CriticalAntiDepBreaker.cpp revision 14d1dd95c7c969e07defebb6fe65df2fae1b30cf
1//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CriticalAntiDepBreaker class, which
11// implements register anti-dependence breaking along a blocks
12// critical path during post-RA scheduler.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "post-RA-sched"
17#include "CriticalAntiDepBreaker.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetRegisterInfo.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26
27using namespace llvm;
28
29CriticalAntiDepBreaker::
30CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
31  AntiDepBreaker(), MF(MFi),
32  MRI(MF.getRegInfo()),
33  TII(MF.getTarget().getInstrInfo()),
34  TRI(MF.getTarget().getRegisterInfo()),
35  RegClassInfo(RCI),
36  Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
37  KillIndices(TRI->getNumRegs(), 0),
38  DefIndices(TRI->getNumRegs(), 0),
39  KeepRegs(TRI->getNumRegs(), false) {}
40
41CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
42}
43
44void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
45  const unsigned BBSize = BB->size();
46  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
47    // Clear out the register class data.
48    Classes[i] = static_cast<const TargetRegisterClass *>(0);
49
50    // Initialize the indices to indicate that no registers are live.
51    KillIndices[i] = ~0u;
52    DefIndices[i] = BBSize;
53  }
54
55  // Clear "do not change" set.
56  KeepRegs.reset();
57
58  bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
59
60  // Determine the live-out physregs for this block.
61  if (IsReturnBlock) {
62    // In a return block, examine the function live-out regs.
63    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
64         E = MRI.liveout_end(); I != E; ++I) {
65      for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
66        unsigned Reg = *AI;
67        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
68        KillIndices[Reg] = BBSize;
69        DefIndices[Reg] = ~0u;
70      }
71    }
72  }
73
74  // In a non-return block, examine the live-in regs of all successors.
75  // Note a return block can have successors if the return instruction is
76  // predicated.
77  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
78         SE = BB->succ_end(); SI != SE; ++SI)
79    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
80           E = (*SI)->livein_end(); I != E; ++I) {
81      for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
82        unsigned Reg = *AI;
83        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
84        KillIndices[Reg] = BBSize;
85        DefIndices[Reg] = ~0u;
86      }
87    }
88
89  // Mark live-out callee-saved registers. In a return block this is
90  // all callee-saved registers. In non-return this is any
91  // callee-saved register that is not saved in the prolog.
92  const MachineFrameInfo *MFI = MF.getFrameInfo();
93  BitVector Pristine = MFI->getPristineRegs(BB);
94  for (const uint16_t *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
95    if (!IsReturnBlock && !Pristine.test(*I)) continue;
96    for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
97      unsigned Reg = *AI;
98      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
99      KillIndices[Reg] = BBSize;
100      DefIndices[Reg] = ~0u;
101    }
102  }
103}
104
105void CriticalAntiDepBreaker::FinishBlock() {
106  RegRefs.clear();
107  KeepRegs.reset();
108}
109
110void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
111                                     unsigned InsertPosIndex) {
112  if (MI->isDebugValue())
113    return;
114  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
115
116  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
117    if (KillIndices[Reg] != ~0u) {
118      // If Reg is currently live, then mark that it can't be renamed as
119      // we don't know the extent of its live-range anymore (now that it
120      // has been scheduled).
121      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
122      KillIndices[Reg] = Count;
123    } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
124      // Any register which was defined within the previous scheduling region
125      // may have been rescheduled and its lifetime may overlap with registers
126      // in ways not reflected in our current liveness state. For each such
127      // register, adjust the liveness state to be conservatively correct.
128      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
129
130      // Move the def index to the end of the previous region, to reflect
131      // that the def could theoretically have been scheduled at the end.
132      DefIndices[Reg] = InsertPosIndex;
133    }
134  }
135
136  PrescanInstruction(MI);
137  ScanInstruction(MI, Count);
138}
139
140/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
141/// critical path.
142static const SDep *CriticalPathStep(const SUnit *SU) {
143  const SDep *Next = 0;
144  unsigned NextDepth = 0;
145  // Find the predecessor edge with the greatest depth.
146  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
147       P != PE; ++P) {
148    const SUnit *PredSU = P->getSUnit();
149    unsigned PredLatency = P->getLatency();
150    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
151    // In the case of a latency tie, prefer an anti-dependency edge over
152    // other types of edges.
