CodeGenPrepare.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/CodeGen/Passes.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/IR/CallSite.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/Dominators.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/GetElementPtrTypeIterator.h"
28#include "llvm/IR/IRBuilder.h"
29#include "llvm/IR/InlineAsm.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/PatternMatch.h"
33#include "llvm/IR/ValueHandle.h"
34#include "llvm/IR/ValueMap.h"
35#include "llvm/Pass.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/Target/TargetLibraryInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetSubtargetInfo.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include "llvm/Transforms/Utils/BuildLibCalls.h"
44#include "llvm/Transforms/Utils/BypassSlowDivision.h"
45#include "llvm/Transforms/Utils/Local.h"
46using namespace llvm;
47using namespace llvm::PatternMatch;
48
49#define DEBUG_TYPE "codegenprepare"
50
51STATISTIC(NumBlocksElim, "Number of blocks eliminated");
52STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
53STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
54STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
55                      "sunken Cmps");
56STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
57                       "of sunken Casts");
58STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
59                          "computations were sunk");
60STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
61STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
62STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
63STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
64STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
65STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
66
67static cl::opt<bool> DisableBranchOpts(
68  "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
69  cl::desc("Disable branch optimizations in CodeGenPrepare"));
70
71static cl::opt<bool> DisableSelectToBranch(
72  "disable-cgp-select2branch", cl::Hidden, cl::init(false),
73  cl::desc("Disable select to branch conversion."));
74
75static cl::opt<bool> AddrSinkUsingGEPs(
76  "addr-sink-using-gep", cl::Hidden, cl::init(false),
77  cl::desc("Address sinking in CGP using GEPs."));
78
79static cl::opt<bool> EnableAndCmpSinking(
80   "enable-andcmp-sinking", cl::Hidden, cl::init(true),
81   cl::desc("Enable sinkinig and/cmp into branches."));
82
83namespace {
84typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
85typedef DenseMap<Instruction *, Type *> InstrToOrigTy;
86
87  class CodeGenPrepare : public FunctionPass {
88    /// TLI - Keep a pointer of a TargetLowering to consult for determining
89    /// transformation profitability.
90    const TargetMachine *TM;
91    const TargetLowering *TLI;
92    const TargetLibraryInfo *TLInfo;
93    DominatorTree *DT;
94
95    /// CurInstIterator - As we scan instructions optimizing them, this is the
96    /// next instruction to optimize.  Xforms that can invalidate this should
97    /// update it.
98    BasicBlock::iterator CurInstIterator;
99
100    /// Keeps track of non-local addresses that have been sunk into a block.
101    /// This allows us to avoid inserting duplicate code for blocks with
102    /// multiple load/stores of the same address.
103    ValueMap<Value*, Value*> SunkAddrs;
104
105    /// Keeps track of all truncates inserted for the current function.
106    SetOfInstrs InsertedTruncsSet;
107    /// Keeps track of the type of the related instruction before their
108    /// promotion for the current function.
109    InstrToOrigTy PromotedInsts;
110
111    /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
112    /// be updated.
113    bool ModifiedDT;
114
115    /// OptSize - True if optimizing for size.
116    bool OptSize;
117
118  public:
119    static char ID; // Pass identification, replacement for typeid
120    explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
121      : FunctionPass(ID), TM(TM), TLI(nullptr) {
122        initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
123      }
124    bool runOnFunction(Function &F) override;
125
126    const char *getPassName() const override { return "CodeGen Prepare"; }
127
128    void getAnalysisUsage(AnalysisUsage &AU) const override {
129      AU.addPreserved<DominatorTreeWrapperPass>();
130      AU.addRequired<TargetLibraryInfo>();
131    }
132
133  private:
134    bool EliminateFallThrough(Function &F);
135    bool EliminateMostlyEmptyBlocks(Function &F);
136    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
137    void EliminateMostlyEmptyBlock(BasicBlock *BB);
138    bool OptimizeBlock(BasicBlock &BB);
139    bool OptimizeInst(Instruction *I);
140    bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
141    bool OptimizeInlineAsmInst(CallInst *CS);
142    bool OptimizeCallInst(CallInst *CI);
143    bool MoveExtToFormExtLoad(Instruction *I);
144    bool OptimizeExtUses(Instruction *I);
145    bool OptimizeSelectInst(SelectInst *SI);
146    bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI);
147    bool DupRetToEnableTailCallOpts(BasicBlock *BB);
148    bool PlaceDbgValues(Function &F);
149    bool sinkAndCmp(Function &F);
150  };
151}
152
153char CodeGenPrepare::ID = 0;
154INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
155                   "Optimize for code generation", false, false)
156
157FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
158  return new CodeGenPrepare(TM);
159}
160
161bool CodeGenPrepare::runOnFunction(Function &F) {
162  if (skipOptnoneFunction(F))
163    return false;
164
165  bool EverMadeChange = false;
166  // Clear per function information.
167  InsertedTruncsSet.clear();
168  PromotedInsts.clear();
169
170  ModifiedDT = false;
171  if (TM) TLI = TM->getTargetLowering();
172  TLInfo = &getAnalysis<TargetLibraryInfo>();
173  DominatorTreeWrapperPass *DTWP =
174      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
175  DT = DTWP ? &DTWP->getDomTree() : nullptr;
176  OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
177                                           Attribute::OptimizeForSize);
178
179  /// This optimization identifies DIV instructions that can be
180  /// profitably bypassed and carried out with a shorter, faster divide.
181  if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
182    const DenseMap<unsigned int, unsigned int> &BypassWidths =
183       TLI->getBypassSlowDivWidths();
184    for (Function::iterator I = F.begin(); I != F.end(); I++)
185      EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
186  }
187
188  // Eliminate blocks that contain only PHI nodes and an
189  // unconditional branch.
190  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
191
192  // llvm.dbg.value is far away from the value then iSel may not be able
193  // handle it properly. iSel will drop llvm.dbg.value if it can not
194  // find a node corresponding to the value.
195  EverMadeChange |= PlaceDbgValues(F);
196
197  // If there is a mask, compare against zero, and branch that can be combined
198  // into a single target instruction, push the mask and compare into branch
199  // users. Do this before OptimizeBlock -> OptimizeInst ->
200  // OptimizeCmpExpression, which perturbs the pattern being searched for.
201  if (!DisableBranchOpts)
202    EverMadeChange |= sinkAndCmp(F);
203
204  bool MadeChange = true;
205  while (MadeChange) {
206    MadeChange = false;
207    for (Function::iterator I = F.begin(); I != F.end(); ) {
208      BasicBlock *BB = I++;
209      MadeChange |= OptimizeBlock(*BB);
210    }
211    EverMadeChange |= MadeChange;
212  }
213
214  SunkAddrs.clear();
215
216  if (!DisableBranchOpts) {
217    MadeChange = false;
218    SmallPtrSet<BasicBlock*, 8> WorkList;
219    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
220      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
221      MadeChange |= ConstantFoldTerminator(BB, true);
222      if (!MadeChange) continue;
223
224      for (SmallVectorImpl<BasicBlock*>::iterator
225             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
226        if (pred_begin(*II) == pred_end(*II))
227          WorkList.insert(*II);
228    }
229
230    // Delete the dead blocks and any of their dead successors.
231    MadeChange |= !WorkList.empty();
232    while (!WorkList.empty()) {
233      BasicBlock *BB = *WorkList.begin();
234      WorkList.erase(BB);
235      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
236
237      DeleteDeadBlock(BB);
238
239      for (SmallVectorImpl<BasicBlock*>::iterator
240             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
241        if (pred_begin(*II) == pred_end(*II))
242          WorkList.insert(*II);
243    }
244
245    // Merge pairs of basic blocks with unconditional branches, connected by
246    // a single edge.
247    if (EverMadeChange || MadeChange)
248      MadeChange |= EliminateFallThrough(F);
249
250    if (MadeChange)
251      ModifiedDT = true;
252    EverMadeChange |= MadeChange;
253  }
254
255  if (ModifiedDT && DT)
256    DT->recalculate(F);
257
258  return EverMadeChange;
259}
260
261/// EliminateFallThrough - Merge basic blocks which are connected
262/// by a single edge, where one of the basic blocks has a single successor
263/// pointing to the other basic block, which has a single predecessor.
264bool CodeGenPrepare::EliminateFallThrough(Function &F) {
265  bool Changed = false;
266  // Scan all of the blocks in the function, except for the entry block.
267  for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
268    BasicBlock *BB = I++;
269    // If the destination block has a single pred, then this is a trivial
270    // edge, just collapse it.
271    BasicBlock *SinglePred = BB->getSinglePredecessor();
272
273    // Don't merge if BB's address is taken.
274    if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
275
276    BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
277    if (Term && !Term->isConditional()) {
278      Changed = true;
279      DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
280      // Remember if SinglePred was the entry block of the function.
281      // If so, we will need to move BB back to the entry position.
282      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
283      MergeBasicBlockIntoOnlyPred(BB, this);
284
285      if (isEntry && BB != &BB->getParent()->getEntryBlock())
286        BB->moveBefore(&BB->getParent()->getEntryBlock());
287
288      // We have erased a block. Update the iterator.
289      I = BB;
290    }
291  }
292  return Changed;
293}
294
295/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
296/// debug info directives, and an unconditional branch.  Passes before isel
297/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
298/// isel.  Start by eliminating these blocks so we can split them the way we
299/// want them.
300bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
301  bool MadeChange = false;
302  // Note that this intentionally skips the entry block.
303  for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
304    BasicBlock *BB = I++;
305
306    // If this block doesn't end with an uncond branch, ignore it.
307    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
308    if (!BI || !BI->isUnconditional())
309      continue;
310
311    // If the instruction before the branch (skipping debug info) isn't a phi
312    // node, then other stuff is happening here.
313    BasicBlock::iterator BBI = BI;
314    if (BBI != BB->begin()) {
315      --BBI;
316      while (isa<DbgInfoIntrinsic>(BBI)) {
317        if (BBI == BB->begin())
318          break;
319        --BBI;
320      }
321      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
322        continue;
323    }
324
325    // Do not break infinite loops.
326    BasicBlock *DestBB = BI->getSuccessor(0);
327    if (DestBB == BB)
328      continue;
329
330    if (!CanMergeBlocks(BB, DestBB))
331      continue;
332
333    EliminateMostlyEmptyBlock(BB);
334    MadeChange = true;
335  }
336  return MadeChange;
337}
338
339/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
340/// single uncond branch between them, and BB contains no other non-phi
341/// instructions.
342bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
343                                    const BasicBlock *DestBB) const {
344  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
345  // the successor.  If there are more complex condition (e.g. preheaders),
346  // don't mess around with them.
347  BasicBlock::const_iterator BBI = BB->begin();
348  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
349    for (const User *U : PN->users()) {
350      const Instruction *UI = cast<Instruction>(U);
351      if (UI->getParent() != DestBB || !isa<PHINode>(UI))
352        return false;
353      // If User is inside DestBB block and it is a PHINode then check
354      // incoming value. If incoming value is not from BB then this is
355      // a complex condition (e.g. preheaders) we want to avoid here.
356      if (UI->getParent() == DestBB) {
357        if (const PHINode *UPN = dyn_cast<PHINode>(UI))
358          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
359            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
360            if (Insn && Insn->getParent() == BB &&
361                Insn->getParent() != UPN->getIncomingBlock(I))
362              return false;
363          }
364      }
365    }
366  }
367
368  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
369  // and DestBB may have conflicting incoming values for the block.  If so, we
370  // can't merge the block.
371  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
372  if (!DestBBPN) return true;  // no conflict.
373
374  // Collect the preds of BB.
375  SmallPtrSet<const BasicBlock*, 16> BBPreds;
376  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
377    // It is faster to get preds from a PHI than with pred_iterator.
378    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
379      BBPreds.insert(BBPN->getIncomingBlock(i));
380  } else {
381    BBPreds.insert(pred_begin(BB), pred_end(BB));
382  }
383
384  // Walk the preds of DestBB.
385  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
386    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
387    if (BBPreds.count(Pred)) {   // Common predecessor?
388      BBI = DestBB->begin();
389      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
390        const Value *V1 = PN->getIncomingValueForBlock(Pred);
391        const Value *V2 = PN->getIncomingValueForBlock(BB);
392
393        // If V2 is a phi node in BB, look up what the mapped value will be.
394        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
395          if (V2PN->getParent() == BB)
396            V2 = V2PN->getIncomingValueForBlock(Pred);
397
398        // If there is a conflict, bail out.
399        if (V1 != V2) return false;
400      }
401    }
402  }
403
404  return true;
405}
406
407
408/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
409/// an unconditional branch in it.
410void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
411  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
412  BasicBlock *DestBB = BI->getSuccessor(0);
413
414  DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
415
416  // If the destination block has a single pred, then this is a trivial edge,
417  // just collapse it.
418  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
419    if (SinglePred != DestBB) {
420      // Remember if SinglePred was the entry block of the function.  If so, we
421      // will need to move BB back to the entry position.
422      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
423      MergeBasicBlockIntoOnlyPred(DestBB, this);
424
425      if (isEntry && BB != &BB->getParent()->getEntryBlock())
426        BB->moveBefore(&BB->getParent()->getEntryBlock());
427
428      DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
429      return;
430    }
431  }
432
433  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
434  // to handle the new incoming edges it is about to have.
435  PHINode *PN;
436  for (BasicBlock::iterator BBI = DestBB->begin();
437       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
438    // Remove the incoming value for BB, and remember it.
439    Value *InVal = PN->removeIncomingValue(BB, false);
440
441    // Two options: either the InVal is a phi node defined in BB or it is some
442    // value that dominates BB.
443    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
444    if (InValPhi && InValPhi->getParent() == BB) {
445      // Add all of the input values of the input PHI as inputs of this phi.
446      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
447        PN->addIncoming(InValPhi->getIncomingValue(i),
448                        InValPhi->getIncomingBlock(i));
449    } else {
450      // Otherwise, add one instance of the dominating value for each edge that
451      // we will be adding.
