AsmPrinter.cpp revision fcc6f1556efb386af47293d9f8599bab2b34321c
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/DwarfWriter.h"
24#include "llvm/Support/Mangler.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Target/TargetAsmInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetMachine.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include <cerrno>
36using namespace llvm;
37
38char AsmPrinter::ID = 0;
39AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
40                       const TargetAsmInfo *T)
41  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
42    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
43    IsInTextSection(false)
44{}
45
46AsmPrinter::~AsmPrinter() {
47  for (gcp_iterator I = GCMetadataPrinters.begin(),
48                    E = GCMetadataPrinters.end(); I != E; ++I)
49    delete I->second;
50}
51
52/// SwitchToTextSection - Switch to the specified text section of the executable
53/// if we are not already in it!
54///
55void AsmPrinter::SwitchToTextSection(const char *NewSection,
56                                     const GlobalValue *GV) {
57  std::string NS;
58  if (GV && GV->hasSection())
59    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
60  else
61    NS = NewSection;
62
63  // If we're already in this section, we're done.
64  if (CurrentSection == NS) return;
65
66  // Close the current section, if applicable.
67  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
68    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
69
70  CurrentSection = NS;
71
72  if (!CurrentSection.empty())
73    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
74
75  IsInTextSection = true;
76}
77
78/// SwitchToDataSection - Switch to the specified data section of the executable
79/// if we are not already in it!
80///
81void AsmPrinter::SwitchToDataSection(const char *NewSection,
82                                     const GlobalValue *GV) {
83  std::string NS;
84  if (GV && GV->hasSection())
85    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
86  else
87    NS = NewSection;
88
89  // If we're already in this section, we're done.
90  if (CurrentSection == NS) return;
91
92  // Close the current section, if applicable.
93  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
94    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
95
96  CurrentSection = NS;
97
98  if (!CurrentSection.empty())
99    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
100
101  IsInTextSection = false;
102}
103
104/// SwitchToSection - Switch to the specified section of the executable if we
105/// are not already in it!
106void AsmPrinter::SwitchToSection(const Section* NS) {
107  const std::string& NewSection = NS->getName();
108
109  // If we're already in this section, we're done.
110  if (CurrentSection == NewSection) return;
111
112  // Close the current section, if applicable.
113  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
114    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
115
116  // FIXME: Make CurrentSection a Section* in the future
117  CurrentSection = NewSection;
118  CurrentSection_ = NS;
119
120  if (!CurrentSection.empty()) {
121    // If section is named we need to switch into it via special '.section'
122    // directive and also append funky flags. Otherwise - section name is just
123    // some magic assembler directive.
124    if (NS->isNamed())
125      O << TAI->getSwitchToSectionDirective()
126        << CurrentSection
127        << TAI->getSectionFlags(NS->getFlags());
128    else
129      O << CurrentSection;
130    O << TAI->getDataSectionStartSuffix() << '\n';
131  }
132
133  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
134}
135
136void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
137  MachineFunctionPass::getAnalysisUsage(AU);
138  AU.addRequired<GCModuleInfo>();
139}
140
141bool AsmPrinter::doInitialization(Module &M) {
142  Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix());
143
144  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
145  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
146
147  if (TAI->hasSingleParameterDotFile()) {
148    /* Very minimal debug info. It is ignored if we emit actual
149       debug info. If we don't, this at helps the user find where
150       a function came from. */
151    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
152  }
153
154  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
155    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
156      MP->beginAssembly(O, *this, *TAI);
157
158  if (!M.getModuleInlineAsm().empty())
159    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
160      << M.getModuleInlineAsm()
161      << '\n' << TAI->getCommentString()
162      << " End of file scope inline assembly\n";
163
164  SwitchToDataSection("");   // Reset back to no section.
165
166  MachineModuleInfo *MMI = getAnalysisToUpdate<MachineModuleInfo>();
167  if (MMI) MMI->AnalyzeModule(M);
168  DW = getAnalysisToUpdate<DwarfWriter>();
169  return false;
170}
171
172bool AsmPrinter::doFinalization(Module &M) {
173  if (TAI->getWeakRefDirective()) {
174    if (!ExtWeakSymbols.empty())
175      SwitchToDataSection("");
176
177    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
178         e = ExtWeakSymbols.end(); i != e; ++i) {
179      const GlobalValue *GV = *i;
180      std::string Name = Mang->getValueName(GV);
181      O << TAI->getWeakRefDirective() << Name << '\n';
182    }
183  }
184
185  if (TAI->getSetDirective()) {
186    if (!M.alias_empty())
187      SwitchToSection(TAI->getTextSection());
188
189    O << '\n';
190    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
191         I!=E; ++I) {
192      std::string Name = Mang->getValueName(I);
193      std::string Target;
194
195      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
196      Target = Mang->getValueName(GV);
197
198      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
199        O << "\t.globl\t" << Name << '\n';
200      else if (I->hasWeakLinkage())
201        O << TAI->getWeakRefDirective() << Name << '\n';
202      else if (!I->hasLocalLinkage())
203        assert(0 && "Invalid alias linkage");
204
205      printVisibility(Name, I->getVisibility());
206
207      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
208
209      // If the aliasee has external weak linkage it can be referenced only by
210      // alias itself. In this case it can be not in ExtWeakSymbols list. Emit
211      // weak reference in such case.
212      if (GV->hasExternalWeakLinkage()) {
213        if (TAI->getWeakRefDirective())
214          O << TAI->getWeakRefDirective() << Target << '\n';
215        else
216          O << "\t.globl\t" << Target << '\n';
217      }
218    }
219  }
220
221  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
222  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
223  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
224    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
225      MP->finishAssembly(O, *this, *TAI);
226
227  // If we don't have any trampolines, then we don't require stack memory
228  // to be executable. Some targets have a directive to declare this.
229  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
230  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
231    if (TAI->getNonexecutableStackDirective())
232      O << TAI->getNonexecutableStackDirective() << '\n';
233
234  delete Mang; Mang = 0;
235  return false;
236}
237
238std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
239  assert(MF && "No machine function?");
240  std::string Name = MF->getFunction()->getName();
241  if (Name.empty())
242    Name = Mang->getValueName(MF->getFunction());
243  return Mang->makeNameProper(TAI->getEHGlobalPrefix() +
244                              Name + ".eh", TAI->getGlobalPrefix());
245}
246
247void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
248  // What's my mangled name?