153    if (NextDepth < PredTotalLatency ||
154        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
155      NextDepth = PredTotalLatency;
156      Next = &*P;
157    }
158  }
159  return Next;
160}
161
162void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
163  // It's not safe to change register allocation for source operands of
164  // that have special allocation requirements. Also assume all registers
165  // used in a call must not be changed (ABI).
166  // FIXME: The issue with predicated instruction is more complex. We are being
167  // conservative here because the kill markers cannot be trusted after
168  // if-conversion:
169  // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
170  // ...
171  // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
172  // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
173  // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
174  //
175  // The first R6 kill is not really a kill since it's killed by a predicated
176  // instruction which may not be executed. The second R6 def may or may not
177  // re-define R6 so it's not safe to change it since the last R6 use cannot be
178  // changed.
179  bool Special = MI->isCall() ||
180    MI->hasExtraSrcRegAllocReq() ||
181    TII->isPredicated(MI);
182
183  // Scan the register operands for this instruction and update
184  // Classes and RegRefs.
185  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
186    MachineOperand &MO = MI->getOperand(i);
187    if (!MO.isReg()) continue;
188    unsigned Reg = MO.getReg();
189    if (Reg == 0) continue;
190    const TargetRegisterClass *NewRC = 0;
191
192    if (i < MI->getDesc().getNumOperands())
193      NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
194
195    // For now, only allow the register to be changed if its register
196    // class is consistent across all uses.
197    if (!Classes[Reg] && NewRC)
198      Classes[Reg] = NewRC;
199    else if (!NewRC || Classes[Reg] != NewRC)
200      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
201
202    // Now check for aliases.
203    for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
204      // If an alias of the reg is used during the live range, give up.
205      // Note that this allows us to skip checking if AntiDepReg
206      // overlaps with any of the aliases, among other things.
207      unsigned AliasReg = *AI;
208      if (Classes[AliasReg]) {
209        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
210        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
211      }
212    }
213
214    // If we're still willing to consider this register, note the reference.
215    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
216      RegRefs.insert(std::make_pair(Reg, &MO));
217
218    if (MO.isUse() && Special) {
219      if (!KeepRegs.test(Reg)) {
220        KeepRegs.set(Reg);
221        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
222          KeepRegs.set(*SubRegs);
223      }
224    }
225  }
226}
227
228void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
229                                             unsigned Count) {
230  // Update liveness.
231  // Proceeding upwards, registers that are defed but not used in this
232  // instruction are now dead.
233
234  if (!TII->isPredicated(MI)) {
235    // Predicated defs are modeled as read + write, i.e. similar to two
236    // address updates.
237    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
238      MachineOperand &MO = MI->getOperand(i);
239
240      if (MO.isRegMask())
241        for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
242          if (MO.clobbersPhysReg(i)) {
243            DefIndices[i] = Count;
244            KillIndices[i] = ~0u;
245            KeepRegs.reset(i);
246            Classes[i] = 0;
247            RegRefs.erase(i);
248          }
249
250      if (!MO.isReg()) continue;
251      unsigned Reg = MO.getReg();
252      if (Reg == 0) continue;
253      if (!MO.isDef()) continue;
254      // Ignore two-addr defs.
255      if (MI->isRegTiedToUseOperand(i)) continue;
256
257      DefIndices[Reg] = Count;
258      KillIndices[Reg] = ~0u;
259      assert(((KillIndices[Reg] == ~0u) !=
260              (DefIndices[Reg] == ~0u)) &&
261             "Kill and Def maps aren't consistent for Reg!");
262      KeepRegs.reset(Reg);
263      Classes[Reg] = 0;
264      RegRefs.erase(Reg);
265      // Repeat, for all subregs.
266      for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
267        unsigned SubregReg = *SubRegs;
268        DefIndices[SubregReg] = Count;
269        KillIndices[SubregReg] = ~0u;
270        KeepRegs.reset(SubregReg);
271        Classes[SubregReg] = 0;
272        RegRefs.erase(SubregReg);
273      }
274      // Conservatively mark super-registers as unusable.
275      for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
276        Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
277    }
278  }
279  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
280    MachineOperand &MO = MI->getOperand(i);
281    if (!MO.isReg()) continue;
282    unsigned Reg = MO.getReg();
283    if (Reg == 0) continue;
284    if (!MO.isUse()) continue;
285
286    const TargetRegisterClass *NewRC = 0;
287    if (i < MI->getDesc().getNumOperands())
288      NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
289
290    // For now, only allow the register to be changed if its register
291    // class is consistent across all uses.