452      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
453        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
454          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
455      } else {
456        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
457          PN->addIncoming(InVal, *PI);
458      }
459    }
460  }
461
462  // The PHIs are now updated, change everything that refers to BB to use
463  // DestBB and remove BB.
464  BB->replaceAllUsesWith(DestBB);
465  if (DT && !ModifiedDT) {
466    BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
467    BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
468    BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
469    DT->changeImmediateDominator(DestBB, NewIDom);
470    DT->eraseNode(BB);
471  }
472  BB->eraseFromParent();
473  ++NumBlocksElim;
474
475  DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
476}
477
478/// SinkCast - Sink the specified cast instruction into its user blocks
479static bool SinkCast(CastInst *CI) {
480  BasicBlock *DefBB = CI->getParent();
481
482  /// InsertedCasts - Only insert a cast in each block once.
483  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
484
485  bool MadeChange = false;
486  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
487       UI != E; ) {
488    Use &TheUse = UI.getUse();
489    Instruction *User = cast<Instruction>(*UI);
490
491    // Figure out which BB this cast is used in.  For PHI's this is the
492    // appropriate predecessor block.
493    BasicBlock *UserBB = User->getParent();
494    if (PHINode *PN = dyn_cast<PHINode>(User)) {
495      UserBB = PN->getIncomingBlock(TheUse);
496    }
497
498    // Preincrement use iterator so we don't invalidate it.
499    ++UI;
500
501    // If this user is in the same block as the cast, don't change the cast.
502    if (UserBB == DefBB) continue;
503
504    // If we have already inserted a cast into this block, use it.
505    CastInst *&InsertedCast = InsertedCasts[UserBB];
506
507    if (!InsertedCast) {
508      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
509      InsertedCast =
510        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
511                         InsertPt);
512      MadeChange = true;
513    }
514
515    // Replace a use of the cast with a use of the new cast.
516    TheUse = InsertedCast;
517    ++NumCastUses;
518  }
519
520  // If we removed all uses, nuke the cast.
521  if (CI->use_empty()) {
522    CI->eraseFromParent();
523    MadeChange = true;
524  }
525
526  return MadeChange;
527}
528
529/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
530/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
531/// sink it into user blocks to reduce the number of virtual
532/// registers that must be created and coalesced.
533///
534/// Return true if any changes are made.
535///
536static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
537  // If this is a noop copy,
538  EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
539  EVT DstVT = TLI.getValueType(CI->getType());
540
541  // This is an fp<->int conversion?
542  if (SrcVT.isInteger() != DstVT.isInteger())
543    return false;
544
545  // If this is an extension, it will be a zero or sign extension, which
546  // isn't a noop.
547  if (SrcVT.bitsLT(DstVT)) return false;
548
549  // If these values will be promoted, find out what they will be promoted
550  // to.  This helps us consider truncates on PPC as noop copies when they
551  // are.
552  if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
553      TargetLowering::TypePromoteInteger)
554    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
555  if (TLI.getTypeAction(CI->getContext(), DstVT) ==
556      TargetLowering::TypePromoteInteger)
557    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
558
559  // If, after promotion, these are the same types, this is a noop copy.
560  if (SrcVT != DstVT)
561    return false;
562
563  return SinkCast(CI);
564}
565
566/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
567/// the number of virtual registers that must be created and coalesced.  This is
568/// a clear win except on targets with multiple condition code registers
569///  (PowerPC), where it might lose; some adjustment may be wanted there.
570///
571/// Return true if any changes are made.
572static bool OptimizeCmpExpression(CmpInst *CI) {
573  BasicBlock *DefBB = CI->getParent();
574
575  /// InsertedCmp - Only insert a cmp in each block once.
576  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
577
578  bool MadeChange = false;
579  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
580       UI != E; ) {
581    Use &TheUse = UI.getUse();
582    Instruction *User = cast<Instruction>(*UI);
583
584    // Preincrement use iterator so we don't invalidate it.
585    ++UI;
586
587    // Don't bother for PHI nodes.
588    if (isa<PHINode>(User))
589      continue;
590
591    // Figure out which BB this cmp is used in.
592    BasicBlock *UserBB = User->getParent();
593
594    // If this user is in the same block as the cmp, don't change the cmp.
595    if (UserBB == DefBB) continue;
596
597    // If we have already inserted a cmp into this block, use it.
598    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
599
600    if (!InsertedCmp) {
601      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
602      InsertedCmp =
603        CmpInst::Create(CI->getOpcode(),
604                        CI->getPredicate(),  CI->getOperand(0),
605                        CI->getOperand(1), "", InsertPt);
606      MadeChange = true;
607    }
608
609    // Replace a use of the cmp with a use of the new cmp.
610    TheUse = InsertedCmp;
611    ++NumCmpUses;
612  }
613
614  // If we removed all uses, nuke the cmp.
615  if (CI->use_empty())
616    CI->eraseFromParent();
617
618  return MadeChange;
619}
620
621/// isExtractBitsCandidateUse - Check if the candidates could
622/// be combined with shift instruction, which includes:
623/// 1. Truncate instruction
624/// 2. And instruction and the imm is a mask of the low bits:
625/// imm & (imm+1) == 0
626static bool isExtractBitsCandidateUse(Instruction *User) {
627  if (!isa<TruncInst>(User)) {
628    if (User->getOpcode() != Instruction::And ||
629        !isa<ConstantInt>(User->getOperand(1)))
630      return false;
631
632    const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
633
634    if ((Cimm & (Cimm + 1)).getBoolValue())
635      return false;
636  }
637  return true;
638}
639
640/// SinkShiftAndTruncate - sink both shift and truncate instruction
641/// to the use of truncate's BB.
642static bool
643SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
644                     DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
645                     const TargetLowering &TLI) {
646  BasicBlock *UserBB = User->getParent();
647  DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
648  TruncInst *TruncI = dyn_cast<TruncInst>(User);
649  bool MadeChange = false;
650
651  for (Value::user_iterator TruncUI = TruncI->user_begin(),
652                            TruncE = TruncI->user_end();
653       TruncUI != TruncE;) {
654
655    Use &TruncTheUse = TruncUI.getUse();
656    Instruction *TruncUser = cast<Instruction>(*TruncUI);
657    // Preincrement use iterator so we don't invalidate it.
658
659    ++TruncUI;
660
661    int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
662    if (!ISDOpcode)
663      continue;
664
665    // If the use is actually a legal node, there will not be an implicit
666    // truncate.
667    if (TLI.isOperationLegalOrCustom(ISDOpcode,
668                                     EVT::getEVT(TruncUser->getType())))
669      continue;
670
671    // Don't bother for PHI nodes.
672    if (isa<PHINode>(TruncUser))
673      continue;
674
675    BasicBlock *TruncUserBB = TruncUser->getParent();
676
677    if (UserBB == TruncUserBB)
678      continue;
679
680    BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
681    CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
682
683    if (!InsertedShift && !InsertedTrunc) {
684      BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
685      // Sink the shift
686      if (ShiftI->getOpcode() == Instruction::AShr)
687        InsertedShift =
688            BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
689      else
690        InsertedShift =
691            BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
692
693      // Sink the trunc
694      BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
695      TruncInsertPt++;
696
697      InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
698                                       TruncI->getType(), "", TruncInsertPt);
699
700      MadeChange = true;
701
702      TruncTheUse = InsertedTrunc;
703    }
704  }
705  return MadeChange;
706}
707
708/// OptimizeExtractBits - sink the shift *right* instruction into user blocks if
709/// the uses could potentially be combined with this shift instruction and
710/// generate BitExtract instruction. It will only be applied if the architecture
711/// supports BitExtract instruction. Here is an example:
712/// BB1:
713///   %x.extract.shift = lshr i64 %arg1, 32
714/// BB2:
715///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
716/// ==>
717///
718/// BB2:
719///   %x.extract.shift.1 = lshr i64 %arg1, 32
720///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
721///
722/// CodeGen will recoginze the pattern in BB2 and generate BitExtract
723/// instruction.
724/// Return true if any changes are made.
725static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
726                                const TargetLowering &TLI) {
727  BasicBlock *DefBB = ShiftI->getParent();
728
729  /// Only insert instructions in each block once.
730  DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
731
732  bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType()));
733
734  bool MadeChange = false;
735  for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
736       UI != E;) {
737    Use &TheUse = UI.getUse();
738    Instruction *User = cast<Instruction>(*UI);
739    // Preincrement use iterator so we don't invalidate it.
740    ++UI;
741
742    // Don't bother for PHI nodes.
743    if (isa<PHINode>(User))
744      continue;
745
746    if (!isExtractBitsCandidateUse(User))
747      continue;
748
749    BasicBlock *UserBB = User->getParent();
750
751    if (UserBB == DefBB) {
752      // If the shift and truncate instruction are in the same BB. The use of
753      // the truncate(TruncUse) may still introduce another truncate if not
754      // legal. In this case, we would like to sink both shift and truncate
755      // instruction to the BB of TruncUse.
756      // for example:
757      // BB1:
758      // i64 shift.result = lshr i64 opnd, imm
759      // trunc.result = trunc shift.result to i16
760      //
761      // BB2:
762      //   ----> We will have an implicit truncate here if the architecture does
763      //   not have i16 compare.
764      // cmp i16 trunc.result, opnd2
765      //
766      if (isa<TruncInst>(User) && shiftIsLegal
767          // If the type of the truncate is legal, no trucate will be
768          // introduced in other basic blocks.
769          && (!TLI.isTypeLegal(TLI.getValueType(User->getType()))))
770        MadeChange =
771            SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI);
772
773      continue;
774    }
775    // If we have already inserted a shift into this block, use it.
776    BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
777
778    if (!InsertedShift) {
779      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
780
781      if (ShiftI->getOpcode() == Instruction::AShr)
782        InsertedShift =
783            BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
784      else
785        InsertedShift =
786            BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
787
788      MadeChange = true;
789    }
790
791    // Replace a use of the shift with a use of the new shift.
792    TheUse = InsertedShift;
793  }
794
795  // If we removed all uses, nuke the shift.
796  if (ShiftI->use_empty())
797    ShiftI->eraseFromParent();
798
799  return MadeChange;
800}
801
802namespace {
803class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
804protected:
805  void replaceCall(Value *With) override {
806    CI->replaceAllUsesWith(With);
807    CI->eraseFromParent();
808  }
809  bool isFoldable(unsigned SizeCIOp, unsigned, bool) const override {
810      if (ConstantInt *SizeCI =
811                             dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
812        return SizeCI->isAllOnesValue();
813    return false;
814  }
815};
816} // end anonymous namespace
817
818bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
819  BasicBlock *BB = CI->getParent();
820
821  // Lower inline assembly if we can.
822  // If we found an inline asm expession, and if the target knows how to
823  // lower it to normal LLVM code, do so now.
824  if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
825    if (TLI->ExpandInlineAsm(CI)) {
826      // Avoid invalidating the iterator.
827      CurInstIterator = BB->begin();
828      // Avoid processing instructions out of order, which could cause
829      // reuse before a value is defined.
830      SunkAddrs.clear();
831      return true;
832    }
833    // Sink address computing for memory operands into the block.
834    if (OptimizeInlineAsmInst(CI))
835      return true;
836  }
837
838  // Lower all uses of llvm.objectsize.*
839  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
840  if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
841    bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
842    Type *ReturnTy = CI->getType();
843    Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
844
845    // Substituting this can cause recursive simplifications, which can
846    // invalidate our iterator.  Use a WeakVH to hold onto it in case this
847    // happens.
848    WeakVH IterHandle(CurInstIterator);
849
850    replaceAndRecursivelySimplify(CI, RetVal,
851                                  TLI ? TLI->getDataLayout() : nullptr,
852                                  TLInfo, ModifiedDT ? nullptr : DT);
853
854    // If the iterator instruction was recursively deleted, start over at the
855    // start of the block.
856    if (IterHandle != CurInstIterator) {
857      CurInstIterator = BB->begin();
858      SunkAddrs.clear();
859    }
860    return true;
861  }
862
863  if (II && TLI) {
864    SmallVector<Value*, 2> PtrOps;
865    Type *AccessTy;
866    if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
867      while (!PtrOps.empty())
868        if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
869          return true;
870  }
871
872  // From here on out we're working with named functions.
873  if (!CI->getCalledFunction()) return false;
874
875  // We'll need DataLayout from here on out.
876  const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr;
877  if (!TD) return false;
878
879  // Lower all default uses of _chk calls.  This is very similar
880  // to what InstCombineCalls does, but here we are only lowering calls
881  // that have the default "don't know" as the objectsize.  Anything else
882  // should be left alone.
883  CodeGenPrepareFortifiedLibCalls Simplifier;
884  return Simplifier.fold(CI, TD, TLInfo);
885}
886
887/// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
888/// instructions to the predecessor to enable tail call optimizations. The
889/// case it is currently looking for is:
890/// @code
891/// bb0:
892///   %tmp0 = tail call i32 @f0()
893///   br label %return
894/// bb1:
895///   %tmp1 = tail call i32 @f1()
896///   br label %return
897/// bb2:
898///   %tmp2 = tail call i32 @f2()
899///   br label %return
900/// return:
901///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
902///   ret i32 %retval
903/// @endcode
904///
905/// =>
906///
907/// @code
908/// bb0:
909///   %tmp0 = tail call i32 @f0()
910///   ret i32 %tmp0
911/// bb1:
912///   %tmp1 = tail call i32 @f1()
913///   ret i32 %tmp1
914/// bb2:
915///   %tmp2 = tail call i32 @f2()
916///   ret i32 %tmp2
917/// @endcode
918bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
919  if (!TLI)
920    return false;
921
922  ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
923  if (!RI)
924    return false;
925
926  PHINode *PN = nullptr;
927  BitCastInst *BCI = nullptr;
928  Value *V = RI->getReturnValue();
929  if (V) {
930    BCI = dyn_cast<BitCastInst>(V);
931    if (BCI)
932      V = BCI->getOperand(0);
933
934    PN = dyn_cast<PHINode>(V);
935    if (!PN)
936      return false;
937  }
938
939  if (PN && PN->getParent() != BB)
940    return false;
941
942  // It's not safe to eliminate the sign / zero extension of the return value.