249  CurrentFnName = Mang->getValueName(MF.getFunction());
250  IncrementFunctionNumber();
251}
252
253/// EmitConstantPool - Print to the current output stream assembly
254/// representations of the constants in the constant pool MCP. This is
255/// used to print out constants which have been "spilled to memory" by
256/// the code generator.
257///
258void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
259  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
260  if (CP.empty()) return;
261
262  // Calculate sections for constant pool entries. We collect entries to go into
263  // the same section together to reduce amount of section switch statements.
264  typedef
265    std::multimap<const Section*,
266                  std::pair<MachineConstantPoolEntry, unsigned> > CPMap;
267  CPMap  CPs;
268  SmallPtrSet<const Section*, 5> Sections;
269
270  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
271    MachineConstantPoolEntry CPE = CP[i];
272    const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
273    CPs.insert(std::make_pair(S, std::make_pair(CPE, i)));
274    Sections.insert(S);
275  }
276
277  // Now print stuff into the calculated sections.
278  for (SmallPtrSet<const Section*, 5>::iterator IS = Sections.begin(),
279         ES = Sections.end(); IS != ES; ++IS) {
280    SwitchToSection(*IS);
281    EmitAlignment(MCP->getConstantPoolAlignment());
282
283    std::pair<CPMap::iterator, CPMap::iterator> II = CPs.equal_range(*IS);
284    for (CPMap::iterator I = II.first, E = II.second; I != E; ++I) {
285      CPMap::iterator J = next(I);
286      MachineConstantPoolEntry Entry = I->second.first;
287      unsigned index = I->second.second;
288
289      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
290        << index << ":\t\t\t\t\t";
291    // O << TAI->getCommentString() << ' ' <<
292    //      WriteTypeSymbolic(O, CP[i].first.getType(), 0);
293      O << '\n';
294      if (Entry.isMachineConstantPoolEntry())
295        EmitMachineConstantPoolValue(Entry.Val.MachineCPVal);
296      else
297        EmitGlobalConstant(Entry.Val.ConstVal);
298
299      // Emit inter-object padding for alignment.
300      if (J != E) {
301        const Type *Ty = Entry.getType();
302        unsigned EntSize = TM.getTargetData()->getTypePaddedSize(Ty);
303        unsigned ValEnd = Entry.getOffset() + EntSize;
304        EmitZeros(J->second.first.getOffset()-ValEnd);
305      }
306    }
307  }
308}
309
310/// EmitJumpTableInfo - Print assembly representations of the jump tables used
311/// by the current function to the current output stream.
312///
313void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
314                                   MachineFunction &MF) {
315  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
316  if (JT.empty()) return;
317
318  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
319
320  // Pick the directive to use to print the jump table entries, and switch to
321  // the appropriate section.
322  TargetLowering *LoweringInfo = TM.getTargetLowering();
323
324  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
325  const Function *F = MF.getFunction();
326  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
327  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
328     !JumpTableDataSection ||
329      SectionFlags & SectionFlags::Linkonce) {
330    // In PIC mode, we need to emit the jump table to the same section as the
331    // function body itself, otherwise the label differences won't make sense.
332    // We should also do if the section name is NULL or function is declared in
333    // discardable section.
334    SwitchToSection(TAI->SectionForGlobal(F));
335  } else {
336    SwitchToDataSection(JumpTableDataSection);
337  }
338
339  EmitAlignment(Log2_32(MJTI->getAlignment()));
340
341  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
342    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
343
344    // If this jump table was deleted, ignore it.
345    if (JTBBs.empty()) continue;
346
347    // For PIC codegen, if possible we want to use the SetDirective to reduce
348    // the number of relocations the assembler will generate for the jump table.
349    // Set directives are all printed before the jump table itself.
350    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
351    if (TAI->getSetDirective() && IsPic)
352      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
353        if (EmittedSets.insert(JTBBs[ii]))
354          printPICJumpTableSetLabel(i, JTBBs[ii]);
355
356    // On some targets (e.g. darwin) we want to emit two consequtive labels
357    // before each jump table.  The first label is never referenced, but tells
358    // the assembler and linker the extents of the jump table object.  The
359    // second label is actually referenced by the code.
360    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
361      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
362
363    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
364      << '_' << i << ":\n";
365
366    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
367      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
368      O << '\n';
369    }
370  }
371}
372
373void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
374                                        const MachineBasicBlock *MBB,
375                                        unsigned uid)  const {
376  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
377
378  // Use JumpTableDirective otherwise honor the entry size from the jump table
379  // info.
380  const char *JTEntryDirective = TAI->getJumpTableDirective();
381  bool HadJTEntryDirective = JTEntryDirective != NULL;
382  if (!HadJTEntryDirective) {
383    JTEntryDirective = MJTI->getEntrySize() == 4 ?
384      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
385  }
386
387  O << JTEntryDirective << ' ';
388
389  // If we have emitted set directives for the jump table entries, print
390  // them rather than the entries themselves.  If we're emitting PIC, then
391  // emit the table entries as differences between two text section labels.
392  // If we're emitting non-PIC code, then emit the entries as direct
393  // references to the target basic blocks.
394  if (IsPic) {
395    if (TAI->getSetDirective()) {
396      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
397        << '_' << uid << "_set_" << MBB->getNumber();
398    } else {
399      printBasicBlockLabel(MBB, false, false, false);
400      // If the arch uses custom Jump Table directives, don't calc relative to
401      // JT
402      if (!HadJTEntryDirective)
403        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
404          << getFunctionNumber() << '_' << uid;
405    }
406  } else {
407    printBasicBlockLabel(MBB, false, false, false);
408  }
409}
410
411
412/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
413/// special global used by LLVM.  If so, emit it and return true, otherwise
414/// do nothing and return false.
415bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
416  if (GV->getName() == "llvm.used") {
417    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
418      EmitLLVMUsedList(GV->getInitializer());
419    return true;
420  }
421
422  // Ignore debug and non-emitted data.