292    if (!Classes[Reg] && NewRC)
293      Classes[Reg] = NewRC;
294    else if (!NewRC || Classes[Reg] != NewRC)
295      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
296
297    RegRefs.insert(std::make_pair(Reg, &MO));
298
299    // It wasn't previously live but now it is, this is a kill.
300    if (KillIndices[Reg] == ~0u) {
301      KillIndices[Reg] = Count;
302      DefIndices[Reg] = ~0u;
303          assert(((KillIndices[Reg] == ~0u) !=
304                  (DefIndices[Reg] == ~0u)) &&
305               "Kill and Def maps aren't consistent for Reg!");
306    }
307    // Repeat, for all aliases.
308    for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
309      unsigned AliasReg = *AI;
310      if (KillIndices[AliasReg] == ~0u) {
311        KillIndices[AliasReg] = Count;
312        DefIndices[AliasReg] = ~0u;
313      }
314    }
315  }
316}
317
318// Check all machine operands that reference the antidependent register and must
319// be replaced by NewReg. Return true if any of their parent instructions may
320// clobber the new register.
321//
322// Note: AntiDepReg may be referenced by a two-address instruction such that
323// it's use operand is tied to a def operand. We guard against the case in which
324// the two-address instruction also defines NewReg, as may happen with
325// pre/postincrement loads. In this case, both the use and def operands are in
326// RegRefs because the def is inserted by PrescanInstruction and not erased
327// during ScanInstruction. So checking for an instructions with definitions of
328// both NewReg and AntiDepReg covers it.
329bool
330CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
331                                                RegRefIter RegRefEnd,
332                                                unsigned NewReg)
333{
334  for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
335    MachineOperand *RefOper = I->second;
336
337    // Don't allow the instruction defining AntiDepReg to earlyclobber its
338    // operands, in case they may be assigned to NewReg. In this case antidep
339    // breaking must fail, but it's too rare to bother optimizing.
340    if (RefOper->isDef() && RefOper->isEarlyClobber())
341      return true;
342
343    // Handle cases in which this instructions defines NewReg.
344    MachineInstr *MI = RefOper->getParent();
345    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
346      const MachineOperand &CheckOper = MI->getOperand(i);
347
348      if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
349        return true;
350
351      if (!CheckOper.isReg() || !CheckOper.isDef() ||
352          CheckOper.getReg() != NewReg)
353        continue;
354
355      // Don't allow the instruction to define NewReg and AntiDepReg.
356      // When AntiDepReg is renamed it will be an illegal op.
357      if (RefOper->isDef())
358        return true;
359
360      // Don't allow an instruction using AntiDepReg to be earlyclobbered by
361      // NewReg
362      if (CheckOper.isEarlyClobber())
363        return true;
364
365      // Don't allow inline asm to define NewReg at all. Who know what it's
366      // doing with it.
367      if (MI->isInlineAsm())
368        return true;
369    }
370  }
371  return false;
372}
373
374unsigned
375CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin,
376                                                 RegRefIter RegRefEnd,
377                                                 unsigned AntiDepReg,
378                                                 unsigned LastNewReg,
379                                                 const TargetRegisterClass *RC)
380{
381  ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
382  for (unsigned i = 0; i != Order.size(); ++i) {
383    unsigned NewReg = Order[i];
384    // Don't replace a register with itself.
385    if (NewReg == AntiDepReg) continue;
386    // Don't replace a register with one that was recently used to repair
387    // an anti-dependence with this AntiDepReg, because that would
388    // re-introduce that anti-dependence.
389    if (NewReg == LastNewReg) continue;
390    // If any instructions that define AntiDepReg also define the NewReg, it's
391    // not suitable.  For example, Instruction with multiple definitions can
392    // result in this condition.
393    if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
394    // If NewReg is dead and NewReg's most recent def is not before
395    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
396    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
397           && "Kill and Def maps aren't consistent for AntiDepReg!");
398    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
399           && "Kill and Def maps aren't consistent for NewReg!");
400    if (KillIndices[NewReg] != ~0u ||
401        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
402        KillIndices[AntiDepReg] > DefIndices[NewReg])
403      continue;
404    return NewReg;
405  }
406
407  // No registers are free and available!
408  return 0;
409}
410
411unsigned CriticalAntiDepBreaker::
412BreakAntiDependencies(const std::vector<SUnit>& SUnits,
413                      MachineBasicBlock::iterator Begin,
414                      MachineBasicBlock::iterator End,
415                      unsigned InsertPosIndex,
416                      DbgValueVector &DbgValues) {
417  // The code below assumes that there is at least one instruction,
418  // so just duck out immediately if the block is empty.