943  // See llvm::isInTailCallPosition().
944  const Function *F = BB->getParent();
945  AttributeSet CallerAttrs = F->getAttributes();
946  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
947      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
948    return false;
949
950  // Make sure there are no instructions between the PHI and return, or that the
951  // return is the first instruction in the block.
952  if (PN) {
953    BasicBlock::iterator BI = BB->begin();
954    do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
955    if (&*BI == BCI)
956      // Also skip over the bitcast.
957      ++BI;
958    if (&*BI != RI)
959      return false;
960  } else {
961    BasicBlock::iterator BI = BB->begin();
962    while (isa<DbgInfoIntrinsic>(BI)) ++BI;
963    if (&*BI != RI)
964      return false;
965  }
966
967  /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
968  /// call.
969  SmallVector<CallInst*, 4> TailCalls;
970  if (PN) {
971    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
972      CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
973      // Make sure the phi value is indeed produced by the tail call.
974      if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
975          TLI->mayBeEmittedAsTailCall(CI))
976        TailCalls.push_back(CI);
977    }
978  } else {
979    SmallPtrSet<BasicBlock*, 4> VisitedBBs;
980    for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
981      if (!VisitedBBs.insert(*PI))
982        continue;
983
984      BasicBlock::InstListType &InstList = (*PI)->getInstList();
985      BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
986      BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
987      do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
988      if (RI == RE)
989        continue;
990
991      CallInst *CI = dyn_cast<CallInst>(&*RI);
992      if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
993        TailCalls.push_back(CI);
994    }
995  }
996
997  bool Changed = false;
998  for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
999    CallInst *CI = TailCalls[i];
1000    CallSite CS(CI);
1001
1002    // Conservatively require the attributes of the call to match those of the
1003    // return. Ignore noalias because it doesn't affect the call sequence.
1004    AttributeSet CalleeAttrs = CS.getAttributes();
1005    if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
1006          removeAttribute(Attribute::NoAlias) !=
1007        AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
1008          removeAttribute(Attribute::NoAlias))
1009      continue;
1010
1011    // Make sure the call instruction is followed by an unconditional branch to
1012    // the return block.
1013    BasicBlock *CallBB = CI->getParent();
1014    BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
1015    if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
1016      continue;
1017
1018    // Duplicate the return into CallBB.
1019    (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
1020    ModifiedDT = Changed = true;
1021    ++NumRetsDup;
1022  }
1023
1024  // If we eliminated all predecessors of the block, delete the block now.
1025  if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
1026    BB->eraseFromParent();
1027
1028  return Changed;
1029}
1030
1031//===----------------------------------------------------------------------===//
1032// Memory Optimization
1033//===----------------------------------------------------------------------===//
1034
1035namespace {
1036
1037/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
1038/// which holds actual Value*'s for register values.
1039struct ExtAddrMode : public TargetLowering::AddrMode {
1040  Value *BaseReg;
1041  Value *ScaledReg;
1042  ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
1043  void print(raw_ostream &OS) const;
1044  void dump() const;
1045
1046  bool operator==(const ExtAddrMode& O) const {
1047    return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
1048           (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
1049           (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
1050  }
1051};
1052
1053#ifndef NDEBUG
1054static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
1055  AM.print(OS);
1056  return OS;
1057}
1058#endif
1059
1060void ExtAddrMode::print(raw_ostream &OS) const {
1061  bool NeedPlus = false;
1062  OS << "[";
1063  if (BaseGV) {
1064    OS << (NeedPlus ? " + " : "")
1065       << "GV:";
1066    BaseGV->printAsOperand(OS, /*PrintType=*/false);
1067    NeedPlus = true;
1068  }
1069
1070  if (BaseOffs) {
1071    OS << (NeedPlus ? " + " : "")
1072       << BaseOffs;
1073    NeedPlus = true;
1074  }
1075
1076  if (BaseReg) {
1077    OS << (NeedPlus ? " + " : "")
1078       << "Base:";
1079    BaseReg->printAsOperand(OS, /*PrintType=*/false);
1080    NeedPlus = true;
1081  }
1082  if (Scale) {
1083    OS << (NeedPlus ? " + " : "")
1084       << Scale << "*";
1085    ScaledReg->printAsOperand(OS, /*PrintType=*/false);
1086  }
1087
1088  OS << ']';
1089}
1090
1091#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1092void ExtAddrMode::dump() const {
1093  print(dbgs());
1094  dbgs() << '\n';
1095}
1096#endif
1097
1098/// \brief This class provides transaction based operation on the IR.
1099/// Every change made through this class is recorded in the internal state and
1100/// can be undone (rollback) until commit is called.
1101class TypePromotionTransaction {
1102
1103  /// \brief This represents the common interface of the individual transaction.
1104  /// Each class implements the logic for doing one specific modification on
1105  /// the IR via the TypePromotionTransaction.
1106  class TypePromotionAction {
1107  protected:
1108    /// The Instruction modified.
1109    Instruction *Inst;
1110
1111  public:
1112    /// \brief Constructor of the action.
1113    /// The constructor performs the related action on the IR.
1114    TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
1115
1116    virtual ~TypePromotionAction() {}
1117
1118    /// \brief Undo the modification done by this action.
1119    /// When this method is called, the IR must be in the same state as it was
1120    /// before this action was applied.
1121    /// \pre Undoing the action works if and only if the IR is in the exact same
1122    /// state as it was directly after this action was applied.
1123    virtual void undo() = 0;
1124
1125    /// \brief Advocate every change made by this action.
1126    /// When the results on the IR of the action are to be kept, it is important
1127    /// to call this function, otherwise hidden information may be kept forever.
1128    virtual void commit() {
1129      // Nothing to be done, this action is not doing anything.
1130    }
1131  };
1132
1133  /// \brief Utility to remember the position of an instruction.
1134  class InsertionHandler {
1135    /// Position of an instruction.
1136    /// Either an instruction:
1137    /// - Is the first in a basic block: BB is used.
1138    /// - Has a previous instructon: PrevInst is used.
1139    union {
1140      Instruction *PrevInst;
1141      BasicBlock *BB;
1142    } Point;
1143    /// Remember whether or not the instruction had a previous instruction.
1144    bool HasPrevInstruction;
1145
1146  public:
1147    /// \brief Record the position of \p Inst.
1148    InsertionHandler(Instruction *Inst) {
1149      BasicBlock::iterator It = Inst;
1150      HasPrevInstruction = (It != (Inst->getParent()->begin()));
1151      if (HasPrevInstruction)
1152        Point.PrevInst = --It;
1153      else
1154        Point.BB = Inst->getParent();
1155    }
1156
1157    /// \brief Insert \p Inst at the recorded position.
1158    void insert(Instruction *Inst) {
1159      if (HasPrevInstruction) {
1160        if (Inst->getParent())
1161          Inst->removeFromParent();
1162        Inst->insertAfter(Point.PrevInst);
1163      } else {
1164        Instruction *Position = Point.BB->getFirstInsertionPt();
1165        if (Inst->getParent())
1166          Inst->moveBefore(Position);
1167        else
1168          Inst->insertBefore(Position);
1169      }
1170    }
1171  };
1172
1173  /// \brief Move an instruction before another.
1174  class InstructionMoveBefore : public TypePromotionAction {
1175    /// Original position of the instruction.
1176    InsertionHandler Position;
1177
1178  public:
1179    /// \brief Move \p Inst before \p Before.
1180    InstructionMoveBefore(Instruction *Inst, Instruction *Before)
1181        : TypePromotionAction(Inst), Position(Inst) {
1182      DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
1183      Inst->moveBefore(Before);
1184    }
1185
1186    /// \brief Move the instruction back to its original position.
1187    void undo() override {
1188      DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
1189      Position.insert(Inst);
1190    }
1191  };
1192
1193  /// \brief Set the operand of an instruction with a new value.
1194  class OperandSetter : public TypePromotionAction {
1195    /// Original operand of the instruction.
1196    Value *Origin;
1197    /// Index of the modified instruction.
1198    unsigned Idx;
1199
1200  public:
1201    /// \brief Set \p Idx operand of \p Inst with \p NewVal.
1202    OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
1203        : TypePromotionAction(Inst), Idx(Idx) {
1204      DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
1205                   << "for:" << *Inst << "\n"
1206                   << "with:" << *NewVal << "\n");
1207      Origin = Inst->getOperand(Idx);
1208      Inst->setOperand(Idx, NewVal);
1209    }
1210
1211    /// \brief Restore the original value of the instruction.
1212    void undo() override {
1213      DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
1214                   << "for: " << *Inst << "\n"
1215                   << "with: " << *Origin << "\n");
1216      Inst->setOperand(Idx, Origin);
1217    }
1218  };
1219
1220  /// \brief Hide the operands of an instruction.
1221  /// Do as if this instruction was not using any of its operands.
1222  class OperandsHider : public TypePromotionAction {
1223    /// The list of original operands.
1224    SmallVector<Value *, 4> OriginalValues;
1225
1226  public:
1227    /// \brief Remove \p Inst from the uses of the operands of \p Inst.
1228    OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
1229      DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
1230      unsigned NumOpnds = Inst->getNumOperands();
1231      OriginalValues.reserve(NumOpnds);
1232      for (unsigned It = 0; It < NumOpnds; ++It) {
1233        // Save the current operand.
1234        Value *Val = Inst->getOperand(It);
1235        OriginalValues.push_back(Val);
1236        // Set a dummy one.
1237        // We could use OperandSetter here, but that would implied an overhead
1238        // that we are not willing to pay.
1239        Inst->setOperand(It, UndefValue::get(Val->getType()));
1240      }
1241    }
1242
1243    /// \brief Restore the original list of uses.
1244    void undo() override {
1245      DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
1246      for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
1247        Inst->setOperand(It, OriginalValues[It]);
1248    }
1249  };
1250
1251  /// \brief Build a truncate instruction.
1252  class TruncBuilder : public TypePromotionAction {
1253  public:
1254    /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
1255    /// result.
1256    /// trunc Opnd to Ty.
1257    TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
1258      IRBuilder<> Builder(Opnd);
1259      Inst = cast<Instruction>(Builder.CreateTrunc(Opnd, Ty, "promoted"));
1260      DEBUG(dbgs() << "Do: TruncBuilder: " << *Inst << "\n");
1261    }
1262
1263    /// \brief Get the built instruction.
1264    Instruction *getBuiltInstruction() { return Inst; }
1265
1266    /// \brief Remove the built instruction.
1267    void undo() override {
1268      DEBUG(dbgs() << "Undo: TruncBuilder: " << *Inst << "\n");
1269      Inst->eraseFromParent();
1270    }
1271  };
1272
1273  /// \brief Build a sign extension instruction.
1274  class SExtBuilder : public TypePromotionAction {
1275  public:
1276    /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
1277    /// result.
1278    /// sext Opnd to Ty.
1279    SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
1280        : TypePromotionAction(Inst) {
1281      IRBuilder<> Builder(InsertPt);
1282      Inst = cast<Instruction>(Builder.CreateSExt(Opnd, Ty, "promoted"));
1283      DEBUG(dbgs() << "Do: SExtBuilder: " << *Inst << "\n");
1284    }
1285
1286    /// \brief Get the built instruction.
1287    Instruction *getBuiltInstruction() { return Inst; }
1288
1289    /// \brief Remove the built instruction.
1290    void undo() override {
1291      DEBUG(dbgs() << "Undo: SExtBuilder: " << *Inst << "\n");
1292      Inst->eraseFromParent();
1293    }
1294  };
1295
1296  /// \brief Mutate an instruction to another type.
1297  class TypeMutator : public TypePromotionAction {
1298    /// Record the original type.
1299    Type *OrigTy;
1300
1301  public:
1302    /// \brief Mutate the type of \p Inst into \p NewTy.
1303    TypeMutator(Instruction *Inst, Type *NewTy)
1304        : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
1305      DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
1306                   << "\n");
1307      Inst->mutateType(NewTy);
1308    }
1309
1310    /// \brief Mutate the instruction back to its original type.
1311    void undo() override {
1312      DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
1313                   << "\n");
1314      Inst->mutateType(OrigTy);
1315    }
1316  };
1317
1318  /// \brief Replace the uses of an instruction by another instruction.
1319  class UsesReplacer : public TypePromotionAction {
1320    /// Helper structure to keep track of the replaced uses.
1321    struct InstructionAndIdx {
1322      /// The instruction using the instruction.
1323      Instruction *Inst;
1324      /// The index where this instruction is used for Inst.
1325      unsigned Idx;
1326      InstructionAndIdx(Instruction *Inst, unsigned Idx)
1327          : Inst(Inst), Idx(Idx) {}
1328    };
1329
1330    /// Keep track of the original uses (pair Instruction, Index).
1331    SmallVector<InstructionAndIdx, 4> OriginalUses;
1332    typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
1333
1334  public:
1335    /// \brief Replace all the use of \p Inst by \p New.
1336    UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
1337      DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
1338                   << "\n");
1339      // Record the original uses.
1340      for (Use &U : Inst->uses()) {
1341        Instruction *UserI = cast<Instruction>(U.getUser());
1342        OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
1343      }
1344      // Now, we can replace the uses.
1345      Inst->replaceAllUsesWith(New);
1346    }
1347
1348    /// \brief Reassign the original uses of Inst to Inst.
1349    void undo() override {
1350      DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
1351      for (use_iterator UseIt = OriginalUses.begin(),
1352                        EndIt = OriginalUses.end();
1353           UseIt != EndIt; ++UseIt) {
1354        UseIt->Inst->setOperand(UseIt->Idx, Inst);
1355      }
1356    }
1357  };
1358
1359  /// \brief Remove an instruction from the IR.
1360  class InstructionRemover : public TypePromotionAction {
1361    /// Original position of the instruction.
