BranchFolding.cpp revision 2210c0bea83aa8a8585d793a1f63e8c01b65be38
1//===-- BranchFolding.cpp - Fold machine code branch instructions ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass forwards branches to unconditional branches to make them branch
11// directly to the target block.  This pass often results in dead MBB's, which
12// it then removes.
13//
14// Note that this pass must be run after register allocation, it cannot handle
15// SSA form.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "branchfolding"
20#include "BranchFolding.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/MachineFunctionPass.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/RegisterScavenging.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetRegisterInfo.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/ADT/STLExtras.h"
38#include <algorithm>
39using namespace llvm;
40
41STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
42STATISTIC(NumBranchOpts, "Number of branches optimized");
43STATISTIC(NumTailMerge , "Number of block tails merged");
44static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
45                              cl::init(cl::BOU_UNSET), cl::Hidden);
46// Throttle for huge numbers of predecessors (compile speed problems)
47static cl::opt<unsigned>
48TailMergeThreshold("tail-merge-threshold",
49          cl::desc("Max number of predecessors to consider tail merging"),
50          cl::init(150), cl::Hidden);
51
52// Heuristic for tail merging (and, inversely, tail duplication).
53// TODO: This should be replaced with a target query.
54static cl::opt<unsigned>
55TailMergeSize("tail-merge-size",
56          cl::desc("Min number of instructions to consider tail merging"),
57                              cl::init(3), cl::Hidden);
58
59char BranchFolderPass::ID = 0;
60
61Pass *llvm::createBranchFoldingPass(bool DefaultEnableTailMerge) {
62  return new BranchFolderPass(DefaultEnableTailMerge);
63}
64
65bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
66  return OptimizeFunction(MF,
67                          MF.getTarget().getInstrInfo(),
68                          MF.getTarget().getRegisterInfo(),
69                          getAnalysisIfAvailable<MachineModuleInfo>());
70}
71
72
73BranchFolder::BranchFolder(bool defaultEnableTailMerge) {
74  switch (FlagEnableTailMerge) {
75  case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
76  case cl::BOU_TRUE: EnableTailMerge = true; break;
77  case cl::BOU_FALSE: EnableTailMerge = false; break;
78  }
79}
80
81/// RemoveDeadBlock - Remove the specified dead machine basic block from the
82/// function, updating the CFG.
83void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
84  assert(MBB->pred_empty() && "MBB must be dead!");
85  DEBUG(errs() << "\nRemoving MBB: " << *MBB);
86
87  MachineFunction *MF = MBB->getParent();
88  // drop all successors.
89  while (!MBB->succ_empty())
90    MBB->removeSuccessor(MBB->succ_end()-1);
91
92  // If there are any labels in the basic block, unregister them from
93  // MachineModuleInfo.
94  if (MMI && !MBB->empty()) {
95    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
96         I != E; ++I) {
97      if (I->isLabel())
98        // The label ID # is always operand #0, an immediate.
99        MMI->InvalidateLabel(I->getOperand(0).getImm());
100    }
101  }
102
103  // Remove the block.
104  MF->erase(MBB);
105}
106
107/// OptimizeImpDefsBlock - If a basic block is just a bunch of implicit_def
108/// followed by terminators, and if the implicitly defined registers are not
109/// used by the terminators, remove those implicit_def's. e.g.
110/// BB1:
111///   r0 = implicit_def
112///   r1 = implicit_def
113///   br
114/// This block can be optimized away later if the implicit instructions are
115/// removed.
116bool BranchFolder::OptimizeImpDefsBlock(MachineBasicBlock *MBB) {
117  SmallSet<unsigned, 4> ImpDefRegs;
118  MachineBasicBlock::iterator I = MBB->begin();
119  while (I != MBB->end()) {
120    if (I->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
121      break;
122    unsigned Reg = I->getOperand(0).getReg();
123    ImpDefRegs.insert(Reg);
124    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
125         unsigned SubReg = *SubRegs; ++SubRegs)
126      ImpDefRegs.insert(SubReg);
127    ++I;
128  }
129  if (ImpDefRegs.empty())
130    return false;
131
132  MachineBasicBlock::iterator FirstTerm = I;
133  while (I != MBB->end()) {
134    if (!TII->isUnpredicatedTerminator(I))
135      return false;
136    // See if it uses any of the implicitly defined registers.
137    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
138      MachineOperand &MO = I->getOperand(i);
139      if (!MO.isReg() || !MO.isUse())
140        continue;
141      unsigned Reg = MO.getReg();
142      if (ImpDefRegs.count(Reg))
143        return false;
144    }
145    ++I;
146  }
147
148  I = MBB->begin();
149  while (I != FirstTerm) {
150    MachineInstr *ImpDefMI = &*I;
151    ++I;
152    MBB->erase(ImpDefMI);
153  }
154
155  return true;
156}
157
158/// OptimizeFunction - Perhaps branch folding, tail merging and other
159/// CFG optimizations on the given function.
160bool BranchFolder::OptimizeFunction(MachineFunction &MF,
161                                    const TargetInstrInfo *tii,
162                                    const TargetRegisterInfo *tri,
163                                    MachineModuleInfo *mmi) {
164  if (!tii) return false;
165
166  TII = tii;
167  TRI = tri;
168  MMI = mmi;
169
170  RS = TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : NULL;
171
172  // Fix CFG.  The later algorithms expect it to be right.
173  bool MadeChange = false;
174  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; I++) {
175    MachineBasicBlock *MBB = I, *TBB = 0, *FBB = 0;
176    SmallVector<MachineOperand, 4> Cond;
177    if (!TII->AnalyzeBranch(*MBB, TBB, FBB, Cond, true))
178      MadeChange |= MBB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
179    MadeChange |= OptimizeImpDefsBlock(MBB);
180  }
181
182
183  bool MadeChangeThisIteration = true;
184  while (MadeChangeThisIteration) {
185    MadeChangeThisIteration = false;
186    MadeChangeThisIteration |= TailMergeBlocks(MF);
187    MadeChangeThisIteration |= OptimizeBranches(MF);
188    MadeChange |= MadeChangeThisIteration;
189  }
190
191  // See if any jump tables have become mergable or dead as the code generator
192  // did its thing.
193  MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
194  const std::vector<MachineJumpTableEntry> &JTs = JTI->getJumpTables();
195  if (!JTs.empty()) {
196    // Figure out how these jump tables should be merged.
197    std::vector<unsigned> JTMapping;
198    JTMapping.reserve(JTs.size());
199
200    // We always keep the 0th jump table.
201    JTMapping.push_back(0);
202
203    // Scan the jump tables, seeing if there are any duplicates.  Note that this
204    // is N^2, which should be fixed someday.
205    for (unsigned i = 1, e = JTs.size(); i != e; ++i) {
206      if (JTs[i].MBBs.empty())
207        JTMapping.push_back(i);
208      else
209        JTMapping.push_back(JTI->getJumpTableIndex(JTs[i].MBBs));
210    }
211
212    // If a jump table was merge with another one, walk the function rewriting
213    // references to jump tables to reference the new JT ID's.  Keep track of
214    // whether we see a jump table idx, if not, we can delete the JT.