419  if (SUnits.empty()) return 0;
420
421  // Keep a map of the MachineInstr*'s back to the SUnit representing them.
422  // This is used for updating debug information.
423  //
424  // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
425  DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
426
427  // Find the node at the bottom of the critical path.
428  const SUnit *Max = 0;
429  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
430    const SUnit *SU = &SUnits[i];
431    MISUnitMap[SU->getInstr()] = SU;
432    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
433      Max = SU;
434  }
435
436#ifndef NDEBUG
437  {
438    DEBUG(dbgs() << "Critical path has total latency "
439          << (Max->getDepth() + Max->Latency) << "\n");
440    DEBUG(dbgs() << "Available regs:");
441    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
442      if (KillIndices[Reg] == ~0u)
443        DEBUG(dbgs() << " " << TRI->getName(Reg));
444    }
445    DEBUG(dbgs() << '\n');
446  }
447#endif
448
449  // Track progress along the critical path through the SUnit graph as we walk
450  // the instructions.
451  const SUnit *CriticalPathSU = Max;
452  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
453
454  // Consider this pattern:
455  //   A = ...
456  //   ... = A
457  //   A = ...
458  //   ... = A
459  //   A = ...
460  //   ... = A
461  //   A = ...
462  //   ... = A
463  // There are three anti-dependencies here, and without special care,
464  // we'd break all of them using the same register:
465  //   A = ...
466  //   ... = A
467  //   B = ...
468  //   ... = B
469  //   B = ...
470  //   ... = B
471  //   B = ...
472  //   ... = B
473  // because at each anti-dependence, B is the first register that
474  // isn't A which is free.  This re-introduces anti-dependencies
475  // at all but one of the original anti-dependencies that we were
476  // trying to break.  To avoid this, keep track of the most recent
477  // register that each register was replaced with, avoid
478  // using it to repair an anti-dependence on the same register.
479  // This lets us produce this:
480  //   A = ...
481  //   ... = A
482  //   B = ...
483  //   ... = B
484  //   C = ...
485  //   ... = C
486  //   B = ...
487  //   ... = B
488  // This still has an anti-dependence on B, but at least it isn't on the
489  // original critical path.
490  //
491  // TODO: If we tracked more than one register here, we could potentially
492  // fix that remaining critical edge too. This is a little more involved,
493  // because unlike the most recent register, less recent registers should
494  // still be considered, though only if no other registers are available.
495  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
496
497  // Attempt to break anti-dependence edges on the critical path. Walk the
498  // instructions from the bottom up, tracking information about liveness
499  // as we go to help determine which registers are available.
500  unsigned Broken = 0;
501  unsigned Count = InsertPosIndex - 1;
502  for (MachineBasicBlock::iterator I = End, E = Begin;
503       I != E; --Count) {
504    MachineInstr *MI = --I;
505    if (MI->isDebugValue())
506      continue;
507
508    // Check if this instruction has a dependence on the critical path that
509    // is an anti-dependence that we may be able to break. If it is, set
510    // AntiDepReg to the non-zero register associated with the anti-dependence.
511    //
512    // We limit our attention to the critical path as a heuristic to avoid
513    // breaking anti-dependence edges that aren't going to significantly
514    // impact the overall schedule. There are a limited number of registers
515    // and we want to save them for the important edges.
516    //
517    // TODO: Instructions with multiple defs could have multiple
518    // anti-dependencies. The current code here only knows how to break one
519    // edge per instruction. Note that we'd have to be able to break all of
520    // the anti-dependencies in an instruction in order to be effective.
521    unsigned AntiDepReg = 0;
522    if (MI == CriticalPathMI) {
523      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
524        const SUnit *NextSU = Edge->getSUnit();
525
526        // Only consider anti-dependence edges.
527        if (Edge->getKind() == SDep::Anti) {
528          AntiDepReg = Edge->getReg();
529          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
530          if (!MRI.isAllocatable(AntiDepReg))
531            // Don't break anti-dependencies on non-allocatable registers.
532            AntiDepReg = 0;
533          else if (KeepRegs.test(AntiDepReg))
534            // Don't break anti-dependencies if an use down below requires
535            // this exact register.