1362    InsertionHandler Inserter;
1363    /// Helper structure to hide all the link to the instruction. In other
1364    /// words, this helps to do as if the instruction was removed.
1365    OperandsHider Hider;
1366    /// Keep track of the uses replaced, if any.
1367    UsesReplacer *Replacer;
1368
1369  public:
1370    /// \brief Remove all reference of \p Inst and optinally replace all its
1371    /// uses with New.
1372    /// \pre If !Inst->use_empty(), then New != nullptr
1373    InstructionRemover(Instruction *Inst, Value *New = nullptr)
1374        : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
1375          Replacer(nullptr) {
1376      if (New)
1377        Replacer = new UsesReplacer(Inst, New);
1378      DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
1379      Inst->removeFromParent();
1380    }
1381
1382    ~InstructionRemover() { delete Replacer; }
1383
1384    /// \brief Really remove the instruction.
1385    void commit() override { delete Inst; }
1386
1387    /// \brief Resurrect the instruction and reassign it to the proper uses if
1388    /// new value was provided when build this action.
1389    void undo() override {
1390      DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
1391      Inserter.insert(Inst);
1392      if (Replacer)
1393        Replacer->undo();
1394      Hider.undo();
1395    }
1396  };
1397
1398public:
1399  /// Restoration point.
1400  /// The restoration point is a pointer to an action instead of an iterator
1401  /// because the iterator may be invalidated but not the pointer.
1402  typedef const TypePromotionAction *ConstRestorationPt;
1403  /// Advocate every changes made in that transaction.
1404  void commit();
1405  /// Undo all the changes made after the given point.
1406  void rollback(ConstRestorationPt Point);
1407  /// Get the current restoration point.
1408  ConstRestorationPt getRestorationPoint() const;
1409
1410  /// \name API for IR modification with state keeping to support rollback.
1411  /// @{
1412  /// Same as Instruction::setOperand.
1413  void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
1414  /// Same as Instruction::eraseFromParent.
1415  void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
1416  /// Same as Value::replaceAllUsesWith.
1417  void replaceAllUsesWith(Instruction *Inst, Value *New);
1418  /// Same as Value::mutateType.
1419  void mutateType(Instruction *Inst, Type *NewTy);
1420  /// Same as IRBuilder::createTrunc.
1421  Instruction *createTrunc(Instruction *Opnd, Type *Ty);
1422  /// Same as IRBuilder::createSExt.
1423  Instruction *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
1424  /// Same as Instruction::moveBefore.
1425  void moveBefore(Instruction *Inst, Instruction *Before);
1426  /// @}
1427
1428private:
1429  /// The ordered list of actions made so far.
1430  SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
1431  typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
1432};
1433
1434void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
1435                                          Value *NewVal) {
1436  Actions.push_back(
1437      make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
1438}
1439
1440void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
1441                                                Value *NewVal) {
1442  Actions.push_back(
1443      make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
1444}
1445
1446void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
1447                                                  Value *New) {
1448  Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
1449}
1450
1451void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
1452  Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
1453}
1454
1455Instruction *TypePromotionTransaction::createTrunc(Instruction *Opnd,
1456                                                   Type *Ty) {
1457  std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
1458  Instruction *I = Ptr->getBuiltInstruction();
1459  Actions.push_back(std::move(Ptr));
1460  return I;
1461}
1462
1463Instruction *TypePromotionTransaction::createSExt(Instruction *Inst,
1464                                                  Value *Opnd, Type *Ty) {
1465  std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
1466  Instruction *I = Ptr->getBuiltInstruction();
1467  Actions.push_back(std::move(Ptr));
1468  return I;
1469}
1470
1471void TypePromotionTransaction::moveBefore(Instruction *Inst,
1472                                          Instruction *Before) {
1473  Actions.push_back(
1474      make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
1475}
1476
1477TypePromotionTransaction::ConstRestorationPt
1478TypePromotionTransaction::getRestorationPoint() const {
1479  return !Actions.empty() ? Actions.back().get() : nullptr;
1480}
1481
1482void TypePromotionTransaction::commit() {
1483  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
1484       ++It)
1485    (*It)->commit();
1486  Actions.clear();
1487}
1488
1489void TypePromotionTransaction::rollback(
1490    TypePromotionTransaction::ConstRestorationPt Point) {
1491  while (!Actions.empty() && Point != Actions.back().get()) {
1492    std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
1493    Curr->undo();
1494  }
1495}
1496
1497/// \brief A helper class for matching addressing modes.
1498///
1499/// This encapsulates the logic for matching the target-legal addressing modes.
1500class AddressingModeMatcher {
1501  SmallVectorImpl<Instruction*> &AddrModeInsts;
1502  const TargetLowering &TLI;
1503
1504  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
1505  /// the memory instruction that we're computing this address for.
1506  Type *AccessTy;
1507  Instruction *MemoryInst;
1508
1509  /// AddrMode - This is the addressing mode that we're building up.  This is
1510  /// part of the return value of this addressing mode matching stuff.
1511  ExtAddrMode &AddrMode;
1512
1513  /// The truncate instruction inserted by other CodeGenPrepare optimizations.
1514  const SetOfInstrs &InsertedTruncs;
1515  /// A map from the instructions to their type before promotion.
1516  InstrToOrigTy &PromotedInsts;
1517  /// The ongoing transaction where every action should be registered.
1518  TypePromotionTransaction &TPT;
1519
1520  /// IgnoreProfitability - This is set to true when we should not do
1521  /// profitability checks.  When true, IsProfitableToFoldIntoAddressingMode
1522  /// always returns true.
1523  bool IgnoreProfitability;
1524
1525  AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
1526                        const TargetLowering &T, Type *AT,
1527                        Instruction *MI, ExtAddrMode &AM,
1528                        const SetOfInstrs &InsertedTruncs,
1529                        InstrToOrigTy &PromotedInsts,
1530                        TypePromotionTransaction &TPT)
1531      : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM),
1532        InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) {
1533    IgnoreProfitability = false;
1534  }
1535public:
1536
1537  /// Match - Find the maximal addressing mode that a load/store of V can fold,
1538  /// give an access type of AccessTy.  This returns a list of involved
1539  /// instructions in AddrModeInsts.
1540  /// \p InsertedTruncs The truncate instruction inserted by other
1541  /// CodeGenPrepare
1542  /// optimizations.
1543  /// \p PromotedInsts maps the instructions to their type before promotion.
1544  /// \p The ongoing transaction where every action should be registered.
1545  static ExtAddrMode Match(Value *V, Type *AccessTy,
1546                           Instruction *MemoryInst,
1547                           SmallVectorImpl<Instruction*> &AddrModeInsts,
1548                           const TargetLowering &TLI,
1549                           const SetOfInstrs &InsertedTruncs,
1550                           InstrToOrigTy &PromotedInsts,
1551                           TypePromotionTransaction &TPT) {
1552    ExtAddrMode Result;
1553
1554    bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
1555                                         MemoryInst, Result, InsertedTruncs,
1556                                         PromotedInsts, TPT).MatchAddr(V, 0);
1557    (void)Success; assert(Success && "Couldn't select *anything*?");
1558    return Result;
1559  }
1560private:
1561  bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
1562  bool MatchAddr(Value *V, unsigned Depth);
1563  bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
1564                          bool *MovedAway = nullptr);
1565  bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
1566                                            ExtAddrMode &AMBefore,
1567                                            ExtAddrMode &AMAfter);
1568  bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
1569  bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion,
1570                             Value *PromotedOperand) const;
1571};
1572
1573/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
1574/// Return true and update AddrMode if this addr mode is legal for the target,
1575/// false if not.
1576bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
1577                                             unsigned Depth) {
1578  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
1579  // mode.  Just process that directly.
1580  if (Scale == 1)
1581    return MatchAddr(ScaleReg, Depth);
1582
1583  // If the scale is 0, it takes nothing to add this.
1584  if (Scale == 0)
1585    return true;
1586
1587  // If we already have a scale of this value, we can add to it, otherwise, we
1588  // need an available scale field.
1589  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
1590    return false;
1591
1592  ExtAddrMode TestAddrMode = AddrMode;
1593
1594  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
1595  // [A+B + A*7] -> [B+A*8].
1596  TestAddrMode.Scale += Scale;
1597  TestAddrMode.ScaledReg = ScaleReg;
1598
1599  // If the new address isn't legal, bail out.
1600  if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
1601    return false;
1602
1603  // It was legal, so commit it.
1604  AddrMode = TestAddrMode;
1605
1606  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
1607  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
1608  // X*Scale + C*Scale to addr mode.
1609  ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
1610  if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
1611      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
1612    TestAddrMode.ScaledReg = AddLHS;
1613    TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
1614
1615    // If this addressing mode is legal, commit it and remember that we folded
1616    // this instruction.
1617    if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
1618      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
1619      AddrMode = TestAddrMode;
1620      return true;
1621    }
1622  }
1623
1624  // Otherwise, not (x+c)*scale, just return what we have.
1625  return true;
1626}
1627
1628/// MightBeFoldableInst - This is a little filter, which returns true if an
1629/// addressing computation involving I might be folded into a load/store
1630/// accessing it.  This doesn't need to be perfect, but needs to accept at least
1631/// the set of instructions that MatchOperationAddr can.
1632static bool MightBeFoldableInst(Instruction *I) {
1633  switch (I->getOpcode()) {
1634  case Instruction::BitCast:
1635  case Instruction::AddrSpaceCast:
1636    // Don't touch identity bitcasts.
1637    if (I->getType() == I->getOperand(0)->getType())
1638      return false;
1639    return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
1640  case Instruction::PtrToInt:
1641    // PtrToInt is always a noop, as we know that the int type is pointer sized.
1642    return true;
1643  case Instruction::IntToPtr:
1644    // We know the input is intptr_t, so this is foldable.
1645    return true;
1646  case Instruction::Add:
1647    return true;
1648  case Instruction::Mul:
1649  case Instruction::Shl:
1650    // Can only handle X*C and X << C.
1651    return isa<ConstantInt>(I->getOperand(1));
1652  case Instruction::GetElementPtr:
1653    return true;
1654  default:
1655    return false;
1656  }
1657}
1658
1659/// \brief Hepler class to perform type promotion.
1660class TypePromotionHelper {
1661  /// \brief Utility function to check whether or not a sign extension of
1662  /// \p Inst with \p ConsideredSExtType can be moved through \p Inst by either
1663  /// using the operands of \p Inst or promoting \p Inst.
1664  /// In other words, check if:
1665  /// sext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredSExtType.
1666  /// #1 Promotion applies:
1667  /// ConsideredSExtType Inst (sext opnd1 to ConsideredSExtType, ...).
1668  /// #2 Operand reuses:
1669  /// sext opnd1 to ConsideredSExtType.
1670  /// \p PromotedInsts maps the instructions to their type before promotion.
1671  static bool canGetThrough(const Instruction *Inst, Type *ConsideredSExtType,
1672                            const InstrToOrigTy &PromotedInsts);
1673
1674  /// \brief Utility function to determine if \p OpIdx should be promoted when
1675  /// promoting \p Inst.
1676  static bool shouldSExtOperand(const Instruction *Inst, int OpIdx) {
1677    if (isa<SelectInst>(Inst) && OpIdx == 0)
1678      return false;
1679    return true;
1680  }
1681
1682  /// \brief Utility function to promote the operand of \p SExt when this
1683  /// operand is a promotable trunc or sext.
1684  /// \p PromotedInsts maps the instructions to their type before promotion.
1685  /// \p CreatedInsts[out] contains how many non-free instructions have been
1686  /// created to promote the operand of SExt.
1687  /// Should never be called directly.
1688  /// \return The promoted value which is used instead of SExt.
1689  static Value *promoteOperandForTruncAndSExt(Instruction *SExt,
1690                                              TypePromotionTransaction &TPT,
1691                                              InstrToOrigTy &PromotedInsts,
1692                                              unsigned &CreatedInsts);
1693
1694  /// \brief Utility function to promote the operand of \p SExt when this
1695  /// operand is promotable and is not a supported trunc or sext.
1696  /// \p PromotedInsts maps the instructions to their type before promotion.
1697  /// \p CreatedInsts[out] contains how many non-free instructions have been
1698  /// created to promote the operand of SExt.
1699  /// Should never be called directly.
1700  /// \return The promoted value which is used instead of SExt.
1701  static Value *promoteOperandForOther(Instruction *SExt,
1702                                       TypePromotionTransaction &TPT,
1703                                       InstrToOrigTy &PromotedInsts,
1704                                       unsigned &CreatedInsts);
1705
1706public:
1707  /// Type for the utility function that promotes the operand of SExt.
1708  typedef Value *(*Action)(Instruction *SExt, TypePromotionTransaction &TPT,
1709                           InstrToOrigTy &PromotedInsts,
1710                           unsigned &CreatedInsts);
1711  /// \brief Given a sign extend instruction \p SExt, return the approriate
1712  /// action to promote the operand of \p SExt instead of using SExt.
1713  /// \return NULL if no promotable action is possible with the current
1714  /// sign extension.
1715  /// \p InsertedTruncs keeps track of all the truncate instructions inserted by
1716  /// the others CodeGenPrepare optimizations. This information is important
1717  /// because we do not want to promote these instructions as CodeGenPrepare
1718  /// will reinsert them later. Thus creating an infinite loop: create/remove.
1719  /// \p PromotedInsts maps the instructions to their type before promotion.
1720  static Action getAction(Instruction *SExt, const SetOfInstrs &InsertedTruncs,
1721                          const TargetLowering &TLI,
1722                          const InstrToOrigTy &PromotedInsts);
1723};
1724
1725bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
1726                                        Type *ConsideredSExtType,
1727                                        const InstrToOrigTy &PromotedInsts) {
1728  // We can always get through sext.
1729  if (isa<SExtInst>(Inst))
1730    return true;
1731
1732  // We can get through binary operator, if it is legal. In other words, the
1733  // binary operator must have a nuw or nsw flag.