215    BitVector JTIsLive(JTs.size());
216    for (MachineFunction::iterator BB = MF.begin(), E = MF.end();
217         BB != E; ++BB) {
218      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end();
219           I != E; ++I)
220        for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
221          MachineOperand &Op = I->getOperand(op);
222          if (!Op.isJTI()) continue;
223          unsigned NewIdx = JTMapping[Op.getIndex()];
224          Op.setIndex(NewIdx);
225
226          // Remember that this JT is live.
227          JTIsLive.set(NewIdx);
228        }
229    }
230
231    // Finally, remove dead jump tables.  This happens either because the
232    // indirect jump was unreachable (and thus deleted) or because the jump
233    // table was merged with some other one.
234    for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
235      if (!JTIsLive.test(i)) {
236        JTI->RemoveJumpTable(i);
237        MadeChange = true;
238      }
239  }
240
241  delete RS;
242  return MadeChange;
243}
244
245//===----------------------------------------------------------------------===//
246//  Tail Merging of Blocks
247//===----------------------------------------------------------------------===//
248
249/// HashMachineInstr - Compute a hash value for MI and its operands.
250static unsigned HashMachineInstr(const MachineInstr *MI) {
251  unsigned Hash = MI->getOpcode();
252  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
253    const MachineOperand &Op = MI->getOperand(i);
254
255    // Merge in bits from the operand if easy.
256    unsigned OperandHash = 0;
257    switch (Op.getType()) {
258    case MachineOperand::MO_Register:          OperandHash = Op.getReg(); break;
259    case MachineOperand::MO_Immediate:         OperandHash = Op.getImm(); break;
260    case MachineOperand::MO_MachineBasicBlock:
261      OperandHash = Op.getMBB()->getNumber();
262      break;
263    case MachineOperand::MO_FrameIndex:
264    case MachineOperand::MO_ConstantPoolIndex:
265    case MachineOperand::MO_JumpTableIndex:
266      OperandHash = Op.getIndex();
267      break;
268    case MachineOperand::MO_GlobalAddress:
269    case MachineOperand::MO_ExternalSymbol:
270      // Global address / external symbol are too hard, don't bother, but do
271      // pull in the offset.
272      OperandHash = Op.getOffset();
273      break;
274    default: break;
275    }
276
277    Hash += ((OperandHash << 3) | Op.getType()) << (i&31);
278  }
279  return Hash;
280}
281
282/// HashEndOfMBB - Hash the last few instructions in the MBB.  For blocks
283/// with no successors, we hash two instructions, because cross-jumping
284/// only saves code when at least two instructions are removed (since a
285/// branch must be inserted).  For blocks with a successor, one of the
286/// two blocks to be tail-merged will end with a branch already, so
287/// it gains to cross-jump even for one instruction.
288static unsigned HashEndOfMBB(const MachineBasicBlock *MBB,
289                             unsigned minCommonTailLength) {
290  MachineBasicBlock::const_iterator I = MBB->end();
291  if (I == MBB->begin())
292    return 0;   // Empty MBB.
293
294  --I;
295  unsigned Hash = HashMachineInstr(I);
296
297  if (I == MBB->begin() || minCommonTailLength == 1)
298    return Hash;   // Single instr MBB.
299
300  --I;
301  // Hash in the second-to-last instruction.
302  Hash ^= HashMachineInstr(I) << 2;
303  return Hash;
304}
305
306/// ComputeCommonTailLength - Given two machine basic blocks, compute the number
307/// of instructions they actually have in common together at their end.  Return
308/// iterators for the first shared instruction in each block.
309static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
310                                        MachineBasicBlock *MBB2,
311                                        MachineBasicBlock::iterator &I1,
312                                        MachineBasicBlock::iterator &I2) {
313  I1 = MBB1->end();
314  I2 = MBB2->end();
315
316  unsigned TailLen = 0;
317  while (I1 != MBB1->begin() && I2 != MBB2->begin()) {
318    --I1; --I2;
319    if (!I1->isIdenticalTo(I2) ||
320        // FIXME: This check is dubious. It's used to get around a problem where
321        // people incorrectly expect inline asm directives to remain in the same
322        // relative order. This is untenable because normal compiler
323        // optimizations (like this one) may reorder and/or merge these
324        // directives.
325        I1->getOpcode() == TargetInstrInfo::INLINEASM) {
326      ++I1; ++I2;
327      break;
328    }
329    ++TailLen;
330  }
331  return TailLen;
332}
333
334/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
335/// after it, replacing it with an unconditional branch to NewDest.  This
336/// returns true if OldInst's block is modified, false if NewDest is modified.
337void BranchFolder::ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
338                                           MachineBasicBlock *NewDest) {
339  MachineBasicBlock *OldBB = OldInst->getParent();
340
341  // Remove all the old successors of OldBB from the CFG.
342  while (!OldBB->succ_empty())
343    OldBB->removeSuccessor(OldBB->succ_begin());
344
345  // Remove all the dead instructions from the end of OldBB.
346  OldBB->erase(OldInst, OldBB->end());
347
348  // If OldBB isn't immediately before OldBB, insert a branch to it.
349  if (++MachineFunction::iterator(OldBB) != MachineFunction::iterator(NewDest))
350    TII->InsertBranch(*OldBB, NewDest, 0, SmallVector<MachineOperand, 0>());
351  OldBB->addSuccessor(NewDest);
352  ++NumTailMerge;
353}
354
355/// SplitMBBAt - Given a machine basic block and an iterator into it, split the
356/// MBB so that the part before the iterator falls into the part starting at the
357/// iterator.  This returns the new MBB.
358MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
359                                            MachineBasicBlock::iterator BBI1) {
360  MachineFunction &MF = *CurMBB.getParent();
361
362  // Create the fall-through block.
363  MachineFunction::iterator MBBI = &CurMBB;
364  MachineBasicBlock *NewMBB =MF.CreateMachineBasicBlock(CurMBB.getBasicBlock());
365  CurMBB.getParent()->insert(++MBBI, NewMBB);
366
367  // Move all the successors of this block to the specified block.
368  NewMBB->transferSuccessors(&CurMBB);
369
370  // Add an edge from CurMBB to NewMBB for the fall-through.
371  CurMBB.addSuccessor(NewMBB);
372
373  // Splice the code over.
374  NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
375
376  // For targets that use the register scavenger, we must maintain LiveIns.
377  if (RS) {
378    RS->enterBasicBlock(&CurMBB);
379    if (!CurMBB.empty())
380      RS->forward(prior(CurMBB.end()));
381    BitVector RegsLiveAtExit(TRI->getNumRegs());
382    RS->getRegsUsed(RegsLiveAtExit, false);
383    for (unsigned int i=0, e=TRI->getNumRegs(); i!=e; i++)
384      if (RegsLiveAtExit[i])
385        NewMBB->addLiveIn(i);
386  }
387
388  return NewMBB;
389}
390
391/// EstimateRuntime - Make a rough estimate for how long it will take to run
392/// the specified code.
393static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
394                                MachineBasicBlock::iterator E) {
395  unsigned Time = 0;
396  for (; I != E; ++I) {
397    const TargetInstrDesc &TID = I->getDesc();
398    if (TID.isCall())
399      Time += 10;
400    else if (TID.mayLoad() || TID.mayStore())
401      Time += 2;
402    else
403      ++Time;
404  }
405  return Time;
406}
407
408// CurMBB needs to add an unconditional branch to SuccMBB (we removed these
409// branches temporarily for tail merging).  In the case where CurMBB ends
410// with a conditional branch to the next block, optimize by reversing the
411// test and conditionally branching to SuccMBB instead.