423  if (GV->getSection() == "llvm.metadata") return true;
424
425  if (!GV->hasAppendingLinkage()) return false;
426
427  assert(GV->hasInitializer() && "Not a special LLVM global!");
428
429  const TargetData *TD = TM.getTargetData();
430  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
431  if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
432    SwitchToDataSection(TAI->getStaticCtorsSection());
433    EmitAlignment(Align, 0);
434    EmitXXStructorList(GV->getInitializer());
435    return true;
436  }
437
438  if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
439    SwitchToDataSection(TAI->getStaticDtorsSection());
440    EmitAlignment(Align, 0);
441    EmitXXStructorList(GV->getInitializer());
442    return true;
443  }
444
445  return false;
446}
447
448/// findGlobalValue - if CV is an expression equivalent to a single
449/// global value, return that value.
450const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
451  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
452    return GV;
453  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
454    const TargetData *TD = TM.getTargetData();
455    unsigned Opcode = CE->getOpcode();
456    switch (Opcode) {
457    case Instruction::GetElementPtr: {
458      const Constant *ptrVal = CE->getOperand(0);
459      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
460      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
461        return 0;
462      return findGlobalValue(ptrVal);
463    }
464    case Instruction::BitCast:
465      return findGlobalValue(CE->getOperand(0));
466    default:
467      return 0;
468    }
469  }
470  return 0;
471}
472
473/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
474/// global in the specified llvm.used list for which emitUsedDirectiveFor
475/// is true, as being used with this directive.
476
477void AsmPrinter::EmitLLVMUsedList(Constant *List) {
478  const char *Directive = TAI->getUsedDirective();
479
480  // Should be an array of 'sbyte*'.
481  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
482  if (InitList == 0) return;
483
484  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
485    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
486    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
487      O << Directive;
488      EmitConstantValueOnly(InitList->getOperand(i));
489      O << '\n';
490    }
491  }
492}
493
494/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
495/// function pointers, ignoring the init priority.
496void AsmPrinter::EmitXXStructorList(Constant *List) {
497  // Should be an array of '{ int, void ()* }' structs.  The first value is the
498  // init priority, which we ignore.
499  if (!isa<ConstantArray>(List)) return;
500  ConstantArray *InitList = cast<ConstantArray>(List);
501  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
502    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
503      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
504
505      if (CS->getOperand(1)->isNullValue())
506        return;  // Found a null terminator, exit printing.
507      // Emit the function pointer.
508      EmitGlobalConstant(CS->getOperand(1));
509    }
510}
511
512/// getGlobalLinkName - Returns the asm/link name of of the specified
513/// global variable.  Should be overridden by each target asm printer to
514/// generate the appropriate value.
515const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
516  std::string LinkName;
517
518  if (isa<Function>(GV)) {
519    LinkName += TAI->getFunctionAddrPrefix();
520    LinkName += Mang->getValueName(GV);
521    LinkName += TAI->getFunctionAddrSuffix();
522  } else {
523    LinkName += TAI->getGlobalVarAddrPrefix();
524    LinkName += Mang->getValueName(GV);
525    LinkName += TAI->getGlobalVarAddrSuffix();
526  }
527
528  return LinkName;
529}
530
531/// EmitExternalGlobal - Emit the external reference to a global variable.
532/// Should be overridden if an indirect reference should be used.
533void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
534  O << getGlobalLinkName(GV);
535}
536
537
538
539//===----------------------------------------------------------------------===//
540/// LEB 128 number encoding.
541
542/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
543/// representing an unsigned leb128 value.
544void AsmPrinter::PrintULEB128(unsigned Value) const {
545  char Buffer[20];
546  do {
547    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
548    Value >>= 7;
549    if (Value) Byte |= 0x80;
550    O << "0x" << utohex_buffer(Byte, Buffer+20);
551    if (Value) O << ", ";
552  } while (Value);
553}
554
555/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
556/// representing a signed leb128 value.
557void AsmPrinter::PrintSLEB128(int Value) const {
558  int Sign = Value >> (8 * sizeof(Value) - 1);
559  bool IsMore;
560  char Buffer[20];
561
562  do {
563    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
564    Value >>= 7;
565    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
566    if (IsMore) Byte |= 0x80;
567    O << "0x" << utohex_buffer(Byte, Buffer+20);
568    if (IsMore) O << ", ";
569  } while (IsMore);
570}
571
572//===--------------------------------------------------------------------===//
573// Emission and print routines
574//
575
576/// PrintHex - Print a value as a hexidecimal value.
577///
578void AsmPrinter::PrintHex(int Value) const {
579  char Buffer[20];
580  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
581}
582
583/// EOL - Print a newline character to asm stream.  If a comment is present
584/// then it will be printed first.  Comments should not contain '\n'.
585void AsmPrinter::EOL() const {
586  O << '\n';
587}
588
589void AsmPrinter::EOL(const std::string &Comment) const {
590  if (VerboseAsm && !Comment.empty()) {
591    O << '\t'
592      << TAI->getCommentString()
593      << ' '
594      << Comment;
595  }
596  O << '\n';
597}
598
599void AsmPrinter::EOL(const char* Comment) const {
600  if (VerboseAsm && *Comment) {
601    O << '\t'
602      << TAI->getCommentString()
603      << ' '
604      << Comment;
605  }
606  O << '\n';
607}
608
609/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
610/// unsigned leb128 value.
611void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
612  if (TAI->hasLEB128()) {
613    O << "\t.uleb128\t"
614      << Value;
615  } else {
616    O << TAI->getData8bitsDirective();
617    PrintULEB128(Value);
618  }
619}
620
621/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
622/// signed leb128 value.
623void AsmPrinter::EmitSLEB128Bytes(int Value) const {
624  if (TAI->hasLEB128()) {
625    O << "\t.sleb128\t"
626      << Value;
627  } else {
628    O << TAI->getData8bitsDirective();
629    PrintSLEB128(Value);
630  }
631}
632
633/// EmitInt8 - Emit a byte directive and value.
634///
635void AsmPrinter::EmitInt8(int Value) const {
636  O << TAI->getData8bitsDirective();
637  PrintHex(Value & 0xFF);
638}
639
640/// EmitInt16 - Emit a short directive and value.
641///
642void AsmPrinter::EmitInt16(int Value) const {
643  O << TAI->getData16bitsDirective();
644  PrintHex(Value & 0xFFFF);
645}
646
647/// EmitInt32 - Emit a long directive and value.
648///
649void AsmPrinter::EmitInt32(int Value) const {
650  O << TAI->getData32bitsDirective();
651  PrintHex(Value);
652}
653
654/// EmitInt64 - Emit a long long directive and value.
