CriticalAntiDepBreaker.cpp revision 2f6036058529a862f1800b99e0b03f7506d4eb53
1//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CriticalAntiDepBreaker class, which
11// implements register anti-dependence breaking along a blocks
12// critical path during post-RA scheduler.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "post-RA-sched"
17#include "CriticalAntiDepBreaker.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetRegisterInfo.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26
27using namespace llvm;
28
29CriticalAntiDepBreaker::
30CriticalAntiDepBreaker(MachineFunction& MFi) :
31  AntiDepBreaker(), MF(MFi),
32  MRI(MF.getRegInfo()),
33  TII(MF.getTarget().getInstrInfo()),
34  TRI(MF.getTarget().getRegisterInfo()),
35  AllocatableSet(TRI->getAllocatableSet(MF)),
36  Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
37  KillIndices(TRI->getNumRegs(), 0),
38  DefIndices(TRI->getNumRegs(), 0) {}
39
40CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
41}
42
43void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
44  const unsigned BBSize = BB->size();
45  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
46    // Clear out the register class data.
47    Classes[i] = static_cast<const TargetRegisterClass *>(0);
48
49    // Initialize the indices to indicate that no registers are live.
50    KillIndices[i] = ~0u;
51    DefIndices[i] = BBSize;
52  }
53
54  // Clear "do not change" set.
55  KeepRegs.clear();
56
57  bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
58
59  // Determine the live-out physregs for this block.
60  if (IsReturnBlock) {
61    // In a return block, examine the function live-out regs.
62    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
63         E = MRI.liveout_end(); I != E; ++I) {
64      unsigned Reg = *I;
65      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
66      KillIndices[Reg] = BB->size();
67      DefIndices[Reg] = ~0u;
68
69      // Repeat, for all aliases.
70      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
71        unsigned AliasReg = *Alias;
72        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
73        KillIndices[AliasReg] = BB->size();
74        DefIndices[AliasReg] = ~0u;
75      }
76    }
77  }
78
79  // In a non-return block, examine the live-in regs of all successors.
80  // Note a return block can have successors if the return instruction is
81  // predicated.
82  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
83         SE = BB->succ_end(); SI != SE; ++SI)
84    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
85           E = (*SI)->livein_end(); I != E; ++I) {
86      unsigned Reg = *I;
87      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
88      KillIndices[Reg] = BB->size();
89      DefIndices[Reg] = ~0u;
90
91      // Repeat, for all aliases.
92      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
93        unsigned AliasReg = *Alias;
94        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
95        KillIndices[AliasReg] = BB->size();
96        DefIndices[AliasReg] = ~0u;
97      }
98    }
99
100  // Mark live-out callee-saved registers. In a return block this is
101  // all callee-saved registers. In non-return this is any
102  // callee-saved register that is not saved in the prolog.
103  const MachineFrameInfo *MFI = MF.getFrameInfo();
104  BitVector Pristine = MFI->getPristineRegs(BB);
105  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
106    unsigned Reg = *I;
107    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
108    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
109    KillIndices[Reg] = BB->size();
110    DefIndices[Reg] = ~0u;
111
112    // Repeat, for all aliases.
113    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
114      unsigned AliasReg = *Alias;
115      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
116      KillIndices[AliasReg] = BB->size();
117      DefIndices[AliasReg] = ~0u;
118    }
119  }
120}
121
122void CriticalAntiDepBreaker::FinishBlock() {
123  RegRefs.clear();
124  KeepRegs.clear();
125}
126
127void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
128                                     unsigned InsertPosIndex) {
129  if (MI->isDebugValue())
130    return;
131  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
132
133  // Any register which was defined within the previous scheduling region
134  // may have been rescheduled and its lifetime may overlap with registers
135  // in ways not reflected in our current liveness state. For each such
136  // register, adjust the liveness state to be conservatively correct.
137  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg)
138    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
139      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
140
141      // Mark this register to be non-renamable.
142      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
143
144      // Move the def index to the end of the previous region, to reflect
145      // that the def could theoretically have been scheduled at the end.
146      DefIndices[Reg] = InsertPosIndex;
147    }
148
149  PrescanInstruction(MI);
150  ScanInstruction(MI, Count);
151}
152
153/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
154/// critical path.
