It is ignored if we emit actual
136       debug info. If we don't, this at helps the user find where
137       a function came from. */
138    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
139  }
140
141  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
142    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
143      MP->beginAssembly(O, *this, *TAI);
144
145  if (!M.getModuleInlineAsm().empty())
146    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
147      << M.getModuleInlineAsm()
148      << '\n' << TAI->getCommentString()
149      << " End of file scope inline assembly\n";
150
151  SwitchToSection(0);   // Reset back to no section to close off sections.
152
153  if (TAI->doesSupportDebugInformation() ||
154      TAI->doesSupportExceptionHandling()) {
155    MMI = getAnalysisIfAvailable<MachineModuleInfo>();
156    if (MMI)
157      MMI->AnalyzeModule(M);
158    DW = getAnalysisIfAvailable<DwarfWriter>();
159    if (DW)
160      DW->BeginModule(&M, MMI, O, this, TAI);
161  }
162
163  return false;
164}
165
166bool AsmPrinter::doFinalization(Module &M) {
167  // Emit global variables.
168  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
169       I != E; ++I)
170    PrintGlobalVariable(I);
171
172  // Emit final debug information.
173  if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
174    DW->EndModule();
175
176  // If the target wants to know about weak references, print them all.
177  if (TAI->getWeakRefDirective()) {
178    // FIXME: This is not lazy, it would be nice to only print weak references
179    // to stuff that is actually used.  Note that doing so would require targets
180    // to notice uses in operands (due to constant exprs etc).  This should
181    // happen with the MC stuff eventually.
182    SwitchToSection(0);
183
184    // Print out module-level global variables here.
185    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
186         I != E; ++I) {
187      if (I->hasExternalWeakLinkage())
188        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
189    }
190
191    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
192      if (I->hasExternalWeakLinkage())
193        O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
194    }
195  }
196
197  if (TAI->getSetDirective()) {
198    O << '\n';
199    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
200         I != E; ++I) {
201      std::string Name = Mang->getMangledName(I);
202
203      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
204      std::string Target = Mang->getMangledName(GV);
205
206      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
207        O << "\t.globl\t" << Name << '\n';
208      else if (I->hasWeakLinkage())
209        O << TAI->getWeakRefDirective() << Name << '\n';
210      else if (!I->hasLocalLinkage())
211        llvm_unreachable("Invalid alias linkage");
212
213      printVisibility(Name, I->getVisibility());
214
215      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
216    }
217  }
218
219  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
220  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
221  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
222    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
223      MP->finishAssembly(O, *this, *TAI);
224
225  // If we don't have any trampolines, then we don't require stack memory
226  // to be executable. Some targets have a directive to declare this.
227  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
228  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
229    if (TAI->getNonexecutableStackDirective())
230      O << TAI->getNonexecutableStackDirective() << '\n';
231
232  delete Mang; Mang = 0;
233  DW = 0; MMI = 0;
234
235  OutStreamer.Finish();
236  return false;
237}
238
239std::string
240AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const {
241  assert(MF && "No machine function?");
242  return Mang->getMangledName(MF->getFunction(), ".eh",
243                              TAI->is_EHSymbolPrivate());
244}
245
246void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
247  // What's my mangled name?
248  CurrentFnName = Mang->getMangledName(MF.getFunction());
249  IncrementFunctionNumber();
250
251  if (ExuberantAsm) {
252    LI = &getAnalysis<MachineLoopInfo>();
253  }
254}
255
256namespace {
257  // SectionCPs - Keep track the alignment, constpool entries per Section.
258  struct SectionCPs {
259    const MCSection *S;
260    unsigned Alignment;
261    SmallVector<unsigned, 4> CPEs;
262    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
263  };
264}
265
266/// EmitConstantPool - Print to the current output stream assembly
267/// representations of the constants in the constant pool MCP. This is
268/// used to print out constants which have been "spilled to memory" by
269/// the code generator.
270///
271void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
272  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
273  if (CP.empty()) return;
274
275  // Calculate sections for constant pool entries. We collect entries to go into
276  // the same section together to reduce amount of section switch statements.
277  SmallVector<SectionCPs, 4> CPSections;
278  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
279    const MachineConstantPoolEntry &CPE = CP[i];
280    unsigned Align = CPE.getAlignment();
281
282    SectionKind Kind;
283    switch (CPE.getRelocationInfo()) {
284    default: llvm_unreachable("Unknown section kind");
285    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
286    case 1:
287      Kind = SectionKind::getReadOnlyWithRelLocal();
288      break;
289    case 0:
290    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
291    case 4:  Kind = SectionKind::getMergeableConst4(); break;
292    case 8:  Kind = SectionKind::getMergeableConst8(); break;
293    case 16: Kind = SectionKind::getMergeableConst16();break;
294    default: Kind = SectionKind::getMergeableConst(); break;
295    }
296    }
297
298    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
299
300    // The number of sections are small, just do a linear search from the
301    // last section to the first.
302    bool Found = false;
303    unsigned SecIdx = CPSections.size();
304    while (SecIdx != 0) {
305      if (CPSections[--SecIdx].S == S) {
306        Found = true;
307        break;
308      }
309    }
310    if (!Found) {
311      SecIdx = CPSections.size();
312      CPSections.push_back(SectionCPs(S, Align));
313    }
314
315    if (Align > CPSections[SecIdx].Alignment)
316      CPSections[SecIdx].Alignment = Align;
317    CPSections[SecIdx].CPEs.push_back(i);
318  }
319
320  // Now print stuff into the calculated sections.
321  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
322    SwitchToSection(CPSections[i].S);
323    EmitAlignment(Log2_32(CPSections[i].Alignment));
324
325    unsigned Offset = 0;
326    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
327      unsigned CPI = CPSections[i].CPEs[j];
328      MachineConstantPoolEntry CPE = CP[CPI];
329
330      // Emit inter-object padding for alignment.
331      unsigned AlignMask = CPE.getAlignment() - 1;
332      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
333      EmitZeros(NewOffset - Offset);
334
335      const Type *Ty = CPE.getType();
336      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
337
338      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
339        << CPI << ":\t\t\t\t\t";
340      if (VerboseAsm) {
341        O << TAI->getCommentString() << ' ';
342        WriteTypeSymbolic(O, CPE.getType(), 0);
343      }
344      O << '\n';
345      if (CPE.isMachineConstantPoolEntry())
346        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
347      else
348        EmitGlobalConstant(CPE.Val.ConstVal);
349    }
350  }
351}
352
353/// EmitJumpTableInfo - Print assembly representations of the jump tables used
354/// by the current function to the current output stream.
355///
356void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
357                                   MachineFunction &MF) {
358  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
359  if (JT.empty()) return;
360
361  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
362
363  // Pick the directive to use to print the jump table entries, and switch to
364  // the appropriate section.