1734  const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
1735  if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
1736      (BinOp->hasNoUnsignedWrap() || BinOp->hasNoSignedWrap()))
1737    return true;
1738
1739  // Check if we can do the following simplification.
1740  // sext(trunc(sext)) --> sext
1741  if (!isa<TruncInst>(Inst))
1742    return false;
1743
1744  Value *OpndVal = Inst->getOperand(0);
1745  // Check if we can use this operand in the sext.
1746  // If the type is larger than the result type of the sign extension,
1747  // we cannot.
1748  if (OpndVal->getType()->getIntegerBitWidth() >
1749      ConsideredSExtType->getIntegerBitWidth())
1750    return false;
1751
1752  // If the operand of the truncate is not an instruction, we will not have
1753  // any information on the dropped bits.
1754  // (Actually we could for constant but it is not worth the extra logic).
1755  Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
1756  if (!Opnd)
1757    return false;
1758
1759  // Check if the source of the type is narrow enough.
1760  // I.e., check that trunc just drops sign extended bits.
1761  // #1 get the type of the operand.
1762  const Type *OpndType;
1763  InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
1764  if (It != PromotedInsts.end())
1765    OpndType = It->second;
1766  else if (isa<SExtInst>(Opnd))
1767    OpndType = cast<Instruction>(Opnd)->getOperand(0)->getType();
1768  else
1769    return false;
1770
1771  // #2 check that the truncate just drop sign extended bits.
1772  if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth())
1773    return true;
1774
1775  return false;
1776}
1777
1778TypePromotionHelper::Action TypePromotionHelper::getAction(
1779    Instruction *SExt, const SetOfInstrs &InsertedTruncs,
1780    const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
1781  Instruction *SExtOpnd = dyn_cast<Instruction>(SExt->getOperand(0));
1782  Type *SExtTy = SExt->getType();
1783  // If the operand of the sign extension is not an instruction, we cannot
1784  // get through.
1785  // If it, check we can get through.
1786  if (!SExtOpnd || !canGetThrough(SExtOpnd, SExtTy, PromotedInsts))
1787    return nullptr;
1788
1789  // Do not promote if the operand has been added by codegenprepare.
1790  // Otherwise, it means we are undoing an optimization that is likely to be
1791  // redone, thus causing potential infinite loop.
1792  if (isa<TruncInst>(SExtOpnd) && InsertedTruncs.count(SExtOpnd))
1793    return nullptr;
1794
1795  // SExt or Trunc instructions.
1796  // Return the related handler.
1797  if (isa<SExtInst>(SExtOpnd) || isa<TruncInst>(SExtOpnd))
1798    return promoteOperandForTruncAndSExt;
1799
1800  // Regular instruction.
1801  // Abort early if we will have to insert non-free instructions.
1802  if (!SExtOpnd->hasOneUse() &&
1803      !TLI.isTruncateFree(SExtTy, SExtOpnd->getType()))
1804    return nullptr;
1805  return promoteOperandForOther;
1806}
1807
1808Value *TypePromotionHelper::promoteOperandForTruncAndSExt(
1809    llvm::Instruction *SExt, TypePromotionTransaction &TPT,
1810    InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) {
1811  // By construction, the operand of SExt is an instruction. Otherwise we cannot
1812  // get through it and this method should not be called.
1813  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
1814  // Replace sext(trunc(opnd)) or sext(sext(opnd))
1815  // => sext(opnd).
1816  TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
1817  CreatedInsts = 0;
1818
1819  // Remove dead code.
1820  if (SExtOpnd->use_empty())
1821    TPT.eraseInstruction(SExtOpnd);
1822
1823  // Check if the sext is still needed.
1824  if (SExt->getType() != SExt->getOperand(0)->getType())
1825    return SExt;
1826
1827  // At this point we have: sext ty opnd to ty.
1828  // Reassign the uses of SExt to the opnd and remove SExt.
1829  Value *NextVal = SExt->getOperand(0);
1830  TPT.eraseInstruction(SExt, NextVal);
1831  return NextVal;
1832}
1833
1834Value *
1835TypePromotionHelper::promoteOperandForOther(Instruction *SExt,
1836                                            TypePromotionTransaction &TPT,
1837                                            InstrToOrigTy &PromotedInsts,
1838                                            unsigned &CreatedInsts) {
1839  // By construction, the operand of SExt is an instruction. Otherwise we cannot
1840  // get through it and this method should not be called.
1841  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
1842  CreatedInsts = 0;
1843  if (!SExtOpnd->hasOneUse()) {
1844    // SExtOpnd will be promoted.
1845    // All its uses, but SExt, will need to use a truncated value of the
1846    // promoted version.
1847    // Create the truncate now.
1848    Instruction *Trunc = TPT.createTrunc(SExt, SExtOpnd->getType());
1849    Trunc->removeFromParent();
1850    // Insert it just after the definition.
1851    Trunc->insertAfter(SExtOpnd);
1852
1853    TPT.replaceAllUsesWith(SExtOpnd, Trunc);
1854    // Restore the operand of SExt (which has been replace by the previous call
1855    // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
1856    TPT.setOperand(SExt, 0, SExtOpnd);
1857  }
1858
1859  // Get through the Instruction:
1860  // 1. Update its type.
1861  // 2. Replace the uses of SExt by Inst.
1862  // 3. Sign extend each operand that needs to be sign extended.
1863
1864  // Remember the original type of the instruction before promotion.
1865  // This is useful to know that the high bits are sign extended bits.
1866  PromotedInsts.insert(
1867      std::pair<Instruction *, Type *>(SExtOpnd, SExtOpnd->getType()));
1868  // Step #1.
1869  TPT.mutateType(SExtOpnd, SExt->getType());
1870  // Step #2.
1871  TPT.replaceAllUsesWith(SExt, SExtOpnd);
1872  // Step #3.
1873  Instruction *SExtForOpnd = SExt;
1874
1875  DEBUG(dbgs() << "Propagate SExt to operands\n");
1876  for (int OpIdx = 0, EndOpIdx = SExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
1877       ++OpIdx) {
1878    DEBUG(dbgs() << "Operand:\n" << *(SExtOpnd->getOperand(OpIdx)) << '\n');
1879    if (SExtOpnd->getOperand(OpIdx)->getType() == SExt->getType() ||
1880        !shouldSExtOperand(SExtOpnd, OpIdx)) {
1881      DEBUG(dbgs() << "No need to propagate\n");
1882      continue;
1883    }
1884    // Check if we can statically sign extend the operand.
1885    Value *Opnd = SExtOpnd->getOperand(OpIdx);
1886    if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
1887      DEBUG(dbgs() << "Statically sign extend\n");
1888      TPT.setOperand(
1889          SExtOpnd, OpIdx,
1890          ConstantInt::getSigned(SExt->getType(), Cst->getSExtValue()));
1891      continue;
1892    }
1893    // UndefValue are typed, so we have to statically sign extend them.
1894    if (isa<UndefValue>(Opnd)) {
1895      DEBUG(dbgs() << "Statically sign extend\n");
1896      TPT.setOperand(SExtOpnd, OpIdx, UndefValue::get(SExt->getType()));
1897      continue;
1898    }
1899
1900    // Otherwise we have to explicity sign extend the operand.
1901    // Check if SExt was reused to sign extend an operand.
1902    if (!SExtForOpnd) {
1903      // If yes, create a new one.
1904      DEBUG(dbgs() << "More operands to sext\n");
1905      SExtForOpnd = TPT.createSExt(SExt, Opnd, SExt->getType());
1906      ++CreatedInsts;
1907    }
1908
1909    TPT.setOperand(SExtForOpnd, 0, Opnd);
1910
1911    // Move the sign extension before the insertion point.
1912    TPT.moveBefore(SExtForOpnd, SExtOpnd);
1913    TPT.setOperand(SExtOpnd, OpIdx, SExtForOpnd);
1914    // If more sext are required, new instructions will have to be created.
1915    SExtForOpnd = nullptr;
1916  }
1917  if (SExtForOpnd == SExt) {
1918    DEBUG(dbgs() << "Sign extension is useless now\n");
1919    TPT.eraseInstruction(SExt);
1920  }
1921  return SExtOpnd;
1922}
1923
1924/// IsPromotionProfitable - Check whether or not promoting an instruction
1925/// to a wider type was profitable.
1926/// \p MatchedSize gives the number of instructions that have been matched
1927/// in the addressing mode after the promotion was applied.
1928/// \p SizeWithPromotion gives the number of created instructions for
1929/// the promotion plus the number of instructions that have been
1930/// matched in the addressing mode before the promotion.
1931/// \p PromotedOperand is the value that has been promoted.
1932/// \return True if the promotion is profitable, false otherwise.
1933bool
1934AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize,
1935                                             unsigned SizeWithPromotion,
1936                                             Value *PromotedOperand) const {
1937  // We folded less instructions than what we created to promote the operand.
1938  // This is not profitable.
1939  if (MatchedSize < SizeWithPromotion)
1940    return false;
1941  if (MatchedSize > SizeWithPromotion)
1942    return true;
1943  // The promotion is neutral but it may help folding the sign extension in
1944  // loads for instance.
1945  // Check that we did not create an illegal instruction.
1946  Instruction *PromotedInst = dyn_cast<Instruction>(PromotedOperand);
1947  if (!PromotedInst)
1948    return false;
1949  int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
1950  // If the ISDOpcode is undefined, it was undefined before the promotion.
1951  if (!ISDOpcode)
1952    return true;
1953  // Otherwise, check if the promoted instruction is legal or not.
1954  return TLI.isOperationLegalOrCustom(ISDOpcode,
1955                                      EVT::getEVT(PromotedInst->getType()));
1956}
1957
1958/// MatchOperationAddr - Given an instruction or constant expr, see if we can
1959/// fold the operation into the addressing mode.  If so, update the addressing
1960/// mode and return true, otherwise return false without modifying AddrMode.
1961/// If \p MovedAway is not NULL, it contains the information of whether or
1962/// not AddrInst has to be folded into the addressing mode on success.
1963/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
1964/// because it has been moved away.
1965/// Thus AddrInst must not be added in the matched instructions.
1966/// This state can happen when AddrInst is a sext, since it may be moved away.
1967/// Therefore, AddrInst may not be valid when MovedAway is true and it must
1968/// not be referenced anymore.
1969bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
1970                                               unsigned Depth,
1971                                               bool *MovedAway) {
1972  // Avoid exponential behavior on extremely deep expression trees.
1973  if (Depth >= 5) return false;
1974
1975  // By default, all matched instructions stay in place.
1976  if (MovedAway)
1977    *MovedAway = false;
1978
1979  switch (Opcode) {
1980  case Instruction::PtrToInt:
1981    // PtrToInt is always a noop, as we know that the int type is pointer sized.
1982    return MatchAddr(AddrInst->getOperand(0), Depth);
1983  case Instruction::IntToPtr:
1984    // This inttoptr is a no-op if the integer type is pointer sized.
1985    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
1986        TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace()))
1987      return MatchAddr(AddrInst->getOperand(0), Depth);
1988    return false;
1989  case Instruction::BitCast:
1990  case Instruction::AddrSpaceCast:
1991    // BitCast is always a noop, and we can handle it as long as it is
1992    // int->int or pointer->pointer (we don't want int<->fp or something).
1993    if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
1994         AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
1995        // Don't touch identity bitcasts.  These were probably put here by LSR,
1996        // and we don't want to mess around with them.  Assume it knows what it
1997        // is doing.
1998        AddrInst->getOperand(0)->getType() != AddrInst->getType())
1999      return MatchAddr(AddrInst->getOperand(0), Depth);
2000    return false;
2001  case Instruction::Add: {
2002    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
2003    ExtAddrMode BackupAddrMode = AddrMode;
2004    unsigned OldSize = AddrModeInsts.size();
2005    // Start a transaction at this point.
2006    // The LHS may match but not the RHS.
2007    // Therefore, we need a higher level restoration point to undo partially
2008    // matched operation.
2009    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2010        TPT.getRestorationPoint();
2011
2012    if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
2013        MatchAddr(AddrInst->getOperand(0), Depth+1))
2014      return true;
2015
2016    // Restore the old addr mode info.
2017    AddrMode = BackupAddrMode;
2018    AddrModeInsts.resize(OldSize);
2019    TPT.rollback(LastKnownGood);
2020
2021    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
2022    if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
2023        MatchAddr(AddrInst->getOperand(1), Depth+1))
2024      return true;
2025
2026    // Otherwise we definitely can't merge the ADD in.
2027    AddrMode = BackupAddrMode;
2028    AddrModeInsts.resize(OldSize);
2029    TPT.rollback(LastKnownGood);
2030    break;
2031  }
2032  //case Instruction::Or:
2033  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
2034  //break;
2035  case Instruction::Mul:
2036  case Instruction::Shl: {
2037    // Can only handle X*C and X << C.
2038    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
2039    if (!RHS) return false;
2040    int64_t Scale = RHS->getSExtValue();
2041    if (Opcode == Instruction::Shl)
2042      Scale = 1LL << Scale;
2043
2044    return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
2045  }
2046  case Instruction::GetElementPtr: {
2047    // Scan the GEP.  We check it if it contains constant offsets and at most
2048    // one variable offset.
2049    int VariableOperand = -1;
2050    unsigned VariableScale = 0;
2051
2052    int64_t ConstantOffset = 0;
2053    const DataLayout *TD = TLI.getDataLayout();
2054    gep_type_iterator GTI = gep_type_begin(AddrInst);
2055    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
2056      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
2057        const StructLayout *SL = TD->getStructLayout(STy);
2058        unsigned Idx =
2059          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
2060        ConstantOffset += SL->getElementOffset(Idx);
2061      } else {
2062        uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
2063        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
2064          ConstantOffset += CI->getSExtValue()*TypeSize;
2065        } else if (TypeSize) {  // Scales of zero don't do anything.
2066          // We only allow one variable index at the moment.
2067          if (VariableOperand != -1)
2068            return false;
2069
2070          // Remember the variable index.