655///
656void AsmPrinter::EmitInt64(uint64_t Value) const {
657  if (TAI->getData64bitsDirective()) {
658    O << TAI->getData64bitsDirective();
659    PrintHex(Value);
660  } else {
661    if (TM.getTargetData()->isBigEndian()) {
662      EmitInt32(unsigned(Value >> 32)); O << '\n';
663      EmitInt32(unsigned(Value));
664    } else {
665      EmitInt32(unsigned(Value)); O << '\n';
666      EmitInt32(unsigned(Value >> 32));
667    }
668  }
669}
670
671/// toOctal - Convert the low order bits of X into an octal digit.
672///
673static inline char toOctal(int X) {
674  return (X&7)+'0';
675}
676
677/// printStringChar - Print a char, escaped if necessary.
678///
679static void printStringChar(raw_ostream &O, char C) {
680  if (C == '"') {
681    O << "\\\"";
682  } else if (C == '\\') {
683    O << "\\\\";
684  } else if (isprint(C)) {
685    O << C;
686  } else {
687    switch(C) {
688    case '\b': O << "\\b"; break;
689    case '\f': O << "\\f"; break;
690    case '\n': O << "\\n"; break;
691    case '\r': O << "\\r"; break;
692    case '\t': O << "\\t"; break;
693    default:
694      O << '\\';
695      O << toOctal(C >> 6);
696      O << toOctal(C >> 3);
697      O << toOctal(C >> 0);
698      break;
699    }
700  }
701}
702
703/// EmitString - Emit a string with quotes and a null terminator.
704/// Special characters are emitted properly.
705/// \literal (Eg. '\t') \endliteral
706void AsmPrinter::EmitString(const std::string &String) const {
707  const char* AscizDirective = TAI->getAscizDirective();
708  if (AscizDirective)
709    O << AscizDirective;
710  else
711    O << TAI->getAsciiDirective();
712  O << '\"';
713  for (unsigned i = 0, N = String.size(); i < N; ++i) {
714    unsigned char C = String[i];
715    printStringChar(O, C);
716  }
717  if (AscizDirective)
718    O << '\"';
719  else
720    O << "\\0\"";
721}
722
723
724/// EmitFile - Emit a .file directive.
725void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
726  O << "\t.file\t" << Number << " \"";
727  for (unsigned i = 0, N = Name.size(); i < N; ++i) {
728    unsigned char C = Name[i];
729    printStringChar(O, C);
730  }
731  O << '\"';
732}
733
734
735//===----------------------------------------------------------------------===//
736
737// EmitAlignment - Emit an alignment directive to the specified power of
738// two boundary.  For example, if you pass in 3 here, you will get an 8
739// byte alignment.  If a global value is specified, and if that global has
740// an explicit alignment requested, it will unconditionally override the
741// alignment request.  However, if ForcedAlignBits is specified, this value
742// has final say: the ultimate alignment will be the max of ForcedAlignBits
743// and the alignment computed with NumBits and the global.
744//
745// The algorithm is:
746//     Align = NumBits;
747//     if (GV && GV->hasalignment) Align = GV->getalignment();
748//     Align = std::max(Align, ForcedAlignBits);
749//
750void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
751                               unsigned ForcedAlignBits,
752                               bool UseFillExpr) const {
753  if (GV && GV->getAlignment())
754    NumBits = Log2_32(GV->getAlignment());
755  NumBits = std::max(NumBits, ForcedAlignBits);
756
757  if (NumBits == 0) return;   // No need to emit alignment.
758  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
759  O << TAI->getAlignDirective() << NumBits;
760
761  unsigned FillValue = TAI->getTextAlignFillValue();
762  UseFillExpr &= IsInTextSection && FillValue;
763  if (UseFillExpr) {
764    O << ',';
765    PrintHex(FillValue);
766  }
767  O << '\n';
768}
769
770
771/// EmitZeros - Emit a block of zeros.
772///
773void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
774  if (NumZeros) {
775    if (TAI->getZeroDirective()) {
776      O << TAI->getZeroDirective() << NumZeros;
777      if (TAI->getZeroDirectiveSuffix())
778        O << TAI->getZeroDirectiveSuffix();
779      O << '\n';
780    } else {
781      for (; NumZeros; --NumZeros)
782        O << TAI->getData8bitsDirective() << "0\n";
783    }
784  }
785}
786
787// Print out the specified constant, without a storage class.  Only the
788// constants valid in constant expressions can occur here.
789void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
790  if (CV->isNullValue() || isa<UndefValue>(CV))
791    O << '0';
792  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
793    O << CI->getZExtValue();
794  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
795    // This is a constant address for a global variable or function. Use the
796    // name of the variable or function as the address value, possibly
797    // decorating it with GlobalVarAddrPrefix/Suffix or
798    // FunctionAddrPrefix/Suffix (these all default to "" )
799    if (isa<Function>(GV)) {
800      O << TAI->getFunctionAddrPrefix()
801        << Mang->getValueName(GV)
802        << TAI->getFunctionAddrSuffix();
803    } else {
804      O << TAI->getGlobalVarAddrPrefix()
805        << Mang->getValueName(GV)
806        << TAI->getGlobalVarAddrSuffix();
807    }
808  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
809    const TargetData *TD = TM.getTargetData();
810    unsigned Opcode = CE->getOpcode();
811    switch (Opcode) {
812    case Instruction::GetElementPtr: {
813      // generate a symbolic expression for the byte address
814      const Constant *ptrVal = CE->getOperand(0);
815      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
816      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
817                                                idxVec.size())) {
818        if (Offset)
819          O << '(';
820        EmitConstantValueOnly(ptrVal);
821        if (Offset > 0)
822          O << ") + " << Offset;
823        else if (Offset < 0)
824          O << ") - " << -Offset;
825      } else {
826        EmitConstantValueOnly(ptrVal);
827      }
828      break;
829    }
830    case Instruction::Trunc:
831    case Instruction::ZExt:
832    case Instruction::SExt:
833    case Instruction::FPTrunc:
834    case Instruction::FPExt:
835    case Instruction::UIToFP:
836    case Instruction::SIToFP:
837    case Instruction::FPToUI:
838    case Instruction::FPToSI:
839      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
840      break;
841    case Instruction::BitCast:
842      return EmitConstantValueOnly(CE->getOperand(0));
843
844    case Instruction::IntToPtr: {
845      // Handle casts to pointers by changing them into casts to the appropriate
846      // integer type.  This promotes constant folding and simplifies this code.