365  TargetLowering *LoweringInfo = TM.getTargetLowering();
366
367  const Function *F = MF.getFunction();
368  bool JTInDiffSection = false;
369  if (F->isWeakForLinker() ||
370      (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
371    // In PIC mode, we need to emit the jump table to the same section as the
372    // function body itself, otherwise the label differences won't make sense.
373    // We should also do if the section name is NULL or function is declared in
374    // discardable section.
375    SwitchToSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
376  } else {
377    // Otherwise, drop it in the readonly section.
378    const MCSection *ReadOnlySection =
379      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
380    SwitchToSection(ReadOnlySection);
381    JTInDiffSection = true;
382  }
383
384  EmitAlignment(Log2_32(MJTI->getAlignment()));
385
386  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
387    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
388
389    // If this jump table was deleted, ignore it.
390    if (JTBBs.empty()) continue;
391
392    // For PIC codegen, if possible we want to use the SetDirective to reduce
393    // the number of relocations the assembler will generate for the jump table.
394    // Set directives are all printed before the jump table itself.
395    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
396    if (TAI->getSetDirective() && IsPic)
397      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
398        if (EmittedSets.insert(JTBBs[ii]))
399          printPICJumpTableSetLabel(i, JTBBs[ii]);
400
401    // On some targets (e.g. darwin) we want to emit two consequtive labels
402    // before each jump table.  The first label is never referenced, but tells
403    // the assembler and linker the extents of the jump table object.  The
404    // second label is actually referenced by the code.
405    if (JTInDiffSection) {
406      if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
407        O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
408    }
409
410    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
411      << '_' << i << ":\n";
412
413    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
414      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
415      O << '\n';
416    }
417  }
418}
419
420void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
421                                        const MachineBasicBlock *MBB,
422                                        unsigned uid)  const {
423  bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
424
425  // Use JumpTableDirective otherwise honor the entry size from the jump table
426  // info.
427  const char *JTEntryDirective = TAI->getJumpTableDirective(isPIC);
428  bool HadJTEntryDirective = JTEntryDirective != NULL;
429  if (!HadJTEntryDirective) {
430    JTEntryDirective = MJTI->getEntrySize() == 4 ?
431      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
432  }
433
434  O << JTEntryDirective << ' ';
435
436  // If we have emitted set directives for the jump table entries, print
437  // them rather than the entries themselves.  If we're emitting PIC, then
438  // emit the table entries as differences between two text section labels.
439  // If we're emitting non-PIC code, then emit the entries as direct
440  // references to the target basic blocks.
441  if (!isPIC) {
442    printBasicBlockLabel(MBB, false, false, false);
443  } else if (TAI->getSetDirective()) {
444    O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
445      << '_' << uid << "_set_" << MBB->getNumber();
446  } else {
447    printBasicBlockLabel(MBB, false, false, false);
448    // If the arch uses custom Jump Table directives, don't calc relative to
449    // JT
450    if (!HadJTEntryDirective)
451      O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
452        << getFunctionNumber() << '_' << uid;
453  }
454}
455
456
457/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
458/// special global used by LLVM.  If so, emit it and return true, otherwise
459/// do nothing and return false.
460bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
461  if (GV->getName() == "llvm.used") {
462    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
463      EmitLLVMUsedList(GV->getInitializer());
464    return true;
465  }
466
467  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
468  if (GV->getSection() == "llvm.metadata" ||
469      GV->hasAvailableExternallyLinkage())
470    return true;
471
472  if (!GV->hasAppendingLinkage()) return false;
473
474  assert(GV->hasInitializer() && "Not a special LLVM global!");
475
476  const TargetData *TD = TM.getTargetData();
477  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
478  if (GV->getName() == "llvm.global_ctors") {
479    SwitchToSection(getObjFileLowering().getStaticCtorSection());
480    EmitAlignment(Align, 0);
481    EmitXXStructorList(GV->getInitializer());
482    return true;
483  }
484
485  if (GV->getName() == "llvm.global_dtors") {
486    SwitchToSection(getObjFileLowering().getStaticDtorSection());
487    EmitAlignment(Align, 0);
488    EmitXXStructorList(GV->getInitializer());
489    return true;
490  }
491
492  return false;
493}
494
495/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
496/// global in the specified llvm.used list for which emitUsedDirectiveFor
497/// is true, as being used with this directive.
498void AsmPrinter::EmitLLVMUsedList(Constant *List) {
499  const char *Directive = TAI->getUsedDirective();
500
501  // Should be an array of 'i8*'.
502  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
503  if (InitList == 0) return;
504
505  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
506    const GlobalValue *GV =
507      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
508    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
509      O << Directive;
510      EmitConstantValueOnly(InitList->getOperand(i));
511      O << '\n';
512    }
513  }
514}
515
516/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
517/// function pointers, ignoring the init priority.
518void AsmPrinter::EmitXXStructorList(Constant *List) {
519  // Should be an array of '{ int, void ()* }' structs.  The first value is the
520  // init priority, which we ignore.
521  if (!isa<ConstantArray>(List)) return;
522  ConstantArray *InitList = cast<ConstantArray>(List);
523  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
524    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
525      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
526
527      if (CS->getOperand(1)->isNullValue())
528        return;  // Found a null terminator, exit printing.
529      // Emit the function pointer.
530      EmitGlobalConstant(CS->getOperand(1));
531    }
532}
533
534/// getGlobalLinkName - Returns the asm/link name of of the specified
535/// global variable.  Should be overridden by each target asm printer to
536/// generate the appropriate value.
537const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
538                                                 std::string &LinkName) const {
539  if (isa<Function>(GV)) {
540    LinkName += TAI->getFunctionAddrPrefix();
541    LinkName += Mang->getMangledName(GV);
542    LinkName += TAI->getFunctionAddrSuffix();
543  } else {
544    LinkName += TAI->getGlobalVarAddrPrefix();
545    LinkName += Mang->getMangledName(GV);
546    LinkName += TAI->getGlobalVarAddrSuffix();
547  }
548
549  return LinkName;
550}
551
552/// EmitExternalGlobal - Emit the external reference to a global variable.
553/// Should be overridden if an indirect reference should be used.
554void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
555  std::string GLN;
556  O << getGlobalLinkName(GV, GLN);
557}
558
559
560
561//===----------------------------------------------------------------------===//
562/// LEB 128 number encoding.
563
564/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
565/// representing an unsigned leb128 value.
566void AsmPrinter::PrintULEB128(unsigned Value) const {
567  char Buffer[20];
568  do {
569    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
570    Value >>= 7;
571    if (Value) Byte |= 0x80;
572    O << "0x" << utohex_buffer(Byte, Buffer+20);
573    if (Value) O << ", ";
574  } while (Value);
575}
576
577/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
578/// representing a signed leb128 value.