2071          VariableOperand = i;
2072          VariableScale = TypeSize;
2073        }
2074      }
2075    }
2076
2077    // A common case is for the GEP to only do a constant offset.  In this case,
2078    // just add it to the disp field and check validity.
2079    if (VariableOperand == -1) {
2080      AddrMode.BaseOffs += ConstantOffset;
2081      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
2082        // Check to see if we can fold the base pointer in too.
2083        if (MatchAddr(AddrInst->getOperand(0), Depth+1))
2084          return true;
2085      }
2086      AddrMode.BaseOffs -= ConstantOffset;
2087      return false;
2088    }
2089
2090    // Save the valid addressing mode in case we can't match.
2091    ExtAddrMode BackupAddrMode = AddrMode;
2092    unsigned OldSize = AddrModeInsts.size();
2093
2094    // See if the scale and offset amount is valid for this target.
2095    AddrMode.BaseOffs += ConstantOffset;
2096
2097    // Match the base operand of the GEP.
2098    if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
2099      // If it couldn't be matched, just stuff the value in a register.
2100      if (AddrMode.HasBaseReg) {
2101        AddrMode = BackupAddrMode;
2102        AddrModeInsts.resize(OldSize);
2103        return false;
2104      }
2105      AddrMode.HasBaseReg = true;
2106      AddrMode.BaseReg = AddrInst->getOperand(0);
2107    }
2108
2109    // Match the remaining variable portion of the GEP.
2110    if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
2111                          Depth)) {
2112      // If it couldn't be matched, try stuffing the base into a register
2113      // instead of matching it, and retrying the match of the scale.
2114      AddrMode = BackupAddrMode;
2115      AddrModeInsts.resize(OldSize);
2116      if (AddrMode.HasBaseReg)
2117        return false;
2118      AddrMode.HasBaseReg = true;
2119      AddrMode.BaseReg = AddrInst->getOperand(0);
2120      AddrMode.BaseOffs += ConstantOffset;
2121      if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
2122                            VariableScale, Depth)) {
2123        // If even that didn't work, bail.
2124        AddrMode = BackupAddrMode;
2125        AddrModeInsts.resize(OldSize);
2126        return false;
2127      }
2128    }
2129
2130    return true;
2131  }
2132  case Instruction::SExt: {
2133    // Try to move this sext out of the way of the addressing mode.
2134    Instruction *SExt = cast<Instruction>(AddrInst);
2135    // Ask for a method for doing so.
2136    TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
2137        SExt, InsertedTruncs, TLI, PromotedInsts);
2138    if (!TPH)
2139      return false;
2140
2141    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2142        TPT.getRestorationPoint();
2143    unsigned CreatedInsts = 0;
2144    Value *PromotedOperand = TPH(SExt, TPT, PromotedInsts, CreatedInsts);
2145    // SExt has been moved away.
2146    // Thus either it will be rematched later in the recursive calls or it is
2147    // gone. Anyway, we must not fold it into the addressing mode at this point.
2148    // E.g.,
2149    // op = add opnd, 1
2150    // idx = sext op
2151    // addr = gep base, idx
2152    // is now:
2153    // promotedOpnd = sext opnd           <- no match here
2154    // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
2155    // addr = gep base, op                <- match
2156    if (MovedAway)
2157      *MovedAway = true;
2158
2159    assert(PromotedOperand &&
2160           "TypePromotionHelper should have filtered out those cases");
2161
2162    ExtAddrMode BackupAddrMode = AddrMode;
2163    unsigned OldSize = AddrModeInsts.size();
2164
2165    if (!MatchAddr(PromotedOperand, Depth) ||
2166        !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts,
2167                               PromotedOperand)) {
2168      AddrMode = BackupAddrMode;
2169      AddrModeInsts.resize(OldSize);
2170      DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
2171      TPT.rollback(LastKnownGood);
2172      return false;
2173    }
2174    return true;
2175  }
2176  }
2177  return false;
2178}
2179
2180/// MatchAddr - If we can, try to add the value of 'Addr' into the current
2181/// addressing mode.  If Addr can't be added to AddrMode this returns false and
2182/// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
2183/// or intptr_t for the target.
2184///
2185bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
2186  // Start a transaction at this point that we will rollback if the matching
2187  // fails.
2188  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2189      TPT.getRestorationPoint();
2190  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
2191    // Fold in immediates if legal for the target.
2192    AddrMode.BaseOffs += CI->getSExtValue();
2193    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2194      return true;
2195    AddrMode.BaseOffs -= CI->getSExtValue();
2196  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
2197    // If this is a global variable, try to fold it into the addressing mode.
2198    if (!AddrMode.BaseGV) {
2199      AddrMode.BaseGV = GV;
2200      if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2201        return true;
2202      AddrMode.BaseGV = nullptr;
2203    }
2204  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
2205    ExtAddrMode BackupAddrMode = AddrMode;
2206    unsigned OldSize = AddrModeInsts.size();
2207
2208    // Check to see if it is possible to fold this operation.
2209    bool MovedAway = false;
2210    if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
2211      // This instruction may have been move away. If so, there is nothing
2212      // to check here.
2213      if (MovedAway)
2214        return true;
2215      // Okay, it's possible to fold this.  Check to see if it is actually
2216      // *profitable* to do so.  We use a simple cost model to avoid increasing
2217      // register pressure too much.
2218      if (I->hasOneUse() ||
2219          IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
2220        AddrModeInsts.push_back(I);
2221        return true;
2222      }
2223
2224      // It isn't profitable to do this, roll back.
2225      //cerr << "NOT FOLDING: " << *I;
2226      AddrMode = BackupAddrMode;
2227      AddrModeInsts.resize(OldSize);
2228      TPT.rollback(LastKnownGood);
2229    }
2230  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
2231    if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
2232      return true;
2233    TPT.rollback(LastKnownGood);
2234  } else if (isa<ConstantPointerNull>(Addr)) {
2235    // Null pointer gets folded without affecting the addressing mode.
2236    return true;
2237  }
2238
2239  // Worse case, the target should support [reg] addressing modes. :)
2240  if (!AddrMode.HasBaseReg) {
2241    AddrMode.HasBaseReg = true;
2242    AddrMode.BaseReg = Addr;
2243    // Still check for legality in case the target supports [imm] but not [i+r].
2244    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2245      return true;
2246    AddrMode.HasBaseReg = false;
2247    AddrMode.BaseReg = nullptr;
2248  }
2249
2250  // If the base register is already taken, see if we can do [r+r].
2251  if (AddrMode.Scale == 0) {
2252    AddrMode.Scale = 1;
2253    AddrMode.ScaledReg = Addr;
2254    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2255      return true;
2256    AddrMode.Scale = 0;
2257    AddrMode.ScaledReg = nullptr;
2258  }
2259  // Couldn't match.
2260  TPT.rollback(LastKnownGood);
2261  return false;
2262}
2263
2264/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
2265/// inline asm call are due to memory operands.  If so, return true, otherwise
2266/// return false.
2267static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
2268                                    const TargetLowering &TLI) {
2269  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
2270  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
2271    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
2272
2273    // Compute the constraint code and ConstraintType to use.
2274    TLI.ComputeConstraintToUse(OpInfo, SDValue());
2275
2276    // If this asm operand is our Value*, and if it isn't an indirect memory
2277    // operand, we can't fold it!
2278    if (OpInfo.CallOperandVal == OpVal &&
2279        (OpInfo.ConstraintType != TargetLowering::C_Memory ||
2280         !OpInfo.isIndirect))
2281      return false;
2282  }
2283
2284  return true;
2285}
2286
2287/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
2288/// memory use.  If we find an obviously non-foldable instruction, return true.
2289/// Add the ultimately found memory instructions to MemoryUses.
2290static bool FindAllMemoryUses(Instruction *I,
2291                SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
2292                              SmallPtrSet<Instruction*, 16> &ConsideredInsts,
2293                              const TargetLowering &TLI) {
2294  // If we already considered this instruction, we're done.
2295  if (!ConsideredInsts.insert(I))
2296    return false;
2297
2298  // If this is an obviously unfoldable instruction, bail out.
2299  if (!MightBeFoldableInst(I))
2300    return true;
2301
2302  // Loop over all the uses, recursively processing them.
2303  for (Use &U : I->uses()) {
2304    Instruction *UserI = cast<Instruction>(U.getUser());
2305
2306    if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
2307      MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
2308      continue;
2309    }
2310
2311    if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
2312      unsigned opNo = U.getOperandNo();
2313      if (opNo == 0) return true; // Storing addr, not into addr.
2314      MemoryUses.push_back(std::make_pair(SI, opNo));
2315      continue;
2316    }
2317
2318    if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
2319      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
2320      if (!IA) return true;
2321
2322      // If this is a memory operand, we're cool, otherwise bail out.
2323      if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
2324        return true;
2325      continue;
2326    }
2327
2328    if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI))
2329      return true;
2330  }
2331
2332  return false;
2333}
2334
2335/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
2336/// the use site that we're folding it into.  If so, there is no cost to
2337/// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
2338/// that we know are live at the instruction already.
2339bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
2340                                                   Value *KnownLive2) {
2341  // If Val is either of the known-live values, we know it is live!
2342  if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
2343    return true;
2344
2345  // All values other than instructions and arguments (e.g. constants) are live.
2346  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
2347
2348  // If Val is a constant sized alloca in the entry block, it is live, this is
2349  // true because it is just a reference to the stack/frame pointer, which is
2350  // live for the whole function.
2351  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
2352    if (AI->isStaticAlloca())
2353      return true;
2354
2355  // Check to see if this value is already used in the memory instruction's
2356  // block.  If so, it's already live into the block at the very least, so we
2357  // can reasonably fold it.
2358  return Val->isUsedInBasicBlock(MemoryInst->getParent());
2359}
2360
2361/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
2362/// mode of the machine to fold the specified instruction into a load or store
2363/// that ultimately uses it.  However, the specified instruction has multiple
2364/// uses.  Given this, it may actually increase register pressure to fold it
2365/// into the load.  For example, consider this code:
2366///
2367///     X = ...
2368///     Y = X+1
2369///     use(Y)   -> nonload/store
2370///     Z = Y+1
2371///     load Z
2372///
2373/// In this case, Y has multiple uses, and can be folded into the load of Z
2374/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
2375/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
2376/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
2377/// number of computations either.
2378///
2379/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
2380/// X was live across 'load Z' for other reasons, we actually *would* want to
2381/// fold the addressing mode in the Z case.  This would make Y die earlier.
2382bool AddressingModeMatcher::
2383IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
2384                                     ExtAddrMode &AMAfter) {
2385  if (IgnoreProfitability) return true;
2386
2387  // AMBefore is the addressing mode before this instruction was folded into it,
2388  // and AMAfter is the addressing mode after the instruction was folded.  Get
2389  // the set of registers referenced by AMAfter and subtract out those
2390  // referenced by AMBefore: this is the set of values which folding in this
2391  // address extends the lifetime of.
2392  //
2393  // Note that there are only two potential values being referenced here,
2394  // BaseReg and ScaleReg (global addresses are always available, as are any
2395  // folded immediates).
2396  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
2397
2398  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
2399  // lifetime wasn't extended by adding this instruction.
2400  if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
2401    BaseReg = nullptr;
2402  if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
2403    ScaledReg = nullptr;
2404
2405  // If folding this instruction (and it's subexprs) didn't extend any live
2406  // ranges, we're ok with it.
2407  if (!BaseReg && !ScaledReg)
2408    return true;
2409
2410  // If all uses of this instruction are ultimately load/store/inlineasm's,
2411  // check to see if their addressing modes will include this instruction.  If
2412  // so, we can fold it into all uses, so it doesn't matter if it has multiple
2413  // uses.
2414  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
2415  SmallPtrSet<Instruction*, 16> ConsideredInsts;
2416  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
2417    return false;  // Has a non-memory, non-foldable use!
2418
2419  // Now that we know that all uses of this instruction are part of a chain of
2420  // computation involving only operations that could theoretically be folded
2421  // into a memory use, loop over each of these uses and see if they could
2422  // *actually* fold the instruction.
2423  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
2424  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
2425    Instruction *User = MemoryUses[i].first;
2426    unsigned OpNo = MemoryUses[i].second;
2427
2428    // Get the access type of this use.  If the use isn't a pointer, we don't
2429    // know what it accesses.
2430    Value *Address = User->getOperand(OpNo);
2431    if (!Address->getType()->isPointerTy())
2432      return false;
2433    Type *AddressAccessTy = Address->getType()->getPointerElementType();
2434
2435    // Do a match against the root of this address, ignoring profitability. This
2436    // will tell us if the addressing mode for the memory operation will
2437    // *actually* cover the shared instruction.
2438    ExtAddrMode Result;
2439    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2440        TPT.getRestorationPoint();
2441    AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
2442                                  MemoryInst, Result, InsertedTruncs,
2443                                  PromotedInsts, TPT);
2444    Matcher.IgnoreProfitability = true;
2445    bool Success = Matcher.MatchAddr(Address, 0);
2446    (void)Success; assert(Success && "Couldn't select *anything*?");
2447
2448    // The match was to check the profitability, the changes made are not
2449    // part of the original matcher. Therefore, they should be dropped
2450    // otherwise the original matcher will not present the right state.
2451    TPT.rollback(LastKnownGood);
2452
2453    // If the match didn't cover I, then it won't be shared by it.
2454    if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
2455                  I) == MatchedAddrModeInsts.end())
2456      return false;
2457
2458    MatchedAddrModeInsts.clear();
2459  }
2460
2461  return true;
2462}
2463
2464} // end anonymous namespace
2465
2466/// IsNonLocalValue - Return true if the specified values are defined in a
2467/// different basic block than BB.
2468static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
2469  if (Instruction *I = dyn_cast<Instruction>(V))
2470    return I->getParent() != BB;
2471  return false;
2472}
2473
2474/// OptimizeMemoryInst - Load and Store Instructions often have
2475/// addressing modes that can do significant amounts of computation.  As such,
2476/// instruction selection will try to get the load or store to do as much
2477/// computation as possible for the program.  The problem is that isel can only
2478/// see within a single block.  As such, we sink as much legal addressing mode
2479/// stuff into the block as possible.