412static void FixTail(MachineBasicBlock* CurMBB, MachineBasicBlock *SuccBB,
413                    const TargetInstrInfo *TII) {
414  MachineFunction *MF = CurMBB->getParent();
415  MachineFunction::iterator I = next(MachineFunction::iterator(CurMBB));
416  MachineBasicBlock *TBB = 0, *FBB = 0;
417  SmallVector<MachineOperand, 4> Cond;
418  if (I != MF->end() &&
419      !TII->AnalyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
420    MachineBasicBlock *NextBB = I;
421    if (TBB == NextBB && !Cond.empty() && !FBB) {
422      if (!TII->ReverseBranchCondition(Cond)) {
423        TII->RemoveBranch(*CurMBB);
424        TII->InsertBranch(*CurMBB, SuccBB, NULL, Cond);
425        return;
426      }
427    }
428  }
429  TII->InsertBranch(*CurMBB, SuccBB, NULL, SmallVector<MachineOperand, 0>());
430}
431
432static bool MergeCompare(const std::pair<unsigned,MachineBasicBlock*> &p,
433                         const std::pair<unsigned,MachineBasicBlock*> &q) {
434    if (p.first < q.first)
435      return true;
436     else if (p.first > q.first)
437      return false;
438    else if (p.second->getNumber() < q.second->getNumber())
439      return true;
440    else if (p.second->getNumber() > q.second->getNumber())
441      return false;
442    else {
443      // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
444      // an object with itself.
445#ifndef _GLIBCXX_DEBUG
446      llvm_unreachable("Predecessor appears twice");
447#endif
448      return false;
449    }
450}
451
452/// CountTerminators - Count the number of terminators in the given
453/// block and set I to the position of the first non-terminator, if there
454/// is one, or MBB->end() otherwise.
455static unsigned CountTerminators(MachineBasicBlock *MBB,
456                                 MachineBasicBlock::iterator &I) {
457  I = MBB->end();
458  unsigned NumTerms = 0;
459  for (;;) {
460    if (I == MBB->begin()) {
461      I = MBB->end();
462      break;
463    }
464    --I;
465    if (!I->getDesc().isTerminator()) break;
466    ++NumTerms;
467  }
468  return NumTerms;
469}
470
471/// ProfitableToMerge - Check if two machine basic blocks have a common tail
472/// and decide if it would be profitable to merge those tails.  Return the
473/// length of the common tail and iterators to the first common instruction
474/// in each block.
475static bool ProfitableToMerge(MachineBasicBlock *MBB1,
476                              MachineBasicBlock *MBB2,
477                              unsigned minCommonTailLength,
478                              unsigned &CommonTailLen,
479                              MachineBasicBlock::iterator &I1,
480                              MachineBasicBlock::iterator &I2,
481                              MachineBasicBlock *SuccBB,
482                              MachineBasicBlock *PredBB) {
483  CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
484  MachineFunction *MF = MBB1->getParent();
485
486  if (CommonTailLen == 0)
487    return false;
488
489  // It's almost always profitable to merge any number of non-terminator
490  // instructions with the block that falls through into the common successor.
491  if (MBB1 == PredBB || MBB2 == PredBB) {
492    MachineBasicBlock::iterator I;
493    unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
494    if (CommonTailLen > NumTerms)
495      return true;
496  }
497
498  // If both blocks have an unconditional branch temporarily stripped out,
499  // treat that as an additional common instruction.
500  if (MBB1 != PredBB && MBB2 != PredBB &&
501      !MBB1->back().getDesc().isBarrier() &&
502      !MBB2->back().getDesc().isBarrier())
503    --minCommonTailLength;
504
505  // Check if the common tail is long enough to be worthwhile.
506  if (CommonTailLen >= minCommonTailLength)
507    return true;
508
509  // If we are optimizing for code size, 1 instruction in common is enough if
510  // we don't have to split a block.  At worst we will be replacing a
511  // fallthrough into the common tail with a branch, which at worst breaks
512  // even with falling through into the duplicated common tail.
513  if (MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
514      (I1 == MBB1->begin() || I2 == MBB2->begin()))
515    return true;
516
517  return false;
518}
519
520/// ComputeSameTails - Look through all the blocks in MergePotentials that have
521/// hash CurHash (guaranteed to match the last element).  Build the vector
522/// SameTails of all those that have the (same) largest number of instructions
523/// in common of any pair of these blocks.  SameTails entries contain an
524/// iterator into MergePotentials (from which the MachineBasicBlock can be
525/// found) and a MachineBasicBlock::iterator into that MBB indicating the
526/// instruction where the matching code sequence begins.
527/// Order of elements in SameTails is the reverse of the order in which
528/// those blocks appear in MergePotentials (where they are not necessarily
529/// consecutive).
530unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
531                                        unsigned minCommonTailLength,
532                                        MachineBasicBlock *SuccBB,
533                                        MachineBasicBlock *PredBB) {
534  unsigned maxCommonTailLength = 0U;
535  SameTails.clear();
536  MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
537  MPIterator HighestMPIter = prior(MergePotentials.end());
538  for (MPIterator CurMPIter = prior(MergePotentials.end()),
539                  B = MergePotentials.begin();
540       CurMPIter!=B && CurMPIter->first == CurHash;
541       --CurMPIter) {
542    for (MPIterator I = prior(CurMPIter); I->first == CurHash ; --I) {
543      unsigned CommonTailLen;
544      if (ProfitableToMerge(CurMPIter->second, I->second, minCommonTailLength,
545                            CommonTailLen, TrialBBI1, TrialBBI2,
546                            SuccBB, PredBB)) {
547        if (CommonTailLen > maxCommonTailLength) {
548          SameTails.clear();
549          maxCommonTailLength = CommonTailLen;
550          HighestMPIter = CurMPIter;
551          SameTails.push_back(std::make_pair(CurMPIter, TrialBBI1));
552        }
553        if (HighestMPIter == CurMPIter &&
554            CommonTailLen == maxCommonTailLength)
555          SameTails.push_back(std::make_pair(I, TrialBBI2));
556      }
557      if (I == B)
558        break;
559    }
560  }
561  return maxCommonTailLength;
562}
563
564/// RemoveBlocksWithHash - Remove all blocks with hash CurHash from
565/// MergePotentials, restoring branches at ends of blocks as appropriate.
566void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
567                                        MachineBasicBlock* SuccBB,
568                                        MachineBasicBlock* PredBB) {
569  MPIterator CurMPIter, B;
570  for (CurMPIter = prior(MergePotentials.end()), B = MergePotentials.begin();
571       CurMPIter->first == CurHash;
572       --CurMPIter) {
573    // Put the unconditional branch back, if we need one.
574    MachineBasicBlock *CurMBB = CurMPIter->second;
575    if (SuccBB && CurMBB != PredBB)
576      FixTail(CurMBB, SuccBB, TII);
577    if (CurMPIter == B)
578      break;
579  }
580  if (CurMPIter->first!=CurHash)
581    CurMPIter++;
582  MergePotentials.erase(CurMPIter, MergePotentials.end());
583}
584
585/// CreateCommonTailOnlyBlock - None of the blocks to be tail-merged consist
586/// only of the common tail.  Create a block that does by splitting one.