579void AsmPrinter::PrintSLEB128(int Value) const {
580  int Sign = Value >> (8 * sizeof(Value) - 1);
581  bool IsMore;
582  char Buffer[20];
583
584  do {
585    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
586    Value >>= 7;
587    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
588    if (IsMore) Byte |= 0x80;
589    O << "0x" << utohex_buffer(Byte, Buffer+20);
590    if (IsMore) O << ", ";
591  } while (IsMore);
592}
593
594//===--------------------------------------------------------------------===//
595// Emission and print routines
596//
597
598/// PrintHex - Print a value as a hexidecimal value.
599///
600void AsmPrinter::PrintHex(int Value) const {
601  char Buffer[20];
602  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
603}
604
605/// EOL - Print a newline character to asm stream.  If a comment is present
606/// then it will be printed first.  Comments should not contain '\n'.
607void AsmPrinter::EOL() const {
608  O << '\n';
609}
610
611void AsmPrinter::EOL(const std::string &Comment) const {
612  if (VerboseAsm && !Comment.empty()) {
613    O << '\t'
614      << TAI->getCommentString()
615      << ' '
616      << Comment;
617  }
618  O << '\n';
619}
620
621void AsmPrinter::EOL(const char* Comment) const {
622  if (VerboseAsm && *Comment) {
623    O << '\t'
624      << TAI->getCommentString()
625      << ' '
626      << Comment;
627  }
628  O << '\n';
629}
630
631/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
632/// unsigned leb128 value.
633void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
634  if (TAI->hasLEB128()) {
635    O << "\t.uleb128\t"
636      << Value;
637  } else {
638    O << TAI->getData8bitsDirective();
639    PrintULEB128(Value);
640  }
641}
642
643/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
644/// signed leb128 value.
645void AsmPrinter::EmitSLEB128Bytes(int Value) const {
646  if (TAI->hasLEB128()) {
647    O << "\t.sleb128\t"
648      << Value;
649  } else {
650    O << TAI->getData8bitsDirective();
651    PrintSLEB128(Value);
652  }
653}
654
655/// EmitInt8 - Emit a byte directive and value.
656///
657void AsmPrinter::EmitInt8(int Value) const {
658  O << TAI->getData8bitsDirective();
659  PrintHex(Value & 0xFF);
660}
661
662/// EmitInt16 - Emit a short directive and value.
663///
664void AsmPrinter::EmitInt16(int Value) const {
665  O << TAI->getData16bitsDirective();
666  PrintHex(Value & 0xFFFF);
667}
668
669/// EmitInt32 - Emit a long directive and value.
670///
671void AsmPrinter::EmitInt32(int Value) const {
672  O << TAI->getData32bitsDirective();
673  PrintHex(Value);
674}
675
676/// EmitInt64 - Emit a long long directive and value.
677///
678void AsmPrinter::EmitInt64(uint64_t Value) const {
679  if (TAI->getData64bitsDirective()) {
680    O << TAI->getData64bitsDirective();
681    PrintHex(Value);
682  } else {
683    if (TM.getTargetData()->isBigEndian()) {
684      EmitInt32(unsigned(Value >> 32)); O << '\n';
685      EmitInt32(unsigned(Value));
686    } else {
687      EmitInt32(unsigned(Value)); O << '\n';
688      EmitInt32(unsigned(Value >> 32));
689    }
690  }
691}
692
693/// toOctal - Convert the low order bits of X into an octal digit.
694///
695static inline char toOctal(int X) {
696  return (X&7)+'0';
697}
698
699/// printStringChar - Print a char, escaped if necessary.
700///
701static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
702  if (C == '"') {
703    O << "\\\"";
704  } else if (C == '\\') {
705    O << "\\\\";
706  } else if (isprint((unsigned char)C)) {
707    O << C;
708  } else {
709    switch(C) {
710    case '\b': O << "\\b"; break;
711    case '\f': O << "\\f"; break;
712    case '\n': O << "\\n"; break;
713    case '\r': O << "\\r"; break;
714    case '\t': O << "\\t"; break;
715    default:
716      O << '\\';
717      O << toOctal(C >> 6);
718      O << toOctal(C >> 3);
719      O << toOctal(C >> 0);
720      break;
721    }
722  }
723}
724
725/// EmitString - Emit a string with quotes and a null terminator.
726/// Special characters are emitted properly.
727/// \literal (Eg. '\t') \endliteral
728void AsmPrinter::EmitString(const std::string &String) const {
729  EmitString(String.c_str(), String.size());
730}
731
732void AsmPrinter::EmitString(const char *String, unsigned Size) const {
733  const char* AscizDirective = TAI->getAscizDirective();
734  if (AscizDirective)
735    O << AscizDirective;
736  else
737    O << TAI->getAsciiDirective();
738  O << '\"';
739  for (unsigned i = 0; i < Size; ++i)
740    printStringChar(O, String[i]);
741  if (AscizDirective)
742    O << '\"';
743  else
744    O << "\\0\"";
745}
746
747
748/// EmitFile - Emit a .file directive.
749void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
750  O << "\t.file\t" << Number << " \"";
751  for (unsigned i = 0, N = Name.size(); i < N; ++i)
752    printStringChar(O, Name[i]);
753  O << '\"';
754}
755
756
757//===----------------------------------------------------------------------===//
758
759// EmitAlignment - Emit an alignment directive to the specified power of
760// two boundary.  For example, if you pass in 3 here, you will get an 8
761// byte alignment.  If a global value is specified, and if that global has
762// an explicit alignment requested, it will unconditionally override the
763// alignment request.  However, if ForcedAlignBits is specified, this value
764// has final say: the ultimate alignment will be the max of ForcedAlignBits
765// and the alignment computed with NumBits and the global.
766//
767// The algorithm is:
768//     Align = NumBits;
769//     if (GV && GV->hasalignment) Align = GV->getalignment();
770//     Align = std::max(Align, ForcedAlignBits);
771//
772void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
773                               unsigned ForcedAlignBits,
774                               bool UseFillExpr) const {
775  if (GV && GV->getAlignment())
776    NumBits = Log2_32(GV->getAlignment());
777  NumBits = std::max(NumBits, ForcedAlignBits);
778
779  if (NumBits == 0) return;   // No need to emit alignment.
780  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
781  O << TAI->getAlignDirective() << NumBits;
782
783  if (CurrentSection && CurrentSection->getKind().isText())
784    if (unsigned FillValue = TAI->getTextAlignFillValue()) {
785      O << ',';
786      PrintHex(FillValue);
787    }
788  O << '\n';
789}
790
791/// EmitZeros - Emit a block of zeros.