155static const SDep *CriticalPathStep(const SUnit *SU) {
156  const SDep *Next = 0;
157  unsigned NextDepth = 0;
158  // Find the predecessor edge with the greatest depth.
159  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
160       P != PE; ++P) {
161    const SUnit *PredSU = P->getSUnit();
162    unsigned PredLatency = P->getLatency();
163    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
164    // In the case of a latency tie, prefer an anti-dependency edge over
165    // other types of edges.
166    if (NextDepth < PredTotalLatency ||
167        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
168      NextDepth = PredTotalLatency;
169      Next = &*P;
170    }
171  }
172  return Next;
173}
174
175void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
176  // It's not safe to change register allocation for source operands of
177  // that have special allocation requirements. Also assume all registers
178  // used in a call must not be changed (ABI).
179  // FIXME: The issue with predicated instruction is more complex. We are being
180  // conservatively here because the kill markers cannot be trusted after
181  // if-conversion:
182  // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
183  // ...
184  // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
185  // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
186  // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
187  //
188  // The first R6 kill is not really a kill since it's killed by a predicated
189  // instruction which may not be executed. The second R6 def may or may not
190  // re-define R6 so it's not safe to change it since the last R6 use cannot be
191  // changed.
192  bool Special = MI->getDesc().isCall() ||
193    MI->getDesc().hasExtraSrcRegAllocReq() ||
194    TII->isPredicated(MI);
195
196  // Scan the register operands for this instruction and update
197  // Classes and RegRefs.
198  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
199    MachineOperand &MO = MI->getOperand(i);
200    if (!MO.isReg()) continue;
201    unsigned Reg = MO.getReg();
202    if (Reg == 0) continue;
203    const TargetRegisterClass *NewRC = 0;
204
205    if (i < MI->getDesc().getNumOperands())
206      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
207
208    // For now, only allow the register to be changed if its register
209    // class is consistent across all uses.
210    if (!Classes[Reg] && NewRC)
211      Classes[Reg] = NewRC;
212    else if (!NewRC || Classes[Reg] != NewRC)
213      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
214
215    // Now check for aliases.
216    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
217      // If an alias of the reg is used during the live range, give up.
218      // Note that this allows us to skip checking if AntiDepReg
219      // overlaps with any of the aliases, among other things.
220      unsigned AliasReg = *Alias;
221      if (Classes[AliasReg]) {
222        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
223        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
224      }
225    }
226
227    // If we're still willing to consider this register, note the reference.
228    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
229      RegRefs.insert(std::make_pair(Reg, &MO));
230
231    if (MO.isUse() && Special) {
232      if (KeepRegs.insert(Reg)) {
233        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
234             *Subreg; ++Subreg)
235          KeepRegs.insert(*Subreg);
236      }
237    }
238  }
239}
240
241void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
242                                             unsigned Count) {
243  // Update liveness.
244  // Proceding upwards, registers that are defed but not used in this
245  // instruction are now dead.
246
247  if (!TII->isPredicated(MI)) {
248    // Predicated defs are modeled as read + write, i.e. similar to two
249    // address updates.
250    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
251      MachineOperand &MO = MI->getOperand(i);
252      if (!MO.isReg()) continue;
253      unsigned Reg = MO.getReg();
254      if (Reg == 0) continue;
255      if (!MO.isDef()) continue;
256      // Ignore two-addr defs.
257      if (MI->isRegTiedToUseOperand(i)) continue;
258
259      DefIndices[Reg] = Count;
260      KillIndices[Reg] = ~0u;
261      assert(((KillIndices[Reg] == ~0u) !=
262              (DefIndices[Reg] == ~0u)) &&
263             "Kill and Def maps aren't consistent for Reg!");
264      KeepRegs.erase(Reg);
265      Classes[Reg] = 0;
266      RegRefs.erase(Reg);
267      // Repeat, for all subregs.
268      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
269           *Subreg; ++Subreg) {
270        unsigned SubregReg = *Subreg;
271        DefIndices[SubregReg] = Count;
272        KillIndices[SubregReg] = ~0u;
273        KeepRegs.erase(SubregReg);
274        Classes[SubregReg] = 0;
275        RegRefs.erase(SubregReg);
276      }
277      // Conservatively mark super-registers as unusable.