847      Constant *Op = CE->getOperand(0);
848      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
849      return EmitConstantValueOnly(Op);
850    }
851
852
853    case Instruction::PtrToInt: {
854      // Support only foldable casts to/from pointers that can be eliminated by
855      // changing the pointer to the appropriately sized integer type.
856      Constant *Op = CE->getOperand(0);
857      const Type *Ty = CE->getType();
858
859      // We can emit the pointer value into this slot if the slot is an
860      // integer slot greater or equal to the size of the pointer.
861      if (TD->getTypePaddedSize(Ty) >= TD->getTypePaddedSize(Op->getType()))
862        return EmitConstantValueOnly(Op);
863
864      O << "((";
865      EmitConstantValueOnly(Op);
866      APInt ptrMask = APInt::getAllOnesValue(TD->getTypePaddedSizeInBits(Ty));
867
868      SmallString<40> S;
869      ptrMask.toStringUnsigned(S);
870      O << ") & " << S.c_str() << ')';
871      break;
872    }
873    case Instruction::Add:
874    case Instruction::Sub:
875    case Instruction::And:
876    case Instruction::Or:
877    case Instruction::Xor:
878      O << '(';
879      EmitConstantValueOnly(CE->getOperand(0));
880      O << ')';
881      switch (Opcode) {
882      case Instruction::Add:
883       O << " + ";
884       break;
885      case Instruction::Sub:
886       O << " - ";
887       break;
888      case Instruction::And:
889       O << " & ";
890       break;
891      case Instruction::Or:
892       O << " | ";
893       break;
894      case Instruction::Xor:
895       O << " ^ ";
896       break;
897      default:
898       break;
899      }
900      O << '(';
901      EmitConstantValueOnly(CE->getOperand(1));
902      O << ')';
903      break;
904    default:
905      assert(0 && "Unsupported operator!");
906    }
907  } else {
908    assert(0 && "Unknown constant value!");
909  }
910}
911
912/// printAsCString - Print the specified array as a C compatible string, only if
913/// the predicate isString is true.
914///
915static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
916                           unsigned LastElt) {
917  assert(CVA->isString() && "Array is not string compatible!");
918
919  O << '\"';
920  for (unsigned i = 0; i != LastElt; ++i) {
921    unsigned char C =
922        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
923    printStringChar(O, C);
924  }
925  O << '\"';
926}
927
928/// EmitString - Emit a zero-byte-terminated string constant.
929///
930void AsmPrinter::EmitString(const ConstantArray *CVA) const {
931  unsigned NumElts = CVA->getNumOperands();
932  if (TAI->getAscizDirective() && NumElts &&
933      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
934    O << TAI->getAscizDirective();
935    printAsCString(O, CVA, NumElts-1);
936  } else {
937    O << TAI->getAsciiDirective();
938    printAsCString(O, CVA, NumElts);
939  }
940  O << '\n';
941}
942
943void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA) {
944  if (CVA->isString()) {
945    EmitString(CVA);
946  } else { // Not a string.  Print the values in successive locations
947    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
948      EmitGlobalConstant(CVA->getOperand(i));
949  }
950}
951
952void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
953  const VectorType *PTy = CP->getType();
954
955  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
956    EmitGlobalConstant(CP->getOperand(I));
957}
958
959void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS) {
960  // Print the fields in successive locations. Pad to align if needed!
961  const TargetData *TD = TM.getTargetData();
962  unsigned Size = TD->getTypePaddedSize(CVS->getType());
963  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
964  uint64_t sizeSoFar = 0;
965  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
966    const Constant* field = CVS->getOperand(i);
967
968    // Check if padding is needed and insert one or more 0s.
969    uint64_t fieldSize = TD->getTypePaddedSize(field->getType());
970    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
971                        - cvsLayout->getElementOffset(i)) - fieldSize;
972    sizeSoFar += fieldSize + padSize;
973
974    // Now print the actual field value.
975    EmitGlobalConstant(field);
976
977    // Insert padding - this may include padding to increase the size of the
978    // current field up to the ABI size (if the struct is not packed) as well
979    // as padding to ensure that the next field starts at the right offset.
980    EmitZeros(padSize);
981  }
982  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
983         "Layout of constant struct may be incorrect!");
984}
985
986void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP) {
987  // FP Constants are printed as integer constants to avoid losing
988  // precision...
989  const TargetData *TD = TM.getTargetData();
990  if (CFP->getType() == Type::DoubleTy) {
991    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
992    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
993    if (TAI->getData64bitsDirective())
994      O << TAI->getData64bitsDirective() << i << '\t'
995        << TAI->getCommentString() << " double value: " << Val << '\n';
996    else if (TD->isBigEndian()) {
997      O << TAI->getData32bitsDirective() << unsigned(i >> 32)
998        << '\t' << TAI->getCommentString()
999        << " double most significant word " << Val << '\n';
1000      O << TAI->getData32bitsDirective() << unsigned(i)
1001        << '\t' << TAI->getCommentString()
1002        << " double least significant word " << Val << '\n';
1003    } else {
1004      O << TAI->getData32bitsDirective() << unsigned(i)
1005        << '\t' << TAI->getCommentString()
1006        << " double least significant word " << Val << '\n';
1007      O << TAI->getData32bitsDirective() << unsigned(i >> 32)
1008        << '\t' << TAI->getCommentString()
1009        << " double most significant word " << Val << '\n';
1010    }
1011    return;
1012  } else if (CFP->getType() == Type::FloatTy) {
1013    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
1014    O << TAI->getData32bitsDirective()
1015      << CFP->getValueAPF().bitcastToAPInt().getZExtValue()
1016      << '\t' << TAI->getCommentString() << " float " << Val << '\n';
1017    return;
1018  } else if (CFP->getType() == Type::X86_FP80Ty) {
1019    // all long double variants are printed as hex
1020    // api needed to prevent premature destruction
1021    APInt api = CFP->getValueAPF().bitcastToAPInt();
1022    const uint64_t *p = api.getRawData();
1023    // Convert to double so we can print the approximate val as a comment.