792///
793void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
794  if (NumZeros) {
795    if (TAI->getZeroDirective()) {
796      O << TAI->getZeroDirective() << NumZeros;
797      if (TAI->getZeroDirectiveSuffix())
798        O << TAI->getZeroDirectiveSuffix();
799      O << '\n';
800    } else {
801      for (; NumZeros; --NumZeros)
802        O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
803    }
804  }
805}
806
807// Print out the specified constant, without a storage class.  Only the
808// constants valid in constant expressions can occur here.
809void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
810  if (CV->isNullValue() || isa<UndefValue>(CV))
811    O << '0';
812  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
813    O << CI->getZExtValue();
814  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
815    // This is a constant address for a global variable or function. Use the
816    // name of the variable or function as the address value, possibly
817    // decorating it with GlobalVarAddrPrefix/Suffix or
818    // FunctionAddrPrefix/Suffix (these all default to "" )
819    if (isa<Function>(GV)) {
820      O << TAI->getFunctionAddrPrefix()
821        << Mang->getMangledName(GV)
822        << TAI->getFunctionAddrSuffix();
823    } else {
824      O << TAI->getGlobalVarAddrPrefix()
825        << Mang->getMangledName(GV)
826        << TAI->getGlobalVarAddrSuffix();
827    }
828  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
829    const TargetData *TD = TM.getTargetData();
830    unsigned Opcode = CE->getOpcode();
831    switch (Opcode) {
832    case Instruction::Trunc:
833    case Instruction::ZExt:
834    case Instruction::SExt:
835    case Instruction::FPTrunc:
836    case Instruction::FPExt:
837    case Instruction::UIToFP:
838    case Instruction::SIToFP:
839    case Instruction::FPToUI:
840    case Instruction::FPToSI:
841      llvm_unreachable("FIXME: Don't support this constant cast expr");
842    case Instruction::GetElementPtr: {
843      // generate a symbolic expression for the byte address
844      const Constant *ptrVal = CE->getOperand(0);
845      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
846      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
847                                                idxVec.size())) {
848        // Truncate/sext the offset to the pointer size.
849        if (TD->getPointerSizeInBits() != 64) {
850          int SExtAmount = 64-TD->getPointerSizeInBits();
851          Offset = (Offset << SExtAmount) >> SExtAmount;
852        }
853
854        if (Offset)
855          O << '(';
856        EmitConstantValueOnly(ptrVal);
857        if (Offset > 0)
858          O << ") + " << Offset;
859        else if (Offset < 0)
860          O << ") - " << -Offset;
861      } else {
862        EmitConstantValueOnly(ptrVal);
863      }
864      break;
865    }
866    case Instruction::BitCast:
867      return EmitConstantValueOnly(CE->getOperand(0));
868
869    case Instruction::IntToPtr: {
870      // Handle casts to pointers by changing them into casts to the appropriate
871      // integer type.  This promotes constant folding and simplifies this code.
872      Constant *Op = CE->getOperand(0);
873      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
874      return EmitConstantValueOnly(Op);
875    }
876
877
878    case Instruction::PtrToInt: {
879      // Support only foldable casts to/from pointers that can be eliminated by
880      // changing the pointer to the appropriately sized integer type.
881      Constant *Op = CE->getOperand(0);
882      const Type *Ty = CE->getType();
883
884      // We can emit the pointer value into this slot if the slot is an
885      // integer slot greater or equal to the size of the pointer.
886      if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
887        return EmitConstantValueOnly(Op);
888
889      O << "((";
890      EmitConstantValueOnly(Op);
891      APInt ptrMask =
892        APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
893
894      SmallString<40> S;
895      ptrMask.toStringUnsigned(S);
896      O << ") & " << S.c_str() << ')';
897      break;
898    }
899    case Instruction::Add:
900    case Instruction::Sub:
901    case Instruction::And:
902    case Instruction::Or:
903    case Instruction::Xor:
904      O << '(';
905      EmitConstantValueOnly(CE->getOperand(0));
906      O << ')';
907      switch (Opcode) {
908      case Instruction::Add:
909       O << " + ";
910       break;
911      case Instruction::Sub:
912       O << " - ";
913       break;
914      case Instruction::And:
915       O << " & ";
916       break;
917      case Instruction::Or:
918       O << " | ";
919       break;
920      case Instruction::Xor:
921       O << " ^ ";
922       break;
923      default:
924       break;
925      }
926      O << '(';
927      EmitConstantValueOnly(CE->getOperand(1));
928      O << ')';
929      break;
930    default:
931      llvm_unreachable("Unsupported operator!");
932    }
933  } else {
934    llvm_unreachable("Unknown constant value!");
935  }
936}
937
938/// printAsCString - Print the specified array as a C compatible string, only if
939/// the predicate isString is true.
940///
941static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
942                           unsigned LastElt) {
943  assert(CVA->isString() && "Array is not string compatible!");
944
945  O << '\"';
946  for (unsigned i = 0; i != LastElt; ++i) {
947    unsigned char C =
948        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
949    printStringChar(O, C);
950  }
951  O << '\"';
952}
953
954/// EmitString - Emit a zero-byte-terminated string constant.
955///
956void AsmPrinter::EmitString(const ConstantArray *CVA) const {
957  unsigned NumElts = CVA->getNumOperands();
958  if (TAI->getAscizDirective() && NumElts &&
959      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
960    O << TAI->getAscizDirective();
961    printAsCString(O, CVA, NumElts-1);
962  } else {
963    O << TAI->getAsciiDirective();
964    printAsCString(O, CVA, NumElts);
965  }
966  O << '\n';
967}
968
969void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
970                                         unsigned AddrSpace) {
971  if (CVA->isString()) {
972    EmitString(CVA);
973  } else { // Not a string.  Print the values in successive locations
974    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
975      EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
976  }
977}
978
979void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
980  const VectorType *PTy = CP->getType();
981
982  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
983    EmitGlobalConstant(CP->getOperand(I));
984}
985
986void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
987                                          unsigned AddrSpace) {
988  // Print the fields in successive locations. Pad to align if needed!
989  const TargetData *TD = TM.getTargetData();
990  unsigned Size = TD->getTypeAllocSize(CVS->getType());
991  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
992  uint64_t sizeSoFar = 0;
993  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
994    const Constant* field = CVS->getOperand(i);
995
996    // Check if padding is needed and insert one or more 0s.
997    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
998    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
999                        - cvsLayout->getElementOffset(i)) - fieldSize;
1000    sizeSoFar += fieldSize + padSize;
1001
1002    // Now print the actual field value.
1003    EmitGlobalConstant(field, AddrSpace);
1004
1005    // Insert padding - this may include padding to increase the size of the
1006    // current field up to the ABI size (if the struct is not packed) as well
1007    // as padding to ensure that the next field starts at the right offset.
1008    EmitZeros(padSize, AddrSpace);
1009  }
1010  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1011         "Layout of constant struct may be incorrect!");
1012}
1013
1014void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1015                                      unsigned AddrSpace) {
1016  // FP Constants are printed as integer constants to avoid losing
1017  // precision...