278      for (const unsigned *Super = TRI->getSuperRegisters(Reg);
279           *Super; ++Super) {
280        unsigned SuperReg = *Super;
281        Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
282      }
283    }
284  }
285  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
286    MachineOperand &MO = MI->getOperand(i);
287    if (!MO.isReg()) continue;
288    unsigned Reg = MO.getReg();
289    if (Reg == 0) continue;
290    if (!MO.isUse()) continue;
291
292    const TargetRegisterClass *NewRC = 0;
293    if (i < MI->getDesc().getNumOperands())
294      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
295
296    // For now, only allow the register to be changed if its register
297    // class is consistent across all uses.
298    if (!Classes[Reg] && NewRC)
299      Classes[Reg] = NewRC;
300    else if (!NewRC || Classes[Reg] != NewRC)
301      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
302
303    RegRefs.insert(std::make_pair(Reg, &MO));
304
305    // It wasn't previously live but now it is, this is a kill.
306    if (KillIndices[Reg] == ~0u) {
307      KillIndices[Reg] = Count;
308      DefIndices[Reg] = ~0u;
309          assert(((KillIndices[Reg] == ~0u) !=
310                  (DefIndices[Reg] == ~0u)) &&
311               "Kill and Def maps aren't consistent for Reg!");
312    }
313    // Repeat, for all aliases.
314    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
315      unsigned AliasReg = *Alias;
316      if (KillIndices[AliasReg] == ~0u) {
317        KillIndices[AliasReg] = Count;
318        DefIndices[AliasReg] = ~0u;
319      }
320    }
321  }
322}
323
324unsigned
325CriticalAntiDepBreaker::findSuitableFreeRegister(MachineInstr *MI,
326                                                 unsigned AntiDepReg,
327                                                 unsigned LastNewReg,
328                                                 const TargetRegisterClass *RC)
329{
330  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
331       RE = RC->allocation_order_end(MF); R != RE; ++R) {
332    unsigned NewReg = *R;
333    // Don't consider non-allocatable registers
334    if (!AllocatableSet.test(NewReg)) continue;
335    // Don't replace a register with itself.
336    if (NewReg == AntiDepReg) continue;
337    // Don't replace a register with one that was recently used to repair
338    // an anti-dependence with this AntiDepReg, because that would
339    // re-introduce that anti-dependence.
340    if (NewReg == LastNewReg) continue;
341    // If the instruction already has a def of the NewReg, it's not suitable.
342    // For example, Instruction with multiple definitions can result in this
343    // condition.
344    if (MI->modifiesRegister(NewReg, TRI)) continue;
345    // If NewReg is dead and NewReg's most recent def is not before
346    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
347    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
348           && "Kill and Def maps aren't consistent for AntiDepReg!");
349    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
350           && "Kill and Def maps aren't consistent for NewReg!");
351    if (KillIndices[NewReg] != ~0u ||
352        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
353        KillIndices[AntiDepReg] > DefIndices[NewReg])
354      continue;
355    return NewReg;
356  }
357
358  // No registers are free and available!
359  return 0;
360}
361
362unsigned CriticalAntiDepBreaker::
363BreakAntiDependencies(const std::vector<SUnit>& SUnits,
364                      MachineBasicBlock::iterator Begin,
365                      MachineBasicBlock::iterator End,
366                      unsigned InsertPosIndex) {
367  // The code below assumes that there is at least one instruction,
368  // so just duck out immediately if the block is empty.
369  if (SUnits.empty()) return 0;
370
371  // Keep a map of the MachineInstr*'s back to the SUnit representing them.
372  // This is used for updating debug information.
373  DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
374
375  // Find the node at the bottom of the critical path.
376  const SUnit *Max = 0;
377  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
378    const SUnit *SU = &SUnits[i];
379    MISUnitMap[SU->getInstr()] = SU;
380    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
381      Max = SU;
382  }
383
384#ifndef NDEBUG
385  {
386    DEBUG(dbgs() << "Critical path has total latency "
387          << (Max->getDepth() + Max->Latency) << "\n");
388    DEBUG(dbgs() << "Available regs:");
389    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
390      if (KillIndices[Reg] == ~0u)
391        DEBUG(dbgs() << " " << TRI->getName(Reg));
392    }
393    DEBUG(dbgs() << '\n');
394  }
395#endif
396
397  // Track progress along the critical path through the SUnit graph as we walk
398  // the instructions.