1024    APFloat DoubleVal = CFP->getValueAPF();
1025    bool ignored;
1026    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1027                      &ignored);
1028    if (TD->isBigEndian()) {
1029      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1030        << '\t' << TAI->getCommentString()
1031        << " long double most significant halfword of ~"
1032        << DoubleVal.convertToDouble() << '\n';
1033      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1034        << '\t' << TAI->getCommentString()
1035        << " long double next halfword\n";
1036      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1037        << '\t' << TAI->getCommentString()
1038        << " long double next halfword\n";
1039      O << TAI->getData16bitsDirective() << uint16_t(p[0])
1040        << '\t' << TAI->getCommentString()
1041        << " long double next halfword\n";
1042      O << TAI->getData16bitsDirective() << uint16_t(p[1])
1043        << '\t' << TAI->getCommentString()
1044        << " long double least significant halfword\n";
1045     } else {
1046      O << TAI->getData16bitsDirective() << uint16_t(p[1])
1047        << '\t' << TAI->getCommentString()
1048        << " long double least significant halfword of ~"
1049        << DoubleVal.convertToDouble() << '\n';
1050      O << TAI->getData16bitsDirective() << uint16_t(p[0])
1051        << '\t' << TAI->getCommentString()
1052        << " long double next halfword\n";
1053      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1054        << '\t' << TAI->getCommentString()
1055        << " long double next halfword\n";
1056      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1057        << '\t' << TAI->getCommentString()
1058        << " long double next halfword\n";
1059      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1060        << '\t' << TAI->getCommentString()
1061        << " long double most significant halfword\n";
1062    }
1063    EmitZeros(TD->getTypePaddedSize(Type::X86_FP80Ty) -
1064              TD->getTypeStoreSize(Type::X86_FP80Ty));
1065    return;
1066  } else if (CFP->getType() == Type::PPC_FP128Ty) {
1067    // all long double variants are printed as hex
1068    // api needed to prevent premature destruction
1069    APInt api = CFP->getValueAPF().bitcastToAPInt();
1070    const uint64_t *p = api.getRawData();
1071    if (TD->isBigEndian()) {
1072      O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1073        << '\t' << TAI->getCommentString()
1074        << " long double most significant word\n";
1075      O << TAI->getData32bitsDirective() << uint32_t(p[0])
1076        << '\t' << TAI->getCommentString()
1077        << " long double next word\n";
1078      O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1079        << '\t' << TAI->getCommentString()
1080        << " long double next word\n";
1081      O << TAI->getData32bitsDirective() << uint32_t(p[1])
1082        << '\t' << TAI->getCommentString()
1083        << " long double least significant word\n";
1084     } else {
1085      O << TAI->getData32bitsDirective() << uint32_t(p[1])
1086        << '\t' << TAI->getCommentString()
1087        << " long double least significant word\n";
1088      O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1089        << '\t' << TAI->getCommentString()
1090        << " long double next word\n";
1091      O << TAI->getData32bitsDirective() << uint32_t(p[0])
1092        << '\t' << TAI->getCommentString()
1093        << " long double next word\n";
1094      O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1095        << '\t' << TAI->getCommentString()
1096        << " long double most significant word\n";
1097    }
1098    return;
1099  } else assert(0 && "Floating point constant type not handled");
1100}
1101
1102void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI) {
1103  const TargetData *TD = TM.getTargetData();
1104  unsigned BitWidth = CI->getBitWidth();
1105  assert(isPowerOf2_32(BitWidth) &&
1106         "Non-power-of-2-sized integers not handled!");
1107
1108  // We don't expect assemblers to support integer data directives
1109  // for more than 64 bits, so we emit the data in at most 64-bit
1110  // quantities at a time.
1111  const uint64_t *RawData = CI->getValue().getRawData();
1112  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1113    uint64_t Val;
1114    if (TD->isBigEndian())
1115      Val = RawData[e - i - 1];
1116    else
1117      Val = RawData[i];
1118
1119    if (TAI->getData64bitsDirective())
1120      O << TAI->getData64bitsDirective() << Val << '\n';
1121    else if (TD->isBigEndian()) {
1122      O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1123        << '\t' << TAI->getCommentString()
1124        << " Double-word most significant word " << Val << '\n';
1125      O << TAI->getData32bitsDirective() << unsigned(Val)
1126        << '\t' << TAI->getCommentString()
1127        << " Double-word least significant word " << Val << '\n';
1128    } else {
1129      O << TAI->getData32bitsDirective() << unsigned(Val)
1130        << '\t' << TAI->getCommentString()
1131        << " Double-word least significant word " << Val << '\n';
1132      O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1133        << '\t' << TAI->getCommentString()
1134        << " Double-word most significant word " << Val << '\n';
1135    }
1136  }
1137}
1138
1139/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1140void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
1141  const TargetData *TD = TM.getTargetData();
1142  const Type *type = CV->getType();
1143  unsigned Size = TD->getTypePaddedSize(type);
1144
1145  if (CV->isNullValue() || isa<UndefValue>(CV)) {
1146    EmitZeros(Size);
1147    return;
1148  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1149    EmitGlobalConstantArray(CVA);
1150    return;
1151  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1152    EmitGlobalConstantStruct(CVS);
1153    return;
1154  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1155    EmitGlobalConstantFP(CFP);
1156    return;
1157  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1158    // Small integers are handled below; large integers are handled here.
1159    if (Size > 4) {
1160      EmitGlobalConstantLargeInt(CI);
1161      return;
1162    }
1163  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1164    EmitGlobalConstantVector(CP);
1165    return;
1166  }
1167
1168  printDataDirective(type);
1169  EmitConstantValueOnly(CV);
1170  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1171    SmallString<40> S;
1172    CI->getValue().toStringUnsigned(S, 16);
1173    O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1174  }
1175  O << '\n';
1176}
1177
1178void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1179  // Target doesn't support this yet!
1180  abort();
1181}
1182
1183/// PrintSpecial - Print information related to the specified machine instr
1184/// that is independent of the operand, and may be independent of the instr
1185/// itself.  This can be useful for portably encoding the comment character
1186/// or other bits of target-specific knowledge into the asmstrings.  The
1187/// syntax used is ${:comment}.  Targets can override this to add support
1188/// for their own strange codes.
1189void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
1190  if (!strcmp(Code, "private")) {
1191    O << TAI->getPrivateGlobalPrefix();
1192  } else if (!strcmp(Code, "comment")) {
1193    O << TAI->getCommentString();
1194  } else if (!strcmp(Code, "uid")) {
1195    // Assign a unique ID to this machine instruction.