587unsigned BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
588                                             unsigned maxCommonTailLength) {
589  unsigned i, commonTailIndex;
590  unsigned TimeEstimate = ~0U;
591  for (i=0, commonTailIndex=0; i<SameTails.size(); i++) {
592    // Use PredBB if possible; that doesn't require a new branch.
593    if (SameTails[i].first->second == PredBB) {
594      commonTailIndex = i;
595      break;
596    }
597    // Otherwise, make a (fairly bogus) choice based on estimate of
598    // how long it will take the various blocks to execute.
599    unsigned t = EstimateRuntime(SameTails[i].first->second->begin(),
600                                 SameTails[i].second);
601    if (t <= TimeEstimate) {
602      TimeEstimate = t;
603      commonTailIndex = i;
604    }
605  }
606
607  MachineBasicBlock::iterator BBI = SameTails[commonTailIndex].second;
608  MachineBasicBlock *MBB = SameTails[commonTailIndex].first->second;
609
610  DEBUG(errs() << "\nSplitting BB#" << MBB->getNumber() << ", size "
611               << maxCommonTailLength);
612
613  MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI);
614  SameTails[commonTailIndex].first->second = newMBB;
615  SameTails[commonTailIndex].second = newMBB->begin();
616
617  // If we split PredBB, newMBB is the new predecessor.
618  if (PredBB == MBB)
619    PredBB = newMBB;
620
621  return commonTailIndex;
622}
623
624// See if any of the blocks in MergePotentials (which all have a common single
625// successor, or all have no successor) can be tail-merged.  If there is a
626// successor, any blocks in MergePotentials that are not tail-merged and
627// are not immediately before Succ must have an unconditional branch to
628// Succ added (but the predecessor/successor lists need no adjustment).
629// The lone predecessor of Succ that falls through into Succ,
630// if any, is given in PredBB.
631
632bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
633                                      MachineBasicBlock* PredBB) {
634  bool MadeChange = false;
635
636  // Except for the special cases below, tail-merge if there are at least
637  // this many instructions in common.
638  unsigned minCommonTailLength = TailMergeSize;
639
640  // If there's a successor block, there are some cases which don't require
641  // new branching and as such are very likely to be profitable.
642  if (SuccBB) {
643    if (SuccBB->pred_size() == MergePotentials.size() &&
644        !MergePotentials[0].second->empty()) {
645      // If all the predecessors have at least one tail instruction in common,
646      // merging is very likely to be a win since it won't require an increase
647      // in static branches, and it will decrease the static instruction count.
648      bool AllPredsMatch = true;
649      MachineBasicBlock::iterator FirstNonTerm;
650      unsigned MinNumTerms = CountTerminators(MergePotentials[0].second,
651                                              FirstNonTerm);
652      if (FirstNonTerm != MergePotentials[0].second->end()) {
653        for (unsigned i = 1, e = MergePotentials.size(); i != e; ++i) {
654          MachineBasicBlock::iterator OtherFirstNonTerm;
655          unsigned NumTerms = CountTerminators(MergePotentials[0].second,
656                                               OtherFirstNonTerm);
657          if (NumTerms < MinNumTerms)
658            MinNumTerms = NumTerms;
659          if (OtherFirstNonTerm == MergePotentials[i].second->end() ||
660              OtherFirstNonTerm->isIdenticalTo(FirstNonTerm)) {
661            AllPredsMatch = false;
662            break;
663          }
664        }
665
666        // If they all have an instruction in common, do any amount of merging.
667        if (AllPredsMatch)
668          minCommonTailLength = MinNumTerms + 1;
669      }
670    }
671  }
672
673  DEBUG(errs() << "\nTryTailMergeBlocks: ";
674        for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
675          errs() << "BB#" << MergePotentials[i].second->getNumber()
676                 << (i == e-1 ? "" : ", ");
677        errs() << "\n";
678        if (SuccBB) {
679          errs() << "  with successor BB#" << SuccBB->getNumber() << '\n';
680          if (PredBB)
681            errs() << "  which has fall-through from BB#"
682                   << PredBB->getNumber() << "\n";
683        }
684        errs() << "Looking for common tails of at least "
685               << minCommonTailLength << " instruction"
686               << (minCommonTailLength == 1 ? "" : "s") << '\n';
687       );
688
689  // Sort by hash value so that blocks with identical end sequences sort
690  // together.
691  std::stable_sort(MergePotentials.begin(), MergePotentials.end(),MergeCompare);
692
693  // Walk through equivalence sets looking for actual exact matches.
694  while (MergePotentials.size() > 1) {
695    unsigned CurHash  = MergePotentials.back().first;
696
697    // Build SameTails, identifying the set of blocks with this hash code
698    // and with the maximum number of instructions in common.
699    unsigned maxCommonTailLength = ComputeSameTails(CurHash,
700                                                    minCommonTailLength,
701                                                    SuccBB, PredBB);
702
703    // If we didn't find any pair that has at least minCommonTailLength
704    // instructions in common, remove all blocks with this hash code and retry.
705    if (SameTails.empty()) {
706      RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
707      continue;
708    }
709
710    // If one of the blocks is the entire common tail (and not the entry
711    // block, which we can't jump to), we can treat all blocks with this same
712    // tail at once.  Use PredBB if that is one of the possibilities, as that
713    // will not introduce any extra branches.
714    MachineBasicBlock *EntryBB = MergePotentials.begin()->second->
715                                getParent()->begin();
716    unsigned int commonTailIndex, i;
717    for (commonTailIndex=SameTails.size(), i=0; i<SameTails.size(); i++) {
718      MachineBasicBlock *MBB = SameTails[i].first->second;
719      if (MBB == EntryBB)
720        continue;
721      if (MBB == PredBB) {
722        commonTailIndex = i;
723        break;
724      }
725      if (MBB->begin() == SameTails[i].second)
726        commonTailIndex = i;
727    }
728
729    if (commonTailIndex == SameTails.size() ||
730        (SameTails[commonTailIndex].first->second == PredBB &&
731         SameTails[commonTailIndex].first->second->begin() !=
732           SameTails[i].second)) {
733      // None of the blocks consist entirely of the common tail.
734      // Split a block so that one does.
735      commonTailIndex = CreateCommonTailOnlyBlock(PredBB, maxCommonTailLength);
736    }
737
738    MachineBasicBlock *MBB = SameTails[commonTailIndex].first->second;
739    // MBB is common tail.  Adjust all other BB's to jump to this one.
740    // Traversal must be forwards so erases work.
741    DEBUG(errs() << "\nUsing common tail in BB#" << MBB->getNumber()
742                 << " for ");
743    for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
744      if (commonTailIndex == i)
745        continue;
746      DEBUG(errs() << "BB#" << SameTails[i].first->second->getNumber()
747                   << (i == e-1 ? "" : ", "));
748      // Hack the end off BB i, making it jump to BB commonTailIndex instead.
749      ReplaceTailWithBranchTo(SameTails[i].second, MBB);
750      // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
751      MergePotentials.erase(SameTails[i].first);
752    }
753    DEBUG(errs() << "\n");
754    // We leave commonTailIndex in the worklist in case there are other blocks
755    // that match it with a smaller number of instructions.
756    MadeChange = true;
757  }
758  return MadeChange;
759}
760
761bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
762
763  if (!EnableTailMerge) return false;
764
765  bool MadeChange = false;
766
767  // First find blocks with no successors.