399  const SUnit *CriticalPathSU = Max;
400  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
401
402  // Consider this pattern:
403  //   A = ...
404  //   ... = A
405  //   A = ...
406  //   ... = A
407  //   A = ...
408  //   ... = A
409  //   A = ...
410  //   ... = A
411  // There are three anti-dependencies here, and without special care,
412  // we'd break all of them using the same register:
413  //   A = ...
414  //   ... = A
415  //   B = ...
416  //   ... = B
417  //   B = ...
418  //   ... = B
419  //   B = ...
420  //   ... = B
421  // because at each anti-dependence, B is the first register that
422  // isn't A which is free.  This re-introduces anti-dependencies
423  // at all but one of the original anti-dependencies that we were
424  // trying to break.  To avoid this, keep track of the most recent
425  // register that each register was replaced with, avoid
426  // using it to repair an anti-dependence on the same register.
427  // This lets us produce this:
428  //   A = ...
429  //   ... = A
430  //   B = ...
431  //   ... = B
432  //   C = ...
433  //   ... = C
434  //   B = ...
435  //   ... = B
436  // This still has an anti-dependence on B, but at least it isn't on the
437  // original critical path.
438  //
439  // TODO: If we tracked more than one register here, we could potentially
440  // fix that remaining critical edge too. This is a little more involved,
441  // because unlike the most recent register, less recent registers should
442  // still be considered, though only if no other registers are available.
443  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
444
445  // Attempt to break anti-dependence edges on the critical path. Walk the
446  // instructions from the bottom up, tracking information about liveness
447  // as we go to help determine which registers are available.
448  unsigned Broken = 0;
449  unsigned Count = InsertPosIndex - 1;
450  for (MachineBasicBlock::iterator I = End, E = Begin;
451       I != E; --Count) {
452    MachineInstr *MI = --I;
453    if (MI->isDebugValue())
454      continue;
455
456    // Check if this instruction has a dependence on the critical path that
457    // is an anti-dependence that we may be able to break. If it is, set
458    // AntiDepReg to the non-zero register associated with the anti-dependence.
459    //
460    // We limit our attention to the critical path as a heuristic to avoid
461    // breaking anti-dependence edges that aren't going to significantly
462    // impact the overall schedule. There are a limited number of registers
463    // and we want to save them for the important edges.
464    //
465    // TODO: Instructions with multiple defs could have multiple
466    // anti-dependencies. The current code here only knows how to break one
467    // edge per instruction. Note that we'd have to be able to break all of
468    // the anti-dependencies in an instruction in order to be effective.
469    unsigned AntiDepReg = 0;
470    if (MI == CriticalPathMI) {
471      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
472        const SUnit *NextSU = Edge->getSUnit();
473
474        // Only consider anti-dependence edges.
475        if (Edge->getKind() == SDep::Anti) {
476          AntiDepReg = Edge->getReg();
477          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
478          if (!AllocatableSet.test(AntiDepReg))
479            // Don't break anti-dependencies on non-allocatable registers.
480            AntiDepReg = 0;
481          else if (KeepRegs.count(AntiDepReg))
482            // Don't break anti-dependencies if an use down below requires
483            // this exact register.
484            AntiDepReg = 0;
485          else {
486            // If the SUnit has other dependencies on the SUnit that it
487            // anti-depends on, don't bother breaking the anti-dependency
488            // since those edges would prevent such units from being
489            // scheduled past each other regardless.
490            //
491            // Also, if there are dependencies on other SUnits with the
492            // same register as the anti-dependency, don't attempt to
493            // break it.
494            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
495                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
496              if (P->getSUnit() == NextSU ?
497                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
498                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
499                AntiDepReg = 0;
500                break;
501              }
502          }
503        }
504        CriticalPathSU = NextSU;
505        CriticalPathMI = CriticalPathSU->getInstr();
506      } else {
507        // We've reached the end of the critical path.