1196    static const MachineInstr *LastMI = 0;
1197    static const Function *F = 0;
1198    static unsigned Counter = 0U-1;
1199
1200    // Comparing the address of MI isn't sufficient, because machineinstrs may
1201    // be allocated to the same address across functions.
1202    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1203
1204    // If this is a new machine instruction, bump the counter.
1205    if (LastMI != MI || F != ThisF) {
1206      ++Counter;
1207      LastMI = MI;
1208      F = ThisF;
1209    }
1210    O << Counter;
1211  } else {
1212    cerr << "Unknown special formatter '" << Code
1213         << "' for machine instr: " << *MI;
1214    exit(1);
1215  }
1216}
1217
1218
1219/// printInlineAsm - This method formats and prints the specified machine
1220/// instruction that is an inline asm.
1221void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1222  unsigned NumOperands = MI->getNumOperands();
1223
1224  // Count the number of register definitions.
1225  unsigned NumDefs = 0;
1226  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1227       ++NumDefs)
1228    assert(NumDefs != NumOperands-1 && "No asm string?");
1229
1230  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1231
1232  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1233  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1234
1235  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1236  // These are useful to see where empty asm's wound up.
1237  if (AsmStr[0] == 0) {
1238    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1239    return;
1240  }
1241
1242  O << TAI->getInlineAsmStart() << "\n\t";
1243
1244  // The variant of the current asmprinter.
1245  int AsmPrinterVariant = TAI->getAssemblerDialect();
1246
1247  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1248  const char *LastEmitted = AsmStr; // One past the last character emitted.
1249
1250  while (*LastEmitted) {
1251    switch (*LastEmitted) {
1252    default: {
1253      // Not a special case, emit the string section literally.
1254      const char *LiteralEnd = LastEmitted+1;
1255      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1256             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1257        ++LiteralEnd;
1258      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1259        O.write(LastEmitted, LiteralEnd-LastEmitted);
1260      LastEmitted = LiteralEnd;
1261      break;
1262    }
1263    case '\n':
1264      ++LastEmitted;   // Consume newline character.
1265      O << '\n';       // Indent code with newline.
1266      break;
1267    case '$': {
1268      ++LastEmitted;   // Consume '$' character.
1269      bool Done = true;
1270
1271      // Handle escapes.
1272      switch (*LastEmitted) {
1273      default: Done = false; break;
1274      case '$':     // $$ -> $
1275        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1276          O << '$';
1277        ++LastEmitted;  // Consume second '$' character.
1278        break;
1279      case '(':             // $( -> same as GCC's { character.
1280        ++LastEmitted;      // Consume '(' character.
1281        if (CurVariant != -1) {
1282          cerr << "Nested variants found in inline asm string: '"
1283               << AsmStr << "'\n";
1284          exit(1);
1285        }
1286        CurVariant = 0;     // We're in the first variant now.
1287        break;
1288      case '|':
1289        ++LastEmitted;  // consume '|' character.
1290        if (CurVariant == -1)
1291          O << '|';       // this is gcc's behavior for | outside a variant
1292        else
1293          ++CurVariant;   // We're in the next variant.
1294        break;
1295      case ')':         // $) -> same as GCC's } char.
1296        ++LastEmitted;  // consume ')' character.
1297        if (CurVariant == -1)
1298          O << '}';     // this is gcc's behavior for } outside a variant
1299        else
1300          CurVariant = -1;
1301        break;
1302      }
1303      if (Done) break;
1304
1305      bool HasCurlyBraces = false;
1306      if (*LastEmitted == '{') {     // ${variable}
1307        ++LastEmitted;               // Consume '{' character.
1308        HasCurlyBraces = true;
1309      }
1310
1311      const char *IDStart = LastEmitted;
1312      char *IDEnd;
1313      errno = 0;
1314      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1315      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1316        cerr << "Bad $ operand number in inline asm string: '"
1317             << AsmStr << "'\n";
1318        exit(1);
1319      }
1320      LastEmitted = IDEnd;
1321
1322      char Modifier[2] = { 0, 0 };
1323
1324      if (HasCurlyBraces) {
1325        // If we have curly braces, check for a modifier character.  This
1326        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1327        if (*LastEmitted == ':') {
1328          ++LastEmitted;    // Consume ':' character.
1329          if (*LastEmitted == 0) {
1330            cerr << "Bad ${:} expression in inline asm string: '"
1331                 << AsmStr << "'\n";
1332            exit(1);
1333          }
1334
1335          Modifier[0] = *LastEmitted;
1336          ++LastEmitted;    // Consume modifier character.
1337        }
1338
1339        if (*LastEmitted != '}') {
1340          cerr << "Bad ${} expression in inline asm string: '"
1341               << AsmStr << "'\n";
1342          exit(1);
1343        }
1344        ++LastEmitted;    // Consume '}' character.
1345      }
1346
1347      if ((unsigned)Val >= NumOperands-1) {
1348        cerr << "Invalid $ operand number in inline asm string: '"
1349             << AsmStr << "'\n";
1350        exit(1);
1351      }
1352
1353      // Okay, we finally have a value number.  Ask the target to print this
1354      // operand!
1355      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1356        unsigned OpNo = 1;
1357
1358        bool Error = false;
1359
1360        // Scan to find the machine operand number for the operand.
1361        for (; Val; --Val) {
1362          if (OpNo >= MI->getNumOperands()) break;
1363          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1364          OpNo += (OpFlags >> 3) + 1;
1365        }
1366
1367        if (OpNo >= MI->getNumOperands()) {
1368          Error = true;
1369        } else {
1370          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1371          ++OpNo;  // Skip over the ID number.
1372
1373          if (Modifier[0]=='l')  // labels are target independent
1374            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1375                                 false, false, false);
1376          else {
1377            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1378            if ((OpFlags & 7) == 4) {
1379              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1380                                                Modifier[0] ? Modifier : 0);
1381            } else {
1382              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1383                                          Modifier[0] ? Modifier : 0);
1384            }
1385          }
1386        }
1387        if (Error) {
1388          cerr << "Invalid operand found in inline asm: '"
1389               << AsmStr << "'\n";
1390          MI->dump();
1391          exit(1);
1392        }
1393      }
1394      break;
1395    }
1396    }
1397  }
1398  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1399}
1400
1401/// printImplicitDef - This method prints the specified machine instruction
1402/// that is an implicit def.