1018  const TargetData *TD = TM.getTargetData();
1019  if (CFP->getType() == Type::DoubleTy) {
1020    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
1021    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1022    if (TAI->getData64bitsDirective(AddrSpace)) {
1023      O << TAI->getData64bitsDirective(AddrSpace) << i;
1024      if (VerboseAsm)
1025        O << '\t' << TAI->getCommentString() << " double value: " << Val;
1026      O << '\n';
1027    } else if (TD->isBigEndian()) {
1028      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1029      if (VerboseAsm)
1030        O << '\t' << TAI->getCommentString()
1031          << " double most significant word " << Val;
1032      O << '\n';
1033      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1034      if (VerboseAsm)
1035        O << '\t' << TAI->getCommentString()
1036          << " double least significant word " << Val;
1037      O << '\n';
1038    } else {
1039      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1040      if (VerboseAsm)
1041        O << '\t' << TAI->getCommentString()
1042          << " double least significant word " << Val;
1043      O << '\n';
1044      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1045      if (VerboseAsm)
1046        O << '\t' << TAI->getCommentString()
1047          << " double most significant word " << Val;
1048      O << '\n';
1049    }
1050    return;
1051  } else if (CFP->getType() == Type::FloatTy) {
1052    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1053    O << TAI->getData32bitsDirective(AddrSpace)
1054      << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1055    if (VerboseAsm)
1056      O << '\t' << TAI->getCommentString() << " float " << Val;
1057    O << '\n';
1058    return;
1059  } else if (CFP->getType() == Type::X86_FP80Ty) {
1060    // all long double variants are printed as hex
1061    // api needed to prevent premature destruction
1062    APInt api = CFP->getValueAPF().bitcastToAPInt();
1063    const uint64_t *p = api.getRawData();
1064    // Convert to double so we can print the approximate val as a comment.
1065    APFloat DoubleVal = CFP->getValueAPF();
1066    bool ignored;
1067    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1068                      &ignored);
1069    if (TD->isBigEndian()) {
1070      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1071      if (VerboseAsm)
1072        O << '\t' << TAI->getCommentString()
1073          << " long double most significant halfword of ~"
1074          << DoubleVal.convertToDouble();
1075      O << '\n';
1076      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1077      if (VerboseAsm)
1078        O << '\t' << TAI->getCommentString() << " long double next halfword";
1079      O << '\n';
1080      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1081      if (VerboseAsm)
1082        O << '\t' << TAI->getCommentString() << " long double next halfword";
1083      O << '\n';
1084      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1085      if (VerboseAsm)
1086        O << '\t' << TAI->getCommentString() << " long double next halfword";
1087      O << '\n';
1088      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1089      if (VerboseAsm)
1090        O << '\t' << TAI->getCommentString()
1091          << " long double least significant halfword";
1092      O << '\n';
1093     } else {
1094      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1095      if (VerboseAsm)
1096        O << '\t' << TAI->getCommentString()
1097          << " long double least significant halfword of ~"
1098          << DoubleVal.convertToDouble();
1099      O << '\n';
1100      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1101      if (VerboseAsm)
1102        O << '\t' << TAI->getCommentString()
1103          << " long double next halfword";
1104      O << '\n';
1105      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1106      if (VerboseAsm)
1107        O << '\t' << TAI->getCommentString()
1108          << " long double next halfword";
1109      O << '\n';
1110      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1111      if (VerboseAsm)
1112        O << '\t' << TAI->getCommentString()
1113          << " long double next halfword";
1114      O << '\n';
1115      O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1116      if (VerboseAsm)
1117        O << '\t' << TAI->getCommentString()
1118          << " long double most significant halfword";
1119      O << '\n';
1120    }
1121    EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) -
1122              TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1123    return;
1124  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1125    // all long double variants are printed as hex
1126    // api needed to prevent premature destruction
1127    APInt api = CFP->getValueAPF().bitcastToAPInt();
1128    const uint64_t *p = api.getRawData();
1129    if (TD->isBigEndian()) {
1130      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1131      if (VerboseAsm)
1132        O << '\t' << TAI->getCommentString()
1133          << " long double most significant word";
1134      O << '\n';
1135      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1136      if (VerboseAsm)
1137        O << '\t' << TAI->getCommentString()
1138        << " long double next word";
1139      O << '\n';
1140      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1141      if (VerboseAsm)
1142        O << '\t' << TAI->getCommentString()
1143          << " long double next word";
1144      O << '\n';
1145      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1146      if (VerboseAsm)
1147        O << '\t' << TAI->getCommentString()
1148          << " long double least significant word";
1149      O << '\n';
1150     } else {
1151      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1152      if (VerboseAsm)
1153        O << '\t' << TAI->getCommentString()
1154          << " long double least significant word";
1155      O << '\n';
1156      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1157      if (VerboseAsm)
1158        O << '\t' << TAI->getCommentString()
1159          << " long double next word";
1160      O << '\n';
1161      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1162      if (VerboseAsm)
1163        O << '\t' << TAI->getCommentString()
1164          << " long double next word";
1165      O << '\n';
1166      O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1167      if (VerboseAsm)
1168        O << '\t' << TAI->getCommentString()
1169          << " long double most significant word";
1170      O << '\n';
1171    }
1172    return;
1173  } else llvm_unreachable("Floating point constant type not handled");
1174}
1175
1176void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1177                                            unsigned AddrSpace) {
1178  const TargetData *TD = TM.getTargetData();
1179  unsigned BitWidth = CI->getBitWidth();
1180  assert(isPowerOf2_32(BitWidth) &&
1181         "Non-power-of-2-sized integers not handled!");
1182
1183  // We don't expect assemblers to support integer data directives
1184  // for more than 64 bits, so we emit the data in at most 64-bit
1185  // quantities at a time.
1186  const uint64_t *RawData = CI->getValue().getRawData();
1187  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1188    uint64_t Val;
1189    if (TD->isBigEndian())
1190      Val = RawData[e - i - 1];
1191    else
1192      Val = RawData[i];
1193
1194    if (TAI->getData64bitsDirective(AddrSpace))
1195      O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1196    else if (TD->isBigEndian()) {
1197      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1198      if (VerboseAsm)
1199        O << '\t' << TAI->getCommentString()
1200          << " Double-word most significant word " << Val;
1201      O << '\n';
1202      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1203      if (VerboseAsm)
1204        O << '\t' << TAI->getCommentString()
1205          << " Double-word least significant word " << Val;
1206      O << '\n';
1207    } else {
1208      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1209      if (VerboseAsm)
1210        O << '\t' << TAI->getCommentString()
1211          << " Double-word least significant word " << Val;
1212      O << '\n';
1213      O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1214      if (VerboseAsm)
1215        O << '\t' << TAI->getCommentString()
1216          << " Double-word most significant word " << Val;
1217      O << '\n';
1218    }
1219  }
1220}
1221
1222/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1223void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1224  const TargetData *TD = TM.getTargetData();
1225  const Type *type = CV->getType();
1226  unsigned Size = TD->getTypeAllocSize(type);
1227
1228  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1229    EmitZeros(Size, AddrSpace);
1230    return;
1231  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1232    EmitGlobalConstantArray(CVA , AddrSpace);
1233    return;
1234  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1235    EmitGlobalConstantStruct(CVS, AddrSpace);
1236    return;
1237  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1238    EmitGlobalConstantFP(CFP, AddrSpace);
1239    return;
1240  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1241    // Small integers are handled below; large integers are handled here.