508        CriticalPathSU = 0;
509        CriticalPathMI = 0;
510      }
511    }
512
513    PrescanInstruction(MI);
514
515    // If MI's defs have a special allocation requirement, don't allow
516    // any def registers to be changed. Also assume all registers
517    // defined in a call must not be changed (ABI).
518    if (MI->getDesc().isCall() || MI->getDesc().hasExtraDefRegAllocReq() ||
519        TII->isPredicated(MI))
520      // If this instruction's defs have special allocation requirement, don't
521      // break this anti-dependency.
522      AntiDepReg = 0;
523    else if (AntiDepReg) {
524      // If this instruction has a use of AntiDepReg, breaking it
525      // is invalid.
526      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
527        MachineOperand &MO = MI->getOperand(i);
528        if (!MO.isReg()) continue;
529        unsigned Reg = MO.getReg();
530        if (Reg == 0) continue;
531        if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
532          AntiDepReg = 0;
533          break;
534        }
535      }
536    }
537
538    // Determine AntiDepReg's register class, if it is live and is
539    // consistently used within a single class.
540    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
541    assert((AntiDepReg == 0 || RC != NULL) &&
542           "Register should be live if it's causing an anti-dependence!");
543    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
544      AntiDepReg = 0;
545
546    // Look for a suitable register to use to break the anti-depenence.
547    //
548    // TODO: Instead of picking the first free register, consider which might
549    // be the best.
550    if (AntiDepReg != 0) {
551      if (unsigned NewReg = findSuitableFreeRegister(MI, AntiDepReg,
552                                                     LastNewReg[AntiDepReg],
553                                                     RC)) {
554        DEBUG(dbgs() << "Breaking anti-dependence edge on "
555              << TRI->getName(AntiDepReg)
556              << " with " << RegRefs.count(AntiDepReg) << " references"
557              << " using " << TRI->getName(NewReg) << "!\n");
558
559        // Update the references to the old register to refer to the new
560        // register.
561        std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
562                  std::multimap<unsigned, MachineOperand *>::iterator>
563           Range = RegRefs.equal_range(AntiDepReg);
564        for (std::multimap<unsigned, MachineOperand *>::iterator
565             Q = Range.first, QE = Range.second; Q != QE; ++Q) {
566          Q->second->setReg(NewReg);
567          // If the SU for the instruction being updated has debug information
568          // related to the anti-dependency register, make sure to update that
569          // as well.
570          const SUnit *SU = MISUnitMap[Q->second->getParent()];
571          if (!SU) continue;
572          for (unsigned i = 0, e = SU->DbgInstrList.size() ; i < e ; ++i) {
573            MachineInstr *DI = SU->DbgInstrList[i];
574            assert (DI->getNumOperands()==3 && DI->getOperand(0).isReg() &&
575                    DI->getOperand(0).getReg()
576                    && "Non register dbg_value attached to SUnit!");
577            if (DI->getOperand(0).getReg() == AntiDepReg)
578              DI->getOperand(0).setReg(NewReg);
579          }
580        }
581
582        // We just went back in time and modified history; the
583        // liveness information for the anti-depenence reg is now
584        // inconsistent. Set the state as if it were dead.
585        Classes[NewReg] = Classes[AntiDepReg];
586        DefIndices[NewReg] = DefIndices[AntiDepReg];
587        KillIndices[NewReg] = KillIndices[AntiDepReg];
588        assert(((KillIndices[NewReg] == ~0u) !=
589                (DefIndices[NewReg] == ~0u)) &&
590             "Kill and Def maps aren't consistent for NewReg!");
591
592        Classes[AntiDepReg] = 0;
593        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
594        KillIndices[AntiDepReg] = ~0u;
595        assert(((KillIndices[AntiDepReg] == ~0u) !=
596                (DefIndices[AntiDepReg] == ~0u)) &&
597             "Kill and Def maps aren't consistent for AntiDepReg!");
598
599        RegRefs.erase(AntiDepReg);
600        LastNewReg[AntiDepReg] = NewReg;
601        ++Broken;
602      }
603    }
604
605    ScanInstruction(MI, Count);
606  }
607
608  return Broken;
609}
610