1403void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1404  O << '\t' << TAI->getCommentString() << " implicit-def: "
1405    << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1406}
1407
1408/// printLabel - This method prints a local label used by debug and
1409/// exception handling tables.
1410void AsmPrinter::printLabel(const MachineInstr *MI) const {
1411  printLabel(MI->getOperand(0).getImm());
1412}
1413
1414void AsmPrinter::printLabel(unsigned Id) const {
1415  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1416}
1417
1418/// printDeclare - This method prints a local variable declaration used by
1419/// debug tables.
1420/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1421/// entry into dwarf table.
1422void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1423  unsigned FI = MI->getOperand(0).getIndex();
1424  GlobalValue *GV = MI->getOperand(1).getGlobal();
1425  DW->RecordVariable(cast<GlobalVariable>(GV), FI);
1426}
1427
1428/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1429/// instruction, using the specified assembler variant.  Targets should
1430/// overried this to format as appropriate.
1431bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1432                                 unsigned AsmVariant, const char *ExtraCode) {
1433  // Target doesn't support this yet!
1434  return true;
1435}
1436
1437bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1438                                       unsigned AsmVariant,
1439                                       const char *ExtraCode) {
1440  // Target doesn't support this yet!
1441  return true;
1442}
1443
1444/// printBasicBlockLabel - This method prints the label for the specified
1445/// MachineBasicBlock
1446void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1447                                      bool printAlign,
1448                                      bool printColon,
1449                                      bool printComment) const {
1450  if (printAlign) {
1451    unsigned Align = MBB->getAlignment();
1452    if (Align)
1453      EmitAlignment(Log2_32(Align));
1454  }
1455
1456  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1457    << MBB->getNumber();
1458  if (printColon)
1459    O << ':';
1460  if (printComment && MBB->getBasicBlock())
1461    O << '\t' << TAI->getCommentString() << ' '
1462      << MBB->getBasicBlock()->getNameStart();
1463}
1464
1465/// printPICJumpTableSetLabel - This method prints a set label for the
1466/// specified MachineBasicBlock for a jumptable entry.
1467void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1468                                           const MachineBasicBlock *MBB) const {
1469  if (!TAI->getSetDirective())
1470    return;
1471
1472  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1473    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1474  printBasicBlockLabel(MBB, false, false, false);
1475  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1476    << '_' << uid << '\n';
1477}
1478
1479void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1480                                           const MachineBasicBlock *MBB) const {
1481  if (!TAI->getSetDirective())
1482    return;
1483
1484  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1485    << getFunctionNumber() << '_' << uid << '_' << uid2
1486    << "_set_" << MBB->getNumber() << ',';
1487  printBasicBlockLabel(MBB, false, false, false);
1488  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1489    << '_' << uid << '_' << uid2 << '\n';
1490}
1491
1492/// printDataDirective - This method prints the asm directive for the
1493/// specified type.
1494void AsmPrinter::printDataDirective(const Type *type) {
1495  const TargetData *TD = TM.getTargetData();
1496  switch (type->getTypeID()) {
1497  case Type::IntegerTyID: {
1498    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1499    if (BitWidth <= 8)
1500      O << TAI->getData8bitsDirective();
1501    else if (BitWidth <= 16)
1502      O << TAI->getData16bitsDirective();
1503    else if (BitWidth <= 32)
1504      O << TAI->getData32bitsDirective();
1505    else if (BitWidth <= 64) {
1506      assert(TAI->getData64bitsDirective() &&
1507             "Target cannot handle 64-bit constant exprs!");
1508      O << TAI->getData64bitsDirective();
1509    } else {
1510      assert(0 && "Target cannot handle given data directive width!");
1511    }
1512    break;
1513  }
1514  case Type::PointerTyID:
1515    if (TD->getPointerSize() == 8) {
1516      assert(TAI->getData64bitsDirective() &&
1517             "Target cannot handle 64-bit pointer exprs!");
1518      O << TAI->getData64bitsDirective();
1519    } else if (TD->getPointerSize() == 2) {
1520      O << TAI->getData16bitsDirective();
1521    } else if (TD->getPointerSize() == 1) {
1522      O << TAI->getData8bitsDirective();
1523    } else {
1524      O << TAI->getData32bitsDirective();
1525    }
1526    break;
1527  case Type::FloatTyID: case Type::DoubleTyID:
1528  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1529    assert (0 && "Should have already output floating point constant.");
1530  default:
1531    assert (0 && "Can't handle printing this type of thing");
1532    break;
1533  }
1534}
1535
1536void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1537                                   const char *Prefix) {
1538  if (Name[0]=='\"')
1539    O << '\"';
1540  O << TAI->getPrivateGlobalPrefix();
1541  if (Prefix) O << Prefix;
1542  if (Name[0]=='\"')
1543    O << '\"';
1544  if (Name[0]=='\"')
1545    O << Name[1];
1546  else
1547    O << Name;
1548  O << Suffix;
1549  if (Name[0]=='\"')
1550    O << '\"';
1551}
1552
1553void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1554  printSuffixedName(Name.c_str(), Suffix);
1555}
1556
1557void AsmPrinter::printVisibility(const std::string& Name,
1558                                 unsigned Visibility) const {
1559  if (Visibility == GlobalValue::HiddenVisibility) {
1560    if (const char *Directive = TAI->getHiddenDirective())
1561      O << Directive << Name << '\n';
1562  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1563    if (const char *Directive = TAI->getProtectedDirective())
1564      O << Directive << Name << '\n';
1565  }
1566}
1567
1568void AsmPrinter::printOffset(int64_t Offset) const {
1569  if (Offset > 0)
1570    O << '+' << Offset;
1571  else if (Offset < 0)
1572    O << Offset;
1573}
1574
1575GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1576  if (!S->usesMetadata())
1577    return 0;
1578
1579  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1580  if (GCPI != GCMetadataPrinters.end())
1581    return GCPI->second;
1582
1583  const char *Name = S->getName().c_str();
1584
1585  for (GCMetadataPrinterRegistry::iterator
1586         I = GCMetadataPrinterRegistry::begin(),
1587         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1588    if (strcmp(Name, I->getName()) == 0) {
1589      GCMetadataPrinter *GMP = I->instantiate();
1590      GMP->S = S;
1591      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1592      return GMP;
1593    }
1594
1595  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1596  abort();
1597}
1598