1242    if (Size > 4) {
1243      EmitGlobalConstantLargeInt(CI, AddrSpace);
1244      return;
1245    }
1246  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1247    EmitGlobalConstantVector(CP);
1248    return;
1249  }
1250
1251  printDataDirective(type, AddrSpace);
1252  EmitConstantValueOnly(CV);
1253  if (VerboseAsm) {
1254    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1255      SmallString<40> S;
1256      CI->getValue().toStringUnsigned(S, 16);
1257      O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1258    }
1259  }
1260  O << '\n';
1261}
1262
1263void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1264  // Target doesn't support this yet!
1265  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1266}
1267
1268/// PrintSpecial - Print information related to the specified machine instr
1269/// that is independent of the operand, and may be independent of the instr
1270/// itself.  This can be useful for portably encoding the comment character
1271/// or other bits of target-specific knowledge into the asmstrings.  The
1272/// syntax used is ${:comment}.  Targets can override this to add support
1273/// for their own strange codes.
1274void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1275  if (!strcmp(Code, "private")) {
1276    O << TAI->getPrivateGlobalPrefix();
1277  } else if (!strcmp(Code, "comment")) {
1278    if (VerboseAsm)
1279      O << TAI->getCommentString();
1280  } else if (!strcmp(Code, "uid")) {
1281    // Comparing the address of MI isn't sufficient, because machineinstrs may
1282    // be allocated to the same address across functions.
1283    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1284
1285    // If this is a new LastFn instruction, bump the counter.
1286    if (LastMI != MI || LastFn != ThisF) {
1287      ++Counter;
1288      LastMI = MI;
1289      LastFn = ThisF;
1290    }
1291    O << Counter;
1292  } else {
1293    std::string msg;
1294    raw_string_ostream Msg(msg);
1295    Msg << "Unknown special formatter '" << Code
1296         << "' for machine instr: " << *MI;
1297    llvm_report_error(Msg.str());
1298  }
1299}
1300
1301/// processDebugLoc - Processes the debug information of each machine
1302/// instruction's DebugLoc.
1303void AsmPrinter::processDebugLoc(DebugLoc DL) {
1304  if (!TAI || !DW)
1305    return;
1306
1307  if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
1308    if (!DL.isUnknown()) {
1309      DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1310
1311      if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
1312        printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1313                                        DICompileUnit(CurDLT.CompileUnit)));
1314
1315      PrevDLT = CurDLT;
1316    }
1317  }
1318}
1319
1320/// printInlineAsm - This method formats and prints the specified machine
1321/// instruction that is an inline asm.
1322void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1323  unsigned NumOperands = MI->getNumOperands();
1324
1325  // Count the number of register definitions.
1326  unsigned NumDefs = 0;
1327  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1328       ++NumDefs)
1329    assert(NumDefs != NumOperands-1 && "No asm string?");
1330
1331  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1332
1333  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1334  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1335
1336  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1337  // These are useful to see where empty asm's wound up.
1338  if (AsmStr[0] == 0) {
1339    O << TAI->getCommentString() << TAI->getInlineAsmStart() << "\n\t";
1340    O << TAI->getCommentString() << TAI->getInlineAsmEnd() << '\n';
1341    return;
1342  }
1343
1344  O << TAI->getCommentString() << TAI->getInlineAsmStart() << "\n\t";
1345
1346  // The variant of the current asmprinter.
1347  int AsmPrinterVariant = TAI->getAssemblerDialect();
1348
1349  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1350  const char *LastEmitted = AsmStr; // One past the last character emitted.
1351
1352  while (*LastEmitted) {
1353    switch (*LastEmitted) {
1354    default: {
1355      // Not a special case, emit the string section literally.
1356      const char *LiteralEnd = LastEmitted+1;
1357      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1358             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1359        ++LiteralEnd;
1360      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1361        O.write(LastEmitted, LiteralEnd-LastEmitted);
1362      LastEmitted = LiteralEnd;
1363      break;
1364    }
1365    case '\n':
1366      ++LastEmitted;   // Consume newline character.
1367      O << '\n';       // Indent code with newline.
1368      break;
1369    case '$': {
1370      ++LastEmitted;   // Consume '$' character.
1371      bool Done = true;
1372
1373      // Handle escapes.
1374      switch (*LastEmitted) {
1375      default: Done = false; break;
1376      case '$':     // $$ -> $
1377        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1378          O << '$';
1379        ++LastEmitted;  // Consume second '$' character.
1380        break;
1381      case '(':             // $( -> same as GCC's { character.
1382        ++LastEmitted;      // Consume '(' character.
1383        if (CurVariant != -1) {
1384          llvm_report_error("Nested variants found in inline asm string: '"
1385                            + std::string(AsmStr) + "'");
1386        }
1387        CurVariant = 0;     // We're in the first variant now.
1388        break;
1389      case '|':
1390        ++LastEmitted;  // consume '|' character.
1391        if (CurVariant == -1)
1392          O << '|';       // this is gcc's behavior for | outside a variant
1393        else
1394          ++CurVariant;   // We're in the next variant.
1395        break;
1396      case ')':         // $) -> same as GCC's } char.
1397        ++LastEmitted;  // consume ')' character.
1398        if (CurVariant == -1)
1399          O << '}';     // this is gcc's behavior for } outside a variant
1400        else
1401          CurVariant = -1;
1402        break;
1403      }
1404      if (Done) break;
1405
1406      bool HasCurlyBraces = false;
1407      if (*LastEmitted == '{') {     // ${variable}
1408        ++LastEmitted;               // Consume '{' character.
1409        HasCurlyBraces = true;
1410      }
1411
1412      // If we have ${:foo}, then this is not a real operand reference, it is a
1413      // "magic" string reference, just like in .td files.  Arrange to call
1414      // PrintSpecial.