768  MergePotentials.clear();
769  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
770    if (I->succ_empty())
771      MergePotentials.push_back(std::make_pair(HashEndOfMBB(I, 2U), I));
772  }
773
774  // See if we can do any tail merging on those.
775  if (MergePotentials.size() < TailMergeThreshold &&
776      MergePotentials.size() >= 2)
777    MadeChange |= TryTailMergeBlocks(NULL, NULL);
778
779  // Look at blocks (IBB) with multiple predecessors (PBB).
780  // We change each predecessor to a canonical form, by
781  // (1) temporarily removing any unconditional branch from the predecessor
782  // to IBB, and
783  // (2) alter conditional branches so they branch to the other block
784  // not IBB; this may require adding back an unconditional branch to IBB
785  // later, where there wasn't one coming in.  E.g.
786  //   Bcc IBB
787  //   fallthrough to QBB
788  // here becomes
789  //   Bncc QBB
790  // with a conceptual B to IBB after that, which never actually exists.
791  // With those changes, we see whether the predecessors' tails match,
792  // and merge them if so.  We change things out of canonical form and
793  // back to the way they were later in the process.  (OptimizeBranches
794  // would undo some of this, but we can't use it, because we'd get into
795  // a compile-time infinite loop repeatedly doing and undoing the same
796  // transformations.)
797
798  for (MachineFunction::iterator I = next(MF.begin()), E = MF.end();
799       I != E; ++I) {
800    if (I->pred_size() >= 2 && I->pred_size() < TailMergeThreshold) {
801      SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
802      MachineBasicBlock *IBB = I;
803      MachineBasicBlock *PredBB = prior(I);
804      MergePotentials.clear();
805      for (MachineBasicBlock::pred_iterator P = I->pred_begin(),
806                                            E2 = I->pred_end();
807           P != E2; ++P) {
808        MachineBasicBlock* PBB = *P;
809        // Skip blocks that loop to themselves, can't tail merge these.
810        if (PBB == IBB)
811          continue;
812        // Visit each predecessor only once.
813        if (!UniquePreds.insert(PBB))
814          continue;
815        MachineBasicBlock *TBB = 0, *FBB = 0;
816        SmallVector<MachineOperand, 4> Cond;
817        if (!TII->AnalyzeBranch(*PBB, TBB, FBB, Cond, true)) {
818          // Failing case:  IBB is the target of a cbr, and
819          // we cannot reverse the branch.
820          SmallVector<MachineOperand, 4> NewCond(Cond);
821          if (!Cond.empty() && TBB == IBB) {
822            if (TII->ReverseBranchCondition(NewCond))
823              continue;
824            // This is the QBB case described above
825            if (!FBB)
826              FBB = next(MachineFunction::iterator(PBB));
827          }
828          // Failing case:  the only way IBB can be reached from PBB is via
829          // exception handling.  Happens for landing pads.  Would be nice
830          // to have a bit in the edge so we didn't have to do all this.
831          if (IBB->isLandingPad()) {
832            MachineFunction::iterator IP = PBB;  IP++;
833            MachineBasicBlock* PredNextBB = NULL;
834            if (IP!=MF.end())
835              PredNextBB = IP;
836            if (TBB == NULL) {
837              if (IBB!=PredNextBB)      // fallthrough
838                continue;
839            } else if (FBB) {
840              if (TBB!=IBB && FBB!=IBB)   // cbr then ubr
841                continue;
842            } else if (Cond.empty()) {
843              if (TBB!=IBB)               // ubr
844                continue;
845            } else {
846              if (TBB!=IBB && IBB!=PredNextBB)  // cbr
847                continue;
848            }
849          }
850          // Remove the unconditional branch at the end, if any.
851          if (TBB && (Cond.empty() || FBB)) {
852            TII->RemoveBranch(*PBB);
853            if (!Cond.empty())
854              // reinsert conditional branch only, for now
855              TII->InsertBranch(*PBB, (TBB == IBB) ? FBB : TBB, 0, NewCond);
856          }
857          MergePotentials.push_back(std::make_pair(HashEndOfMBB(PBB, 1U), *P));
858        }
859      }
860      if (MergePotentials.size() >= 2)
861        MadeChange |= TryTailMergeBlocks(IBB, PredBB);
862      // Reinsert an unconditional branch if needed.
863      // The 1 below can occur as a result of removing blocks in TryTailMergeBlocks.
864      PredBB = prior(I);      // this may have been changed in TryTailMergeBlocks
865      if (MergePotentials.size() == 1 &&
866          MergePotentials.begin()->second != PredBB)
867        FixTail(MergePotentials.begin()->second, IBB, TII);
868    }
869  }
870  return MadeChange;
871}
872
873//===----------------------------------------------------------------------===//
874//  Branch Optimization
875//===----------------------------------------------------------------------===//
876
877bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
878  bool MadeChange = false;
879
880  // Make sure blocks are numbered in order
881  MF.RenumberBlocks();
882
883  for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ) {
884    MachineBasicBlock *MBB = I++;
885    MadeChange |= OptimizeBlock(MBB);
886
887    // If it is dead, remove it.
888    if (MBB->pred_empty()) {
889      RemoveDeadBlock(MBB);
890      MadeChange = true;
891      ++NumDeadBlocks;
892    }
893  }
894  return MadeChange;
895}
896
897
898/// CanFallThrough - Return true if the specified block (with the specified
899/// branch condition) can implicitly transfer control to the block after it by
900/// falling off the end of it.  This should return false if it can reach the
901/// block after it, but it uses an explicit branch to do so (e.g. a table jump).
902///
903/// True is a conservative answer.
904///
905bool BranchFolder::CanFallThrough(MachineBasicBlock *CurBB,
906                                  bool BranchUnAnalyzable,
907                                  MachineBasicBlock *TBB,
908                                  MachineBasicBlock *FBB,
909                                  const SmallVectorImpl<MachineOperand> &Cond) {
910  MachineFunction::iterator Fallthrough = CurBB;
911  ++Fallthrough;
912  // If FallthroughBlock is off the end of the function, it can't fall through.
913  if (Fallthrough == CurBB->getParent()->end())
914    return false;
915
916  // If FallthroughBlock isn't a successor of CurBB, no fallthrough is possible.
917  if (!CurBB->isSuccessor(Fallthrough))
918    return false;
919
920  // If we couldn't analyze the branch, examine the last instruction.
921  // If the block doesn't end in a known control barrier, assume fallthrough
922  // is possible. The isPredicable check is needed because this code can be
923  // called during IfConversion, where an instruction which is normally a
924  // Barrier is predicated and thus no longer an actual control barrier. This
925  // is over-conservative though, because if an instruction isn't actually
926  // predicated we could still treat it like a barrier.
927  if (BranchUnAnalyzable)
928    return CurBB->empty() || !CurBB->back().getDesc().isBarrier() ||
929           CurBB->back().getDesc().isPredicable();
930
931  // If there is no branch, control always falls through.
932  if (TBB == 0) return true;
933
934  // If there is some explicit branch to the fallthrough block, it can obviously
935  // reach, even though the branch should get folded to fall through implicitly.
936  if (MachineFunction::iterator(TBB) == Fallthrough ||
937      MachineFunction::iterator(FBB) == Fallthrough)
938    return true;
939
940  // If it's an unconditional branch to some block not the fall through, it
941  // doesn't fall through.