2480///
2481/// This method is used to optimize both load/store and inline asms with memory
2482/// operands.
2483bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
2484                                        Type *AccessTy) {
2485  Value *Repl = Addr;
2486
2487  // Try to collapse single-value PHI nodes.  This is necessary to undo
2488  // unprofitable PRE transformations.
2489  SmallVector<Value*, 8> worklist;
2490  SmallPtrSet<Value*, 16> Visited;
2491  worklist.push_back(Addr);
2492
2493  // Use a worklist to iteratively look through PHI nodes, and ensure that
2494  // the addressing mode obtained from the non-PHI roots of the graph
2495  // are equivalent.
2496  Value *Consensus = nullptr;
2497  unsigned NumUsesConsensus = 0;
2498  bool IsNumUsesConsensusValid = false;
2499  SmallVector<Instruction*, 16> AddrModeInsts;
2500  ExtAddrMode AddrMode;
2501  TypePromotionTransaction TPT;
2502  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2503      TPT.getRestorationPoint();
2504  while (!worklist.empty()) {
2505    Value *V = worklist.back();
2506    worklist.pop_back();
2507
2508    // Break use-def graph loops.
2509    if (!Visited.insert(V)) {
2510      Consensus = nullptr;
2511      break;
2512    }
2513
2514    // For a PHI node, push all of its incoming values.
2515    if (PHINode *P = dyn_cast<PHINode>(V)) {
2516      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
2517        worklist.push_back(P->getIncomingValue(i));
2518      continue;
2519    }
2520
2521    // For non-PHIs, determine the addressing mode being computed.
2522    SmallVector<Instruction*, 16> NewAddrModeInsts;
2523    ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
2524        V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet,
2525        PromotedInsts, TPT);
2526
2527    // This check is broken into two cases with very similar code to avoid using
2528    // getNumUses() as much as possible. Some values have a lot of uses, so
2529    // calling getNumUses() unconditionally caused a significant compile-time
2530    // regression.
2531    if (!Consensus) {
2532      Consensus = V;
2533      AddrMode = NewAddrMode;
2534      AddrModeInsts = NewAddrModeInsts;
2535      continue;
2536    } else if (NewAddrMode == AddrMode) {
2537      if (!IsNumUsesConsensusValid) {
2538        NumUsesConsensus = Consensus->getNumUses();
2539        IsNumUsesConsensusValid = true;
2540      }
2541
2542      // Ensure that the obtained addressing mode is equivalent to that obtained
2543      // for all other roots of the PHI traversal.  Also, when choosing one
2544      // such root as representative, select the one with the most uses in order
2545      // to keep the cost modeling heuristics in AddressingModeMatcher
2546      // applicable.
2547      unsigned NumUses = V->getNumUses();
2548      if (NumUses > NumUsesConsensus) {
2549        Consensus = V;
2550        NumUsesConsensus = NumUses;
2551        AddrModeInsts = NewAddrModeInsts;
2552      }
2553      continue;
2554    }
2555
2556    Consensus = nullptr;
2557    break;
2558  }
2559
2560  // If the addressing mode couldn't be determined, or if multiple different
2561  // ones were determined, bail out now.
2562  if (!Consensus) {
2563    TPT.rollback(LastKnownGood);
2564    return false;
2565  }
2566  TPT.commit();
2567
2568  // Check to see if any of the instructions supersumed by this addr mode are
2569  // non-local to I's BB.
2570  bool AnyNonLocal = false;
2571  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
2572    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
2573      AnyNonLocal = true;
2574      break;
2575    }
2576  }
2577
2578  // If all the instructions matched are already in this BB, don't do anything.
2579  if (!AnyNonLocal) {
2580    DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
2581    return false;
2582  }
2583
2584  // Insert this computation right after this user.  Since our caller is
2585  // scanning from the top of the BB to the bottom, reuse of the expr are
2586  // guaranteed to happen later.
2587  IRBuilder<> Builder(MemoryInst);
2588
2589  // Now that we determined the addressing expression we want to use and know
2590  // that we have to sink it into this block.  Check to see if we have already
2591  // done this for some other load/store instr in this block.  If so, reuse the
2592  // computation.
2593  Value *&SunkAddr = SunkAddrs[Addr];
2594  if (SunkAddr) {
2595    DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
2596                 << *MemoryInst << "\n");
2597    if (SunkAddr->getType() != Addr->getType())
2598      SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
2599  } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
2600               TM && TM->getSubtarget<TargetSubtargetInfo>().useAA())) {
2601    // By default, we use the GEP-based method when AA is used later. This
2602    // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
2603    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
2604                 << *MemoryInst << "\n");
2605    Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
2606    Value *ResultPtr = nullptr, *ResultIndex = nullptr;
2607
2608    // First, find the pointer.
2609    if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
2610      ResultPtr = AddrMode.BaseReg;
2611      AddrMode.BaseReg = nullptr;
2612    }
2613
2614    if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
2615      // We can't add more than one pointer together, nor can we scale a
2616      // pointer (both of which seem meaningless).
2617      if (ResultPtr || AddrMode.Scale != 1)
2618        return false;
2619
2620      ResultPtr = AddrMode.ScaledReg;
2621      AddrMode.Scale = 0;
2622    }
2623
2624    if (AddrMode.BaseGV) {
2625      if (ResultPtr)
2626        return false;
2627
2628      ResultPtr = AddrMode.BaseGV;
2629    }
2630
2631    // If the real base value actually came from an inttoptr, then the matcher
2632    // will look through it and provide only the integer value. In that case,
2633    // use it here.
2634    if (!ResultPtr && AddrMode.BaseReg) {
2635      ResultPtr =
2636        Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
2637      AddrMode.BaseReg = nullptr;
2638    } else if (!ResultPtr && AddrMode.Scale == 1) {
2639      ResultPtr =
2640        Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
2641      AddrMode.Scale = 0;
2642    }
2643
2644    if (!ResultPtr &&
2645        !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
2646      SunkAddr = Constant::getNullValue(Addr->getType());
2647    } else if (!ResultPtr) {
2648      return false;
2649    } else {
2650      Type *I8PtrTy =
2651        Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
2652
2653      // Start with the base register. Do this first so that subsequent address
2654      // matching finds it last, which will prevent it from trying to match it
2655      // as the scaled value in case it happens to be a mul. That would be
2656      // problematic if we've sunk a different mul for the scale, because then
2657      // we'd end up sinking both muls.
2658      if (AddrMode.BaseReg) {
2659        Value *V = AddrMode.BaseReg;
2660        if (V->getType() != IntPtrTy)
2661          V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
2662
2663        ResultIndex = V;
2664      }
2665
2666      // Add the scale value.
2667      if (AddrMode.Scale) {
2668        Value *V = AddrMode.ScaledReg;
2669        if (V->getType() == IntPtrTy) {
2670          // done.
2671        } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
2672                   cast<IntegerType>(V->getType())->getBitWidth()) {
2673          V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
2674        } else {
2675          // It is only safe to sign extend the BaseReg if we know that the math
2676          // required to create it did not overflow before we extend it. Since
2677          // the original IR value was tossed in favor of a constant back when
2678          // the AddrMode was created we need to bail out gracefully if widths
2679          // do not match instead of extending it.
2680          Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
2681          if (I && (ResultIndex != AddrMode.BaseReg))
2682            I->eraseFromParent();
2683          return false;
2684        }
2685
2686        if (AddrMode.Scale != 1)
2687          V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
2688                                "sunkaddr");
2689        if (ResultIndex)
2690          ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
2691        else
2692          ResultIndex = V;
2693      }
2694
2695      // Add in the Base Offset if present.
2696      if (AddrMode.BaseOffs) {
2697        Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
2698        if (ResultIndex) {
2699	  // We need to add this separately from the scale above to help with
2700	  // SDAG consecutive load/store merging.
2701          if (ResultPtr->getType() != I8PtrTy)
2702            ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
2703          ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr");
2704        }
2705
2706        ResultIndex = V;
2707      }
2708
2709      if (!ResultIndex) {
2710        SunkAddr = ResultPtr;
2711      } else {
2712        if (ResultPtr->getType() != I8PtrTy)
2713          ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
2714        SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr");
2715      }
2716
2717      if (SunkAddr->getType() != Addr->getType())
2718        SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
2719    }
2720  } else {
2721    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
2722                 << *MemoryInst << "\n");
2723    Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
2724    Value *Result = nullptr;
2725
2726    // Start with the base register. Do this first so that subsequent address
2727    // matching finds it last, which will prevent it from trying to match it
2728    // as the scaled value in case it happens to be a mul. That would be
2729    // problematic if we've sunk a different mul for the scale, because then
2730    // we'd end up sinking both muls.
2731    if (AddrMode.BaseReg) {
2732      Value *V = AddrMode.BaseReg;
2733      if (V->getType()->isPointerTy())
2734        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
2735      if (V->getType() != IntPtrTy)
2736        V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
2737      Result = V;
2738    }
2739
2740    // Add the scale value.
2741    if (AddrMode.Scale) {
2742      Value *V = AddrMode.ScaledReg;
2743      if (V->getType() == IntPtrTy) {
2744        // done.
2745      } else if (V->getType()->isPointerTy()) {
2746        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
2747      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
2748                 cast<IntegerType>(V->getType())->getBitWidth()) {
2749        V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
2750      } else {
2751        // It is only safe to sign extend the BaseReg if we know that the math
2752        // required to create it did not overflow before we extend it. Since
2753        // the original IR value was tossed in favor of a constant back when
2754        // the AddrMode was created we need to bail out gracefully if widths
2755        // do not match instead of extending it.
2756        Instruction *I = dyn_cast_or_null<Instruction>(Result);
2757        if (I && (Result != AddrMode.BaseReg))
2758          I->eraseFromParent();
2759        return false;
2760      }
2761      if (AddrMode.Scale != 1)
2762        V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
2763                              "sunkaddr");
2764      if (Result)
2765        Result = Builder.CreateAdd(Result, V, "sunkaddr");
2766      else
2767        Result = V;
2768    }
2769
2770    // Add in the BaseGV if present.
2771    if (AddrMode.BaseGV) {
2772      Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
2773      if (Result)
2774        Result = Builder.CreateAdd(Result, V, "sunkaddr");
2775      else
2776        Result = V;
2777    }
2778
2779    // Add in the Base Offset if present.
2780    if (AddrMode.BaseOffs) {
2781      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
2782      if (Result)
2783        Result = Builder.CreateAdd(Result, V, "sunkaddr");
2784      else
2785        Result = V;
2786    }
2787
2788    if (!Result)
2789      SunkAddr = Constant::getNullValue(Addr->getType());
2790    else
2791      SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
2792  }
2793
2794  MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
2795
2796  // If we have no uses, recursively delete the value and all dead instructions
2797  // using it.
2798  if (Repl->use_empty()) {
2799    // This can cause recursive deletion, which can invalidate our iterator.
2800    // Use a WeakVH to hold onto it in case this happens.
2801    WeakVH IterHandle(CurInstIterator);
2802    BasicBlock *BB = CurInstIterator->getParent();
2803
2804    RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
2805
2806    if (IterHandle != CurInstIterator) {
2807      // If the iterator instruction was recursively deleted, start over at the
2808      // start of the block.
2809      CurInstIterator = BB->begin();
2810      SunkAddrs.clear();
2811    }
2812  }
2813  ++NumMemoryInsts;
2814  return true;
2815}
2816
2817/// OptimizeInlineAsmInst - If there are any memory operands, use
2818/// OptimizeMemoryInst to sink their address computing into the block when
2819/// possible / profitable.
2820bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
2821  bool MadeChange = false;
2822
2823  TargetLowering::AsmOperandInfoVector
2824    TargetConstraints = TLI->ParseConstraints(CS);
2825  unsigned ArgNo = 0;
2826  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
2827    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
2828
2829    // Compute the constraint code and ConstraintType to use.
2830    TLI->ComputeConstraintToUse(OpInfo, SDValue());
2831
2832    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
2833        OpInfo.isIndirect) {
2834      Value *OpVal = CS->getArgOperand(ArgNo++);
2835      MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
2836    } else if (OpInfo.Type == InlineAsm::isInput)
2837      ArgNo++;
2838  }
2839
2840  return MadeChange;
2841}
2842
2843/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
2844/// basic block as the load, unless conditions are unfavorable. This allows
2845/// SelectionDAG to fold the extend into the load.
2846///
2847bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
2848  // Look for a load being extended.
2849  LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
2850  if (!LI) return false;
2851
2852  // If they're already in the same block, there's nothing to do.
2853  if (LI->getParent() == I->getParent())
2854    return false;
2855
2856  // If the load has other users and the truncate is not free, this probably
2857  // isn't worthwhile.
2858  if (!LI->hasOneUse() &&
2859      TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
2860              !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
2861      !TLI->isTruncateFree(I->getType(), LI->getType()))
2862    return false;
2863
2864  // Check whether the target supports casts folded into loads.
2865  unsigned LType;
2866  if (isa<ZExtInst>(I))
2867    LType = ISD::ZEXTLOAD;
2868  else {
2869    assert(isa<SExtInst>(I) && "Unexpected ext type!");
2870    LType = ISD::SEXTLOAD;
2871  }
2872  if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
2873    return false;
2874
2875  // Move the extend into the same block as the load, so that SelectionDAG
2876  // can fold it.
2877  I->removeFromParent();
2878  I->insertAfter(LI);
2879  ++NumExtsMoved;
2880  return true;
2881}
2882
2883bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
2884  BasicBlock *DefBB = I->getParent();
2885
2886  // If the result of a {s|z}ext and its source are both live out, rewrite all
2887  // other uses of the source with result of extension.
2888  Value *Src = I->getOperand(0);
2889  if (Src->hasOneUse())
2890    return false;
2891
2892  // Only do this xform if truncating is free.
2893  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
2894    return false;
2895
2896  // Only safe to perform the optimization if the source is also defined in
2897  // this block.