1415      if (HasCurlyBraces && *LastEmitted == ':') {
1416        ++LastEmitted;
1417        const char *StrStart = LastEmitted;
1418        const char *StrEnd = strchr(StrStart, '}');
1419        if (StrEnd == 0) {
1420          llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1421                            + std::string(AsmStr) + "'");
1422        }
1423
1424        std::string Val(StrStart, StrEnd);
1425        PrintSpecial(MI, Val.c_str());
1426        LastEmitted = StrEnd+1;
1427        break;
1428      }
1429
1430      const char *IDStart = LastEmitted;
1431      char *IDEnd;
1432      errno = 0;
1433      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1434      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1435        llvm_report_error("Bad $ operand number in inline asm string: '"
1436                          + std::string(AsmStr) + "'");
1437      }
1438      LastEmitted = IDEnd;
1439
1440      char Modifier[2] = { 0, 0 };
1441
1442      if (HasCurlyBraces) {
1443        // If we have curly braces, check for a modifier character.  This
1444        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1445        if (*LastEmitted == ':') {
1446          ++LastEmitted;    // Consume ':' character.
1447          if (*LastEmitted == 0) {
1448            llvm_report_error("Bad ${:} expression in inline asm string: '"
1449                              + std::string(AsmStr) + "'");
1450          }
1451
1452          Modifier[0] = *LastEmitted;
1453          ++LastEmitted;    // Consume modifier character.
1454        }
1455
1456        if (*LastEmitted != '}') {
1457          llvm_report_error("Bad ${} expression in inline asm string: '"
1458                            + std::string(AsmStr) + "'");
1459        }
1460        ++LastEmitted;    // Consume '}' character.
1461      }
1462
1463      if ((unsigned)Val >= NumOperands-1) {
1464        llvm_report_error("Invalid $ operand number in inline asm string: '"
1465                          + std::string(AsmStr) + "'");
1466      }
1467
1468      // Okay, we finally have a value number.  Ask the target to print this
1469      // operand!
1470      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1471        unsigned OpNo = 1;
1472
1473        bool Error = false;
1474
1475        // Scan to find the machine operand number for the operand.
1476        for (; Val; --Val) {
1477          if (OpNo >= MI->getNumOperands()) break;
1478          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1479          OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1480        }
1481
1482        if (OpNo >= MI->getNumOperands()) {
1483          Error = true;
1484        } else {
1485          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1486          ++OpNo;  // Skip over the ID number.
1487
1488          if (Modifier[0]=='l')  // labels are target independent
1489            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1490                                 false, false, false);
1491          else {
1492            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1493            if ((OpFlags & 7) == 4) {
1494              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1495                                                Modifier[0] ? Modifier : 0);
1496            } else {
1497              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1498                                          Modifier[0] ? Modifier : 0);
1499            }
1500          }
1501        }
1502        if (Error) {
1503          std::string msg;
1504          raw_string_ostream Msg(msg);
1505          Msg << "Invalid operand found in inline asm: '"
1506               << AsmStr << "'\n";
1507          MI->print(Msg);
1508          llvm_report_error(Msg.str());
1509        }
1510      }
1511      break;
1512    }
1513    }
1514  }
1515  O << "\n\t" << TAI->getCommentString() << TAI->getInlineAsmEnd() << '\n';
1516}
1517
1518/// printImplicitDef - This method prints the specified machine instruction
1519/// that is an implicit def.
1520void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1521  if (VerboseAsm)
1522    O << '\t' << TAI->getCommentString() << " implicit-def: "
1523      << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1524}
1525
1526/// printLabel - This method prints a local label used by debug and
1527/// exception handling tables.
1528void AsmPrinter::printLabel(const MachineInstr *MI) const {
1529  printLabel(MI->getOperand(0).getImm());
1530}
1531
1532void AsmPrinter::printLabel(unsigned Id) const {
1533  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1534}
1535
1536/// printDeclare - This method prints a local variable declaration used by
1537/// debug tables.
1538/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1539/// entry into dwarf table.
1540void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1541  unsigned FI = MI->getOperand(0).getIndex();
1542  GlobalValue *GV = MI->getOperand(1).getGlobal();
1543  DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1544}
1545
1546/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1547/// instruction, using the specified assembler variant.  Targets should
1548/// overried this to format as appropriate.
1549bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1550                                 unsigned AsmVariant, const char *ExtraCode) {
1551  // Target doesn't support this yet!
1552  return true;
1553}
1554
1555bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1556                                       unsigned AsmVariant,
1557                                       const char *ExtraCode) {
1558  // Target doesn't support this yet!
1559  return true;
1560}
1561
1562/// printBasicBlockLabel - This method prints the label for the specified
1563/// MachineBasicBlock
1564void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1565                                      bool printAlign,
1566                                      bool printColon,
1567                                      bool printComment) const {
1568  if (printAlign) {
1569    unsigned Align = MBB->getAlignment();
1570    if (Align)
1571      EmitAlignment(Log2_32(Align));
1572  }
1573
1574  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1575    << MBB->getNumber();
1576  if (printColon)
1577    O << ':';
1578  if (printComment) {
1579    O.PadToColumn(TAI->getCommentColumn(), 1);
1580
1581    if (MBB->getBasicBlock())
1582      O << '\t' << TAI->getCommentString() << ' '
1583        << MBB->getBasicBlock()->getNameStr();
1584
1585    if (printColon)
1586      EmitComments(*MBB);
1587  }
1588}
1589
1590/// printPICJumpTableSetLabel - This method prints a set label for the
1591/// specified MachineBasicBlock for a jumptable entry.
1592void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1593                                           const MachineBasicBlock *MBB) const {
1594  if (!TAI->getSetDirective())
1595    return;
1596
1597  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1598    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1599  printBasicBlockLabel(MBB, false, false, false);
1600  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1601    << '_' << uid << '\n';
1602}
1603
1604void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1605                                           const MachineBasicBlock *MBB) const {
1606  if (!TAI->getSetDirective())
1607    return;
1608
1609  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1610    << getFunctionNumber() << '_' << uid << '_' << uid2
1611    << "_set_" << MBB->getNumber() << ',';
1612  printBasicBlockLabel(MBB, false, false, false);
1613  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1614    << '_' << uid << '_' << uid2 << '\n';
1615}
1616
1617/// printDataDirective - This method prints the asm directive for the
1618/// specified type.