942  if (Cond.empty()) return false;
943
944  // Otherwise, if it is conditional and has no explicit false block, it falls
945  // through.
946  return FBB == 0;
947}
948
949/// CanFallThrough - Return true if the specified can implicitly transfer
950/// control to the block after it by falling off the end of it.  This should
951/// return false if it can reach the block after it, but it uses an explicit
952/// branch to do so (e.g. a table jump).
953///
954/// True is a conservative answer.
955///
956bool BranchFolder::CanFallThrough(MachineBasicBlock *CurBB) {
957  MachineBasicBlock *TBB = 0, *FBB = 0;
958  SmallVector<MachineOperand, 4> Cond;
959  bool CurUnAnalyzable = TII->AnalyzeBranch(*CurBB, TBB, FBB, Cond, true);
960  return CanFallThrough(CurBB, CurUnAnalyzable, TBB, FBB, Cond);
961}
962
963/// IsBetterFallthrough - Return true if it would be clearly better to
964/// fall-through to MBB1 than to fall through into MBB2.  This has to return
965/// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
966/// result in infinite loops.
967static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
968                                MachineBasicBlock *MBB2) {
969  // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
970  // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
971  // optimize branches that branch to either a return block or an assert block
972  // into a fallthrough to the return.
973  if (MBB1->empty() || MBB2->empty()) return false;
974
975  // If there is a clear successor ordering we make sure that one block
976  // will fall through to the next
977  if (MBB1->isSuccessor(MBB2)) return true;
978  if (MBB2->isSuccessor(MBB1)) return false;
979
980  MachineInstr *MBB1I = --MBB1->end();
981  MachineInstr *MBB2I = --MBB2->end();
982  return MBB2I->getDesc().isCall() && !MBB1I->getDesc().isCall();
983}
984
985/// TailDuplicate - MBB unconditionally branches to SuccBB. If it is profitable,
986/// duplicate SuccBB's contents in MBB to eliminate the branch.
987bool BranchFolder::TailDuplicate(MachineBasicBlock *TailBB,
988                                 bool PrevFallsThrough,
989                                 MachineFunction &MF) {
990  // Don't try to tail-duplicate single-block loops.
991  if (TailBB->isSuccessor(TailBB))
992    return false;
993
994  // Don't tail-duplicate a block which will soon be folded into its successor.
995  if (TailBB->succ_size() == 1 &&
996      TailBB->succ_begin()[0]->pred_size() == 1)
997    return false;
998
999  // Duplicate up to one less that the tail-merge threshold, so that we don't
1000  // get into an infinite loop between duplicating and merging. When optimizing
1001  // for size, duplicate only one, because one branch instruction can be
1002  // eliminated to compensate for the duplication.
1003  unsigned MaxDuplicateCount =
1004    MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) ?
1005      1 : (TailMergeSize - 1);
1006
1007  // Check the instructions in the block to determine whether tail-duplication
1008  // is invalid or unlikely to be unprofitable.
1009  unsigned i = 0;
1010  bool HasCall = false;
1011  for (MachineBasicBlock::iterator I = TailBB->begin();
1012       I != TailBB->end(); ++I, ++i) {
1013    // Non-duplicable things shouldn't be tail-duplicated.
1014    if (I->getDesc().isNotDuplicable()) return false;
1015    // Don't duplicate more than the threshold.
1016    if (i == MaxDuplicateCount) return false;
1017    // Remember if we saw a call.
1018    if (I->getDesc().isCall()) HasCall = true;
1019  }
1020  // Heuristically, don't tail-duplicate calls if it would expand code size,
1021  // as it's less likely to be worth the extra cost.
1022  if (i > 1 && HasCall)
1023    return false;
1024
1025  // Iterate through all the unique predecessors and tail-duplicate this
1026  // block into them, if possible. Copying the list ahead of time also
1027  // avoids trouble with the predecessor list reallocating.
1028  bool Changed = false;
1029  SmallSetVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(),
1030                                               TailBB->pred_end());
1031  for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
1032       PE = Preds.end(); PI != PE; ++PI) {
1033    MachineBasicBlock *PredBB = *PI;
1034
1035    assert(TailBB != PredBB &&
1036           "Single-block loop should have been rejected earlier!");
1037    if (PredBB->succ_size() > 1) continue;
1038
1039    MachineBasicBlock *PredTBB, *PredFBB;
1040    SmallVector<MachineOperand, 4> PredCond;
1041    if (TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
1042      continue;
1043    if (!PredCond.empty())
1044      continue;
1045    // EH edges are ignored by AnalyzeBranch.
1046    if (PredBB->succ_size() != 1)
1047      continue;
1048    // Don't duplicate into a fall-through predecessor unless its the
1049    // only predecessor.
1050    if (&*next(MachineFunction::iterator(PredBB)) == TailBB &&
1051        PrevFallsThrough &&
1052        TailBB->pred_size() != 1)
1053      continue;
1054
1055    DEBUG(errs() << "\nTail-duplicating into PredBB: " << *PredBB
1056                 << "From Succ: " << *TailBB);
1057
1058    // Remove PredBB's unconditional branch.
1059    TII->RemoveBranch(*PredBB);
1060    // Clone the contents of TailBB into PredBB.
1061    for (MachineBasicBlock::iterator I = TailBB->begin(), E = TailBB->end();
1062         I != E; ++I) {
1063      MachineInstr *NewMI = MF.CloneMachineInstr(I);
1064      PredBB->insert(PredBB->end(), NewMI);
1065    }
1066
1067    // Update the CFG.
1068    PredBB->removeSuccessor(PredBB->succ_begin());
1069    assert(PredBB->succ_empty() &&
1070           "TailDuplicate called on block with multiple successors!");
1071    for (MachineBasicBlock::succ_iterator I = TailBB->succ_begin(),
1072         E = TailBB->succ_end(); I != E; ++I)
1073       PredBB->addSuccessor(*I);
1074
1075    Changed = true;
1076  }
1077
1078  return Changed;
1079}
1080
1081/// OptimizeBlock - Analyze and optimize control flow related to the specified
1082/// block.  This is never called on the entry block.
1083bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1084  bool MadeChange = false;
1085  MachineFunction &MF = *MBB->getParent();
1086ReoptimizeBlock:
1087
1088  MachineFunction::iterator FallThrough = MBB;
1089  ++FallThrough;
1090
1091  // If this block is empty, make everyone use its fall-through, not the block
1092  // explicitly.  Landing pads should not do this since the landing-pad table
1093  // points to this block.  Blocks with their addresses taken shouldn't be
1094  // optimized away.
1095  if (MBB->empty() && !MBB->isLandingPad() && !MBB->hasAddressTaken()) {
1096    // Dead block?  Leave for cleanup later.
1097    if (MBB->pred_empty()) return MadeChange;
1098
1099    if (FallThrough == MF.end()) {
1100      // TODO: Simplify preds to not branch here if possible!
1101    } else {
1102      // Rewrite all predecessors of the old block to go to the fallthrough
1103      // instead.
1104      while (!MBB->pred_empty()) {
1105        MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1106        Pred->ReplaceUsesOfBlockWith(MBB, FallThrough);
1107      }
1108      // If MBB was the target of a jump table, update jump tables to go to the
1109      // fallthrough instead.