2898  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
2899    return false;
2900
2901  bool DefIsLiveOut = false;
2902  for (User *U : I->users()) {
2903    Instruction *UI = cast<Instruction>(U);
2904
2905    // Figure out which BB this ext is used in.
2906    BasicBlock *UserBB = UI->getParent();
2907    if (UserBB == DefBB) continue;
2908    DefIsLiveOut = true;
2909    break;
2910  }
2911  if (!DefIsLiveOut)
2912    return false;
2913
2914  // Make sure none of the uses are PHI nodes.
2915  for (User *U : Src->users()) {
2916    Instruction *UI = cast<Instruction>(U);
2917    BasicBlock *UserBB = UI->getParent();
2918    if (UserBB == DefBB) continue;
2919    // Be conservative. We don't want this xform to end up introducing
2920    // reloads just before load / store instructions.
2921    if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
2922      return false;
2923  }
2924
2925  // InsertedTruncs - Only insert one trunc in each block once.
2926  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
2927
2928  bool MadeChange = false;
2929  for (Use &U : Src->uses()) {
2930    Instruction *User = cast<Instruction>(U.getUser());
2931
2932    // Figure out which BB this ext is used in.
2933    BasicBlock *UserBB = User->getParent();
2934    if (UserBB == DefBB) continue;
2935
2936    // Both src and def are live in this block. Rewrite the use.
2937    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
2938
2939    if (!InsertedTrunc) {
2940      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
2941      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
2942      InsertedTruncsSet.insert(InsertedTrunc);
2943    }
2944
2945    // Replace a use of the {s|z}ext source with a use of the result.
2946    U = InsertedTrunc;
2947    ++NumExtUses;
2948    MadeChange = true;
2949  }
2950
2951  return MadeChange;
2952}
2953
2954/// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
2955/// turned into an explicit branch.
2956static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
2957  // FIXME: This should use the same heuristics as IfConversion to determine
2958  // whether a select is better represented as a branch.  This requires that
2959  // branch probability metadata is preserved for the select, which is not the
2960  // case currently.
2961
2962  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2963
2964  // If the branch is predicted right, an out of order CPU can avoid blocking on
2965  // the compare.  Emit cmovs on compares with a memory operand as branches to
2966  // avoid stalls on the load from memory.  If the compare has more than one use
2967  // there's probably another cmov or setcc around so it's not worth emitting a
2968  // branch.
2969  if (!Cmp)
2970    return false;
2971
2972  Value *CmpOp0 = Cmp->getOperand(0);
2973  Value *CmpOp1 = Cmp->getOperand(1);
2974
2975  // We check that the memory operand has one use to avoid uses of the loaded
2976  // value directly after the compare, making branches unprofitable.
2977  return Cmp->hasOneUse() &&
2978         ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
2979          (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
2980}
2981
2982
2983/// If we have a SelectInst that will likely profit from branch prediction,
2984/// turn it into a branch.
2985bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
2986  bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
2987
2988  // Can we convert the 'select' to CF ?
2989  if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
2990    return false;
2991
2992  TargetLowering::SelectSupportKind SelectKind;
2993  if (VectorCond)
2994    SelectKind = TargetLowering::VectorMaskSelect;
2995  else if (SI->getType()->isVectorTy())
2996    SelectKind = TargetLowering::ScalarCondVectorVal;
2997  else
2998    SelectKind = TargetLowering::ScalarValSelect;
2999
3000  // Do we have efficient codegen support for this kind of 'selects' ?
3001  if (TLI->isSelectSupported(SelectKind)) {
3002    // We have efficient codegen support for the select instruction.
3003    // Check if it is profitable to keep this 'select'.
3004    if (!TLI->isPredictableSelectExpensive() ||
3005        !isFormingBranchFromSelectProfitable(SI))
3006      return false;
3007  }
3008
3009  ModifiedDT = true;
3010
3011  // First, we split the block containing the select into 2 blocks.
3012  BasicBlock *StartBlock = SI->getParent();
3013  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
3014  BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
3015
3016  // Create a new block serving as the landing pad for the branch.
3017  BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
3018                                             NextBlock->getParent(), NextBlock);
3019
3020  // Move the unconditional branch from the block with the select in it into our
3021  // landing pad block.
3022  StartBlock->getTerminator()->eraseFromParent();
3023  BranchInst::Create(NextBlock, SmallBlock);
3024
3025  // Insert the real conditional branch based on the original condition.
3026  BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
3027
3028  // The select itself is replaced with a PHI Node.
3029  PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
3030  PN->takeName(SI);
3031  PN->addIncoming(SI->getTrueValue(), StartBlock);
3032  PN->addIncoming(SI->getFalseValue(), SmallBlock);
3033  SI->replaceAllUsesWith(PN);
3034  SI->eraseFromParent();
3035
3036  // Instruct OptimizeBlock to skip to the next block.
3037  CurInstIterator = StartBlock->end();
3038  ++NumSelectsExpanded;
3039  return true;
3040}
3041
3042static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
3043  SmallVector<int, 16> Mask(SVI->getShuffleMask());
3044  int SplatElem = -1;
3045  for (unsigned i = 0; i < Mask.size(); ++i) {
3046    if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
3047      return false;
3048    SplatElem = Mask[i];
3049  }
3050
3051  return true;
3052}
3053
3054/// Some targets have expensive vector shifts if the lanes aren't all the same
3055/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
3056/// it's often worth sinking a shufflevector splat down to its use so that
3057/// codegen can spot all lanes are identical.
3058bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
3059  BasicBlock *DefBB = SVI->getParent();
3060
3061  // Only do this xform if variable vector shifts are particularly expensive.
3062  if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
3063    return false;
3064
3065  // We only expect better codegen by sinking a shuffle if we can recognise a
3066  // constant splat.
3067  if (!isBroadcastShuffle(SVI))
3068    return false;
3069
3070  // InsertedShuffles - Only insert a shuffle in each block once.
3071  DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
3072
3073  bool MadeChange = false;
3074  for (User *U : SVI->users()) {
3075    Instruction *UI = cast<Instruction>(U);
3076
3077    // Figure out which BB this ext is used in.
3078    BasicBlock *UserBB = UI->getParent();
3079    if (UserBB == DefBB) continue;
3080
3081    // For now only apply this when the splat is used by a shift instruction.
3082    if (!UI->isShift()) continue;
3083
3084    // Everything checks out, sink the shuffle if the user's block doesn't
3085    // already have a copy.
3086    Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
3087
3088    if (!InsertedShuffle) {
3089      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
3090      InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0),
3091                                              SVI->getOperand(1),
3092                                              SVI->getOperand(2), "", InsertPt);
3093    }
3094
3095    UI->replaceUsesOfWith(SVI, InsertedShuffle);
3096    MadeChange = true;
3097  }
3098
3099  // If we removed all uses, nuke the shuffle.
3100  if (SVI->use_empty()) {
3101    SVI->eraseFromParent();
3102    MadeChange = true;
3103  }
3104
3105  return MadeChange;
3106}
3107
3108bool CodeGenPrepare::OptimizeInst(Instruction *I) {
3109  if (PHINode *P = dyn_cast<PHINode>(I)) {
3110    // It is possible for very late stage optimizations (such as SimplifyCFG)
3111    // to introduce PHI nodes too late to be cleaned up.  If we detect such a
3112    // trivial PHI, go ahead and zap it here.
3113    if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr,
3114                                       TLInfo, DT)) {
3115      P->replaceAllUsesWith(V);
3116      P->eraseFromParent();
3117      ++NumPHIsElim;
3118      return true;
3119    }
3120    return false;
3121  }
3122
3123  if (CastInst *CI = dyn_cast<CastInst>(I)) {
3124    // If the source of the cast is a constant, then this should have
3125    // already been constant folded.  The only reason NOT to constant fold
3126    // it is if something (e.g. LSR) was careful to place the constant
3127    // evaluation in a block other than then one that uses it (e.g. to hoist
3128    // the address of globals out of a loop).  If this is the case, we don't
3129    // want to forward-subst the cast.
3130    if (isa<Constant>(CI->getOperand(0)))
3131      return false;
3132
3133    if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
3134      return true;
3135
3136    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
3137      /// Sink a zext or sext into its user blocks if the target type doesn't
3138      /// fit in one register
3139      if (TLI && TLI->getTypeAction(CI->getContext(),
3140                                    TLI->getValueType(CI->getType())) ==
3141                     TargetLowering::TypeExpandInteger) {
3142        return SinkCast(CI);
3143      } else {
3144        bool MadeChange = MoveExtToFormExtLoad(I);
3145        return MadeChange | OptimizeExtUses(I);
3146      }
3147    }
3148    return false;
3149  }
3150
3151  if (CmpInst *CI = dyn_cast<CmpInst>(I))
3152    if (!TLI || !TLI->hasMultipleConditionRegisters())
3153      return OptimizeCmpExpression(CI);
3154
3155  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3156    if (TLI)
3157      return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
3158    return false;
3159  }
3160
3161  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3162    if (TLI)
3163      return OptimizeMemoryInst(I, SI->getOperand(1),
3164                                SI->getOperand(0)->getType());
3165    return false;
3166  }
3167
3168  BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
3169
3170  if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
3171                BinOp->getOpcode() == Instruction::LShr)) {
3172    ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
3173    if (TLI && CI && TLI->hasExtractBitsInsn())
3174      return OptimizeExtractBits(BinOp, CI, *TLI);
3175
3176    return false;
3177  }
3178
3179  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3180    if (GEPI->hasAllZeroIndices()) {
3181      /// The GEP operand must be a pointer, so must its result -> BitCast
3182      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
3183                                        GEPI->getName(), GEPI);
3184      GEPI->replaceAllUsesWith(NC);
3185      GEPI->eraseFromParent();
3186      ++NumGEPsElim;
3187      OptimizeInst(NC);
3188      return true;
3189    }
3190    return false;
3191  }
3192
3193  if (CallInst *CI = dyn_cast<CallInst>(I))
3194    return OptimizeCallInst(CI);
3195
3196  if (SelectInst *SI = dyn_cast<SelectInst>(I))
3197    return OptimizeSelectInst(SI);
3198
3199  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
3200    return OptimizeShuffleVectorInst(SVI);
3201
3202  return false;
3203}
3204
3205// In this pass we look for GEP and cast instructions that are used
3206// across basic blocks and rewrite them to improve basic-block-at-a-time
3207// selection.
3208bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
3209  SunkAddrs.clear();
3210  bool MadeChange = false;
3211
3212  CurInstIterator = BB.begin();
3213  while (CurInstIterator != BB.end())
3214    MadeChange |= OptimizeInst(CurInstIterator++);
3215
3216  MadeChange |= DupRetToEnableTailCallOpts(&BB);
3217
3218  return MadeChange;
3219}
3220
3221// llvm.dbg.value is far away from the value then iSel may not be able
3222// handle it properly. iSel will drop llvm.dbg.value if it can not
3223// find a node corresponding to the value.
3224bool CodeGenPrepare::PlaceDbgValues(Function &F) {
3225  bool MadeChange = false;
3226  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
3227    Instruction *PrevNonDbgInst = nullptr;
3228    for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
3229      Instruction *Insn = BI; ++BI;
3230      DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
3231      // Leave dbg.values that refer to an alloca alone. These
3232      // instrinsics describe the address of a variable (= the alloca)
3233      // being taken.  They should not be moved next to the alloca
3234      // (and to the beginning of the scope), but rather stay close to
3235      // where said address is used.
3236      if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
3237        PrevNonDbgInst = Insn;
3238        continue;
3239      }
3240
3241      Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
3242      if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
3243        DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
3244        DVI->removeFromParent();
3245        if (isa<PHINode>(VI))
3246          DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
3247        else
3248          DVI->insertAfter(VI);
3249        MadeChange = true;
3250        ++NumDbgValueMoved;
3251      }
3252    }
3253  }
3254  return MadeChange;
3255}
3256
3257// If there is a sequence that branches based on comparing a single bit
3258// against zero that can be combined into a single instruction, and the
3259// target supports folding these into a single instruction, sink the
3260// mask and compare into the branch uses. Do this before OptimizeBlock ->
3261// OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
3262// searched for.
3263bool CodeGenPrepare::sinkAndCmp(Function &F) {
3264  if (!EnableAndCmpSinking)
3265    return false;
3266  if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
3267    return false;
3268  bool MadeChange = false;
3269  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
3270    BasicBlock *BB = I++;
3271
3272    // Does this BB end with the following?
3273    //   %andVal = and %val, #single-bit-set
3274    //   %icmpVal = icmp %andResult, 0
3275    //   br i1 %cmpVal label %dest1, label %dest2"
3276    BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
3277    if (!Brcc || !Brcc->isConditional())
3278      continue;
3279    ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
3280    if (!Cmp || Cmp->getParent() != BB)
3281      continue;
3282    ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
3283    if (!Zero || !Zero->isZero())
3284      continue;
3285    Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
3286    if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
3287      continue;
3288    ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
3289    if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
3290      continue;
3291    DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
3292
3293    // Push the "and; icmp" for any users that are conditional branches.
3294    // Since there can only be one branch use per BB, we don't need to keep
3295    // track of which BBs we insert into.
3296    for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
3297         UI != E; ) {
3298      Use &TheUse = *UI;
3299      // Find brcc use.
3300      BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
3301      ++UI;
3302      if (!BrccUser || !BrccUser->isConditional())
3303        continue;
3304      BasicBlock *UserBB = BrccUser->getParent();
3305      if (UserBB == BB) continue;
3306      DEBUG(dbgs() << "found Brcc use\n");
3307
3308      // Sink the "and; icmp" to use.
3309      MadeChange = true;
3310      BinaryOperator *NewAnd =
3311        BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
3312                                  BrccUser);
3313      CmpInst *NewCmp =
3314        CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
3315                        "", BrccUser);
3316      TheUse = NewCmp;
3317      ++NumAndCmpsMoved;
3318      DEBUG(BrccUser->getParent()->dump());
3319    }
3320  }
3321  return MadeChange;
3322}
3323