536            AntiDepReg = 0;
537          else {
538            // If the SUnit has other dependencies on the SUnit that it
539            // anti-depends on, don't bother breaking the anti-dependency
540            // since those edges would prevent such units from being
541            // scheduled past each other regardless.
542            //
543            // Also, if there are dependencies on other SUnits with the
544            // same register as the anti-dependency, don't attempt to
545            // break it.
546            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
547                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
548              if (P->getSUnit() == NextSU ?
549                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
550                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
551                AntiDepReg = 0;
552                break;
553              }
554          }
555        }
556        CriticalPathSU = NextSU;
557        CriticalPathMI = CriticalPathSU->getInstr();
558      } else {
559        // We've reached the end of the critical path.
560        CriticalPathSU = 0;
561        CriticalPathMI = 0;
562      }
563    }
564
565    PrescanInstruction(MI);
566
567    // If MI's defs have a special allocation requirement, don't allow
568    // any def registers to be changed. Also assume all registers
569    // defined in a call must not be changed (ABI).
570    if (MI->isCall() || MI->hasExtraDefRegAllocReq() ||
571        TII->isPredicated(MI))
572      // If this instruction's defs have special allocation requirement, don't
573      // break this anti-dependency.
574      AntiDepReg = 0;
575    else if (AntiDepReg) {
576      // If this instruction has a use of AntiDepReg, breaking it
577      // is invalid.
578      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
579        MachineOperand &MO = MI->getOperand(i);
580        if (!MO.isReg()) continue;
581        unsigned Reg = MO.getReg();
582        if (Reg == 0) continue;
583        if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
584          AntiDepReg = 0;
585          break;
586        }
587      }
588    }
589
590    // Determine AntiDepReg's register class, if it is live and is
591    // consistently used within a single class.
592    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
593    assert((AntiDepReg == 0 || RC != NULL) &&
594           "Register should be live if it's causing an anti-dependence!");
595    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
596      AntiDepReg = 0;
597
598    // Look for a suitable register to use to break the anti-depenence.
599    //
600    // TODO: Instead of picking the first free register, consider which might
601    // be the best.
602    if (AntiDepReg != 0) {
603      std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
604                std::multimap<unsigned, MachineOperand *>::iterator>
605        Range = RegRefs.equal_range(AntiDepReg);
606      if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
607                                                     AntiDepReg,
608                                                     LastNewReg[AntiDepReg],
609                                                     RC)) {
610        DEBUG(dbgs() << "Breaking anti-dependence edge on "
611              << TRI->getName(AntiDepReg)
612              << " with " << RegRefs.count(AntiDepReg) << " references"
613              << " using " << TRI->getName(NewReg) << "!\n");
614
615        // Update the references to the old register to refer to the new
616        // register.
617        for (std::multimap<unsigned, MachineOperand *>::iterator
618             Q = Range.first, QE = Range.second; Q != QE; ++Q) {
619          Q->second->setReg(NewReg);
620          // If the SU for the instruction being updated has debug information
621          // related to the anti-dependency register, make sure to update that
622          // as well.
623          const SUnit *SU = MISUnitMap[Q->second->getParent()];
624          if (!SU) continue;
625          for (DbgValueVector::iterator DVI = DbgValues.begin(),
626                 DVE = DbgValues.end(); DVI != DVE; ++DVI)
627            if (DVI->second == Q->second->getParent())
628              UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
629        }
630
631        // We just went back in time and modified history; the
632        // liveness information for the anti-dependence reg is now
633        // inconsistent. Set the state as if it were dead.
634        Classes[NewReg] = Classes[AntiDepReg];
635        DefIndices[NewReg] = DefIndices[AntiDepReg];
636        KillIndices[NewReg] = KillIndices[AntiDepReg];
637        assert(((KillIndices[NewReg] == ~0u) !=
638                (DefIndices[NewReg] == ~0u)) &&
639             "Kill and Def maps aren't consistent for NewReg!");
640
641        Classes[AntiDepReg] = 0;
642        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
643        KillIndices[AntiDepReg] = ~0u;
644        assert(((KillIndices[AntiDepReg] == ~0u) !=
645                (DefIndices[AntiDepReg] == ~0u)) &&
646             "Kill and Def maps aren't consistent for AntiDepReg!");
647
648        RegRefs.erase(AntiDepReg);
649        LastNewReg[AntiDepReg] = NewReg;
650        ++Broken;
651      }
652    }
653
654    ScanInstruction(MI, Count);
655  }
656
657  return Broken;
658}
659