1110      MF.getJumpTableInfo()->ReplaceMBBInJumpTables(MBB, FallThrough);
1111      MadeChange = true;
1112    }
1113    return MadeChange;
1114  }
1115
1116  // Check to see if we can simplify the terminator of the block before this
1117  // one.
1118  MachineBasicBlock &PrevBB = *prior(MachineFunction::iterator(MBB));
1119
1120  MachineBasicBlock *PriorTBB = 0, *PriorFBB = 0;
1121  SmallVector<MachineOperand, 4> PriorCond;
1122  bool PriorUnAnalyzable =
1123    TII->AnalyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1124  if (!PriorUnAnalyzable) {
1125    // If the CFG for the prior block has extra edges, remove them.
1126    MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB,
1127                                              !PriorCond.empty());
1128
1129    // If the previous branch is conditional and both conditions go to the same
1130    // destination, remove the branch, replacing it with an unconditional one or
1131    // a fall-through.
1132    if (PriorTBB && PriorTBB == PriorFBB) {
1133      TII->RemoveBranch(PrevBB);
1134      PriorCond.clear();
1135      if (PriorTBB != MBB)
1136        TII->InsertBranch(PrevBB, PriorTBB, 0, PriorCond);
1137      MadeChange = true;
1138      ++NumBranchOpts;
1139      goto ReoptimizeBlock;
1140    }
1141
1142    // If the previous block unconditionally falls through to this block and
1143    // this block has no other predecessors, move the contents of this block
1144    // into the prior block. This doesn't usually happen when SimplifyCFG
1145    // has been used, but it can happen tail duplication eliminates all the
1146    // non-branch predecessors of a block leaving only the fall-through edge.
1147    // This has to check PrevBB->succ_size() because EH edges are ignored by
1148    // AnalyzeBranch.
1149    if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1150        PrevBB.succ_size() == 1 &&
1151        !MBB->hasAddressTaken()) {
1152      DEBUG(errs() << "\nMerging into block: " << PrevBB
1153                   << "From MBB: " << *MBB);
1154      PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1155      PrevBB.removeSuccessor(PrevBB.succ_begin());;
1156      assert(PrevBB.succ_empty());
1157      PrevBB.transferSuccessors(MBB);
1158      MadeChange = true;
1159      return MadeChange;
1160    }
1161
1162    // If the previous branch *only* branches to *this* block (conditional or
1163    // not) remove the branch.
1164    if (PriorTBB == MBB && PriorFBB == 0) {
1165      TII->RemoveBranch(PrevBB);
1166      MadeChange = true;
1167      ++NumBranchOpts;
1168      goto ReoptimizeBlock;
1169    }
1170
1171    // If the prior block branches somewhere else on the condition and here if
1172    // the condition is false, remove the uncond second branch.
1173    if (PriorFBB == MBB) {
1174      TII->RemoveBranch(PrevBB);
1175      TII->InsertBranch(PrevBB, PriorTBB, 0, PriorCond);
1176      MadeChange = true;
1177      ++NumBranchOpts;
1178      goto ReoptimizeBlock;
1179    }
1180
1181    // If the prior block branches here on true and somewhere else on false, and
1182    // if the branch condition is reversible, reverse the branch to create a
1183    // fall-through.
1184    if (PriorTBB == MBB) {
1185      SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1186      if (!TII->ReverseBranchCondition(NewPriorCond)) {
1187        TII->RemoveBranch(PrevBB);
1188        TII->InsertBranch(PrevBB, PriorFBB, 0, NewPriorCond);
1189        MadeChange = true;
1190        ++NumBranchOpts;
1191        goto ReoptimizeBlock;
1192      }
1193    }
1194
1195    // If this block has no successors (e.g. it is a return block or ends with
1196    // a call to a no-return function like abort or __cxa_throw) and if the pred
1197    // falls through into this block, and if it would otherwise fall through
1198    // into the block after this, move this block to the end of the function.
1199    //
1200    // We consider it more likely that execution will stay in the function (e.g.
1201    // due to loops) than it is to exit it.  This asserts in loops etc, moving
1202    // the assert condition out of the loop body.
1203    if (MBB->succ_empty() && !PriorCond.empty() && PriorFBB == 0 &&
1204        MachineFunction::iterator(PriorTBB) == FallThrough &&
1205        !CanFallThrough(MBB)) {
1206      bool DoTransform = true;
1207
1208      // We have to be careful that the succs of PredBB aren't both no-successor
1209      // blocks.  If neither have successors and if PredBB is the second from
1210      // last block in the function, we'd just keep swapping the two blocks for
1211      // last.  Only do the swap if one is clearly better to fall through than
1212      // the other.
1213      if (FallThrough == --MF.end() &&
1214          !IsBetterFallthrough(PriorTBB, MBB))
1215        DoTransform = false;
1216
1217      // We don't want to do this transformation if we have control flow like:
1218      //   br cond BB2
1219      // BB1:
1220      //   ..
1221      //   jmp BBX
1222      // BB2:
1223      //   ..
1224      //   ret
1225      //
1226      // In this case, we could actually be moving the return block *into* a
1227      // loop!
1228      if (DoTransform && !MBB->succ_empty() &&
1229          (!CanFallThrough(PriorTBB) || PriorTBB->empty()))
1230        DoTransform = false;
1231
1232
1233      if (DoTransform) {
1234        // Reverse the branch so we will fall through on the previous true cond.
1235        SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1236        if (!TII->ReverseBranchCondition(NewPriorCond)) {
1237          DEBUG(errs() << "\nMoving MBB: " << *MBB
1238                       << "To make fallthrough to: " << *PriorTBB << "\n");
1239
1240          TII->RemoveBranch(PrevBB);
1241          TII->InsertBranch(PrevBB, MBB, 0, NewPriorCond);
1242
1243          // Move this block to the end of the function.
1244          MBB->moveAfter(--MF.end());
1245          MadeChange = true;
1246          ++NumBranchOpts;
1247          return MadeChange;
1248        }
1249      }
1250    }
1251  }
1252
1253  // Analyze the branch in the current block.
1254  MachineBasicBlock *CurTBB = 0, *CurFBB = 0;
1255  SmallVector<MachineOperand, 4> CurCond;
1256  bool CurUnAnalyzable= TII->AnalyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1257  if (!CurUnAnalyzable) {
1258    // If the CFG for the prior block has extra edges, remove them.
1259    MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty());
1260
1261    // If this is a two-way branch, and the FBB branches to this block, reverse
1262    // the condition so the single-basic-block loop is faster.  Instead of:
1263    //    Loop: xxx; jcc Out; jmp Loop
1264    // we want:
1265    //    Loop: xxx; jncc Loop; jmp Out
1266    if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1267      SmallVector<MachineOperand, 4> NewCond(CurCond);
1268      if (!TII->ReverseBranchCondition(NewCond)) {
1269        TII->RemoveBranch(*MBB);
1270        TII->InsertBranch(*MBB, CurFBB, CurTBB, NewCond);
1271        MadeChange = true;
1272        ++NumBranchOpts;
1273        goto ReoptimizeBlock;
1274      }
1275    }
1276
1277
1278    // If this branch is the only thing in its block, see if we can forward
1279    // other blocks across it.