1619void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1620  const TargetData *TD = TM.getTargetData();
1621  switch (type->getTypeID()) {
1622  case Type::FloatTyID: case Type::DoubleTyID:
1623  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1624    assert(0 && "Should have already output floating point constant.");
1625  default:
1626    assert(0 && "Can't handle printing this type of thing");
1627  case Type::IntegerTyID: {
1628    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1629    if (BitWidth <= 8)
1630      O << TAI->getData8bitsDirective(AddrSpace);
1631    else if (BitWidth <= 16)
1632      O << TAI->getData16bitsDirective(AddrSpace);
1633    else if (BitWidth <= 32)
1634      O << TAI->getData32bitsDirective(AddrSpace);
1635    else if (BitWidth <= 64) {
1636      assert(TAI->getData64bitsDirective(AddrSpace) &&
1637             "Target cannot handle 64-bit constant exprs!");
1638      O << TAI->getData64bitsDirective(AddrSpace);
1639    } else {
1640      llvm_unreachable("Target cannot handle given data directive width!");
1641    }
1642    break;
1643  }
1644  case Type::PointerTyID:
1645    if (TD->getPointerSize() == 8) {
1646      assert(TAI->getData64bitsDirective(AddrSpace) &&
1647             "Target cannot handle 64-bit pointer exprs!");
1648      O << TAI->getData64bitsDirective(AddrSpace);
1649    } else if (TD->getPointerSize() == 2) {
1650      O << TAI->getData16bitsDirective(AddrSpace);
1651    } else if (TD->getPointerSize() == 1) {
1652      O << TAI->getData8bitsDirective(AddrSpace);
1653    } else {
1654      O << TAI->getData32bitsDirective(AddrSpace);
1655    }
1656    break;
1657  }
1658}
1659
1660void AsmPrinter::printVisibility(const std::string& Name,
1661                                 unsigned Visibility) const {
1662  if (Visibility == GlobalValue::HiddenVisibility) {
1663    if (const char *Directive = TAI->getHiddenDirective())
1664      O << Directive << Name << '\n';
1665  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1666    if (const char *Directive = TAI->getProtectedDirective())
1667      O << Directive << Name << '\n';
1668  }
1669}
1670
1671void AsmPrinter::printOffset(int64_t Offset) const {
1672  if (Offset > 0)
1673    O << '+' << Offset;
1674  else if (Offset < 0)
1675    O << Offset;
1676}
1677
1678GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1679  if (!S->usesMetadata())
1680    return 0;
1681
1682  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1683  if (GCPI != GCMetadataPrinters.end())
1684    return GCPI->second;
1685
1686  const char *Name = S->getName().c_str();
1687
1688  for (GCMetadataPrinterRegistry::iterator
1689         I = GCMetadataPrinterRegistry::begin(),
1690         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1691    if (strcmp(Name, I->getName()) == 0) {
1692      GCMetadataPrinter *GMP = I->instantiate();
1693      GMP->S = S;
1694      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1695      return GMP;
1696    }
1697
1698  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1699  llvm_unreachable(0);
1700}
1701
1702/// EmitComments - Pretty-print comments for instructions
1703void AsmPrinter::EmitComments(const MachineInstr &MI) const {
1704  if (!VerboseAsm ||
1705      MI.getDebugLoc().isUnknown())
1706    return;
1707
1708  DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1709
1710  // Print source line info
1711  O.PadToColumn(TAI->getCommentColumn(), 1);
1712  O << TAI->getCommentString() << " SrcLine ";
1713  if (DLT.CompileUnit->hasInitializer()) {
1714    Constant *Name = DLT.CompileUnit->getInitializer();
1715    if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1716      if (NameString->isString())
1717        O << NameString->getAsString() << " ";
1718  }
1719  O << DLT.Line;
1720  if (DLT.Col != 0)
1721    O << ":" << DLT.Col;
1722}
1723
1724/// EmitComments - Pretty-print comments for instructions
1725void AsmPrinter::EmitComments(const MCInst &MI) const
1726{
1727  if (VerboseAsm) {
1728    if (!MI.getDebugLoc().isUnknown()) {
1729      DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1730
1731      // Print source line info
1732      O.PadToColumn(TAI->getCommentColumn(), 1);
1733      O << TAI->getCommentString() << " SrcLine ";
1734      if (DLT.CompileUnit->hasInitializer()) {
1735        Constant *Name = DLT.CompileUnit->getInitializer();
1736        if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1737          if (NameString->isString()) {
1738            O << NameString->getAsString() << " ";
1739          }
1740      }
1741      O << DLT.Line;
1742      if (DLT.Col != 0)
1743        O << ":" << DLT.Col;
1744    }
1745  }
1746}
1747
1748/// EmitComments - Pretty-print comments for basic blocks
1749void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const
1750{
1751  if (ExuberantAsm) {
1752    // Add loop depth information
1753    const MachineLoop *loop = LI->getLoopFor(&MBB);
1754
1755    if (loop) {
1756      // Print a newline after bb# annotation.
1757      O << "\n";
1758      O.PadToColumn(TAI->getCommentColumn(), 1);
1759      O << TAI->getCommentString() << " Loop Depth " << loop->getLoopDepth()
1760        << '\n';
1761
1762      O.PadToColumn(TAI->getCommentColumn(), 1);
1763
1764      MachineBasicBlock *Header = loop->getHeader();
1765      assert(Header && "No header for loop");
1766
1767      if (Header == &MBB) {
1768        O << TAI->getCommentString() << " Loop Header";
1769        PrintChildLoopComment(loop);
1770      }
1771      else {
1772        O << TAI->getCommentString() << " Loop Header is BB"
1773          << getFunctionNumber() << "_" << loop->getHeader()->getNumber();
1774      }
1775
1776      if (loop->empty()) {
1777        O << '\n';
1778        O.PadToColumn(TAI->getCommentColumn(), 1);
1779        O << TAI->getCommentString() << " Inner Loop";
1780      }
1781
1782      // Add parent loop information
1783      for (const MachineLoop *CurLoop = loop->getParentLoop();
1784           CurLoop;
1785           CurLoop = CurLoop->getParentLoop()) {
1786        MachineBasicBlock *Header = CurLoop->getHeader();
1787        assert(Header && "No header for loop");
1788
1789        O << '\n';
1790        O.PadToColumn(TAI->getCommentColumn(), 1);
1791        O << TAI->getCommentString() << Indent(CurLoop->getLoopDepth()-1)
1792          << " Inside Loop BB" << getFunctionNumber() << "_"
1793          << Header->getNumber() << " Depth " << CurLoop->getLoopDepth();
1794      }
1795    }
1796  }
1797}
1798
1799void AsmPrinter::PrintChildLoopComment(const MachineLoop *loop) const {
1800  // Add child loop information
1801  for(MachineLoop::iterator cl = loop->begin(),
1802        clend = loop->end();
1803      cl != clend;
1804      ++cl) {
1805    MachineBasicBlock *Header = (*cl)->getHeader();
1806    assert(Header && "No header for loop");
1807
1808    O << '\n';
1809    O.PadToColumn(TAI->getCommentColumn(), 1);
1810
1811    O << TAI->getCommentString() << Indent((*cl)->getLoopDepth()-1)
1812      << " Child Loop BB" << getFunctionNumber() << "_"
1813      << Header->getNumber() << " Depth " << (*cl)->getLoopDepth();
1814
1815    PrintChildLoopComment(*cl);
1816  }
1817}
1818