1280    if (CurTBB && CurCond.empty() && CurFBB == 0 &&
1281        MBB->begin()->getDesc().isBranch() && CurTBB != MBB &&
1282        !MBB->hasAddressTaken()) {
1283      // This block may contain just an unconditional branch.  Because there can
1284      // be 'non-branch terminators' in the block, try removing the branch and
1285      // then seeing if the block is empty.
1286      TII->RemoveBranch(*MBB);
1287
1288      // If this block is just an unconditional branch to CurTBB, we can
1289      // usually completely eliminate the block.  The only case we cannot
1290      // completely eliminate the block is when the block before this one
1291      // falls through into MBB and we can't understand the prior block's branch
1292      // condition.
1293      if (MBB->empty()) {
1294        bool PredHasNoFallThrough = TII->BlockHasNoFallThrough(PrevBB);
1295        if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1296            !PrevBB.isSuccessor(MBB)) {
1297          // If the prior block falls through into us, turn it into an
1298          // explicit branch to us to make updates simpler.
1299          if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1300              PriorTBB != MBB && PriorFBB != MBB) {
1301            if (PriorTBB == 0) {
1302              assert(PriorCond.empty() && PriorFBB == 0 &&
1303                     "Bad branch analysis");
1304              PriorTBB = MBB;
1305            } else {
1306              assert(PriorFBB == 0 && "Machine CFG out of date!");
1307              PriorFBB = MBB;
1308            }
1309            TII->RemoveBranch(PrevBB);
1310            TII->InsertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond);
1311          }
1312
1313          // Iterate through all the predecessors, revectoring each in-turn.
1314          size_t PI = 0;
1315          bool DidChange = false;
1316          bool HasBranchToSelf = false;
1317          while(PI != MBB->pred_size()) {
1318            MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1319            if (PMBB == MBB) {
1320              // If this block has an uncond branch to itself, leave it.
1321              ++PI;
1322              HasBranchToSelf = true;
1323            } else {
1324              DidChange = true;
1325              PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1326              // If this change resulted in PMBB ending in a conditional
1327              // branch where both conditions go to the same destination,
1328              // change this to an unconditional branch (and fix the CFG).
1329              MachineBasicBlock *NewCurTBB = 0, *NewCurFBB = 0;
1330              SmallVector<MachineOperand, 4> NewCurCond;
1331              bool NewCurUnAnalyzable = TII->AnalyzeBranch(*PMBB, NewCurTBB,
1332                      NewCurFBB, NewCurCond, true);
1333              if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1334                TII->RemoveBranch(*PMBB);
1335                NewCurCond.clear();
1336                TII->InsertBranch(*PMBB, NewCurTBB, 0, NewCurCond);
1337                MadeChange = true;
1338                ++NumBranchOpts;
1339                PMBB->CorrectExtraCFGEdges(NewCurTBB, 0, false);
1340              }
1341            }
1342          }
1343
1344          // Change any jumptables to go to the new MBB.
1345          MF.getJumpTableInfo()->ReplaceMBBInJumpTables(MBB, CurTBB);
1346          if (DidChange) {
1347            ++NumBranchOpts;
1348            MadeChange = true;
1349            if (!HasBranchToSelf) return MadeChange;
1350          }
1351        }
1352      }
1353
1354      // Add the branch back if the block is more than just an uncond branch.
1355      TII->InsertBranch(*MBB, CurTBB, 0, CurCond);
1356    }
1357  }
1358
1359  // Now we know that there was no fall-through into this block, check to
1360  // see if it has a fall-through into its successor.
1361  bool CurFallsThru = CanFallThrough(MBB, CurUnAnalyzable, CurTBB, CurFBB,
1362                                     CurCond);
1363  bool PrevFallsThru = CanFallThrough(&PrevBB, PriorUnAnalyzable,
1364                                      PriorTBB, PriorFBB, PriorCond);
1365
1366  // If this block is small, unconditionally branched to, and does not
1367  // fall through, tail-duplicate its instructions into its predecessors
1368  // to eliminate a (dynamic) branch.
1369  if (!CurFallsThru)
1370    if (TailDuplicate(MBB, PrevFallsThru, MF)) {
1371      MadeChange = true;
1372      return MadeChange;
1373    }
1374
1375  // If the prior block doesn't fall through into this block, and if this
1376  // block doesn't fall through into some other block, see if we can find a
1377  // place to move this block where a fall-through will happen.
1378  if (!PrevFallsThru) {
1379    if (!MBB->isLandingPad()) {
1380      // Check all the predecessors of this block.  If one of them has no fall
1381      // throughs, move this block right after it.
1382      for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
1383           E = MBB->pred_end(); PI != E; ++PI) {
1384        // Analyze the branch at the end of the pred.
1385        MachineBasicBlock *PredBB = *PI;
1386        MachineFunction::iterator PredFallthrough = PredBB; ++PredFallthrough;
1387        MachineBasicBlock *PredTBB, *PredFBB;
1388        SmallVector<MachineOperand, 4> PredCond;
1389        if (PredBB != MBB && !CanFallThrough(PredBB) &&
1390            !TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true)
1391            && (!CurFallsThru || !CurTBB || !CurFBB)
1392            && (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1393          // If the current block doesn't fall through, just move it.
1394          // If the current block can fall through and does not end with a
1395          // conditional branch, we need to append an unconditional jump to
1396          // the (current) next block.  To avoid a possible compile-time
1397          // infinite loop, move blocks only backward in this case.
1398          // Also, if there are already 2 branches here, we cannot add a third;
1399          // this means we have the case
1400          // Bcc next
1401          // B elsewhere
1402          // next:
1403          if (CurFallsThru) {
1404            MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
1405            CurCond.clear();
1406            TII->InsertBranch(*MBB, NextBB, 0, CurCond);
1407          }
1408          MBB->moveAfter(PredBB);
1409          MadeChange = true;
1410          goto ReoptimizeBlock;
1411        }
1412      }
1413    }
1414
1415    if (!CurFallsThru) {
1416      // Check all successors to see if we can move this block before it.
1417      for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
1418           E = MBB->succ_end(); SI != E; ++SI) {
1419        // Analyze the branch at the end of the block before the succ.
1420        MachineBasicBlock *SuccBB = *SI;
1421        MachineFunction::iterator SuccPrev = SuccBB; --SuccPrev;
1422
1423        // If this block doesn't already fall-through to that successor, and if
1424        // the succ doesn't already have a block that can fall through into it,
1425        // and if the successor isn't an EH destination, we can arrange for the
1426        // fallthrough to happen.
1427        if (SuccBB != MBB && &*SuccPrev != MBB &&
1428            !CanFallThrough(SuccPrev) && !CurUnAnalyzable &&
1429            !SuccBB->isLandingPad()) {
1430          MBB->moveBefore(SuccBB);
1431          MadeChange = true;
1432          goto ReoptimizeBlock;
1433        }
1434      }
1435
1436      // Okay, there is no really great place to put this block.  If, however,
1437      // the block before this one would be a fall-through if this block were
1438      // removed, move this block to the end of the function.
1439      MachineBasicBlock *PrevTBB, *PrevFBB;
1440      SmallVector<MachineOperand, 4> PrevCond;
1441      if (FallThrough != MF.end() &&
1442          !TII->AnalyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1443          PrevBB.isSuccessor(FallThrough)) {
1444        MBB->moveAfter(--MF.end());
1445        MadeChange = true;
1446        return MadeChange;
1447      }
1448    }
1449  }
1450
1451  return MadeChange;
1452}
1453